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ABSTRACT

Existing approaches to compressive sensing of frequency-

sparse signals focuses on signal recovery rather than spectral

estimation. Furthermore, the recovery performance is limited

by the coherence of the required sparsity dictionaries and

by the discretization of the frequency parameter space. In

this paper, we introduce a greedy recovery algorithm that

leverages a band-exclusion function and a polar interpolation

function to address these two issues in spectral compressive

sensing. Our algorithm is geared towards line spectral es-

timation from compressive measurements and outperforms

most existing approaches in fidelity and tolerance to noise.

Index Terms— Compressive sensing, frequency-sparse

signals, spectral estimation, polar interpolation

1. INTRODUCTION

One of the most popular thrusts in compressive sensing (CS)

research has focused on the recovery of signals that are spec-

trally sparse (i.e., that have a sparse frequency-domain rep-

resentation) from a reduced number of measurements [1–5].

Such frequency-sparse signals bring up a novel issue in the

formulation of the CS recovery problem: frequency-domain

representations have a continuous parameter space, while CS

is inherently rooted on discretized signal representations.

Aiming for an increasingly dense sampling of the fre-

quency parameter space introduces performance issues in

sparsity-leveraging algorithms. In particular, increasing the

resolution of the parameter sampling worsens the coherence

of the dictionary that provides sparsity for relevant signals.

This both prevents certain algorithms from finding the sparse

representation successfully and introduces ambiguity on the

choice of representations available for a signal in the dictio-

nary. Initial contributions address such issues by modifying

the sparsity prior, the recovery algorithm, or both, to be

tailored to the intricacies of the signal representation [5–8].

Interestingly, CS recovery of frequency-sparse signals can

be formalized in two different ways: recovery of the signal
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samples, and recovery of the signal’s component frequencies.

Previous contributions have almost exclusively focused on the

former; their performance for the latter goal is limited by the

representation leveraged during CS. Particularly, the required

discretization of the parameter space explicitly limits the per-

formance of compressive frequency estimation.

In this paper, we improve over existing approaches by in-

troducing interpolation steps within CS recovery algorithms

that break the discretization barrier implicit in CS and are

able to improve the quality of frequency parameter estima-

tion. While such interpolation is considered briefly and inte-

grated to a simple recovery algorithm in [5], we introduce a

novel polar interpolation approach that leverages the fact that

frequency-sparse signals are translation-invariant in the fre-

quency domain. We couple polar interpolation with a more

sophisticated CS greedy recovery approach to improve the

performance of spectral CS over existing algorithms. We pro-

vide experimental evidence that shows improved frequency

estimation performance against approaches previously pro-

posed for spectral CS signal recovery: in some cases, our

estimates are more precise than those from the baseline ap-

proaches, while in other cases we match the precision of the

baseline with greatly reduced computational complexity.

2. BACKGROUND AND RELATED WORK

Compressive sensing (CS) is a technique to simultaneously

acquire and reduce the dimensionality of sparse signals in a

randomized fashion. More precisely, in the CS framework, a

signal f ∈ C
N is sampled by M linear measurements of the

form y = Af , where A is an M × N sensing matrix and

M ≪ N . In practice, the measurements are acquired in the

presence of noise z, in which case we have y = Af + z.

In many applications, the signal f is not sparse but has a

sparse representation in some dictionary D. In other words,

we have f = Dx, where x is K-sparse (i.e. ||x||0 ≤ K).

Under certain conditions on the matrix A [9, 10], we can re-

cover x from the measurements y through the following ℓ1-

minimization problem (which we refer to as ℓ1-synthesis):

x̂ = min
x̃∈CN

||x̃||1 s.t. ||ADx̃− y||2 ≤ ǫ, (1)

where ǫ is an upper bound on the noise level ||z||2. Note that

kfn
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optimal recovery of x from the optimization in (1) is feasible

only when the elements of the dictionary D form an orthonor-

mal basis, and thus are incoherent [1, 11]. However, in many

applications, the signal of interest is sparse in an overcom-

plete dictionary or a frame, rather than in a basis.

This paper focuses on frequency-sparse signals, which

can be modeled as a superposition of K complex sinusoids

with arbitrary frequencies ω̃ = {ω1, ω2, . . . , ωK}. The signal

f =
[

f1 f2 . . . fN
]T

is given by

fn =

K
∑

k=1

xke
j2πω̃kn, ω̃k ∈ [0, 1], n ∈ {1, 2, . . . , N}. (2)

Such signals are sparse in the discrete-time Fourier transform

(DTFT), when defined using an infinite dictionary. In prac-

tice, a finite-length representation of the signal is required,

and the transform of choice is the discrete Fourier trans-

form (DFT). Unfortunately, the DFT coefficients for such a

frequency-sparse signal are sparse only when the frequencies

of the constituent sinusoids are integral. One way to remedy

this problem would be to employ a dictionary corresponding

to a finer discretization of the Fourier representation. We

call such a dictionary a DFT frame of redundancy c ∈ N,

containing P = c ·N elements, defined as:

D =
[

d(ω1) d(ω2) · · · d(ωP )
]

, ωp =
p

P
,

d(ωp) =
[

d1(ωp) d2(ωp) . . . dN (ωp)
]T

, (3)

where dn(ω) = 1√
N
ej2πωn. However, the DFT frame vio-

lates the incoherence requirement for the dictionary [5].

It has recently been shown in [6] that as far as the recovery

of signal f (instead of the sparse coefficient vector x) is con-

cerned, the coherence condition of the dictionary is not nec-

essary, provided that the matrix DHD is sufficiently sparse,

where (·)H designates the Hermitian operation. In this case,

the signal f can be recovered via ℓ1-analysis. However, the

matrix DHD is not sufficiently sparse for DFT frames.

Alternatively, one can take advantage of structured spar-

sity in spectral CS recovery by using a coherence inhibition

model [5]. The resulting structured iterative hard threshold-

ing (SIHT) algorithm can recover the frequency-sparse signal

with a DFT frame by avoiding dictionary elements with high

coherence. A variation of this method uses a band-exclusion

function to achieve the same avoidance [8]. We can define the

η-coherence band of the index set S as

Bη(S) =
⋃

k∈S

{i | µ(i, k) > η}, i ∈ {1, 2, . . . , P}, (4)

where µ(i, k) = |〈d(ωi),d(ωk)〉| is the coherence between

two atoms in the dictionary. The authors use the band-

exclusion function to avoid selecting coherent dictionary ele-

ments in various greedy algorithms, including Band-excluded

Orthogonal Matching Pursuit (BOMP).

More recently, it has been shown that one can recover a

frequency-sparse signal from a random subset of its samples

using atomic norm minimization [7]. The atomic norm of f

is defined as the size of the smallest scaled convex hull of a

continuous dictionary of complex exponentials. Thus, the re-

covery procedure searches over a continuous dictionary rather

than a discretized one. The atomic norm minimization can

be implemented as a semidefinite program (SDP), which can

be computationally expensive. In addition, this formulation

does not account for measurement noise, and it is not clear if

guarantees can be given for arbitrary measurement settings.

Nonetheless, [7] motivates our formulation of algorithms that

push past the discretization of the frequency parameter space.

3. POLAR INTERPOLATION

FOR FREQUENCY ESTIMATION

One way to remedy the discretization of the frequency pa-

rameter space implicit in CS is to use interpolation. In [12], a

polar interpolation approach for translation-invariant signals

has been derived. Such signals can be written as a linear com-

bination of shifted versions of a waveform. In a nutshell, the

interpolation procedure exploits the fact that translated ver-

sions of a waveform form a manifold which lies on the surface

of a hypersphere. Thus, any sufficiently small segment of the

manifold can be well-approximated by an arc of a circle, and

an arbitrarily-shifted waveform can be closely approximated

by a point in such arc.

The complex exponentials that compose a DFT frame also

form a manifold over a hypersphere, and thus can be approx-

imated by an arc of a circle. This is motivated by the fact

that complex exponentials have translation-invariant Fourier

transforms, which correspond to an isometric rotation of the

time-domain vectors. In this case, the DFT frame samples

the frequency parameter space with a steps size ∆ = 1/c,
and we approximate a segment of the manifold d(ω̃i) : ω̃i ∈
[ωp −

∆

2
, ωp + ∆

2
] by a circular arc containing the three ex-

ponentials {d(ωp −
∆

2
),d(ωp),d(ωp +

∆

2
)}. Making use of

trigonometric identities, the polar interpolator approximates

exponentials d(ω̃i), ω̃i ∈ [ωp −
∆

2
, ωp + ∆

2
], using linear

combinations of the three exponentials [12]:

d(ω̃i) ≈ c(ωp) + r cos

(

2ω̃

∆
θ

)

u(ωp) + r sin

(

2ω̃

∆
θ

)

v(ωq),





c(ωp)
T

u(ωp)
T

v(ωp)
T



 =





1 r cos(θ) −r sin(θ)
1 r 0
1 r cos(θ) r sin(θ)





−1 



d(ωq −
∆

2
)T

d(ωp)
T

d(ωp +
∆

2
)T



 ,

where r is the ℓ2 norm of each element of the dictionary and

θ is the angle between d(ωp) and d(ωp −
∆

2
). In order to

extend the above approximation to sums of J exponentials

with frequencies Ω = {ω1, ω2, . . . , ωJ}, we define:

f̃ = C(Ω)α−U(Ω)β −V(Ω)γ, (5)



C(Ω) =
[

c(ω1) c(ω2) · · · c(ωJ)
]

,

U(Ω) =
[

u(ω1) u(ω2) · · · u(ωJ)
]

, (6)

V(Ω) =
[

v(ω1) v(ω2) · · · v(ωJ)
]

,

where α represents the amplitude of the signal and β and γ

controls the frequency translations. The three coefficient vec-

tors can be estimated using the following constrained convex

optimization problem [12]:

(α,β,γ) = T(y,A,Ω) (7)

= argmin
α,β,γ

1

2σ2
||y −Af̃ ||22 + ||α||1

s.t.











αj ≥ 0,
√

β2
j + γ2

j ≤ α2
jr

2,

αjr cos(θ) ≤ βj ≤ αjr,











for j = 1, . . . , J,

where A is the measurement matrix, and y is the received

compressed signal. The constraints for the optimization prob-

lem ensure that the solution consists of points on the arcs

used for approximation. The first constraint ensures we have

only nonnegative signal amplitudes. The second enforces the

trigonometric relationship among each triplet αj , βj , and γj .

The last constraint ensures that the angle between the solution

and d(ωj) is restricted to the interval [0, θ]. It is necessary to

scale β and γ after the optimization problem [12]:

(βj , γj)←





βjαjr
√

β2
j + γ2

j

,
γjαjr

√

β2
j + γ2

j



 . (8)

This is because the inequality of the second constraint should

in fact be an equality. However, the equality would violate

the convexity assumption of the optimization. After this nor-

malization, we obtain the signal estimate from (6) and the

frequency estimates using the one-to-one relation

αjc(ωj) + βju(ωj) + γjv(ωj) = αjd
(

ωj +
∆

2θ
tan−1(

γj

βj
)
)

.

(9)

The optimization (7), when applied with all parameter values

used in the dictionary D, is named continuous basis pursuit

(CBP) in [12]:

(α,β,γ) = T(y,A,ΩCBP ), (10)

where ΩCBP = {ω1, ω2, . . . , ωP } is the set of all frequencies

that appear in the DFT frame for our application of interest.

As posed, CBP has a high computational complexity: it op-

erates on matrices of size 3N , whereas other CS algorithms

operate on matrices of size N . However, its interpolation step

has one important advantage: translation-invariance and in-

terpolation enables CBP to reconstruct arbitrary frequency-

sparse signal while requiring only a small subset of the cor-

responding dictionary. This makes it possible to incorporate

the convex optimization solver into a greedy algorithm that

quickly finds a rough estimate, which is then improved upon

by a convex optimization solver.

4. BAND-EXCLUDED

INTERPOLATING SUBSPACE PURSUIT

We incorporate the convex optimization (7) and band-exclusion

(4) in a Subspace Pursuit algorithm [13]. We call this algo-

rithm Band-Excluded Interpolating Subspace Pursuit (BISP),

which is shown in Algorithm 1.

In the algorithm initialization, the best K correlating

atoms are found and stored in Sn by generating a proxy for

the sparse signal. The K atoms are found iteratively, which

deviates from the original Subspace Pursuit algorithm where

the K atoms are found in one step. In each iteration, we trim

the proxy based on the found atom and the band exclusion

function Bη(S), as defined in (4). In the main loop, we find

the K best atom indices and add them to Sn. From Sn, we

form a set Ω consisting of all frequencies corresponding to

the indices in Sn along with all adjacent indices. This is

necessary because the frequencies present in y may not be

sufficiently incoherent and may therefore skew the peaks of

the proxy estimate. Therefore, as a precaution, we include

the closest neighbors on each side. The set Ω is input to

the convex optimization in (7) along with the measurement

matrix and the received signal.

In practice, we found that for noisy measurements it is of-

ten preferable to move the minimization objective ||y−Af̃ ||22
in (7) into a constraint. Moving this fidelity measure from

the objective function to a constraint causes the optimization

to return the sparsest set of coefficients that yields measure-

ments within the noise range of the observation. If the output

is non-existent or trivial, we move the fidelity metric from the

objective function to the constraint (or vice versa).

Algorithm 1 BISP

INPUTS: Compressed signal y, sparsity K, measurement

matrix A and spacing between dictionary elements ∆.

OUTPUTS: Reconstructed signal f̃ and frequency esti-

mates ω̃.

INITIALIZE: Φ = AD, i = 1, S0 = ∅
while i ≤ K do

S0 = S0 ∪ argmaxi |〈y,Ai〉|, i 6∈ B0(S
0), i = i+ 1

end while

y0
r = y −ΦS0Φ

†
S0y, n = 1

LOOP:

repeat

i = 1, Sn = Sn−1

while i ≤ K do

Sn = Sn∪argmaxi |〈y,Ai〉|, i 6∈ B0(S
n), i = i+1

end while

a = (ΦSn)†y
Sn = supp(thresh(a,K))
Ω = ∪{∆(s− 1),∆s,∆(s+ 1)|s ∈ Sn}
From T(y,A,Ω) obtain f̃ and ω̃ using (9) and (6)

yn
r = y −Af̃ , n = n+ 1

until ||yn
r ||2 < ǫ · ||yn−1

r ||2 ∨ n ≤ K
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Fig. 1. Frequency estimation performance in noise-less case.

The legend is shown in Fig. 2.

5. NUMERICAL EXPERIMENTS

To evaluate Algorithm 1, we have performed two numer-

ical experiments.1 We generated frequency-sparse signals

of length N = 100 containing K = 4 complex sinusoids

with frequencies selected uniformly at random. We used

a DFT frame with c = 5 (∆ = 0.2Hz), and considered

well-separated tones so that no two tones are closer than

1Hz of each other. We performed Monte Carlo experiments

and averaged over 30 experiments. As measurement ma-

trix2 we used a Gaussian matrix A ∈ R
M×N . We set

M = κN , where κ ∈ (0, 1] is the CS subsampling rate.

We compare our proposed Algorithm 1 with six state-of-the-

art methods: ℓ1-synthesis, ℓ1-analysis, SIHT, SDP, BOMP,

and CBP. As performance measure, we use the Hungarian

algorithm [15, 16] to find the best matching between the es-

timated and true frequencies. For the algorithms that return

a dense DFT coefficient vector or a reconstructed signal (ℓ1-

synthesis, ℓ1-analysis, SIHT, and SDP), we apply the MUSIC

algorithm [17] on the reconstructed signal to estimate its fre-

quencies. In the BISP and BOMP algorithms, we exclude

atoms with coherence η > 0.25 using (4).

For the first experiment, we explore a range of subsam-

pling ratios κ with noiseless measurements to verify the level

of compression that allows for successful estimation. We set

ǫ = 10−10 for the relevant algorithms. The result of the nu-

merical experiment is shown in Figure 1. In the noiseless

case, SDP obtains the best result. The polar interpolation al-

gorithms (CBP and BISP) both converge to a given estimation

precision, which corresponds to the level of approximation

error. When the number of measurements M is sufficiently

1The documentation and code for these experiments are made freely

available at http://www.sparsesampling.com/scspi, following

the principle of Reproducible Research [14].
2For the SDP algorithm we used a random subsampling matrix, as the

algorithm is only defined for such a measurement matrix. The authors would

like to thank Gongguo Tang for providing the implementation of SDP.
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Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy

ℓ1-analysis 9.5245 8.8222

ℓ1-synthesis 2.9082 2.7340

SIHT 0.2628 0.1499

SDP 8.2355 9.9796

BOMP 0.0141 0.0101

CBP 46.9645 40.3477

BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

small, CBP outperforms ℓ1-synthesis. The performance of

BOMP and SIHT is worst among the algorithms tested. Sur-

prisingly, while the DFT coefficients x found by ℓ1-synthesis

are not sparse and do not match the original frequencies, the

signal f is still reconstructed accurately, and so the MUSIC

algorithm recovers the frequencies adequately.

For the second experiment, we include measurement

noise in the signal model. We fix κ = 0.5 and vary the signal-

to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the

polar interpolation algorithms perform best. This is because

their interpolation step relies less on the sparsity of the signal

and more on the known signal model and the fitting to a circle

on the manifold. Additionally, the presence of noise renders

the measurements non-sparse in the dictionaries used by the

non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-

tance, and we have listed the average computation times in

Table 1. We observed that most algorithms exhibit compu-

tation time roughly independent of M , with the exception of

ℓ1-synthesis and CBP3. The table shows that the excellent per-

formance of SDP in Figure 1 is tempered by its high computa-

tional complexity, as well as its lack of flexibility on the mea-

surement scheme. Moreover, the relaxation in BISP that ac-

counts for the presence of noise reduces its computation time,

increasing its performance advantage over SDP and CBP.

3See results at http://www.sparsesampling.com/scspi.
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