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Abstract

Spectral compressive imaging (SCI) is able to encode
the high-dimensional hyperspectral image to a 2D measure-
ment, and then uses algorithms to reconstruct the spatio-
spectral data-cube. At present, the main bottleneck of
SCI is the reconstruction algorithm, and the state-of-the-
art (SOTA) reconstruction methods generally face the prob-
lem of long reconstruction time and/or poor detail recovery.
In this paper, we propose a novel hybrid network module,
namely CCoT (Convolution and Contextual Transformer)
block, which can acquire the inductive bias ability of con-
volution and the powerful modeling ability of transformer
simultaneously, and is conducive to improving the quality of
reconstruction to restore fine details. We integrate the pro-
posed CCoT block into deep unfolding framework based on
the generalized alternating projection algorithm, and fur-
ther propose the GAP-CCoT network. Finally, we apply the
GAP-CCoT algorithm to SCI reconstruction. Through the
experiments of extensive synthetic and real data, our pro-
posed model achieves higher reconstruction quality (>2dB
in PSNR on simulated benchmark datasets) and shorter
running time than existing SOTA algorithms by a large
margin. The code and models are publicly available at
https://github.com/ucaswangls/GAP-CCoT.

1. Introduction

Hyperspectral image is a spatio-spectral data-cube com-
posed of many narrow spectral bands, with each one cor-
responding to one wavelength. Compared with RGB im-
ages, hyperspectral images have rich spectral information
and can be widely used in medical diagnosis [39], food
safety [12], remote sensing [4] and other fields. However,
existing hyperspectral cameras have a long imaging time
and high hardware costs, which greatly limits the applica-
tion of these hyperspectral cameras. To address the above
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Figure 1. Reconstructed real data of Legoman, captured by the
spectral SCI systems in [37]. We show the reconstruction results
of 12 spectral channels, and compare our proposed method with
the latest self-supervised method (PnP-DIP-HSI [40]) and method
based on the Maximum a Posterior (MAP) estimation (DGSMP
algorithm [24]). As can be seen from the purple and green areas
in the plot, the image reconstructed by our method is clearer, the
PnP-DIP-HSI method produced some artifacts, and the DGSMP
method lost some details.

problems, spectral compressive imaging (SCI), especially
the coded aperture snapshot spectral imaging (CASSI) sys-
tem [15,39,53] provides an elegant solution, which can cap-
ture the information of multiple spectral bands at the same
time with only one two-dimensional (2D) sensor. CASSI
uses a physical mask and a prism to modulate the spec-
tral data-cube, and captures the modulated (and thus com-
pressed) measurement on the 2D plane sensor. Then recon-
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struction algorithms are employed to recover the hyperspec-
tral data-cube from the measurement along with the mask.
This paper focuses on the reconstruction algorithm.

At present, SCI reconstruction algorithms mainly in-
clude model-based methods and learning-based methods.
The traditional model-based methods have relevant theo-
retical proof and can be explained. The representative al-
gorithms are mainly TwIST [3], GAP-TV [64] and De-
SCI [33]. However, model-based methods require prior
knowledge, long reconstruction time and usually can only
provide poor reconstruction quality. With its strong fit-
ting ability, deep learning model can directly learn rele-
vant knowledge from data and provide excellent reconstruc-
tion results [2, 14, 41, 54]. However, compared with the
model-based method, the learning-based method lacks in-
terpretability [65].

The deep unfolding network combines the advantages
of model-based and learning-based methods, and thus it is
powerful with a clear interpretability [16, 60, 61, 68]. At
present, most advanced reconstruction algorithms [37, 55]
are based on the idea of deep unfolding. Many models com-
bine U-net [46] network with deep unfolding idea for im-
age reconstruction and achieve good reconstruction results.
However, the U-net model is too simple to fully obtain the
effective information of the image. Therefore, we use the
inductive bias ability of convolution and the powerful mod-
eling ability of transformer [17] to design a parallel module
to solve the problem of SCI reconstruction. As shown in
Fig. 1, the integration of our proposed method and the deep
unfolding idea can recover more details with fewer artifacts.
Our main contributions in this paper are summarized as fol-
lows:

• We first apply transformer into deep unfolding for
SCI reconstruction.

• We propose an effective parallel network structure
composed of convolution and transformer, dubbed
CCoT, which can obtain more effective spectral fea-
tures.

• Experimental results on a large amount of synthetic
and real data show that our proposed method achieves
state-of-the-art (SOTA) results in the SCI reconstruc-
tion.

• The proposed can also be used in other compressive
sensing (CS) systems, such as video CS [21, 35, 44],
and leads to excellent results.

2. Related Work
In this section, we first review the forward model of

CASSI, then the existing reconstruction methods are briefly
introduced. Focusing the deep learning based models, we

describe the pros and cons of CNN and introduce the visual
transformer for other tasks.

2.1. Mathematical Model of SCI System

Figure 2. Schematic diagrams of CASSI system.

The SCI system encodes high-dimensional spectral data-
cube into a 2D measurement, and the CASSI [53] is one of
the earliest SCI systems. As shown in Fig. 2, the three-
dimensional (3D) spatio-spectral data-cube is first modu-
lated through a coded aperture (a.k.a., mask). Then, the
encoded 3D spectral data-cube is dispersed by the disper-
sion prism. Finally, the whole spectral dimension data is
captured by a 2D camera sensor by integrating across the
spectral dimension.

Let X0 ∈ Rnx×ny×nλ denotes the captured 3D spec-
tral data-cube, M ∈ Rnx×ny denotes a pre-defined mask.
For each wavelength m = 1, . . . , nλ , the spectral image is
modulated, and we can express it as

X
′
(:, :,m) = X(:, :,m)⊙M , (1)

where X
′
∈ Rnx×ny×nλ denotes the modulated spectral

data-cube, X(:, :,m) denotes the m-th channel of the 3D
spectral data-cube X , and ⊙ denotes the element-wise mul-
tiplication.

After passing the dispersive prism, the modulated spec-
tral data-cube is tilted, and the tilted spectral data-cube
X

′′
(u, v,m) ∈ Rnx×(ny+nλ−1)×nλ can be expressed as

X
′′
(u, v,m) = X

′
(x, y + d(λm − λc),m), (2)

where (u, v) represents the coordinate system of the cam-
era detector plane, λm represents the wavelength of the
m-th channel, λc represents the center wavelength, and
d(λm−λc) represents the spatial shifting of the m-th chan-
nel. Finally, by compressing the spectral domain, the cam-
era sensor captures a 2D compressed measurement Y ∈
Rnx×(ny+nλ−1), which can be expressed as

Y =
∑nλ

m=1 X
′′
(:, :,m) +Z, (3)

where Z denotes the measurement noise.
For the sake of simple notations, as derived in [40], we

further give the vectorized formulation expression of Eq.



(3). Firstly, we define vec(·) as vectorization operation of
matrix. Then we vectorize

y = vec(Y ) ∈ Rnx(ny+nλ−1), (4)
z = vec(Z) ∈ Rnx(ny+nλ−1), (5)

x =
[
x⊤
1 , . . . ,x

⊤
nλ

]⊤ ∈ Rnxnynλ , (6)

where xm = vec(X(:, :,m)),m = 1, . . . , nλ. In addition,
we define sensing matrix generated by coded aperture and
disperser in CASSI system as

H = [D1, . . . ,Dnλ
] ∈ Rnx(ny+nλ−1)×nxnynλ , (7)

where, for m = 1, . . . , nλ, Dm =

 0(1)

Am

0(2)

 ∈

Rnx(ny+nλ−1)×nxny , with Am = Diag(vec(M)) ∈
Rnxny×nxny is a diagonal matrix and its diagonal element is
vec(M), 0(1) ∈ R(m−1)×nxny and 0(2) ∈ R(nλ−m)×nxny

represent the zero matrix. Finally, the vectorization expres-
sion of Eq. (3) is

y = Hx+ z. (8)

After obtaining the measurement y, the next task is to de-
velop a decoding algorithm. Given y and H , solve x.

2.2. Reconstruction Algorithms for SCI

SCI reconstruction algorithms mainly focus on how to
solve the ill-posed inverse problem in (8), a.k.a., the recon-
struction of SCI. Traditional methods are generally based
on prior knowledge, which is used as a regularization con-
dition to solve the problem, such as using total variation
(TV) [3], sparsity [13], dictionary learning [1,67], non-local
low rank [33], Gaussian mixture modes [59] etc. The main
problem of these algorithms is that they need to manually
set prior knowledge and iteratively solve the problem, and
the reconstruction time is long and the quality is usually not
good.

With its powerful learning capability, the neural network
can directly learn a mapping relationship from the measure-
ment to the original hyperspectral images, and the recon-
struction speed can reach the millisecond level. End-to-
end (E2E) deep learning methods (TSA-net [38], λ-net [41],
SSI-ResU-Net [54]) take the measurement and masks as in-
puts, and use only a single network to reconstruct the de-
sired signal directly. Plug-and-play (PnP) methods [27, 69]
use a pre-trained network as a denoiser plugged into iter-
ative optimization [5, 64]. Different from PnP methods,
the denoising networks in each stage of the deep unfolding
methods [37, 55] are independent from each other, the pa-
rameters are not shared, and can be trained end-to-end like
E2E methods.

Deep unfolding has the advantages of high-speed, high
quality reconstruction and also enjoys the benefits of

physical-driven interpretability. Therefore, in this paper,
we follow the deep unfolding framework [37], and propose
a new deep denoiser block based on convolution and con-
textual transformer. The proposed module along with deep
unfolding leads to SOTA results for SCI reconstruction.

2.3. Limitations of CNNs for Reconstruction

Due to the local connection and shift-invariance, the con-
volutional network [28] can extract the local features of the
image very well, and is widely used in image recognition
[18, 23, 26], object detection [45], semantic segmentation
[36], image denoising [50] and other tasks [19, 48]. How-
ever, its local connection property also makes it lack the
ability of global perception. In order to improve the recep-
tive field of convolution, deeper network architecture [18]
or various pooling operations [22] are often used. Squeeze-
and-excitation network (SENet) [22] uses the channel at-
tention mechanism [52] to aggregate the global context and
redistributes the weight to each channel. However, these
methods generally lose a significant amount of detail in-
formation and are not friendly to image reconstruction and
other tasks that need to recover local details.

Bearing the above concerns and considering the running
time, we do not use very deep network structure in our work
for the SCI reconstruction, and use convolution with a slid-
ing step size of 2 to replace the traditional max pooling
operation aiming to capture the local details of the desired
spatio-spectral data-cube.

2.4. Visual Transformers

Vision Transformer (ViT) [11] and its variants [10, 51,
63, 72] have verified the effectiveness of transformer ar-
chitecture in computer vision tasks. However, training a
good ViT model requires a large number of training datasets
(i.e., JFT-300M [49]), and its computational complexity in-
creases quadratically with the image size. In order to bet-
ter apply transformer to computer vision related tasks, the
latest Swin transformer [34] proposes local window self at-
tention mechanism and the shifting window method, which
greatly reduces the computational complexity. The trans-
former network based on Swin has achieved amazing results
in computer vision tasks such as image recognition [9], ob-
ject detection [32], semantic segmentation [70, 71] and im-
age restoration [30], which further verifies the feasibility
of transformer in computer vision. In addition, most trans-
formers, including the Swin transformer, when calculating
self attention, all the pairwise query-key are independently
learned, and the rich contextual relationships between them
are not used. Moreover, the self-attention mechanism in vi-
sual transformers often ignores local feature details, which
is not conducive to low-level image tasks such as image re-
construction.

Inspired by contextual transformer (CoT) [29] and Con-



former networks [42], in this paper, we propose a network
structure named CCoT, which can take advantage of con-
volution and transformer to extract more effective spectral
features, and can be well applied to image reconstruction
tasks such as SCI.

3. Proposed Network

In this section, we first briefly review the GAP-net [37]
algorithm, which uses deep unfolding ideas [20] and gener-
alized alternating projection (GAP) algorithm [31] for SCI
reconstruction. We select GAP-net due to its high perfor-
mance, robustness and flexibility for different SCI systems
reported in [37]. Following this, we combine the advantages
of convolution and transformer and then propose a mod-
ule named convolution and contextual transformer, dubbed
CCoT. We integrate this module into GAP-net to recon-
struct hyperspectral images from the compressed measure-
ment and masks.

3.1. Review of GAP-net for SCI Reconstruction

The SCI reconstruction algorithm is used to solve the
following optimization problem:

x̂ = argmin
x

1
2∥y −Hx∥2 + λΩ(x), (9)

where the first term is the fidelity term and the second term,
Ω(x), is the prior or regularization to confine the solu-
tions. In GAP-net and other deep unfolding algorithms,
implicit priors (represented by deep neural networks) have
been used to improve the performance.

Following the framework of GAP, Eq. (9) can be rewrit-
ten as a constrained optimization problem by introducing an
auxiliary parameter v:

(x̂, v̂) = argmin
x,v

1

2
∥x− v∥22 + λΩ(v), s.t. y = Hx.

(10)
In order to solve Eq. (10), GAP decomposes it into the

following subproblems for iterative solutions, where k de-
notes the iteration number.

• Solving x: x(k+1) is updated via an Euclidean projec-
tion of v(k) on the linear manifold M : y = Hx:

xk+1 = v(k) +H⊤(HH⊤)−1(y −Hv(k)). (11)

• Solving v: we can apply a trained denoiser to map x
closer to the desired signal space:

vk+1 = Dk+1(x
(k+1)), (12)

where Dk+1( ) denotes the denoising operation.

It has been derived in the literature [64] that Eq. (11) has
a closed-form solution due to the special structure of H in
Eq. (7). Therefore, the only difference and also the nov-
elty is the denoising step in Eq. (12). In the following, we
describe the novel CCoT block proposed in this work for
efficient and effective SCI reconstruction. The general re-
construction framework is illustrated in Fig. 3 (a) and the
detailed CCoT block is depicted in Fig. 3 (b-f).

3.2. Proposed CCoT Block for Deep Denoising

As mentioned in Section 2.4, to address the challenge of
SCI reconstruction, we develop the CCoT block, where the
convolution and transformer are used in parallel and can be
well applied to image reconstruction tasks such as SCI.
Convolution Branch. As shown in Fig. 3 (b,e), the convo-
lution branch consists of a down-sampling layer and a chan-
nel attention (CA) block. In this paper, we use convolution
layer to perform down-sampling by sliding step s instead of
the direct max pooling to capture fine details. The channel
attention block draws lessons from the idea of SENet net-
work [22], to automatically obtain the importance of each
feature channel through learning, and then to improve the
useful features according to this importance and suppress
the features that are not significant for the current task. The
first convolution layer and channel attention module are fol-
lowed by a LeakyReLU activation function [58]. The pro-
posed convolution branch can extract local features of im-
age well.
Contextual Transformer Branch. By calculating the sim-
ilarity between pixels, the traditional transformer makes the
model focus on different regions and extract more effective
features. However, when calculating paired query-key, they
are relatively independent of each other. A single spectral
image itself contains rich contextual information, and there
is also a significant amount of correlation between adjacent
spectra. Therefore, we designed a contextual transformer
(CoT) branch to better obtain features of hyperspectral im-
ages.

As shown in Fig. 3 (b), CoT branch consists of a down-
sampling layer and a CoT block. The structure of the down-
sampling layer is the same as the convolution branch. As
shown in Fig. 3 (f), we first recall that the input of the
hyperspectral image is of X0 ∈ Rnx×ny×nλ , where nx,
ny and nλ represent the height, width and channel num-
ber of the spectral image, respectively. Then we define
the queries, the keys, and the values as K ∈ Rnx×ny×nλ ,
Q ∈ Rnx×ny×nλ , V ∈ Rnx×ny×nλ respectively. Dif-
ferent from the traditional self-attention using 1× 1 convo-
lutions to generate mutually independent paired query-key,
the CoT block first applies the group convolution of size
k × k to generate a static key K(1) ∈ Rnx×ny×nλ contain-
ing the context, and K(1) can be used as a static context
representation of input X(0). Q and V can be generated by
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Figure 3. Architecture of the proposed GAP-CCoT. (a) GAP-net with K stages, G(·) represents the operation of Eq. (11), D(·) represents
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the traditional self-attention mechanism. Then, we concate-
nate K(1) and Q by the 3rd dimension (spectral channels),
followed by two 1× 1 convolutions to generate an attention
matrix:

A = Convδ(Convθ([K
(1),Q]3)), (13)

where [ ]3 denotes the concatenation along the 3rd dimen-
sion, Convδ,Convθ represent two 1× 1 convolutions, A ∈
Rnx×ny×(k2×Ch) represents the attention matrix containing
context, Ch represents the number of attention heads. We
use the traditional self-attention mechanism to perform a
weighted summation of V through A to obtain the dynamic
context K(2) ∈ Rnx×ny×nλ , and then fuse dynamic con-

text K(2) and static context K(1) as the output of the CoT
block through the attention mechanism [22].

Finally, we concatenate the output of the convolution
branch and the CoT branch as the final output of the CCoT
block.

3.3. GAP-CCoT Network

As shown in Fig. 3 (c), we use CCoT module and pix-
elshuffle algorithm to construct a U-net [46] like network as
the denoiser in the GAP-net. The network consists of a con-
tracting path and an expansive path. i) The contracting path
contains three CCoT modules and ii) the expansive path
contains three upsampling modules. Each module of the



Table 1. The average PSNR in dB (upper entry in each cell) and SSIM (lower entry in each cell) of different algorithms on 10 synthetic
datasets. Best results are in bold.

Algorithms Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Average

TwIST [3]
24.81
0.730

19.99
0.632

21.14
0.764

30.30
0.874

21.68
0.688

22.16
0.660

17.71
0.694

22.39
0.682

21.43
0.729

22.87
0.595

22.44
0.703

GAP-TV [64]
25.13
0.724

20.67
0.630

23.19
0.757

35.13
0.870

22.31
0.674

22.90
0.635

17.98
0.670

23.00
0.624

23.36
0.717

23.70
0.551

23.73
0.683

DeSCI [33]
27.15
0.794

22.26
0.694

26.56
0.877

39.00
0.965

24.80
0.778

23.55
0.753

20.03
0.772

20.29
0.740

23.98
0.818

25.94
0.666

25.86
0.785

HSSP [55]
31.48
0.858

31.09
0.842

28.96
0.832

34.56
0.902

28.53
0.808

30.83
0.877

28.71
0.824

30.09
0.881

30.43
0.868

28.78
0.842

30.35
0.852

λ-net [41]
30.82
0.880

26.30
0.846

29.42
0.916

36.27
0.962

27.84
0.866

30.69
0.886

24.20
0.875

28.86
0.880

29.32
0.902

27.66
0.843

29.25
0.886

TSA-net [38]
31.26
0.887

26.88
0.855

30.03
0.921

39.90
0.964

28.89
0.878

31.30
0.895

25.16
0.887

29.69
0.887

30.03
0.903

28.32
0.848

30.15
0.893

PnP-DIP-HSI [40]
32.70
0.898

27.27
0.832

31.32
0.920

40.79
0.970

29.81
0.903

30.41
0.890

28.18
0.913

29.45
0.885

34.55
0.932

28.52
0.863

31.30
0.901

GAP-net [37]
33.03
0.921

29.52
0.903

33.04
0.940

41.59
0.972

30.95
0.924

32.88
0.927

27.60
0.921

30.17
0.904

32.74
0.927

29.73
0.901

32.13
0.924

DGSMP [24]
33.26
0.915

32.09
0.898

33.06
0.925

40.54
0.964

28.86
0.882

33.08
0.937

30.74
0.886

31.55
0.923

31.66
0.911

31.44
0.925

32.63
0.917

SSI-ResU-Net (v1) [54]
34.06
0.926

30.85
0.902

33.14
0.924

40.79
0.970

31.57
0.939

34.99
0.955

27.93
0.861

33.24
0.949

33.58
0.931

31.55
0.934

33.17
0.929

Ours
35.17
0.938

35.90
0.948

36.91
0.958

42.25
0.977

32.61
0.948

34.95
0.957

33.46
0.923

33.13
0.952

35.75
0.954

32.43
0.941

35.26
0.950
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Figure 4. Reconstruction results of GAP-CSCoT and other spectral reconstruction algorithms (λ-net, HSSP, TSA-net, GAP-net, DGSMP,
PnP-DIP-HSI) in Scene 3 (left) and Scene 9 (right). Zoom in for better view.

expansive path is first quickly upsampled by the pixelshuf-
fle algorithm [47], and then followed by a 3×3 convolution,
and finally concatenates the output from the corresponding
stage of the contracting path (after a 1 × 1 convolution)
as the input of the next module. Eventually, CCoT, GAP
and deep unfolding form the reconstruction network (GAP-
CCoT) of SCI.
Loss function. Lastly, the loss function of the proposed
model is

LMSE(Θ) = 1
nλ

∑nλ

n=1 ∥X̂n −Xn∥2, (14)

where LMSE(Θ) represents the Mean Square Error (MSE)
loss, nλ again represents the spectral channel to be recon-
structed and X̂n ∈ Rnx×ny is the reconstructed hyperspec-
tral image at the n-th spectral channel.

4. Experimental Results
In this section, we compare the performance of the pro-

posed GAP-CCoT network with several SOTA methods on
both simulation and real datasets. The peak-signal-to-noise-
ratio (PSNR) and the the structured similarity index metrics



(SSIM) [56] are used to evaluate the performance of differ-
ent HSI reconstruction methods.

4.1. Datasets

We use the hyperspectral dataset CAVE [62] for model
training and KAIST [8] for model simulation testing. The
CAVE dataset consists of 32 scenes, including full spec-
tral resolution reflectance data from 400nm to 700nm with
10nm steps, and its spatial resolution is 512 × 512. The
KAIST dataset consists of 30 scenes with a spatial resolu-
tion of 2704 × 3376. In order to match the wavelength of
the real CASSI system, we follow the method proposed by
TSA-net [38] and employ the spectral interpolation method
to modify the training set and test data wavelength. The fi-
nal wavelength was fitted to 28 spectral bands ranging from
450nm to 650nm.

4.2. Implementation Details

In the training process, we use random cropping, rota-
tion, and flipping for the CAVE dataset augmentation. By
simulating the imaging process of CASSI, we can obtain
the corresponding measurement. We use measurement and
mask as inputs to train the GAP-CCoT and use Adam opti-
mizer [25] to optimize the model. The learning rate is set to
be 0.001 initially and reduces by 10% every 10 epochs. Our
model is trained for 200 epochs in total. All experiments are
running on the NVIDIA RTX 8000 GPU using PyTorch.

Finally, we use a GAP-CCoT network with 9 stages as
the reconstruction network, and no noise is added to the
measurement during the training process for the simula-
tion data. We added the shot noise to the measurements for
the model training in the real data following the procedure
in [37].

4.3. Simulation Results

We compared the method proposed in this paper with
several SOTA methods (TwIST [3], GAP-TV [64], De-
SCI [33], HSSP [55], λ-net [41], TSA-net [38], GAP-net
[37], PnP-DIP-HSI [40], DGSMP [24] and SSI-ResU-Net
(v1) [54]) on synthetic datasets. Table 1 shows the av-
erage PSNR and SSIM results of different spectral recon-
struction algorithms. We can see that the average PSNR
value of our proposed algorithm is 35.26 dB, the average
SSIM value is 0.950. The average PSNR value is improved
by 2.09 dB than the current best algorithm SSI-ResU-Net
(v1, pre-printed, not published), and the SSIM value is im-
proved by 0.021. In addition, compared with the self super-
vised learning method PnP-DIP-HSI and DGSMP method
(best published results) based on the Maximum a Posterior
(MAP) estimation, the average PSNR of the our proposed
method is 3.96 dB and 2.63 dB higher, respectively. Based
on these significant improvement, we can conduct the pow-
erful learning capability of transformer and the proposed

Table 2. The average PSNR (left entry) and SSIM (right entry)
results on synthetic with different masks.

Mask PSNR, SSIM
Mask used in training 35.26, 0.950

New Mask1 35.10, 0.949
New Mask2 35.06, 0.948
New Mask3 35.06, 0.949
New Mask4 35.02, 0.948
New Mask5 34.99, 0.948

C
C
oT-n

et

C
C
oT-n

et

C
C
oT-n

et

C
C
oT-n

et

C
C
oT-n

et

C
C
oT-n

et

C
C
oT-n

et

C
C
oT-n

et

C
C
oT-n

et

Stacked CCoT

Figure 5. Architecture of the proposed Stacked CCoT. The input
of the network is H⊤y, the CCoT-net is the same as Fig. 3 (c)

CCoT block.
Fig. 4 shows part of the visualization results and spec-

tral curves of two scenes using several SOTA spectral SCI
reconstruction algorithms. Enlarging the local area, we
can see that compared with other algorithms, our proposed
method can recover more edge details and better spectral
correlation.

4.4. Flexibility of GAP-CCoT to Mask Modulation

The CCoT-net only serves as a denoiser for the GAP al-
gorithm, so the GAP-CCoT network proposed in this paper
is thus flexible for different signal modulations. In order to
verify this point, we train GAP-CCoT network on one mask
and test on the other five different untrained masks. Table 2
shows the test results of the average PSNR value and SSIM
value on 10 simulation data using different masks (5 new
masks of size 256 × 256 randomly cropped from the real
mask of size 660 × 660). We can observe that for a new
mask that does not appear in training, the average PSNR
decline is maintained within 0.27 dB, and the result is still
better than other algorithms. Therefore, We can conclude
that the GAP-CCoT network proposed in this paper is flex-
ible for large-scale SCI reconstruction.

4.5. Ablation Study

Table 3. Ablation Study: The average PSNR and SSIM values by
different algorithms on 10 synthetic data.

Algorithms
Stacked CCoT

w/o CoT
GAP-CCoT

w/o CoT Stacked CCoT GAP-CCoT

PSNR/SSIM 32.86, 0.924 34.13, 0.933 34.27, 0.936 35.26, 0.950

In order to verify the effectiveness of the contextual
transformer and the GAP algorithm, we trained two differ-
ent GAP-CCoT networks and two different Stacked CCoT
networks (shown in Fig. 5) for spectral SCI reconstruction
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Figure 6. Effect of stage number on SCI reconstruction quality.
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Figure 7. Reconstruction results of GAP-CCoT and other spec-
tral reconstruction algorithms (λ-net, TSA-net, GAP-net, DGSMP,
PnP-DIP-HSI) in two real scenes (Scene 1 and Scene 2).

respectively. Table 3 shows the reconstruction results of
the two different networks we proposed, where ‘w/o’ CoT
means removing the CoT branch at each stage of coding.
We can clearly observe that the GAP-CCoT network is 0.99
dB higher in PSNR than the Stacked CCoT network. The
PSNR value of the CoT module is improved by 1.13 dB and
1.41 dB on the GAP-CCoT network and the Stacked CCoT
network respectively.

In order to verify the impact of the number of stages on
the reconstruction quality, we trained multiple models with
different number of stages. As can be seen from Fig. 6,

the model proposed in this paper only needs three stages to
complete high reconstruction quality, and the reconstruction
quality increases with the increase of the number of stages.

4.6. Real Data Results

We test the proposed method on several real data cap-
tured by CASSI system [53]. The system captures 28 spec-
tral bands with wavelengths ranging from 450nm to 650nm.
The spatial resolution of the object is 550×550, and the spa-
tial resolution of the measurements captured by the plane
sensor is 550× 604. We compared our method with several
SOTA methods (λ-net [41], TSA-net [38], GAP-net [37],
PnP-DIP-HSI [40], DGSMP [24]) on real data. In addition
to the results shown in Fig. 1, Fig. 7 shows part of the visual-
ization results and spectral curves of the reconstructed real
data of another scene. By zooming in on a local area, we
can see that our proposed method can recover more details
and fewer artifacts. In addition, from the spectral correla-
tion curve, our proposed method also has higher spectral
accuracy.

Table 4. Extending our method for Video Compressive Sensing:
The average PSNR in dB, SSIM and running time per measure-
ment of different algorithms on 6 benchmark datasets.

Algorithm PSNR, SSIM Running time(s)
GAP-TV [64] 26.73, 0.858 4.201 (CPU)

PnP-FFDNet [66] 29.70, 0.892 3.010 (GPU)
DeSCI [33] 32.65, 0.935 6180 (CPU)
BIRNAT [7] 33.31, 0.951 0.165 (GPU)
U-net [43] 29.45, 0.882 0.031 (GPU)

GAP-net-Unet-S12 [37] 32.86, 0.947 0.007 (GPU)
MetaSCI [57] 31.72, 0.926 0.025 (GPU)
RevSCI [6] 33.92, 0.956 0.190 (GPU)

Ours 33.53, 0.954 0.064 (GPU)

5. Conclusions and Discussion

In this paper, we use the inductive bias ability of convo-
lution and the powerful modeling ability of transformer to
propose a parallel module named CCoT, which can obtain
more effective spectral features. We integrate this module
with the deep unfolding idea and the GAP algorithm, which
can be well applied to SCI reconstruction. In addition, we
have also developed similar models for video compressive
sensing [35, 65] and our model leads to excellent results,
summarized in Table 4 and Fig. 8. We believe that by fine-
tuning the proposed networks, we should be able to achieve
state-of-the-art results for video compressive sensing and
also other reconstruction tasks.
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