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Abstract. In this paper, we propose a robust motion segmentation
method using the techniques of matrix factorization and subspace sepa-
ration. We first show that the shape interaction matrix can be derived us-
ing QR decomposition rather than Singular Value Decomposition(SVD)
which also leads to a simple proof of the shape subspace separation theo-
rem. Using the shape interaction matrix, we solve the motion segmenta-
tion problems by the spectral clustering techniques. We exploit multi-way
Min-Max cut clustering method and provide a novel approach for cluster
membership assignment. We further show that we can combine a cluster
refinement method based on subspace separation with the graph clus-
tering method to improve its robustness in the presence of noise. The
proposed method yields very good performance for both synthetic and
real image sequences.

1 Introduction

The Matrix factorization methods proposed by Tomasi, Costeira and Kanade
[1] [2] have been widely used for solving the motion segmentation problems
[3] [4] [5] [6] [7] [8] and the 3D shape recovering problems [9] [10] [11]. The
basic idea of the methods is to factorize the feature trajectory matrix into the
motion matrix and the shape matrix, providing the separation of the feature
point trajectories into independent motions. In this paper, we develop a novel
robust factorization method using the techniques of spectral clustering.

Given a set of N feature points tracked through F frames, we can construct
a feature trajectory matrix P ∈ R2F×N where the rows correspond to the x or y
coordinates of the feature points in the image plane and the columns correspond
to the individual feature points. Motion segmentation algorithms based on ma-
trix factorization [6] first construct a shape interaction matrix, Q by applying
the singular value decomposition (SVD) to the feature trajectory matrix P. Un-
der the noise-free situation, the shape interaction matrix Q can be transformed
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to a block diagonal matrix by a symmetric row and column permutation thereby
grouping the feature points of the same object into a diagonal block.

If the trajectory matrix P is contaminated by noise, however, the block di-
agonal form of Q no longer holds, and the methods such as the greedy technique
proposed in[2] tend to perform rather poorly. Recently there have been several
research proposed specifically addressing this problem [7] [5] [3] [4] [5] [6] [8]. We
will give a brief review of these methods in Section 2.

In this paper we deal with the issues related to the robustness of the fac-
torization methods. We first show that the shape interaction matrix can be
extracted from the trajectory matrix using QR decomposition with pivoting,
an idea that was briefly mentioned in [2]. As a by-product we give a simple and
clean proof of the subspace separation theorem described in [6]. We then observe
that the shape interaction matrix is very similar to the weight matrix used for
graph partitioning and clustering [12] [13] [14] [15], and the motion segmenta-
tion problem can be cast as an optimal graph partitioning problem. To this end,
we apply the spectral k-way clustering method [13] [14] to the shape interaction
matrix to transform it into near-block diagonal form. In particular, we propose a
novel QR decomposition based technique for cluster assignment. The technique
at the same time also provides confidence levels of the cluster membership for
each feature point trajectory. The confidence levels are explored to provide a
more robust cluster assignment strategy: we assign a feature point directly to a
cluster when it has a very confidence level for the cluster compared to those for
other clusters. Using the assigned feature points in each cluster, we compute a
linear subspace in the trajectory space. The cluster memberships of other fea-
ture points having lower confidence levels, and are therefore not assigned to a
cluster, are determined by their distances to each of the linear subspaces. Our
experiments on both synthetic data sets and real video images have shown that
this method are very reliable for motion segmentation even in the presence of
severe noise.

The rest of the paper is organized a s follows: Previous works are discussed
in Section 2. Section 3 is devoted to a simple proof that the shape interaction
matrix can be computed using QR decomposition. Motion segmentation based
on spectral relaxation k-way clustering and subspace separation is described in
Section 4. Experiment results are shown in Section 5 and conclusion is given in
Section 6.

2 Previous Work

The factorization method was originally introduced by Tomasi and Kanade [1].
The method decomposes a matrix of image coordinates of N feature points
tracked through F frames into two matrices which, respectively, represent object
shape and camera motion. The method deals with a single static object viewed
by a moving camera. Extending this method, Costerira and Kanade [2] proposed
a multibody factorization method which separates and recovers the shape and
motion of multiple independently moving objects in a sequence of images. To
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achieve this, they introduce a shape interaction matrix which is invariant to
both the object motions and the selection of coordinate systems, and suggest a
greedy algorithm to permute the shape interaction matrix into block diagonal
form. Gear [3] exploited the reduced row echelon form of the shape interaction
matrix to group the feature points into the linearly independent subspaces. For
Gear’s method, in the noise-free case, any two columns of the echelon form which
have nonzero elements in the same row correspond to feature points belonging to
the same rigid body. The echelon form matrix can be represented by a weighted
bipartite graph. Gear also used a statistical approach to estimate the grouping
of feature points into subspaces in the presence of noise by computing which
partition of the graph has the maximum likelihood.

Ichimura [4] suggested a motion segmentation method based on discriminant
criterion [16] features. The main idea of the method is to select useful features
for grouping noisy data. Using noise-contaminated shape interaction matrix, it
computes discriminant criterion for each row of the matrix. The feature points
are then divided into two groups by the maximum discriminant criterion, and
the corresponding row gives the best discriminant feature. The same procedure
is applied recursively to the remaining features to extract other groups. Wu
et. al. [5] proposed an orthogonal subspace decomposition method to deal with
the noisy problem of the shape interaction matrix. The method decomposes the
object shape space into signal subspaces and noise subspaces. They used the
shape signal subspace distance matrix, D, for shape space grouping rather than
the noise-contaminated shape interaction matrix.

Kanatani [6] [7] reformulated the motion segmentation problems based on
the idea of subspace separation. The approach is to divide the given N feature
points to form m disjoint subspaces Ii, i = 1, · · · , m. A rather elaborated proof
was given showing that provided that the subspaces are linearly independent,
the elements Qij in the shape interaction matrix Q is zero if the point i and
the point j belong to different subspaces. Kanatani also pointed out that even a
small noise in one feature point can affect all the elements of Q in a complicated
manner. Based on this fact, Kanatani proposed noise compensation methods
using the original data rather than the shape interaction matrix Q.

Zelnik-Manor and Irani [8] showed that different 3D motions can also be
captured as a single object using previous methods when there is a partial de-
pendency between the objects. To solve the problem, they suggested to use an
affinity matrix Q̄ where Q̄ij =

∑
k exp(vk(i) − vk(j))2, where vk’s are the largest

eigenvectors of Q. They also dealt with the multi-sequence factorization prob-
lems for temporal synchronization using multiple video sequences of the same
dynamic scene.

3 Constructing the Shape Interaction Matrix Using QR
Decomposition

In this section, we exhibit the block diagonal form of the shape interaction matrix
using QR decomposition with pivoting [17], this also provides a simpler proof of
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the shape subspace separation theorem (Theorem 1 in [6]). Assume we have N
rigidly moving feature points, p1, . . . , pN , which are on image plane correspond-
ing 3D points over the F frames. Motion segmentation can be interpreted as
dividing the feature points pi into S groups [6] each spanning a linear subspace
corresponding to feature points belonging to the same object. We denote the
grouping as follows,

{1, . . . , N} =
S⋃

i=1

Ii, Ii ∩ Ij = ∅.

Now define li = |Ii| which is the number of the points in the set Ii, and
ki=dim span{pj}j∈Ii

≤ li and Pi = {pj}j∈Ii
.

Let the SVD of Pi be Pi = UiΣiV
t
i , where Σi ∈ Rki×ki , i = 1, . . . , S. Then

P = [P1, P2, . . . , Ps] can be written as,

P = [P1, P2, . . . , Ps] = [U1Σ1, U2Σ2, . . . , UsΣs]








V T
1 0 · · · 0
0 V T

2 · · · 0
...

...
. . .

...
0 0 · · · V T

s








, (1)

where rank(Vi)=ki for i = 1, · · · , s. We assume the S subspaces span{pj}j∈Ii
, i =

1, . . . , S are linearly independent, then the matrix [U1Σ1, U2Σ2, . . . , UsΣs] has
full column rank of k = k1 + · · · + ks. Therefore, an arbitrary orthonormal basis
for the row space of P can be written as Φdiag(V1, · · · , Vs)T for an arbitrary
orthogonal matrix Φ ∈ Rk×k. Now the shape interaction matrix can be written
as

Q = diag(V1, · · · , Vs)ΦT Φdiag(V1, · · · , Vs)T = diag(V1VT , · · · , VsV
T
s ).

This clearly shows that Qij = 0 if i and j belong to different subspaces, i.e., if
the corresponding feature points belong to different objects.

A cheaper way to compute an orthonormal basis for the row-space of P than
using SVD is to apply QR decomposition with column pivoting to PT ,

PT E = Q̂R (2)

where E is a permutation matrix, and Q̂ has k columns. It is easy to see that
Q̂Q̂T = Q. In the presence of noise, P will not exactly have rank k, but QR
decomposition with column pivoting will in general generate an R matrix that
can reliably revealing the numerical rank of P. We can truncate R by deleting
rows with small entries.
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4 Motion Segmentation

4.1 Spectral Multi-way Clustering

In the last section, we have shown that the shape interaction matrix, Q ∈ RN×N

has the block diagonal form when the feature points are grouped into indepen-
dent subspaces corresponding to S different objects. In general, this grouping
is unknown, and we need to find row and column permutations of the matrix
Q to exhibit this block diagonal form, and thus assigning the feature points to
different objects. A greedy algorithm has been proposed in [2] for this problem,
but it performs poorly in the presence of noise. We now present a more robust
method based on spectral graph clustering [12] [13] [14] [15]. We propose a novel
technique for cluster assignment in spectral clustering and show that it provides
a confidence level that can be used for further refining the cluster memberships
of the feature points, thus improving the robustness of the spectral clustering
method.

We consider the absolute value of the (i, j) element of the shape interaction
matrix Q as a measure of the similarity of feature points i and j with feature
points belonging to the same object more similar than those of other points.
In fact, in the noise-free case, feature points in different objects will have zero
similarity. Our goal is then to partition the feature points into S groups so that
feature points are more similar within each group than across different groups.
Let W = (wij) with wij = |Qij |. For a given partition of the feature points
into S groups, we can permute the rows and columns of W so that rows and
columns corresponding to the feature points belonging to the same objects are
adjacent to each other, i.e., we can re-order the columns and rows of the W
matrix accordingly such that

W =








W11 W12 · · · W1S

W21 W22 · · · W2S

· · · · · · ...
WS1 WS2 · · · WSS








. (3)

We want to find a partition such that Wii will be large while Wij , i �= j will be
small, and to measure the size of a sub-matrix matrix Wij we use the sum of
all its elements and denoted as sum(Wij). Let xi be a cluster indication vector
accordingly partitioned with that of W with all elements equal to zero except
those corresponding to rows of Wii,

xi = [0 · · · 0, 1 · · · 1, 0 · · · 0]T .

Denote D = diag(D1, D2, · · · , DS) such that Di =
∑S

j=1 Wij . It is easy to see
that

sum(Wii) = xT
i Wxi,

∑

j �=i

sum(Wij) = xT
i (D − W )xi.

Since we want to find a partition which will maximize sum(Wii) while mini-
mizing sum(Wij), i �= j, we seek to minimize the following objective function by
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finding a set of indicator vectors xi. The objective function is called min-max cut
in [13] [14] which is a generalization of the normalized cut objective function [12]
to the multi-way partition case.

MCut =
xT

1 (D − W )x1

xT
1 Wx1

+
xT

2 (D − W )x2

xT
2 Wx2

+ · · · +
xT

S (D − W )xS

xT
SWxS

=
xT

1 Dx1

xT
1 Wx1

+
xT

2 Dx2

xT
2 Wx2

+ · · · +
xT

SDxS

xT
SWxS

− S.

If we define yi = D1/2xi/||D1/2xi||2 and YS = [y1, · · · , yS ], we have

MCut =
1

yT
1 Ŵy1

+
1

yT
2 Ŵy2

+ · · · +
1

yT
S ŴyS

− S (4)

where Ŵ = D−1/2WD−1/2 and yi = D1/2xi

‖D1/2xi‖2
. It is easy to see that the yi

are orthogonal to each other and normalized to have Euclidean norm one. If we
insist that the yi be constrained to inherit the discrete structure of the indicator
vectors xi, then we are leading to solve a combinatorial optimization problem
which has been proved to be NP-hard even when S = 2 [12]. The idea of spectral
clustering instead is to relax this constraints and allows the yi to be an arbitrary
set of orthonormal vectors. In this case, the minimum of Eq. 4 can be shown
to be achieved by orthonormal basis y1, · · · , yS of the subspace spanned by the
eigenvectors corresponding to the largest S eigenvalues of Ŵ . Next we discuss
how to assign the feature points to each clusters based on the eigenvectors.

We should first mention that the cluster assignment problem in spectral
clustering is not well-understood yet. Here we follow the approach proposed
in [15]. Denote Ŷ = [ŷ1, · · · , ŷS ]T as the optimal solution of Eq. 4. The vectors ŷi

can be used for cluster assignment because ŷi ≈ D1/2x̂i/||D1/2x̂i||2, where x̂i is
the cluster indicator vector of i− th cluster. Ideally, if W is partitioned perfectly
into S clusters, then, the columns in X̂ = [x̂i, · · · , x̂S ]T of the i − th cluster
are the same, one for the i − th row and zeros for the others. Two columns of
different clusters are orthogonal to each other. This property is approximately
inherited by Ŷ : two columns from two different clusters are orthogonal to each
other, and those from one cluster are the same. We now pick a column of Ŷ which
has the largest norm, say, it belongs to cluster i, we orthogonalized the rest of
the columns of Ŷ against this column. We assign the columns to cluster i whose
residual is small. We then perform this process S times. As discussed in [15], it is
exactly the same procedure of QR decomposition with column pivoting applied
to Ŷ . In particular, we compute QR decomposition of Y T with column pivoting

Y T E = Q̂R = Q̂[R11, R12]

where Q̂ is a S × S orthogonal matrix, R11 is a S × S upper triangular matrix,
and E is a permutation matrix. Then we compute a matrix R̂ as

R̂ = R−1
11 [R11, R12]PT = [IS , R−1

11 R12],
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The matrix R̂ ∈ RS×N can be considered as giving the levels of confidence of a
point to be assigned to each cluster. Notice that the columns correspond to the
feature points and the rows correspond to the clusters. The cluster membership
of each feature point is determined by the row index of the largest element in
absolute value of the corresponding column of R̂. This provide us with a baseline
spectral clustering method for motion segmentation which are quite robust in
the presence of noise. Further improvement can be achieved as we discuss next.

We can assign a point to a cluster with high confidence if there is a very
dominantly high confidence value in the corresponding column, however, we are
not able to do this if two or more values in a column are very close to each other.
Table 4.1 shows an example of the matrix R̂ ∈ R3×10 that has 10 points extracted
from 3 objects. The last row of the table shows the cluster membership of each
point assigned by the row index of the highest absolute value. For instance,
the point p1 is assigned to cluster 2 because the second row value (0.329), is
greater than the other row values (0.316 and 0.203). However, we cannot have
much confidence of its membership because there is no dominant values in the
corresponding column.

Table 1. An example of the matrix R̂. There are 10 points extracted from 3 objects.
The last row shows the assigned cluster

Cluster ID p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
k = 1 0.316 0.351 0.876 0.331 0.456 0.562 0.086 0.275 0.072 0.119
k = 2 0.329 0.338 0.032 0.372 0.013 0.060 0.186 0.706 0.815 0.831
k = 3 0.203 0.017 0.031 0.173 0.566 0.556 0.775 0.126 0.094 0.113

Assigned Cluster 2 1 1 2 3 1 3 2 2 2

4.2 Refinement of Cluster Assignment for Motion Segmentation

The baseline spectral clustering shows its robustness for a noisy environment in
spite of its hard clustering (it assigns each point to a cluster even though it does
not have high confidence for it). The method alone, however, can sometimes
fail in presence of severe noise. In this section, we discuss a two-phase approach
whereby in phase one we assignment the cluster memberships for those feature
points with high confidence levels, and in phase two we construct linear subspaces
for each clusters based on the high confidence feature points, and assign the rest
of the feature points by projecting onto these subspaces.

Our approach proceeds as follows. After computing R̂ discussed in the pre-
vious section, the points of high confidence of each clusters are selected. Let’s
define Pi = [pi1, · · · , piNi

] as the trajectory points in the cluster i. One of the
easiest methods is to apply threshold to the values of each column, and if the
highest value in the column is greater than the threshold, the point is assigned
to the corresponding cluster. if it does not, let’s categorize the point to clus-
ter 0 which is in the state of temporarily pending to decide its cluster. Let’s
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Fig. 1. Two synthetic video sequences used in [7] and [18] respectively. (a). 9 Red dots
are foreground points and 20 green dots are background pixels (b). 24 background
points and 14 foreground points. The foreground pixels are connected with lines.

define the pending points as P0 = [p01, · · · , p0N0 ]. The next step is to compute
subspace(2D) for pi1, · · · , piNi , i = 1, · · · , S using Principal Component Analysis
(PCA). Let’s denote Ui as a subspace basis for the cluster i. We finally deter-
mine the cluster membership of each pending point by computing the minimum
distance from the point to subspaces.

θ̂j = arg min
i

||p0j − (ci + UiU
T
i (p0j − ci))||2,

where j = 1, · · · , k and ci =
∑Ni

j=1 pij.
The point p0j is assigned to the cluster θ̂j .

5 Experimental Results

Figure 1 shows two synthetic image sequences used for performance evaluation.
Actually these images are used in [7] and [18]. Figure 1-(a), denoted as Synthetic
1, has 20 background points(green dots) and foreground points(red dots), and
Figure 1-(b),denoted as Synthetic 2, has 20 background points and 14 foreground
points. The foreground points are connected by lines for visualization purpose.

We performed experiments using not only the original tracking data but also
the data added by independent Gaussian noise of mean 0 and standard deviation
σ to the coordinates of all the points. For the noise data, we generate 5 sets for
each σ = 1, 2, 3, 4, and compute the misclassification rate by simply averaging
the 5 experiment results. We compare two methods proposed in this paper (One
is k-way Min-Max cut clustering in Sec. 4.1 denoted as Method 1, and the other
is a combination of the k-way Min-Max cut clustering and clustering refinement
using subspace projection in Sec. 4.2 denoted as Method 2) to the Multi-
stage optimization proposed in [18] denoted as Multi-Stage. Table 2 shows
that the misclassification rates of the three methods over the different noise
levels (σ = 0, 1, 2, 3, 4). Method 2 and Multi-Stage yields better performance
than Method 1. The two methods performs almost perfect for the sequences.
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Table 2. Misclassification rate (%) for two synthetic sequences. The values in parenthe-
sis are standard deviation. Method 1 is k-way Min-Max cut clustering in Sec. 4.1 and
Method 2 is the k-way Min-Max cut clustering + clustering refinement using subspace
projection in Sec. 4.2. Multi-Stage is the Multi-stage optimization proposed in [18].

Video Sequence noise σ = 0 σ = 1 σ = 2 σ = 3 σ = 4
Method 1 0.0 1.4 1.4 0.7 0.7

Synthetic 1 Method 2 0.0 0.0 0.0 0.0 0.0
Multi-Stage 0.0 0.0 0.7 0.0 0.0
Method 1 8.2 10.6(1.6) 11.7(2.1) 11.7(3.6) 13.2(1.7)

Synthetic 2 Method 2 0.0 0.0 0.0 0.0 0.59(1.3)
Multi-Stage 0.0 0.0 0.0 0.0 0.59(1.3)

We experimented with the real video sequences used in [18]. In all the se-
quences, one object is moving while background is simultaneously moving be-
cause of the camera moving. Let’s denote the video sequences as video1, video2
and video3 respectively. We synthesize one more test video sequence by over-
laying the foreground feature points in video1 to video2, which has 2 moving
objects and background. Let’s denote the video sequences as video4. Figure 2
shows selected 5 frames of the four sequences.

We also performed experiments using not only the original tracking data but
also the data added by independent Gaussian noise of mean 0 and standard
deviation σ to the coordinates of all the points. For the noise data, we generate
5 sets for each σ = 3, 5, 7, 10, and compute the misclassification rate by simply
averaging the 5 experiment results.

Table 3 shows the misclassification rates of the three methods over the differ-
ent noise levels (σ = 0, 3, 5, 7, 10). The table shows that Method 2 can classify
motion perfectly even for the severe noise presence. It is very robust and sta-
ble to noise. Method 1 performs very well for noise-free environment, but it
misclassifies some points in the presence of noise.

Multi-Stage performs very well for video1 through video3 which have one
moving foreground object and background. It, however, does not yield good
performance for video4 which has two moving foreground objects and background
in the presence of noise. Based on our experiments, the method also suffer from
local minima problem. Using the same data, it yields different results based on
the initialization. That is the reason the standard deviation of the method is too
high shown in Table 3.

6 Conclusions

In this paper, we mathematically prove the shape interaction matrix can be
computed using QR decomposition which is more effective than SVD. We solve
the motion segmentation problem using spectral graph clustering technique be-
cause the shape interaction matrix has a very similar form to the weight ma-
trix of graph. We apply the Spectral Relaxation K-way Min-Max cut clustering
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Fig. 2. Real Video sequences with the feature points. 1st row: video1, 2nd row: video2,
3rd row: video3, 4th row: video4 (foreground feature points in video1 are overlaid in
video4). Red dots correspond to background while green dots correspond to foreground.
The yellow cross marks in video4 represent the foreground feature points of video1

Table 3. Misclassification rate (%) for the real video sequences. The values in paren-
thesis are standard deviation.

Video Sequence noise σ = 0 σ = 3 σ = 5 σ = 7 σ = 10
Method 1 0.0 0.0 0.0 0.0 0.0

video1 Method 2 0.0 0.0 0.0 0.0 0.0
Multi-Stage 0.0 0.0 0.0 0.0 0.0
Method 1 0 1.6(1.2) 1.6(1.2) 1.6(1.2) 2.9(1.7)

video2 Method 2 0.0 0.0 0.0 0.0 0.0
Multi-Stage 0.0 0.0 0.0 0.0 7.3(16.3)
Method 1 0.0 2.5(0.01) 2.5 1.3 2.5

video3 Method 2 0.0 0.0 0.0 0.0 0.0
Multi-Stage 0.0 0.0 0.0 0.0 0.0
Method1 0.0 0.7(1.6) 3.4(4.7) 8.3(5.0) 9.6(6.5)

video4 Method2 0.0 0.0 0.0 0.0 0.7(1.6)
Multi-Stage 0.0 4.1(9.3) 8.2(9.6) 16.2 (13.2) 19.23 (9.87)

method [13] [14] to shape interaction matrix. It provides a relaxed cluster in-
dication matrix. QR decomposition is applied to the matrix, which generate
a new cluster indication matrix, to determine the cluster membership of each
point. The values of the new cluster indication matrix reflect confidence level for
each point to be assigned to clusters. This method yields a good performance
in noise free environment, but it is, sometimes, sensitive to noise. We propose a
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Fig. 3. Graph for misclassification rate. Graph of video1 is not depicted here because
all the three methods performs perfectly. Method 1: Dashed-dot blue line, Method
2: Red line and Multi-Stage: Dashed green line

robust motion segmentation method by combining the spectral graph clustering
and subspace separation to compensate noise problem. Initially, we assign only
points of high confidence to clusters based on the cluster indication matrix. We
compute subspace for each cluster using the assigned points. We finally deter-
mine the membership of the other points, which are not assigned to a cluster,
by computing the minimum residual when they are projected to the subspace.

We applied the proposed method to two synthetic image sequences and four
real video sequences. Method 2 and Multi-Stage produce almost perfect per-
formance for the synthetic image sequences in the presence of noise. Experiments
also show that the proposed method, Method 2, performs very well for the real
video sequences even in the sever noise presence. It performs better than Multi-
Stage optimization method [18] for real video sequences in which there are more
than two objects.
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