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I SPECTRAL COMPUTATIOU OF T'RIPLZ-DECK FLOWS

Odus R. Burggraf

I
~The Ohio State University, Columbus, Ohio

and

P. W. Duckc
University of Manchester, England

Abstract triple-deck problem of interaction between

1 -I boundary layer and free stream near a

The Fourier transform method is applied trailing edge. Nevertheless, there are

i to the problem of computing viscous flows several types of flow for which these

Sinvolving boundary-layer separation, based marching techniques either fail or become

on the triple-deck model of viscous-invis- difficult to implement. Of these diffi-

cid flow interaction. As used here, the cult types, perhaps separated flow is tne

metnod is pseudo-spectral in that the non- most obvious. The physical cause of the

linear inertia terms are evaluated In difficulty Is the region of reversed flow,

physical variables, although the main com- in which the fluid travels in the direct-

putations are made in spectral variables. Ion opposite to that of the main body of

The Fast-Fourier-Transform algorithm is fluid. As a result there is a change of

used to expedite tne iterated transforma- character of the governing boundary-layer

tions. The method is much faster than con- equations. Usually these are of parabolic

ventional finite-difference methods; typ- type for which marching techniques are

ically only ten or twenty iterations suf- valid; however, the flow reversal due to

fice for convergence to four or five separation changes the nature of the boun-

digits of accuracy. Furthermore, no arti- dary-layer equations to quasi-elliptic

ficIal stabilization schemes are necessary type, with information being propagated

to treat the reversed flows occurring in both upstream and downstream. Any attempt

separated regions. Results are presented to obtain an accurate solution by marching

for both incompressible and supersonic through such reversed-flow regions mustJ flows, and are shown to compare well with fail due to the improper direction of

previous finite-difference results. information flow. In finite-difference

procedures, the failure is usually

I. Introduction exhibited either by lack of convergence of

the Iterative procedure or by severe oscil-

In recent times the most common means lations in the "solution".

of solving (numerically) Prandtl's boun- Reyhner and FlUgge-Ltz2 have demon-

dary-layer equations has been finite-dif- strated a simple, though approximate,

ference marching methods. Despite the non- remedy to this problem of treating

linearity of these equations, these tech- reversed flows. Their approximation was

niques (incorporating Newton iteration) to neglect the product of the streamwise

can provide rapid accurate solutions on velocity component u and its streamwise

modern computers. The marching method was derivative u x in the governing equations

-- applied successfully, for example, by Jobe wherever u became negative. This techni-

and BurggrafI in their solution of the que has been used by a number of

authors
3
,
4 
with good results for the com-

Formerly, Research Associate, The Ohio puted pressure distribution. However,

State University. This worn was sponsored mucn of the success of this technique owes

by Office of Naval Research under Contract to the fact that the reversed flow is very

-- ~N0001-76-C-0333.
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slow In many situations, and so the exclu- with which the Unsteady equations are
sion of this component of the inertia terms integrated forward in time until a steady-
is of little 5consequence In those cases. state solution is obtained. This approach

* Williams5 has suggested a more rational permits retention of all the inertia terms
(and more complicated) procedure for treat- in the equations of motion, even In
ing reversed flows based on bidirectional reversed-flow regions. Jenson, et a19,

*marching techniques. The Reynner and and later Rizzetta, et al10 , applied the
FlUgge-Ldtz (FLARE) procedure is used as a time-marching procedure to the triple-deck
first approximation, followed by a back- formulation for supersonic separated flows
wards sweep In the reversed-flow region over ramp configurations. Their method
only. The previously neglected uu x tern was based on shear stress as the primary
in the reversed-flow region is now dependent variable. Upstream Influence
accounted for in the next forward sweep by was them accounted for through an inter-
treating it as a known quantity evaluated action condition applied as a wall boun-
from the preceding backwards sweep. This dary condi 'in on the stress: namely, the

downstream-upstream iteration (DUIT) Is boundary-layer compatibility condition
then continued until convergence is with the pressure gradient evaluated from
achieved. Williams Usually finds only five the displacement functici. This condition
to ten of these sweeps to be necessary. is an exact requirement of the interacting
Obviously this method is considerably less flow, and permits downstream conditions to
straightforward to program than simple influence the upstream flow at each time

I marching procedures, and also takes rather step of the computation. The method works
longer to compute. well but flows with extensive separation

Another class of problems for which are rather expensive to compute due toIthe standard marching techniques require their slow development in time. An inter-
iterative application is tnat to free- acting boundary-layer program based on

*interaction flows. Originally postulated similar ideas has been presented by Werle
6 11I by Lighthill , these flows are essentially and Vatsa and has been shown to give

eigensolutions of the boundary-layer equa- results that asymptote the triple-deck
tions that provide the means Of Upstream results for very large Reynolds number12.

jinfluence In the flow, despite the para- Various alternatives to these finite-
bolic nature of the governing equations, difference approaches have been proposed.
Stewartson and 8Williams 7 and later Smith The spectral method seemed to Us to have
and Stewartson8 used a shooting approach characteristics advantageous for computing
to generate their free-interaction solu- separated flows, and we have applied it to
tions. Here the pressure is perturbed by the triple-deck problem In this study.Ja small jump and the resulting solution is The (nonlinear) governing equations are
obtained by marching downstream; the cor- transformed from physical to spectral
rect amount of perturbation is determined variables using the Fourier Integral trans-Isuch that the free-interaction solution Is form in the main-flow direction, together
suppressed far downstream. As usual with with finite-differences in the transverse
shooting methods, tnis approach prove$ direction. The solution is computedfmore and more difficult as the range of (iteratively) in spectral space and then
Integration is extended downstream, owing the inverse transform applied to obtain
to the ultimate exponential growth of the the solution in physical variables. AIfree-interaction solutions, major advantage of the method Is that

The above methods all solve the steady- reversed flows present no difficulty; each
flow equations by marching In the flow point In spectral space relates to all[direction. An alternative is time-marching, points on the path of Integration In
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physical space. Thus the reversed and for- It Is convenient to describe the

ward-flow information Is diffused together triple-deck disturbance using variables

in transform variables. This interconnec- with magnitude of order one. These are
tion between the physical grid points via denoted by upper case letters while lower
each spectral grid point endows the spec- case letters designate the corresponding
tral method with a physically implicit physical variable. Thus, the coordinate
nature, suggesting an accelerated conver- representing distance parallel to the sur-
gence of the iterations. As will be seen, face is x a £3aLX while the normal coor-
the spectral computations exhibit rapid dinate is y - bLY. The origin is taken

convergence, even for flows exhibiting at a convenient point on the disturbed
separated regions large enough that other surface. The corresponding velocity
(finite-difference) schemes fail. components are u - c(d/b)uU and v -

Details of the metnod as well as E3(d/a)u V, while the pressure p - p.(l +
results of computations for both incompres- E2cP). Here a, b, c and d are constant
sible and supersonic flows are given below, scale factors depending on Mach number,
In both cases, the spectral results are wall-temperature ratio, and the surface
shown to compare well with those of finite- stress of the undisturbed flow. Their
difference computations. values are given, for example, in Refs. 7

and 10 for supersonic flow, and in Refs. 1

II. The Mathematical Problem and 16 for incompressible flow. Following

Jenson, el al9'10 , we introduce tne shear
The problem considered is the flow dis- T - Uy as basic dependent variable, where

turoance produced by a shallow perturbation subscripts denote partial derivatives.

of the surface height at a distance L from Then the equation to be solved in the

the leading edge of an otherwise plane lower deck is the shear transport equation,

wall. Let u. be the flow speed and v. the UT+ T (l)

kinematic viscosity of the fluid, the sub-

script (-) referring to conditions in the together with the continuity equation
undisturbed freestream. The Reynolds num-
ber R - u.L/v. is regarded as large. As Ux + V = 0 (2)
is common in triple-deck analyses, it is
convenient to define the small parameter c The conventional no-slip conditions apply:
as R-1/ 8. Then if the surface height per-
turbation is of order c5L and extends over U a V w 0 on Y - 0 (3)

a length of order c3L, the flow disturbance The remaining boundary conditions take a
is contained in the triple-deck structure

yform governed by the triple-deck structure.originally deduced ye Upstream the shear must match to that of
and Stewartson7 . Since this asymptotic the undisturbed flow near the wall; tnUS,
flow structure has been described by many
authors, we merely state here that the t *1 for X * -- ( )
problem reduces to solving the conventional Moreover, the triple-deck structure
incompressible boundary-layer equations requires that the main-deck solution cor-
(governing the lower-deck flow) subject to respand to a simple vertical displacement
an unconventional outer boundary condition of the original undisturbed boundary layer
whose form depends on whether the outer by the lower deck. Consequently, match-
flow is incompressible or supersonic. (A ing of main and lower deck solutions
hypersonic version exists as well, but is requires
not considered In this work; See Ref. 15). T 1 as Y * - (5)

3
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The corresponding condition for U is t(u, Y) - F{i(X, Y))

- Y A(X) as Y - U(w, Y) - F(U(X, Y))

wiere A(A) is crie (negative) displacement V(w, Y) - F{V(X, Y)

of t.ie main deck. For supersonic flow,

the pressure is given by linearized poten- In terms of tnese perturbation varlaoles,

tial theorv a6 tne shear transport equation (1) tecomes

S= ~H'(X) - A'(X) X - YY - + VTy) 5 R (3)

where H(x) is the neignt of tae surface where the second-order perturbation terms

perturbation in lower-deck scaling. The nave been placed on the right side of the

ooundary-layer compatibility condition equation. The spectral form of this equa-

states taat the pressure gradient balances tion is

tne normal gradient of the srear at the IwY - T -( + V9)

hall. 'xpresaing A in the form - y

The rignt-side function 5 has the form of
A(X) - Lin (U - Y) = (T - 1)dY, a complicated convolution integral. ihow-

0 ever, it need not be given here, since the

t:.e compatiLility condition for supersonic term will be evaluated by another method

flow can tnen oe expressed as (pseudo-spectrally). The continuity equa-

tion (2) is expressed spectrally as
T t.{"(X) T (6) -y

Y.J--IWU *-iw J dY (13)
0 0

TJo

Jn the otner ;iand, the elliptic nature of

Incompressible flow gives rise to a Hilbert The boundary conditions (3)-(6) also

Integral for tnle pressure: must be expressed in spectral variables.

Thus,

i 14 H'(S) - A'(S) (7 0 on Y - 0 (11)

- - 0 on Y - 0 (12)

mus, an interaction condition very similar * 0 as Y * . (13)

to _--q. (6) can be given for incompressible and the interaction condition (6) for

f .o4. Tls '411l e postpor~ed, ..owever, as supersonic flow becomes
thne similarity is macn more remarkable in

3pectral variables. 2 n ~Y) (u
The Fourier transform is now applied y- -

0
to tne governing equations. Using an over- For Incompressible flow, the pressure

zar to denote transformed variables, the Is given by Eq. (7), s0 tnat the compati-

transform ;(w) of any real function (X) blity condition becomes

is given as

( F(O(X)) J 0 (X)ei !X Y-0

Applying tne Fourier transform to the
Actually to permit convergence of the inte- Hilbert integral in Zq. (7) thus yields

grals, tne transformation Is performed on the incompressible interaction condition

tne perturoation flow quantities. Define

- T Ty Y-Oj -1W iH(W) - 1 (w, Y)dY) (15)

U U- Y

1.



wnicn is very similar in form to the super- complete iteration, where 3 and N are

sonic interaction condition. In fact, this the number of grid points in the Y and w
slignt difference between 7qs. (14) and (spectral) directions, respectively.

(15) is the only difference in the triple- A much more efficient method is to use

deck theories for supersonic and incom- the so-called Fast Fourier Transform (FFT)

pressible flow. Yet as will be demon- algorithm of Cooley and Tukey1 . The pro-
strated, i4rge appdrent differences in the cedure used here is to invert tne trans-

physical flow properties result. The forms i and iwT to obtain the physical
significance with regard to computer pro- variables T and TX. From these U, UX, and

gramming is that tne change of a single V are determined, permitting the inertia

FORTRAJ statement permits computing either function R of Zq. (8) to be evaluated.

supersonic or incompressible flows with Applying the direct transform to R then

tne same computer code. results in the desired inertia transform

term R. Eq. (16) is then solved for tne

next approximation, and the above procedure
III. The Solution Procedure is iterated until the solution repeats to

tne desired number of decimal places. 7he
The soectral shear-transport equation advantage of this method arises from the

(4) nias been written in the form of a efficiency of the FFT algoritam; tae scheme

linear ordinary differential operator on outlined here requires only of the order of

the left side, with the non-linear inertia N l m-

terms collected together into the right- plete iteration, compared with c for the

side function ;. The solution Is obtained ltIeriocmadwth:Y frtn

direct metnod based on the convolution inte-
oy Iteration, solving first with R set gral. An order of magnitude reduction in

identically zero; then in later iterations computIng tine Is achieved for quite rea-

is evaluated from the subsequent solu-
sonaule grid resolution. It may be noted

tion, as that the method used here is the reverse

,,,,(n) (n) *;(n-l) of the pseudo-spectral method described ty

(16) Orszag19 and Roache20  whO solve the equa-

(D(n-)T(n-1) ,V(n-I)T (n-) tions of motion in the physical plane and

X yn-1)) use tae Fourier transform to evaluate

Central differences in Y are applied derivatives.

to -,. (16), as well as to the interaction The discretization of tne Fourier

condition, either (14) or (15). The transforms was carried out as follows.

result of the first iteration is the Define the discrete physical and spectral

linearized tneory of Stewartson , which variables X k and as

provides a reasonably accurate prediction

for small disturbances. For disturbances Xj * (J-I-M)AX for J - 1,2,. .. ,; (17a)

large enough to produce flow separation,

firtner iteration is necessary to bring in Wk * (k-l-M)Aa for k - l,2,...,N; (17b)

the effects of the non-linear inertia

terms. where for convenience we take N - 2M.

The rignt-side function q in Eq. (16) Denote any physical function O(X1 ) y

can De expreised as a convolution of the and tne corresponding spectral function

velocity referred to tao different points (wk) by . Choose the range of va-

in spectral space. However, evaluating ables sucn tnat v(X) is negligable for

tiis convolution Integral is a very Inef- X < XI, X > X14+I, and ;(w) is negligable
ficient way of cetermining R, requiring for w wlP W 

> 
wll i" Then tne Fourier

of order ., Y multiplicatlons, for each

12.



integral transform *(w), defined in the a i2.(k-l)(J-1)/

last section, can be approximated by the 0 [(-1) J 6 (-1)k e

finite sum k-l (21)

- " AX e • (18) Eqs. (20) and (21) are best evaluated using

J-l the Cooley-Tukey FFT algorithm 1 3 , for the

The range of integration is slightly reasons discussed above. In that case, .4
must be a power of 2.

uncentered, from X a -(M + 1/2)4X to The range of integration was approxi-
X - (M - 1/2)4X. Since O(X) Is real, it mately centered about the origin in both
follows from the form of the transform physical and spectral variables because of

tnat ;(-w) - ;*(w), where the asterisk pathe symmetry property (-w) = * (w). The
denotes the complex conjugate. Because of

real variable O(X) may be quite unsymmet-
this property the transform variables need rIcal, however, and aliasing errors may be

not be stored for, say, positive values of observed. This effect arises because the

k" The midrange parameter M in Eqs. (17) non-periodic function o(X) is represented

i1 now required to be an even integer and by the finite Fourier transform as the

the grid spacings AX and Aw satisfy the periodic function (X), with period NAX.
relat ion Consequently, if an improperly aligned

AXAw - 2w/N (19) interval of length NAX is sampled from O(X),

Then, Eq. (18) can be reduced to the aliasing may occur on either the left or

finite Fourier transform right side of the sample interval. If on

N the left, for example, the aliased values

(-1)'kAX ' (-l)'jo e -w(kl)(jl)/N actually would correspond to the correct
$lk .1 (20) values taken from (X) on the rIght of the

interval. No such errors exist in 0(w) as

For the inverse Fourier integral trans- computed here, since the inertia terms are

form, the centered range of integration evaluated at each X-grid point indepen-

Wl -XAw to N MAw is taken and, dently. Aliasing does occur in the

noting that *N+l 1 the trapezoidal physical results, but is easily recognized

rule results in the finite sum since the flow properties decay to the

undisturbed Blasius values at infinity.
1W ~X j  The effect can be avoided either by6W C4;(0 k restricting the X-range of the data pre-

* w * 1 + 1l k ~; ~J h fetcnb vie ihrb
k-2 sented, or by use of a special inversion

formula based on a properly uncentered
IN

w 1' -s - iW kX integration interval. Both metnods were6 - k j]* '
W Z I 1 ;i ) +  k e ]used for the results presented in the fol-

kal lowing section. A better method of sup-

Since *l is real and (4I " i) is imagin- pressing allasing errors would be to

ary, the result is evaluate the truncated tails of the Fourier

i iX j  integral by asymptotic analysis and add

0 U ca 11 k their contributions to the FFT result.
kal This procedure is cumbersome and was not

Substituting for wk and X from Eqs. (17) necessary for the cases dealt with here.

and (18), and again recalling that M is
IV. Results

even, the inverse finite Fourier trans-

form results: Two surface-height configurations,

indicated by HI4X) and H2 (X), have been

................................... ....... ........'-".."...,, .a " z.-.,..



chosen to illustrate the spectral triole- checc-case results from tne finite-dif-

deck metnod. The shapes are shown in Fig- ference program for a = - 2, with N= 81,

ure 1, ano are defined by the relations AX - 0.25, Ny = 37, AY = 0.25. Obviously,

H1 (X) = a/(l + X
2) the results of the two metnods are in

excellent agreement. :he spectral method

( 0 for lXi > 1 was much faster, however, requiring only

H2 X) 22 10 iterations for a = -2, while the time-

(a(l - X2) for LXI < I marching finite-difference program required

300 time steps to converge to the steady

The first of these snapes exnibits a long state. In terms of processing time, tne

gentle variation of height, but has a spectral method is an order of magnitude

Fourier transform that is much sharper, faster, requiring for these cases about 10

oeing significant only over a narrow range seconds CPU time on an Amdahl 470/V6 com-

of W: puter verses about 81 seconds for tne

H1(w) mane finite-difference program.

For the humps (a - 1,2,3), the flow
The second shape has the opposite behavior: coming from the left at first decelerates,

it differs from zero only over a narrow
reducing the shear below the Blasius value

range, but has a slowly varying Fourier (T .1 in lower-deck scaling). For suf-

transform:
ficiently tall humps (a > 7, approx.) the

-= -16(3wcos w + ( 2 
- 3) sinw]/' 5  flow would be expected to separate here,

witia as well as on the lee side of the hump.

Near the top of tne hump the lower-deck

H2(0) = 16/15 flow is squeezed by the rapidly increasing
surface height and the surface stress

The opposing behavior of these two shapes peaks to very high values. For the hol-
in physical and spectral coordinates make lows (a - -1,-2,-3) the reverse of these
them useful for case studies of the spec- effects occurs. In this case, a flow-

tral method. The second snape H2 (X) was separation bubble occurs at the bottom of

used earlier by Sykes 2 1 , and his finite- the hollow for a < -2.6 (approx.). The

difference results will serve as a check non-linear effects can be seen in Figure

case for incompressible flow. For super- 2, but are more clear in the table of

sonic flow, an independent check case was values below, where the difference between

run for HI(X) using the time-marching the center-point shear and the Blasius

finite-difference program of Jenson 9 and value of unity is normalized with respect

Rizzetta I0 , modified to incorporate to a. The effect of non-linearity is

second-order accurate Crank-Nicolson dif- demonstrated by the deviation from the

ferencing in X. value 0.537 for a - 0. Clearly non-

Figure 2 displays results for super- linearity is more important for the hol-

sonic flow over the surface contour HI(X) lows than for the humps, accounting for a

for values of amplitude a from -3 to +3. change of about 30% from the linear-theory

(Positive a corresponds to a hump, nega- value for a - -3.

tive a to a hollow in the surface.) The The effect of spatial resolution on

curves represent surface stress computed accuracy is indicated in Figure 3 for

by the spectral program for .S - 128, a a -2. The symbols represent results

4X a 0.25, NY = 25, AY 1 0.5. The grid for a coarse grid having Nw - 32, AX - 1.0,

interval is obvious in the figure since and the curve represents fine-grid results

values at grid points are connected by with N = 128, AX a 0.25. (The fine-grid

straight lines. The symbols are for the results are the same as those of Figure 2.)

7



For both grids J - 25 and AY - 0.5. Both tiohs such as in the ramp study of
Y 10cases used the same X-range (-16 1 x s 16, Rizzetta, et al

approx.), whica Is clearly large enough to Our last comparison is for tzhe quartic

yield accurate results. As N is reduced hump {2 (X), which orovides a severe test
below 32, with the same X-range, the case for triple-deck computations. Sykes

accuracy degrades quickly owing to poor considered incompressible flow past this

approximation to tne surface shape for shape as an example of topographic effects

AX 1 1. Also reducing the X-range below on the Earth's boundary layer; nis results

about -o < A < 3 severely degrades the are compared here with results obtained

accuracy, most likely due to truncation of spectrally. Ragab and :3ayfeh 22 also

tne wake-lige flow decay downstream, obtained solutions for this shape with

moderate amplitude (a&2.4), but reported

TABLE I that their finite-difference program would

SURFACE STRESS AT X 0 not converge for a - 3, even with under-

relaxation factors as small as 0.1..(X) - a/(l + X2 ) similar failure was reported for

Napolitano's 23 finite-difference scheme.
a to(O) [To(0) - 131a The spectral method described here treated

the problem with no difficulty, converging
3 2.607 0.602 in 30 iterations without needing under-
2 2.179 0.589 relaxation. The spectral results are

1 1.568 0.568 shown in Figure 5 by the solid curve, and
0 0.0 0.537 Sykes results are indicated by tne symbols.

-i 0.508 0.492 The grid parameters are N - 256,

-2 0.132 0.434 AX - 0.125, Ny = 31, AY - 0.5 for the

-3 -0.100 0.369 spectral results, and Nx  256, AX - 0.08,

NY . 60, AY - 0.25, for the finite-dif-

A comparison of separated supersonic- ference results of Sykes. The two nuner-
flow results with those for incompressible ical solutions compare fairly well, with
flow past the surface contour HI(X) is the spectral results displaying a smoother
given in Figure 4. The amplitude a - -5 variation in the reversed flow region.
was chosen for the comparison, since the There appears to be a slight oscillation
incompressible flow does not separate for in the finite-difference results, suggest-

a < -4. The incompressible flow (upper ing the need for a finer grid, already

curve) converged in 30 iterations, but finer than that used in the spectral com-
tne supersonic flow (lower curve) did not putations. It is interesting that both

converge to the same accuracy until 80 results show a sharp break in the slope

iterations. In the supersonic case, the of the snear-stress curve Just downstream
residuals did not decy monotonically, of the leading edge of the hump. These

and an under-relaxation factor of 0.5 was results for surface stress In incompres-
applied to obtain convergence. This case sible flow appear qualitatively quite
was the only one of those analyzed in this similar to those for supersonic flow past
study that required under-relaxation. In the HI(X) hump. The main difference is

general, the supersonic and incompressible that the supersonic flow showed a stronger

flows show quite similar surface shear- tendency to separate upstream of the hump,
itress patterns, especially in the sepa- while the incompressible flow generates a
rated region. It nay be noted that the rather large separation bubble in the lee
separated TO(X) distribution is very much of the a 0 -3 hump. These trends would
like that computed for other configura- not appear to contradict pnysical insight
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regarding the behavior of supersonic and 3. Smith, F. T., and Stewartson, K., J.
incompressible flows. Fluid Mech., 58, 143-159, 1973.

4. Davis, R. T., and Werle, M. J., Proc.
V. Concluding Remarks

1976 Heat Trans. Fluid Mech. Inst.,

This study has demonstrated that the Stanford Univ. Press, 1976.

spectral method is fast and effective for 5. Williams, P. G., Proc. 4th Int. Conf.

solving triple-deck problems, with the Numerical Meth. in Fluid Dyn., Lecture

ability to handle easily problems that Notes in Physics, Vol. 35, Springer-

some recent finite-difference methods are Verlag, Berlin, Heidelberg, and New

unable to solve. Moreover, the accuracy York, 1975.
of tne spectral method is compatible with 6. Lighthill, M. J., Proc. Roy. Soc. Lon-

nat of the better finite-difference don A217, 478, 1953.
scnemes. In this regard, it is often

stated that the spectral method is of 7. Stewartson, K., and Williams, P. G.,

infinite-order accuracy, converging faster Proc. Roy. Soc. London A312, 1a1-206,

than any power of N. This statement would 1969.

be true for finite domains if the boundary 8. Smith, F., and Stewartson, K., Proc.
conditions did not introduce boundary dis- Roy. Soc. London A332, 1, 1973.

continuities into the function represented 9. Jenson, R., Burggraf, 0. R., and
by the Fourier series. Chebyshev polyno- Rzzetta, D. P., Proc. 4th Int. Conf.

mial representation is preferred for this Numerical Meth. in Fluid Dyn., Lecture
reason.1 9  For infinite domains, as in the Notes in Physics, Vol. 35, Springer-.,
present application, the Fourier integrals Verlag, Berlin, Heidelberg, and New

themselves lead to algebraic-order accu- York, 1975.

racy when discretized (2
n d order when

using the trapezoidal rule). In addition, 10. Rizzetta, D. P., Burggraf, 0. R., and

truncating the infinite range of integra- Jenson, R., J. Fluid Mech. §, 535-552,

tion leads to additional error depending 1978.

on the asymptotic behavior of the physical 11. Werle, M. J., and Vatsa, V. N., AIAA

and spectral functions involved. The use J. 12, 1491-1497, 1974.

of too restricted a range of integration 12. Burggraf, 0. R., Rizzetta, D. P.,

can lead to quite large errors. As can be Werle, M. J., and Vatsa, V. N., AIAA
seen from Eq. (19), the finite-range (NAX) J. 17, 336-343, 1979.

error in physical variables is equivalent

to grid-size Aw error in spectral vari, 13. Messiter, A. F., SIAM J. Appl. Math.

ables, and vice versa. Consequently, it 18, 241, 1970.

is necessary to use care in choosing grid 14. Neiland, V. Ya, Akad. Nauk SSSR, Izv.

size in both physical and spectral vari- Mekh. Zhidk. Gaza 1, 19, 1970.
ables to ensure an accurate solution. Of 15. Brown, S. N., Stewartson, K., and
course, similar considerations hold for Williams, P. G., Phys. Fluids 18, 633-

finite-difference solutions. 639, 1975.
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