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Abstract

Clustering on multi-type relational data has at-
tracted more and more attention in recent years
due to its high impact on various important ap-
plications, such as Web mining, e-commerce and
bioinformatics. However, the research on gen-
eral multi-type relational data clustering is still
limited and preliminary. The contribution of the
paper is three-fold. First, we propose a general
model, the collective factorization on related ma-
trices, for multi-type relational data clustering.
The model is applicable to relational data with
various structures. Second, under this model, we
derive a novel algorithm, the spectral relational
clustering, to cluster multi-type interrelated data
objects simultaneously. The algorithm iteratively
embeds each type of data objects into low dimen-
sional spaces and benefits from the interactions
among the hidden structures of different types of
data objects. Extensive experiments demonstrate
the promise and effectiveness of the proposed al-
gorithm. Third, we show that the existing spec-
tral clustering algorithms can be considered as
the special cases of the proposed model and al-
gorithm. This demonstrates the good theoretic
generality of the proposed model and algorithm.

many real-world data sets are much richer in structure, in-
volving objects of multiple types that are related to each
other, such as Web pages, search queries and Web users in
a Web search system, and papers, key words, authors and
conferences in a scientific publication domain. In such sce-
narios, using traditional methods to cluster each type of ob-
jects independently may not work well due to the following
reasons.

First, to make use of relation information under the tradi-
tional clustering framework, the relation information needs
to be transformed into features. In general, this transforma-
tion causes information loss and/or very high dimensional
and sparse data. For example, if we represent the relations
between Web pages and Web users as well as search queries
as the features for the Web pages, this leads to a huge num-
ber of features with sparse values for each Web page. Sec-
ond, traditional clustering approaches are unable to tackle
with the interactions among the hidden structures of differ-
ent types of objects, since they cluster data of single type
based on static features. Note that the interactions could
pass along the relations, i.e., there exists influence propaga-
tion in multi-type relational data. Third, in some machine
learning applications, users are not only interested in the
hidden structure for each type of objects, but also the global
structure involving multi-types of objects. For example,
in document clustering, except for document clusters and
word clusters, the relationship between document clusters
and word clusters is also useful information. It is difficult
to discover such global structures by clustering each type

1. Introduction of objects individually.

_ ) _ ... Therefore, multi-type relational data has presented a great
Most clustering approaches in the literature focus on "flat"challenge for traditional clustering approaches. In this
data in which each data object is represented as a f|xe(§[udy, first, we propose a general model, the collective
length feature vector (R.O.Duda et al., 2000). Howevergactorization on related matrices, to discover the hidden
mroceedings of th@3™ International Conference structures of multi-types of objects based on both feature

on Machine LearningPittsburgh, PA, 2006. Copyright 2006 by infor_mation and .relatio_n information. By clustering the
the author(s)/owner(s). multi-types of objects simultaneously, the model performs
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adaptive dimensionality reduction for each type of datameans and the Laplacian-based spectral clustering. Several
Through the related factorizations which share factors, therevious efforts related to co-clustering are model based.
hidden structures of different types of objects could inter-PLSA (Hofmann, 1999) is a method based on a mixture
act under the model. In addition to the cluster structuresiecomposition derived from a latent class model. A two-
for each type of data, the model also provides informatiorsided clustering model is proposed for collaborative filter-
about the relation between clusters of different types of obing by Hofmann and Puzicha (1999). Information-theory
jects. based co-clustering has also attracted attention in the lit-
erature. El-Yaniv and Souroujon (2001) extend the infor-

Second, under this model, we derive a novel algorithm, themation bottleneck (IB) framework (Tishby et al., 1999) to

faﬁzgtrgétflgg%ﬁls Cslzjniheltrgngégﬁs?lusger ?eurgt_it\yeﬁe g‘;?g;%_repeatedly cluster documents and then words. Dhillon et al.
J y. By y 2003) propose a co-clustering algorithm to maximize the

ding each type of data objects into low dimensional space utual information between the clustered random variables

gheeni{?rzgiﬁggi?%;z:;%Ttthi'sné?rggggogz.gggn_?_;zeaﬁ"%}subject to the constraints on the number of row and column
yp ) : Y%, usters. A more generalized co-clustering framework is

put at he same e alec appicanle to elational data wiigresenied by Baneriee et al. (2004) wnerein any Bregman
PP ivergence can be used in the objective function.

various structures. Theoretic analysis and experimental re-
sults demonstrate the promise and effectiveness of the aGomparing with co-clustering, clustering on general rela-
gorithm. tional data, which may consist of more than two types of
Third, we show that the existing spectral clustering algo_data objects, has not been WQII studied in the literature.
' Several noticeable efforts are discussed as follows. Taskar

rithms can be considered as the special cases of the Pr; al. (2001) extend the the probabilistic relational model to

foojﬁgen:;gﬁmﬂg i?ﬁ;gg%nzh;n%fvﬁizggluZ'I;Iehdm\gewthe clustering scenario by introducing latent variables into
9 9 " the model. Gao et al. (2005) formulate star-structured rela-
tional data as a star-structuredpartite graph and develop
2. Related Work an algorithm based on semi-definite programming to par-
) tition the graph. Like bipartite graph partitioning, it has
Spectral clustering (Ng et al., 2001; Bach & Jordan, 2004)imjtations that the clusters from different types of objects

ing methods based on the graph partitioning theory focughe feature information.

on finding the best cuts of a graph that optimize certainpre- _ ) )

defined criterion functions. The optimization of the crite- An intuitive idea for clustering multi-type interrelated ob-
rion functions usually leads to the computation of singular€cts is the mutual reinforcement clustering. The idea
vectors or eigenvectors of Certain graph aff|n|ty matrices_\/\/orks as.fOHOWS: start W|th |n|t|a| CIUSter structures Of the
Many criterion functions, such as the average cut (Chaflata; derive the new reduced features from the clusters of
et al., 1993), the average association (Shi & Malik, 2000)the related objects for each type of objects; based on the
the normalized cut (Shi & Malik, 2000), and the min-max New features, cluster each type of objects with a traditional

cut (Ding et al., 2001), have been proposed. clustering algorithm; go back to the second step until the
algorithm converges. Base on this idea, Zeng et al. (2002)

Spectral graph partitioning has also been applied to grgpose a framework for clustering heterogeneous Web ob-
speual case of multi-type relational data, bl-pre re|a'jects and Wang et al. (2003) present an approach to im-
tional data such as the word-document data (Dhillon, 2001pove the cluster quality of interrelated data objects through
H.Zha & H.Simon, 2001). These algorithms formulate thegn jterative reinforcement clustering process. However,
data matrix as a bipartite graph and seek to find the optimahere is no sounded objective function and theoretical proof

normalized cut for the graph. Due to the nature of a bi-gn the effectiveness and correctness (convergence) of the
partite graph, these algorithms have the restriction that thg,ytyal reinforcement clustering.

clusters from different types of objects must have one-to- ) ) )
one associations. To summarize, the research on multi-type relational data

) ) ) ) _clustering has attracted substantial attention, especially in
Clustering on bi-type relational data is called co-clusteringthe the special cases of relational data. However, there is
or bi-clustering. Recently, co-clustering has been adxj|| imited and preliminary work on the general relational
dressed based on matrix factorization. Both Long et algata. This paper attempts to derive a theoretically sounded

(2005) and Li (2005) model the co-clustering as an opti-model and algorithm for general multi-type relational data
mization problem involving a triple matrix factorization. c¢|ystering.

Long et al. (2005) propose an EM-like algorithm based on
multiplicative updating rules and Li (2005) proposes a hard )
clustering algorithm for binary data. Ding et al. (2005) 3. Model Formulation
extend the non-negative matrix factorization to symmet-

ric matrices and show that it is equvilent to the Kernel K- In this section, we propose a general model for clustering

multi-type relational data based on factorizing multiple re-
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object in X; is associated with theth cluster. Similarly
CU) € {0,1}%ki, A) ¢ RF:¥Fi js the cluster associ-
ation matrixsuch thatd’/, denotes the association between
clusterp of &; and clustey of X;. Second, ift; has a fea-
ture matrix (") ¢ R™:* /i the cluster structure is reflected
in the factorization ofF(*) such thatF) ~ C®B®),
whereC) € {0, 1}"**: is a cluster indicator matrix, and

Fioure 1E les of th ¢ mult ational d B ¢ RF:x/i js the feature basis matrix which consists of
igure 1.Examples of the structures of multi-type relational data. ;. y5sjs (cluster center) vectors in the feature space.

(a)

lated matrices. Based on the above discussions, formally we formulate the
task of collective clustering on MTRD as the following op-
timization problem. Considering the most general case, we
assume that in MTRD, every pair & and X is related to

each other and every; has a feature matrix (%),

Given m sets of data objects, X =
{xll, R ,.1‘1711}, ey Xy = {xmh - ,.’I}mnm}, which
refer tom different types of objects relating to each other,
we are interested in simultaneously clusterikiginto &,

disjoint clusters, ..., andt,, into k,, disjoint clusters. Definition 3.1. Givenrm positive numbergF; };<i<m and
We call this task azollective clustering on multi-type MTRD {&1,..., X}, which is described by a set of re-
relational data lation matrices{R(7) € R™*"i} <, <., a set of fea-

i . . . i (2) ni X fi )
To derive a general model for collective clustering, we fwstture matrl(ci?)s{F(i) €R b1<i<m, as well as a set of

formulate Multi-Type Relational Data (MTRD) as a set of Weightswa™", w,” € R, for different types of relations
related matrices, in which two matrices are related in theand features, the task of the collective clustering on the
sense that their row indices or column indices refer to thdVTRD Is to minimize
same set of objects. First, if there exist relations between _ (i5) 1) p(ij) (8) A(if) (~GNT |2

) L = DR — o) 469 (0
&; and &; (denoted ast; ~ X;), we represent them as a Z wa ] ( il

. . 1<i<j<m
relation matrixR(¥) € R™*"s, where an elemengk.’ Do) @) B2
denotes the relation betwee, andz;,. Second, a set of + > wIFY - cWBY| 1)
objectsX; may have its own features, which could be de- 1<i<m

noted by a feature matrikV € R™*/:, where anelement y () ¢ {0, 1}mxke, AG) ¢ RF<ks | and BO) e
Fzgg) denotes theth feature values for the objeet, andf;  prixfi subject to the constrainti’;;l Céé) — 1, where

is the number of features fov;. Il <p<nyl<i<j<m,and|-| denotes the
Figure 1 shows three examples of the structures of MTRDFrobenius norm for a matrix.

Example (a) refers to a basic bi-type of relational data de- i L

noted by a relation matri®(1?), such as word-document We call the_ quel proposed in Def_lnltlon 3.1 as the Collec-
data. Example (b) represents a tri-type of star-structuref{ve Factorization on Related Matrices (CFRM).

data, such as Web pages, Web users and search queriestifie CFRM model clusters multi-type interrelated data ob-
Web search systems, which are denoted by two relation m3ects simultaneously based on both relation and feature in-
trices R('?) and R(?3). Example (c) represents the data formation. The model exploits the interactions between the
consisting of shops, customers, suppliers, shareholders amitdden structures of different types of objects through the
advertisement media, in which customers (type 5) have feaelated factorizations which share matrix factors, i.e., clus-
tures. The data are denoted by four relation matriR€$),  ter indicator matrices. Hence, the interactions between hid-
R(3) R4 andR(15), and one feature matrik(®). den structures work in two ways. First, 4 ~ X, the in-

it has b h hat the hidd fad teractions are reflected as the duality of row clustering and
thas been shown that the hidden structure of a data matrig,, ,n ¢jystering ink(/). Second, if two types of objects

can be explored by its factorization (D.D.Lee & H.S.Seung,_ . .+ : -
s . . . are indirectly related, the interactions pass along the rela-
1999; Long et al., 2005). Motivated by this observation, Wen "chains” by a chain of related factorizations, i.e., the

probpos% a gefnetral_ '.md?ri for CI?."?C“VGI illgstenrt]g, Whl(ihmodel is capable of dealing with influence propagation. In
II\?ITSISDethonI a(t: Or'?ngt efmu Itp € refal;e_ ma r'C%S' Naddition to local cluster structure for each type of objects,
, the cluster structure for a type of objeismay be the model also provides the global structure information by

embedded in multiple related matrices; hence it can be ®he cluster association matrices, which represent the rela-

ploited in multiple related factorizations. FirstAf ~ X’;, tions amond the clusters of different tvoes of obiects
then the cluster structures of baif) and X; are reflected 9 yp ) '

in the triple factorization of their relation matri®(*/) such . L

that R(9) ~ () A (CUNT (Long et al., 2005), where 4- Algorithm Derivation

C € {0,1}"** is acluster indicator matriXor X; such | this section, we derive a spectral clustering algorithm
thatz’qj;1 ) = 1andC{) = 1 denotes that theth  for MTRD under the CFRM model. First, without loss of



Spectral Clustering for Multi-type Relational Data

generality, we re-define the cluster indicator maf#ié) as
the following vigorous cluster indicator matrix,

c — m if 2, € 7y
b 0 otherwise

where\m(l’)| denotes the number of objects in tté clus-
ter of X)), Clearly C® still captures the disjoint cluster
memberships andC)TC® = I, whereI;, denotes
k; X k; identity matrix. Hence our task is the minimization:

‘ min L
{(C(”)TC“):IIW hi<i<m
{AGD) gRFi ¥ k; bi<i<j<m

{B(i)e]Rkini}lSiSm

)

whereL is the same as in Eq. (1).

Then, we prove the following lemma, which is useful in
proving our main theorem.

Lemma 4.1. If {C(i)}lgigm, {A(ij)}1§i<j§m, and

{B®},<;<,, are the optimal solution to Eq?2), then
AGEd)
B®

(CNT R CW)
(C(i))TF(i)

®)
(4)

forl <i<m.

Theorem 4.2. The minimization problem in Eq.(2) is
equivalent to the following maximization problem:

max
{(cNHTc®
=Ir, hi<i<m
Z w((fj)tr((C(i))TR(ij)C(j) (C<J'))T(R(ij))Tc(i)) (6)

1<i<j<m

Z wl(f)tr((c(i))TF(i) (F(i))TC’(i))—i—

1<i<m

Proof. From Lemma 4.1, we have Eqg. (3) and (4). Plug-
ging them into Eq. (5), we obtain

L= Y w(tr(FOF)T)-

1<i<m
tr((C(i))TF(i)(F(i))TC(i))) +
Z w) (tr(RG) (RGN T —

1<i<j<m
tr((CHT R W) (CONT(RWNT @Y. (7)

Since in Eq. (7), tF® (F)T) and t( R (R@)T) are
constants, the minimization df in Eq. (2) is equivalent to
the maximization in Eq. (6). This completes the proof of
the theorem. O

We propose an iterative algorithm to determine the optimal
(local) solution to the maximization problem in Theorem
4.2, i.e., at each iterative step we maximize the objective
function in Eq. (6) w.r.t. only one matri€'®) and fix other
CY) for j # pwherel < p, j < m. Based on Eq. (6), after

Proof. The objective function in Eq. (2) can be expandeda little algebraic manipulation, the task at each iterative step

as follows.

L

_ Z wfzij)tl’((R(ij) _ C(i)A(iJ)(C(J'))T)
1<i<j<m

(R(ij) _ C(i)A(ij)(C(j))T)T) +
Z wl(f)tl'((F(i) _ C(i)B(i))(F(i) _ C(i)B(i))T)

1<i<m
_ Z w{(lij)(tr(R(ij)(R(ij))T) +
1<i<j<m

tr(A(ij)(A<ij))T) _ Qtr(o(’i)A(’ij)(C(i))T(R(’ij))T))
+ 2w wEED)) + BB
1<i<m

—2tr(CY BW (FTY)) (5)

is equivalent to the following maximization,

tr((C’(”))TM(p)C’(”))

max
(C(P))TC(P):I,CP

8)

where
M@ — wl()P)(F(p)(F(p))T)+
Z wt(lpj)(R(pj)C(j)(C(j))T(R(pj)T))+
p<j<m
Z wP) (RUPHT W (CUNT(RUP))).  (9)

1<j<p

Clearly M) is a symmetric matrix. Sinc€(®) is a vig-
orous cluster indicator matrix, the maximization problem

where tr denotes the trace of a matrix; the termsin EQ. (8) is still NP-hard. However, as in the spectral

tr(AG) (AN T) and t( B (B®)T) result from the com-
municative property of the trace aid )7 (C") = I;,.

Based on Eq. (5), solving2%; = 0 and ;2% = 0 leads

graph partitioning, if we apply real relaxation@®) to let
C®) be an arbitrary orthonormal matrix, it turns out that
the maximization in Eq. (8) has a closed-form solution.

to Eq. (3) and Eq. (4). This completes the proof of theTheorem 4.3. (Ky-Fan thorem) LetM be a symmetric

lemma. O

matrix with eigenvalues\; > X, > ...
the corresponding eigenvectots = [u, ..

> )\, and
., ug]. Then

Lemma 4.1 implies that the objective function in Eq. (1) Zle i = maxxrx_y, tr(XT M X). Moreover, the opti-

can be simplified to the function of only*). This leads to

the following theorem, which is the basis of our algorithm.

mal X is given by[u, . .
orthogonal matrix.

., uk|@Q where@ is an arbitrary
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Algorithm 1 Spectral Relational Clustering and hence equivalently decrease the objective function in
Input: Relation matrice§R(/) ¢ R™>M5 Yy e , fea- Eq.(2). Since the objective funcuon in Eq. (2) has the lower
ture matrices F) € R"*%}, ..., numbers of clusters bound0, the convergence of SRC is guaranteed.

{ki}lgigmy WEightS{wgz]), wl(;’) S R+}1§i<j§m-
Output: Cluster indicator matrice§C®) }; <<,

5. Special Cases and Discussions

Method: In this section we discuss special cases of the CFRM model
1: Initialize {C"}, <<, With othonormal matrices. and the SRC algorithm to show that they provide a unified
2: repeat view for the existing spectral clustering algorithms.

3: forp=1tomdo
4 Compute(tr;e matrix/ () as in Eq. (9). 5.1. K-means and Spectral Clustering
v i ;

> ]Ld[p(g)a teC"” by the leadingk;, eigenvectors of Traditional "flat” data can be viewed as a special MTRD

: with only one feature matrix. In this situation, the objective
6 epd for function in Definition 3.1 is reduced tb = ||F — CB||?,
7: until convergence which is the matrix representation for the objective function
8: for p = 1tomdo of the k-means algorithm (Zha et al., 2002). Therefore, by
9:  transformC(®) into a cluster indicator matrix by the Theorem 4.2, k-means is equivalent to the maximization:

k-means.
10: end for max tr(CTFFTC). (10)
CTCZI,

If we treat FF'T as a graph affinity matrix, the above ob-

] ) ) jective function is equivalent to the objective function of
Based on Theorem 4.3 (Bhatia, 1997), at each iterative stegraph partitioning based on average association cut (Shi &
we updateC(?) as the leading;,, eigenvectors of the matix \alik, 2000). If we normalizeF to be D~'/2F where
M (). After the iteration procedure converges, since the repD = diag FF”e), e = [1, 1, ...,1]7, the objective func-
sulting eigen-matrices are not indicator matrices, we nee@on in Eq. (10) is equivalent to the objective function of
to transform them into cluster indicator matrices by post-graph partitioning based on normalized cut (Shi & Malik,
processing (Bach & Jordan, 2004; Zha et al., 2002; Ding &2000). Other versions of graph partitioning can also be for-
He, 2004). In this paper, we simply adopt the k-means foimulated to be equivalent to Eq. (10). For the objective
the postprocessing. function in Eq. (10), SRC iterates only once to compute
the leading: eigenvectors of FT and postprocesses them
to extract the cluster structure. This is exactly the proce-
dure described by Ng et al. (2001). Hence spectral clus-
égring algorithms based on graph partitioning are naturally
accommodated in the SRC algorithm.

The algorithm, called Spectral Relational Clustering
(SRC), is summarized in Algorithm 1. By iteratively up-
datingC?) as the leading;, eigenvectors of\/ (), SRC
makes use of the interactions among the hidden structur
of different type of objects. After the iteration procedure
converges, the hidden structure for each type of objects i we considerFF” in Eq.(10) as a general similarity ma-
embedded in an eigen-matrix. Finally, we postprocess eacitix which denotes similarities or relations within the same
eigen-matrix to extract the cluster structure. type of objects, SRC is naturally extended to a more gen-

To illustrate the SRC algorithm, we describe the specificeral case. In some applications, besides features and re-

update rules for the tri-type relational data as shown in Figlations to other types of objects, a type of objedts”
ure 1(b): update as the leading:; eigenvectors of in MTRD may have intra-type relations (here we assume

(12) 1 (12) 1(2) (T ( P2\ T @) ) u_ndirect_ed relations), which can bg denoted by a symmet-
Wa R' c=(C™) (52) )(1,2)1121da(tle)0 (1;’:13Tth(ei2lsaad ric matrix S(®) ¢ R™*"»_ By treatingS®) the same as
|n923/€2 eigenvectors ofv, ' (R")"CY(CH)TRES + pe)(p®)T it is easy to extend SRC to this situation by
wi R CGN(C®)T(RE)T; updateC®) as the lead- simply adding an extra term{"’ S® to M®) in Eq.(9),

. . 23
ing k3 eigenvectors ofo"” (R(?%)7C?) (C()TR(3), wherew?) € R denotes the weight fo§®). Due to space

the computational complexity of SRC can be shown tolimitation, theoretic analysis for this extension is omitted.
be O(tmn?k) wheret denotes the number of iterations,
n = O(n;) andk = O(k;). For sparse data, it could be 5.2. Bipartite Spectral Graph Partitioning

reduced to(fmzk) where z denotes the number of non- gjpa it Spectral Graph Partitioning (BSGP) (Dhillon,

' 2001; H.Zha & H.Simon, 2001) was proposed to co-cluster
The convergence of SRC algorithm can be proved. Wei-type relational data, which can be denoted as one re-
describe the main idea as follows. Theorem 4.2 and Edation matrix R € R":*"2 such as word-document co-
(8) imply that the updates of the matrices in Lifieof occurrence matrix. The BSGP formulates the data as a
Algorithm 1 increase the objective function in Eq. (6), bipartite graph, whose adjacency matrix can be written as
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~r o | . After the deduction, spectral partitioning on . @ . ®

the bipartite graph is converted to a singular value decom- o4 NG10 -A NG10
position (SVD) (Dhillon, 2001; H.Zha & H.Simon, 2001). 06 % 05 =
Under the CFRM model, clustering on bi-type relational s %

data is equivalent to

-1 -0.5 0 0.5 1 ?A 0.2 0.4
min ||IR—CWAC)T)? (12) L v
(CcNTeW=r,, © s ()

0
(C(Q))TC(Q):U:2 ‘ NG10
| NG11 //MP
1

BSGP has the restriction that clusters of different types = 054

of objects must have one-to-one associations. Under the

CFRM model, this is equivalent to adding an extra con- -

straint on cluster association matrixto let A be ak x k i Number offeratons

diagonal matrix. It immediately follows from the standard

result of linear algebra (G.Golub & Loan, 1989) that the _ ) ]

minimization in Eq.(11) with the diagonal constraintdn  Figure 2. (a). (b) and (c) are document embeddings of multi2

is equivalent to partial SVD. Hence, the CFRM model pro-data set produced by NC, BSGP and SRC, respectivalyatd

vides a simple way to understand BSGP. Moreover, since iff> denote first and second eigenvectors, respectively). (d) is an

SRC there are no constraints dn it provides a novel co- 'teration curve for SRC.

clustering algorithm which does not require that differentBefore postprocessing, the eigenvectors from NC and SRC

types of objects have equal number of clusters and one-tare normalized to the unit norm vector and the eigenvectors

one cluster associations. from BSGP are normalized as described by Dhillon (2001).
Since all the algorithms have random components resulting

6. Experimental Results fr(_)m k-meang or it_self_, at each test we cqnduct three trials
with random initializations for each algorithm and the op-

In this section, we evaluate the effectiveness of the SRdimal one provides the performance score for that test run.
algorithm on two types of MTRD, bi-type relational data To evaluate the quality of document clusters, we elect to
and tri-type star-structured data as shown in Figure 1(a) andse the Normalized Mutual Information (NMI) (Strehl &
Figure 1(b), which represent two basic structures of MTRDGhosh, 2002), which is a standard way to measure the clus-
and arise frequently in real applications. ter quality.

The data sets used in the experiments are mainly based @ each test run, five data sets, multi2 (NG 10, 11),
the 20-Newsgroup data (Lang, 1995) which contains aboutmulti3(NG 1,10,20), multi5 (NG 3, 6, 9, 12, 15), multi8
20,000 articles from20 newsgroup. We pre-process the (NG 3, 6, 7, 9, 12, 15, 18, 20) and multi10 (NG 2, 4, 6, 8,
data by removing stop words and file headers and selecf0, 12,14 ,16,18,20), are generated by randomly sampling
ing top 2000 words by the mutual information. The word- 100 documents from each newsgroup. Here N@eans
document matrixR is based orif.idf and each document theith newsgroup in the original order. For the numbers
vector is normalized to the unit norm vector. In the experi-of document clusters, we use the numbers of the true doc-
ments the classis k-means is used for initialization and th&ment classes. For the numbers of word clusters, there are
final performance score for each algorithm is the averag®o options for BSGP, since they are restricted to equal to
of the 20 test runs unless stated otherwise. the numbers of document clusters. For SRC, it is flexible
to use any number of word clusters. Since how to choose
the optimal number of word clusters is beyond the scope of
this paper, we simply choose one more word clusters than
In this section we conduct experiments on a bi-type relathe corresponding document clusters, i.e., 3,4, 6,9, and 11.
tional data, word-document data, to demonstrate the effecFhis may not be the best choice but it is good enough to
tiveness of SRC as a novel co-clustering algorithm. A rep-demonstrate the flexibility and effectiveness of SRC.

resentative spectral clustering algorithm, Normalized-Cuﬁn Figure 2, (a), (b) and (c) show three document embed-

(NC) spectral clustering (Ng et al., 2001; Shi & Malik, di f Itio | hich i led f i |
2000), and BSGP (Dhillon, 2001), are used as compar- INgs of a mutliz Sample, which IS sampled from two close
isons. newsgroupsrec.sports.basebaﬂndrec;.sports.hockeyln

this example, when NC and BSGP fail to separate the docu-
The graph affinity matrix for NC isR” R, i.e., the cosine ment classes, SRC still provides a satisfied separation. The
similarity matrix. In NC and SRC, the leadirigeigenvec- possible explanation is that the adaptive interactions among
tors are used to extract the cluster structure, whédsethe  the hidden structures of word clusters and document clus-
number of document clusters. For BSGP, the second to thiers remove the noise to lead to better embeddings. (d)
([logs k] + 1)th leading singular vectors are used (Dhillon, shows a typical run of the SRC algorithm. The objective

2001). K-means is adopted to postprocess the eigenvectorglue is the trace value in Theorem 4.2.

o

Objective Value
N
[

o
3

A
o
1 05 0 05 1
uZ

o

6.1. Clustering on Bi-type Relational Data
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Table 1.NMI comparisons of SRC, NC and BSGP algorithms Table 2. Taxonomy structures for three data sets
DATASET  SRC NC BSGP DATA SET TAXONOMY STRUCTURE
TMI {NG10, NG13, {NG17, NG18, NG19
MULTI 2 0.4979 0.1036 0.1500 T™M2 {NG2, NG3, {NG8, NG9, {NG12, NG13
MULTI 3 0.5763 0.4314 0.4897 TM3 {NG4, NG5}, {NG8, NG9}, {NG14, NG13,
MULTI5 0.7242 0.6706 0.6118 {NG17,NG1§

MULTI 8 0.6958 0.6192 0.5096
MULTI10 0.7158 0.6292 0.5071

() (b)
1 s -05
N - © +
Table 1 shows NMI scores on all the data sets. We observe > ° 3 .
that SRC performs better than NC and BSGP on all data I 08 06 04 02 1 05 0 o5 1
sets. This verifies the hypothesis that benefiting from the Y2 ”dz
interactions of the hidden structures of different types of 1 © e 1 @
objects, the SRC’s adaptive dimensionality reduction has - ‘*‘M L
advantages over the dimensionality reduction of the exist- Lt ob
ing spectral clustering algorithms. oy e e 0 W !
) (e) L ®
6.2. Clustering on Tri-type Relational Data o .
In this section, we conduct experiments on tri-type star- -1 -1
. . -1 -0.5 0 0.5 -1 -0.5 0 0.5
structured relational data to evaluate the effectiveness of u u

2 2

SRC in comparison with other two algorithms for MTRD

clustering. One is based on-partite graph partitioning,  Figure 3.Three pairs of embeddings of documents and categories
Consistent Bipartite Graph Co-partitioning (CBGC) (Gao for the TM1 data set produced by SRC with different weights: (a)
et al.,, 2005) (we thank the authors for providing the eX-ang (b) withw'> = 1,w?® = 1; (c) and (d) withw'? =
ecutable program of CBGC). The other is Mutual Rein-; ,,3) _ (. (e) and (f) withw("> = 0, w® = 1.

forcement K-means (MRK), which is implemented based

on the i_dea of mutual reinforcement clustering as discusse#m2 and TM3, are listed in Table 2. For example, TM1
in Section 2. data set is sampled from five categories, in which NG10
The first data set is synthetic data, in which two rela-2nd NG11 belong to the same high level categesysports
tion matrices,R12) with 80-by-100 dimension ané&(2® and NG17, NGl_S and NG19 belong to the same high level
with 100-by-80 dimension, are binary matrices with 2-by- categorytalk.politics Therefore, for the TM1 data set, the

(12) : expected clustering result on categories shouldN@ 10,
2 block strt;zturesR is generated based on the block NG11} and {NG17, NG18, NG19 and the documents

structure{ o8 o0 } i.e., the objects in cluster 1 of(")  should be clustered into two clusters according to their cat-

is related to the objects in cluster 1412 with probabil- egorie.s. The documents in each data set are generated by
ity 0.9, and so on so forth.R(*¥) is generated based on sampling 100 documents from each category.

the block structurd ¢ 97 |. Each type of objects has The number of clusters used for documents and categories
are 2, 3 and 4 for TM1, TM2 and TM3, respectively. For

two equal size clusters. Itis not a trivial task to identify y,o ', ber of word clusters, we adopt the number of cate-
the cluster structure of this data, since the block structures (23)

. . . " P . 12)
are subtle. We denote this data as Binary Relation Matriceg0ries, i.e., 5, 6 and 8. For the weight§'>) anduw(*”, we
(TRM) data. simply use equal weight, i.ew\*? = w*® = 1. Figure

Other three data sets are built based on the 20—newsgroug llustrates the effects of different weights on(QeBr)nbeddmgs

; 2) _ _
data for hierarchical taxonomy mining and document clus0! documents and categories. Wheff” = w; = 1,
tering. In the field of text categorization, hierarchical tax- -8+ SRC makes use of both word-document relations and

onomy classification is widely used to obtain a better traded0CuUment-category relations, both documents and cate-

off between effectiveness and efficiency than flat taxonomyP©ries are separated into two clusters very well as in (a)

classification. To take advantage of hierarchical classifid"d (b) of Figure 3, respectively; when SRC makes use of

cation, one must mine a hierarchical taxonomy from the®nly the word-document relations, the documents are sep-
data set. We can see that words, documents and catér@ted with partial overlapping as in (c) and the categories
gories formulate a tri-type relational data, which consists o€ randomly mapped to a couple of points as in (d); when
two relation matrices, a word-document matd2 and a SRC makes use of only the document-category relations,

document-category matrik(23) (Gao et al., 2005) both documents and categories are incorrectly overlapped
gory v ' as in (e) and (f), respectively, since the document-category

The true taxonomy structures for three data sets, TM1matrix itself does not provide any useful information for
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