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Abstract
Spectral clustering (SC) is a popular clustering
technique to find strongly connected communi-
ties on a graph. SC can be used in Graph Neu-
ral Networks (GNNs) to implement pooling op-
erations that aggregate nodes belonging to the
same cluster. However, the eigendecomposition
of the Laplacian is expensive and, since cluster-
ing results are graph-specific, pooling methods
based on SC must perform a new optimization
for each new sample. In this paper, we propose
a graph clustering approach that addresses these
limitations of SC. We formulate a continuous re-
laxation of the normalized minCUT problem and
train a GNN to compute cluster assignments that
minimize this objective. Our GNN-based imple-
mentation is differentiable, does not require to
compute the spectral decomposition, and learns
a clustering function that can be quickly evalu-
ated on out-of-sample graphs. From the proposed
clustering method, we design a graph pooling op-
erator that overcomes some important limitations
of state-of-the-art graph pooling techniques and
achieves the best performance in several super-
vised and unsupervised tasks.

1. Introduction
State-of-the-art convolutional neural networks (CNNs) al-
ternate convolutions, which extrapolate local features from
the input signal, with pooling, which downsamples the fea-
ture maps by computing local summaries of nearby points.
Pooling helps CNNs to discard information that is superflu-
ous for the task, provides translation invariance, and keeps
model complexity under control by reducing the size of the
intermediate representations.
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Figure 1. A deep GNN architecture where message-passing is fol-
lowed by the MinCutPool layer.

Graph Neural Networks (GNNs) extend the convolution
operation from regular domains to arbitrary topologies and
unordered structures (Battaglia et al., 2018). As in CNNs,
graph pooling is an important operation that allows a GNN
to learn increasingly more abstract and coarser represen-
tations of the input graphs, by summarizing local compo-
nents and discarding redundant information. The develop-
ment of pooling strategies for GNNs, however, has lagged
behind the design of newer and more effective message-
passing (MP) operations (Gilmer et al., 2017), such as
graph convolutions. The reason, is mainly due to the dif-
ficulty of defining an aggregated version of a graph that
effectively supports the pooled node features.

Several approaches have been proposed in recent GNN
literature, ranging from model-free methods that pre-
compute the pooled graphs by leveraging graph-theoretical
properties (Bruna et al., 2013; Defferrard et al., 2016),
to model-based methods that perform pooling trough a
learnable function of the node features (Ying et al., 2018;
Cangea et al., 2018; Hongyang Gao, 2019). However, ex-
isting model-free methods only consider the graph topol-
ogy but ignore the node features, while model-based meth-
ods are mostly based on heuristics. As a consequence, the
former cannot learn how to coarsen graphs adaptively for a
specific downstream task, while the latter are unstable and
prone to find degenerate solutions even on simple tasks.
A pooling operation that is theoretically grounded and can
adapt to the data and the task is still missing.

Spectral clustering (SC) is a well-known clustering tech-
nique that leverages the Laplacian spectrum to find strongly
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connected communities on a graph. SC can be used to
perform pooling in GNNs by aggregating nodes belonging
to the same cluster (Bruna et al., 2013; Defferrard et al.,
2016), although the approaches based on this technique
suffer from the aforementioned issues of model-free pool-
ing methods. In particular, SC does not explicitly account
for the node attributes and the eigendecomposition of the
Laplacian is a non-differentiable and expensive operation.
Additionally, pooling methods based on SC must compute
the spectral decomposition even at test time, since the de-
composition is unique for each new graph.

We propose a graph clustering approach that addresses the
limitations that hinder the applicability of SC in GNNs.
Specifically, we formulate a continuous relaxation of the
normalized minCUT problem and train a GNN to compute
cluster assignments by optimizing this objective. Our ap-
proach learns the solution found by SC while also account-
ing explicitly for the node features to identify clusters. At
the same time, our GNN-based implementation is differ-
entiable and does not require to compute the expensive
spectral decomposition of the Laplacian, since it exploits
spatially localized graph convolutions that are fast to com-
pute. This also allows to cluster the nodes of out-of-sample
graphs simply by evaluating the learned function.

From the proposed clustering method, we derive a model-
based pooling operator called MinCutPool, which over-
comes the disadvantages of both model-free and model-
based pooling methods. The parameters in a MinCutPool
layer are learned by minimizing the minCUT objective,
which can be jointly optimized with a task-specific loss.
In the latter case, the minCUT loss acts as a regularization
term, which prevents degenerate solutions, and the GNN
can find the optimal trade-off between task-specific and
clustering objectives. Because they are fully differentiable,
MinCutPool layers can be stacked at different levels of a
GNN to obtain a hierarchical representation and the overall
architecture can be trained end-to-end (Figure 1). We per-
form a comparative study on a variety of unsupervised and
supervised tasks and show that MinCutPool leads to signif-
icant improvements over state-of-the-art pooling methods.

2. Background
Let a graph be represented by a tuple G = {V, E}, |V| =
N , with node set V and edge set E . Each node is associated
with a vector attribute in RF . A graph is characterized by
its adjacency matrix A ∈ RN×N and the node features
X ∈ RN×F .

2.1. Graph Neural Networks

Several approaches have been proposed to process
graphs with neural networks, including recurrent architec-

tures (Scarselli et al., 2009; Li et al., 2016; Gallicchio &
Micheli, 2020) or convolutional operations inspired by fil-
ters used in graph signal processing (Defferrard et al., 2016;
Kipf & Welling, 2017; Bianchi et al., 2019a). We base our
GNN architecture on a simple MP operation that combines
the features of each node with its first-order neighbours.
We adopt a MP implementation that does not require to
modify the graph by adding self-loops (like in, e.g., (Kipf
& Welling, 2017)) but accounts for the initial node features
through a skip connection.

Let Ã = D−
1
2 AD−

1
2 ∈ RN×N be the symmetrically nor-

malized adjacency matrix, where D = diag(A1N ) is the
degree matrix. The output of the MP layer is

X̄ = MP (X, Ã) = ReLU(ÃXΘm + XΘs), (1)

where Θm and Θs are the trainable weights of the mixing
and skip components of the layer, respectively.

2.2. minCUT and Spectral Clustering

Given a graph G = {V, E}, the K-way normalized minCUT
problem (simply referred to as minCUT) is the task of parti-
tioning V in K disjoint subsets by removing the minimum
volume of edges. The problem is equivalent to maximizing

1

K

K∑
k=1

links(Vk)

degree(Vk)
=

1

K

K∑
k=1

∑
i,j∈Vk Ei,j∑

i∈Vk,j∈V\Vk Ei,j
, (2)

where the numerator counts the edge volume within each
cluster, and the denominator counts the edges between the
nodes in a cluster and the rest of the graph (Shi & Malik,
2000). Let C ∈ {0, 1}N×K be a cluster assignment matrix,
so that Ci,j = 1 if node i belongs to cluster j, and 0 oth-
erwise. The minCUT problem can be expressed as (Dhillon
et al., 2004):

maximize
1

K

K∑
k=1

CT
k ACk

CT
k DCk

,

s.t. C ∈ {0, 1}N×K , C1K = 1N

(3)

where Ck is the k-th column of C. Since problem (3) is
NP-hard, it is recast in a relaxed continuous formulation
that can be solved in polynomial time and guarantees a
near-optimal solution (Yu & Shi, 2003):

arg max
Q∈RN×K

1

K

K∑
k=1

QT
k AQk

s.t. Q = C(CTDC)−
1
2 , QTQ = IK .

(4)

While problem (4) is still non-convex, there exists an op-
timal solution Q∗ = UKO, where UK ∈ RN×K con-
tains the eigenvectors of A corresponding to the K largest
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eigenvalues, and O ∈ RK×K is an orthogonal transforma-
tion (Ikebe et al., 1987).

Spectral clustering (SC) obtains the cluster assignments by
applying k-means to the rows of Q∗, which are node em-
beddings in the Laplacian eigenspace (Von Luxburg, 2007).
One of the main limitations of SC lies in the computation
of the spectrum of A to obtain Q∗, which has a memory
complexity of O(N2) and a computational complexity of
O(N3). This prevents its applicability to large datasets.

To deal with the scalability issues of SC, the constrained
optimization in (4) can be solved by gradient descent algo-
rithms that refine the solution by iterating operations whose
individual complexity is O(N2), or even O(N) (Han &
Filippone, 2017). These algorithms search the solution on
the manifold induced by the orthogonality constraint on the
columns of Q, by performing gradient updates along the
geodesics (Wen & Yin, 2013; Collins et al., 2014). Alter-
native approaches rely on QR factorization to constrain the
space of feasible solutions (Damle et al., 2016), and allevi-
ate the costO(N3) of the factorization by ensuring that or-
thogonality holds only on one minibatch at a time (Shaham
et al., 2018). Dhillon et al. (2007) discuss the equivalence
between graph clustering objectives and the kernel k-means
algorithm, and their Graclus algorithm is a popular model-
free method for hierarchical pooling in GNNs (Defferrard
et al., 2016).

To learn a model that finds an approximate SC solution
also for out-of-sample graphs, several works propose to use
neural networks. In (Tian et al., 2014), an autoencoder is
trained to map the ith row of the Laplacian to the ith compo-
nents of the first K eigenvectors. Yi et al. (2017) define an
orthogonality constraint to learn spectral embeddings as a
volumetric reparametrization of a precomputed Laplacian
eigenbasis. Finally, Shaham et al. (2018) propose a loss
function to cluster generic data and process out-of-sample
data at inference time. While these approaches learn to em-
bed data in the Laplacian eigenspace of the given graph,
they rely on non-differentiable operations to compute the
cluster assignments and, therefore, are not suitable to per-
form pooling in a GNN trained end-to-end.

3. Spectral Clustering with GNNs
We propose a GNN-based approach that addresses the
aforementioned limitations of SC algorithms and that clus-
ters the nodes according to the graph topology (nodes in the
same cluster should be strongly connected) and to the node
features (nodes in the same cluster should have similar fea-
tures). Our method assumes that node features represent a
good initialization for computing the cluster assignments.
This is a realistic assumption due to the homophily property
of many real-world networks (McPherson et al., 2001). Ad-

ditionally, even in disassortative networks (i.e., networks
where dissimilar nodes are likely to be connected (New-
man, 2003)), the features of nodes in strongly connected
communities tend to become similar due to the smoothing
effect of MP operation.

Let X̄ be the matrix of node representations yielded by one
or more MP layers. We compute a cluster assignment of the
nodes using a multi-layer perceptron (MLP) with softmax
on the output layer, which maps each node feature xi into
the ith row of a soft cluster assignment matrix S:

X̄ = GNN(X, Ã; ΘGNN)

S = MLP(X̄; ΘMLP),
(5)

where ΘGNN and ΘMLP are trainable parameters. The soft-
max activation of the MLP guarantees that sij ∈ [0, 1] and
enforces the constraints S1K = 1N inherited from the op-
timization problem in (3). We note that it is possible to add
a temperature parameter to the Softmax in the MLP to con-
trol how much si should be close to a one-hot vector, i.e.,
the level of fuzziness in the cluster assignments.

The parameters ΘGNN and ΘMLP are jointly optimized by
minimizing an unsupervised loss function Lu composed of
two terms, which approximates the relaxed formulation of
the minCUT problem:

Lu = Lc + Lo = −Tr(ST ÃS)

Tr(ST D̃S)︸ ︷︷ ︸
Lc

+

∥∥∥∥ STS

‖STS‖F
− IK√

K

∥∥∥∥
F︸ ︷︷ ︸

Lo

,

(6)
where ‖ · ‖F indicates the Frobenius norm.

The cut loss term, Lc, evaluates the minCUT given by the
soft cluster assignment S and is bounded by−1 ≤ Lc ≤ 0.
Minimizing Lc encourages strongly connected nodes to be
clustered together, since the inner product 〈si, sj〉 increases
when ãi,j is large. Lc has a single maximum, reached when
the numerator Tr(ST ÃS) = 1

K

∑K
k=1 ST

k ÃSk = 0. This
occurs if, for each pair of connected nodes (i.e., ãi,j > 0),
the cluster assignments are orthogonal (i.e., 〈si, sj〉 =

0). Lc reaches its minimum, −1, when Tr(ST ÃS) =
Tr(ST D̃S). This occurs when, in a graph with K dis-
connected components, the cluster assignments are equal
for all the nodes in the same component and orthogonal to
the cluster assignments of nodes in different components.
However, Lc is a non-convex function and its minimiza-
tion can lead to local minima or degenerate solutions. For
example, given a connected graph, a trivial - yet optimal -
solution is the one that assigns all nodes to the same clus-
ter. As a consequence of the continuous relaxation, another
degenerate minimum occurs when the cluster assignments
are all uniform, that is, all nodes are equally assigned to
all clusters. This problem is exacerbated by the MP op-
erations, whose smoothing effect makes the node features
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Figure 2. Schema of the MinCutPool layer.

more uniform.

To penalize the degenerate minima of Lc, the orthogonality
loss term Lo encourages the cluster assignments to be or-
thogonal and the clusters to be of similar size. Since the
two matrices in Lo have unitary norm, it is easy to see
that 0 ≤ Lo ≤ 2. Therefore, Lo is commensurable to Lc

and the two terms can be safely summed without rescaling
them (see Fig. 5 for an example). IK can be interpreted
as a (rescaled) clustering matrix IK = ŜT Ŝ, where Ŝ as-
signs exactly N/K points to each cluster. The value of the
Frobenius norm between clustering matrices is not biased
by differences in the size of the clusters (Law et al., 2017)
and, thus, can be used to optimize intra-cluster variance.

While traditional SC requires to compute the spectral de-
composition for every new sample, here the cluster assign-
ments are computed by a neural network that learns a map-
ping from the nodes feature space to the clusters assign-
ment space. Since the neural network parameters are inde-
pendent of the graph size, and since the MP operations in
the GNN are localized in the node space and independent
from the spectrum of the Laplacian, the proposed clustering
approach generalizes to unseen graphs at inference time.
This also gives the opportunity of training our network on
small graphs and then use it to cluster larger ones.

4. Pooling and Graph Coarsening
The methodology proposed in Section 3 is a general tech-
nique that can be used to solve clustering tasks on any data
represented by graphs. In this work, we focus on using it
to perform pooling in GNNs and introduce the MinCutPool
layer, which exploits the cluster assignment matrix S in (5)
to generate a coarsened version of the graph. Fig. 2 depicts
a scheme of the MinCutPool layer.

The coarsened adjacency matrix and the pooled vertex fea-
tures are computed, respectively, as

Apool = ST ÃS; Xpool = STX, (7)

where the entry xpool
i,j in Xpool ∈ RK×F is the sum of fea-

ture j among the elements in cluster i, weighted by the
cluster assignment scores. Apool ∈ RK×K is a symmet-
ric matrix, whose entries apooli,i indicate the weighted sum

of edges between the nodes in the cluster i, while apooli,j is
the weighted sum of edges between cluster i and j. Since
Apool corresponds to the numerator of Lc in (7), the trace
maximization yields clusters with many internal connec-
tions and weakly connected to each other. Hence, Apool

will be a diagonal-dominant matrix that describes a graph
with self-loops much stronger than any other connection.
Since very strong self-loops hamper the propagation across
adjacent nodes in the MP operations following the pool-
ing layer, we compute the new adjacency matrix Ãpool by
zeroing the diagonal and applying degree normalization

Â = Apool − IKdiag(Apool); Ãpool = D̂−
1
2 ÂD̂−

1
2 .
(8)

Because our GNN-based implementation of SC is fully dif-
ferentiable, MinCutPool layers can be used to build deep
GNNs that hierarchically coarsen the graph representation.
The parameters of each MinCutPool layer can then be
learned end-to-end, by jointly optimizing Lu along with
any supervised loss for a particular downstream task. Con-
trarily to SC methods that search for feasible solutions only
within the space of orthogonal matrices, Lo only introduces
a soft constraint that can be partially violated during the
learning procedure. This allows the GNN to find the best
trade-off between Lu and the supervised loss, and makes
it possible to handle graphs with intrinsically imbalanced
clusters. Since Lc is non-convex, the violation of the or-
thogonality constraint could compromise the convergence
to the global optimum of the minCUT objective. However,
we note that:

1. since MinCutPool computes the cluster assignments
from node features that become similar due to MP op-
erations, clusters are likely to contain nodes that are
both strongly connected and with similar features, re-
ducing the risk of finding a degenerate solution;

2. the degenerate minima of Lc lead to discarding most
of the information from the input graph and, therefore,
optimizing the task-specific loss encourages the GNN
to avoid them;

3. since the minCUT objective acts mostly as a regular-
ization term, a solution that is sub-optimal for (4)
could instead be preferable for the supervised down-
stream task;

For these reasons, we show in Section 5 that MinCutPool
never yields degenerate solutions in practice, but consis-
tently achieves good performance on a variety of tasks.

4.1. Computational Complexity

The space complexity of the MinCutPool layer isO(NK),
as it depends on the dimension of the cluster assignment
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matrix S ∈ RN×K . The computational complexity is dom-
inated by the numerator in the term Lc, and is O(N2K +
NK2) = O(NK(K + N)). Since Ã is usually sparse,
we can exploit operations for sparse tensors and reduce the
complexity of the first matrix multiplication to O(EK),
where E is the number of non-zero edges in Ã. Since
the sparse multiplication yields a dense matrix, the sec-
ond multiplication still costs O(NK2) and the total cost
is O(K(E + NK)).

4.2. Related Work on Pooling in GNNs

In this section, we summarize some related works on graph
pooling in GNNs covering the two main families of meth-
ods: model-free and model-based.

Model-Free Pooling These methods pre-compute the
coarsened graphs based on the topology (A) but do not take
explicitly into consideration the original node features (X),
or the intermediate node representation produced by the
GNN. During the forward pass of the GNN, the node fea-
tures are aggregated with simple procedures and matched
to the pre-computed graph structures. These methods are
less flexible and cannot adapt to different tasks, but pro-
vide a stronger inductive bias that can help to avoid de-
generate solutions (e.g., coarsened graphs collapsing in a
single node).

One of the most popular model-free method is Graclus
(Dhillon et al., 2007) (adopted in (Defferrard et al., 2016;
Fey et al., 2018; Monti et al., 2017)), which implements an
equivalent formulation of SC based on the less expensive
kernel k-means algorithm. At each pooling level, Graclus
identifies pairs of maximally similar nodes to be clustered
together into a new vertex. During each forward pass of the
GNN, max pooling is used to determine the node attribute
to keep from each pair. Fake vertices are added so that the
number of nodes can be halved each time, although this
injects noisy information in the graph.

Node decimation pooling (NDP) is a method originally
proposed in graph signal processing literature (Shuman
et al., 2016), which has been adapted to perform pooling
in GNNs (Simonovsky & Komodakis, 2017; Bianchi et al.,
2019b). The nodes are partitioned in two sets, according
to the signs of the Laplacian eigenvector associated with
the largest eigenvalue. One of the two sets is dropped, re-
ducing the number of nodes by approximately half. Kron
reduction is then used to generate the coarsened graphs by
connecting the remaining nodes.

Model-Based Pooling These approaches learn how to a
coarsen graphs through learnable functions, which take as
input the nodes features X and are parametrized by weights
optimized on the task and data at hand. While being
more flexible, model-based approaches are mostly based

on heuristics and, as shown in Sec. 5, tend to fail in several
cases, leading to instability in the training process.

DiffPool (Ying et al., 2018) is a pooling method that uses
a MP layer to compute a clustering of the input graphs.
DiffPool was one of the first attempts at learning a pooling
operator end-to-end, and is regularized by minimizing the
entropy of the cluster assignment along with a link predic-
tion loss.

The approach dubbed Top-K pooling (Hongyang Gao,
2019; Lee et al., 2019), learns a projection vector that is
applied to each node feature to obtain a score. The nodes
with the K highest scores are retained, while the others are
dropped. Since the top-K selection is not differentiable,
the scores are also used as a gate (or attention) for the node
features, letting the projection vector be trained with back-
propagation. Top-K is generally less effective than Diff-
Pool in benchmarks but is significantly more memory effi-
cient as it avoids generating dense cluster assignments.

We conduct an in-depth comparative analysis of MinCut-
Pool, DiffPool, and Top-K in Section 5, showing some
significant drawbacks of the two previous learnable ap-
proaches w.r.t. to our method, and highlighting how the
inductive bias inherited by SC leads to significant improve-
ments in performance in MinCutPool.

5. Experiments
We consider both supervised and unsupervised tasks to
compare MinCutPool with traditional SC and with other
GNN pooling strategies. The Appendix provides further
details on the experiments and a schematic depiction of the
architectures used in each task. In addition, the Appendix
reports an additional experiment on supervised graph re-
gression. The implementation of MinCutPool is available
both in Spektral1 and Pytorch Geometric.2

5.1. Clustering the Graph Nodes

In this experiment, we evaluate the quality of the assign-
ments S found by our method on two unsupervised tasks.
We implement a one-layer GNN followed by a single-layer
MLP to compute S, and train the overall architecture by
minimizing Lu. For comparison, we configure a similar
GNN architecture based on DiffPool where we optimize
the auxiliary DiffPool losses (see Sec. 4.2) without any
additional supervised loss. We also consider the clusters
found by SC, which, unlike our approach, are based on the

1https://graphneural.network/layers/
pooling/#mincutpool

2https://pytorch-geometric.readthedocs.
io/en/latest/modules/nn.html#torch_
geometric.nn.dense.mincut_pool.dense_
mincut_pool

https://graphneural.network/layers/pooling/#mincutpool
https://graphneural.network/layers/pooling/#mincutpool
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.dense.mincut_pool.dense_mincut_pool
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.dense.mincut_pool.dense_mincut_pool
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.dense.mincut_pool.dense_mincut_pool
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.dense.mincut_pool.dense_mincut_pool
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(a) SC (b) DiffPool (c) MinCutPool

(d) SC (e) DiffPool (f) MinCutPool

Figure 3. Node clustering on a community network (K=6) and on
a grid graph (K=5).

spectrum of the graph. In the results, our approach is al-
ways indicated as MinCutPool for simplicity, although this
experiment only focuses on the clustering results and does
not involve the coarsening step. A similar consideration
holds for DiffPool.

Clustering on Synthetic Networks We consider two sim-
ple graphs: the first is a network with 6 communities and
the second is a regular grid. The adjacency matrix A is
binary and the features X are the 2-D node coordinates.
Fig. 3 depicts the node partitions generated by SC (a, d),
DiffPool (b, e), and MinCutPool (c, f). MinCutPool gen-
erates very accurate and balanced partitions, demonstrating
that the cluster assignment matrix S is well-formed. In par-
ticular, we note that the inductive bias carried by the node
features in MinCutPool leads to a different clustering than
SC but results in an overall better performance (c.f. follow-
ing discussion and Figure 5). On the other hand, DiffPool
assigns some nodes to the wrong community in the first
example and produces an unbalanced partition of the grid.

Image Segmentation Given an image, we build a re-
gion adjacency graph (Trémeau & Colantoni, 2000) using
as nodes the regions generated by an over-segmentation
procedure (Felzenszwalb & Huttenlocher, 2004). The SC
technique used in this example is the recursive normalized
cut (Shi & Malik, 2000), which recursively clusters the
nodes until convergence. For MinCutPool and DiffPool,
node features consist of the average and total colour in each
over-segmented region. We set the number of desired clus-
ters to K = 4. The results in Fig. 4 show that MinCutPool
yields a precise and intuitive segmentation. On the other
hand, SC and DiffPool aggregate wrong regions and, also,
SC finds too many segments.

(a) Original image (b) Oversegmentation

(c) Region Adjacency Graph (d) SC

(e) DiffPool (K = 4) (f) MinCutPool (K = 4)

Figure 4. Image segmentation by clustering the nodes of the Re-
gion Adjacency Graph.

(a) DiffPool

(b) MinCutPool

Figure 5. Unsupervised losses and NMI of DiffPool and MinCut-
Pool on Cora.

Clustering on Citation Networks We cluster the nodes of
three citation networks: Cora, Citeseer, and Pubmed. The
nodes are documents represented by sparse bag-of-words
feature vectors and the binary undirected edges indicate
citation links between documents. Each node is labelled
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(a) Original (b) Top-K

(c) DiffPool (d) MinCutPool

Figure 6. AE reconstruction of a ring graph

with the document class, which we use as ground truth for
the clusters. To evaluate the partitions generated by each
method, we check the agreement between the cluster as-
signments and the true labels. Tab. 1 reports the Complete-
ness Score CS(ỹ,y) = 1− H(ỹ|y)

H(ỹ) and Normalized Mutual

Information NMI(ỹ,y) = H(ỹ)−H(ỹ|y)√
H(ỹ)−H(y)

, where H(·) is the

entropy.

Once again, our GNN architecture achieves a higher NMI
score than SC, which does not account explicitly for the
node features when generating the clusters. MinCutPool
outperforms also DiffPool, since the minimization of the
unsupervised loss in DiffPool fails to converge to a good
solution. A pathological behaviour in DiffPool is revealed
by Fig. 5, which depicts the evolution of the NMI scores
as the unsupervised losses in DiffPool and MinCutPool are
minimized in training (note how the NMI of DiffPool even-
tually decreases). From Fig. 5, it is also possible to see the
interaction between the minCUT loss and the orthogonality
loss in our approach. In particular, the minCUT loss does
not converge to its minimum (Lc = −1), corresponding
to one of the degenerate solutions discussed in Sec. 3. In-
stead, MinCutPool learns the optimal trade-off between Lc

and Lo and achieves a better and more stable clustering
performance than DiffPool.

5.2. GNN Autoencoder

To quantify the amount of information retained by different
pooling layers, we train an autoencoder (AE) to reconstruct
an input graph signal X from its pooled version. We com-
pare MinCutPool, DiffPool, and Top-K. The AE is trained
by minimizing the mean squared error between the original
and the reconstructed graph features, ‖X−Xrec‖2. All the

(a) Original (b) Top-K

(c) DiffPool (d) MinCutPool

Figure 7. AE reconstruction of a grid graph

pooling operations keep 25% of the original nodes.

To upscale the coarsened graph back to its original size, in
MinCutPool we transpose the pooling operations:

Xrec = SXpool; Arec = SApoolST . (9)

A similar operation is performed for DiffPool. For Top-
K, we use the un-pooling operation from the original pa-
per (Hongyang Gao, 2019).

Fig. 6 and 7 report the original graph signal X (the node
features are the 2-D coordinates of the nodes) and the re-
construction Xrec obtained by the different pooling meth-
ods, for a ring and a regular grid graph. The reconstruction
produced by DiffPool is worse for the ring graph, but is
good for the grid graph, while MinCutPool yields almost
perfect results in both cases. On the other hand, Top-K
fails to generate a coarsened graph that maintains enough
information to reconstruct the original graph.

This experiment highlights a major issue in Top-K pool-
ing, which retains the nodes associated with the highest K
values of a score vector s, computed by projecting the node
features onto a trainable vector p: s = Xp. Nodes that
are connected on the graph usually share similar features,
and their similarity further increases after the MP opera-
tions, which combine the features of neighbouring nodes.
Retaining the nodes associated with the highest K scores
in s corresponds to keeping those nodes that are alike and
highly connected, as it can be seen in Fig. 6-7. Therefore,
Top-K drops entire portions of the graph, making it impos-
sible to recover the discarded information. This explains
why Top-K fails to recover the original graph signal when
used as bottleneck for the AE, and motivates the lower per-
formance of Top-K in graph classification (Sec. 5.3).
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Table 1. NMI and CS obtained by clustering the nodes on citation networks over 10 different runs. The number of clusters K is equal to
the number of node classes.

Dataset K Spectral clustering DiffPool MinCutPool

NMI CS NMI CS NMI CS
Cora 7 0.025 ± 0.014 0.126 ± 0.042 0.315 ± 0.005 0.309 ± 0.005 0.404 ± 0.018 0.392 ± 0.018

Citeseer 6 0.014 ± 0.003 0.033 ± 0.000 0.139 ± 0.016 0.153 ± 0.020 0.287 ± 0.047 0.283 ± 0.046

Pubmed 3 0.182 ± 0.000 0.261 ± 0.000 0.079 ± 0.001 0.085 ± 0.001 0.200 ± 0.020 0.197 ± 0.019

Table 2. Graph classification accuracy. Significantly better results (p < 0.05) are in bold.

Dataset WL Dense No-pool Graclus NDP DiffPool Top-K SAGpool MinCutPool

Bench-easy 92.6 29.3±0.3 98.5±0.3 97.5±0.5 97.9±0.5 98.6±0.4 82.4±8.9 84.2±2.3 99.0±0.0

Bench-hard 60.0 29.4±0.3 67.6±2.8 69.0±1.5 72.6±0.9 69.9±1.9 42.7±15.2 37.7±14.5 73.8±1.9

Mutagenicity 81.7±1.1 68.4±0.3 78.0±1.3 74.4±1.8 77.8±2.3 77.6±2.7 71.9±3.7 72.4±2.4 79.9±2.1

Proteins 71.2±2.6 68.7±3.3 72.6±4.8 68.6±4.6 73.3±3.7 72.7±3.8 69.6±3.5 70.5±2.6 76.5±2.6

DD 78.6±2.7 70.6±5.2 76.8±1.5 70.5±4.8 72.0±3.1 79.3±2.4 69.4±7.8 71.5±4.5 80.8±2.3

COLLAB 74.8±1.3 79.3±1.6 82.1±1.8 77.1±2.1 79.1±1.5 81.8±1.4 79.3±1.8 79.2±2.0 83.4±1.7

Reddit-Binary 68.2±1.7 48.5±2.6 80.3±2.6 79.2±0.4 84.3±2.4 86.8±2.1 74.7±4.5 73.9±5.1 91.4±1.5

5.3. Supervised Graph Classification

In this task, the ith datum is a graph with Ni nodes repre-
sented by a pair {Ai,Xi} and must be associated to the
correct label yi. We test the models on different graph
classification datasets. For featureless graphs, we used the
node degree information and the clustering coefficient as
surrogate node features. We evaluate model performance
with a 10-fold train/test split, using 10% of the training
set in each fold as validation for early stopping. We adopt
a fixed network architecture and only switch the pooling
layers to compare Graclus, NDP, Top-K, SAGPool (Lee
et al., 2019), DiffPool, and MinCutPool. All pooling meth-
ods are configured to drop half of the nodes in a graph at
each layer. As additional baselines, we consider the pop-
ular Weisfeiler-Lehman (WL) graph kernel (Shervashidze
et al., 2011); a network with only MP layers (No-pool), to
understand whether or not pooling is useful for a particular
task; a fully connected network (Dense), to quantify how
much additional information is brought by the graph struc-
ture w.r.t. the node features alone.

Tab. 2 reports the classification results. MinCutPool con-
sistently achieves equal or better results with respect to ev-
ery other method. On the other hand, some pooling proce-
dures do not always improve the performance compared to
the No-pool baseline, making them not advisable to use in
some cases. Interestingly, in some datasets such as Proteins
and COLLAB it is possible to obtain fairly good classifica-
tion accuracy with the Dense architecture, meaning that the
graph structure only adds limited information. We also note
the good performance of the WL kernel on Mutagenicity.

6. Conclusions
We introduced a deep learning approach to address impor-
tant limitations of spectral clustering algorithms, and de-
signed a pooling method for graph neural networks that
overcomes several drawbacks of existing pooling opera-
tors. Our approach combines the desirable properties of
graph-theoretical approaches with the adaptive capability
of learnable methods. We tested the effectiveness of our
method on unsupervised node clustering tasks, as well as
supervised graph classification tasks on several popular
benchmark datasets. Results show that MinCutPool per-
forms significantly better than existing pooling strategies
for GNNs.
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