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SPECTRAL COMPUTATION OF TRIPLZ-DECK FLOWS

Odus R. Burggraf
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and
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Abstract
-4
The Fouriler transform method is applied
to the proolem of computing viscous flows
involving boundary-layer separation, based
on the triple-dec« model of viscous-invis-
cid flow interaction. As used here, the
metnod is pseudo-spectral in that the non-
linear inertia terms are evaluated in
physlcal variables, although the main come-
putations are made in spectral variables,
The PFast-PFourier-Transform algorithm is
used to expedite tne iterated transforma-
tions. The method 1s much faster than con-
ventional finite-difference methods; typ-
ically only ten or twenty iterations suf-
fice for convergence to four cr five
digits of accuracy. Furthermore, no arti-
ficial stabilization schemes are necessary
to treat the reversed flows occurring in
separated regions. Results are presented
for both incompressible and supersonic
flows, and are shown to compare well with
previous finite-difference results. <!
~
b

I. Introduction //’

In recent times the most common means
of solving (numerically) Prandtl's boun=-
dary~layer equations has been finite-dif-
ference marching methods. Despite the non-
linearity of these equations, these tech-
niques (incorporating Newton iteration)
can provide rapid accurate solutions on
modern computers, The marching method was
applied successfully, for example, by Jobe
and Burssratl in their solution of the

'Pormorly, Research Associate, The Ohio
State University. This work was sponsored
by Office of llaval Research under Contract
N00O14=76-C=0333.

triple-deck problem of interaction between
boundary layer and free stream near a
trailing edge. Nevertheless, there are
several types of flow for which these
marching techniques either fail or become
difficult to implement. Of these diffi-
cult types, perhaps separated flow is tne
most obvious. The physical cause of the
dirficulty is the region of reversed flow,
in which the fluid travels in the direct-
lon opposite to that of the main body of
fluid. As a result there is a change of
character of the governing boundary-layer
equations. Usually these are of parabolic
type for which marching techniques are
valid; however, the flow reversal due to
separation changes the nature of the boun-
dary~layer equations to quasi-elliptic
type, with information being propagated
both upstream and downstream. Any attempt
to obtain an accurate solution by marching
through such reversed-flow regions must
fail due to the improper direction of
information flow. In finite-difference
procedures, the failure 13 usually
exhibited either by lack of convergence of
the iterative procedure or by severe oscil-
lations in the "solution".

Reyhner and Flﬁgge-LStzz have demon-
strated a simple, though approximate,
remedy to this problem of treating
reversed flows. Their approximation was
to neglect the product of the streamwise
velocity component u and its atreamwise
derivative uy in the governing equations
wherever u became negative. This techni-
que has been used by a number of
authors3'u with good results for the com-
puted pressure distribution. However,
mucn of the success of this technique owes
to the fact that the reversed flow is very




[ SR

"

Bt ¥

slow in many situations, and so the exclu-
sion of this component of the inertia terms

is of little consequence in those cases.

'dilliams5 has suggested a more rational
(and more complicated) procedure for treat-
ing reversed flows based on bidirectional
marcning tecnniques. The Reynner and
Fliigge-L3tz (FLARE) procedure is used as a
first approximation, followed by a back-
wards sweep in the reversed-flow region
only. The previously neglected uu term
in tne reversed-flow region is now
accounted for in the next forward sweep by
treating 1t as a known quantity evaluated
from the preceding backwards sweep. This
downstream-upstream iteration (DUIT) 1is
then continued until convergence 1is
acnleved. Williams usually finds only five
to ten of these sweeps to be necessary.
Obviously this method 1s considerably less
straightforward to program than simple
marching procedures, and also takes rather
longer to compute.

Another class of problems for which
the standard marching techniques require
iterative application is tnat to free-
interaction flows. Originally postulated
by Lighthills, these flows are essentially
elgensolutions of the boundary-layer equa-
tions that provide the means of upstream
influence in the flow, despite the para-
bolic nature of the governing equations.
Stewartson and williama7 and later Smith
and Stewartson8 used a shooting approach
to generate their free-interaction solu-
tions., liere the pressure is perturbed by
a small jump and the resulting solution is
obtained by marching downstream; the cor-
rect amount of perturbation is determined
such that the free-interaction solution is
suppressed far downstream. As usual with
shooting methods, tnis approach proves
more and more difficult as the range of
integration is extended downatream, owing
to the ultimate exponential growth of the
free~interaction solutions.

The above methods all solve the steady-
flow equations oy marching in the flow
direction. An alternative 1s time-marching,

with which the unsteady equations are
integrated forward in time until a steady-
state solution 1s obtained, This approach
permits retentlion of all the inertia terms
in the equations of motion, even in
reversed-flow regions. Jenson, et alg,
and later Rizzetta, et allo, applied the
time-marching procedure to the triple-deck
formulation for supersonic separated flows
over ramp configurations. Their method
was based on shear stress as the primary
dependent variable. Upstream influence
was then accounted for tnrough an inter-
action condition applied as a wall boun-
dary condi' " >n on the stress: namely, the
boundary~layer compatibility condition
with the pressure gradient evaluated from
the displacement functici. This condition
is an exact requirement of tne interacting
flow, and permits downstream conditions to
influence the upstream flow at each time
step of the computation. The method works
well but flows with extensive separation
are rather expensive to compute due to
their slow development in time. An inter-
acting boundary-layer program based on
similar 1deas has been presented by Werle
and Vatsall and has been shown to give
results that asymptote the triple-deck
results for very large Reynolds numberlz.
Various alternatives to these finite-
difference approaches have been proposed.
The spectral method seemed to us to have
characteristics advantageous for computing
separated flows, and we have applied it to
the triple-deck problem in this study.
The (nonlinear) governing equations are
transformed from physical to spectral
variables using the Pourier integral trans-
form in the main-flow direction, together
with finite-differences in the transverse
direction. The solution 1is computed
(iteratively) in spectral space and then
the inverse transform applied to obtain
the solution in physical variables. A
major advantage of the method is that
reversed flows present no difficulty; each
point in spectral space relates to all
points on the path of integration in




physical space. Thus the reversed and for-
ward-flow information 1s diffused together
in transform variables. This interconnec-
tion between the physical grid points via
eacnh spectral grid point endows the spec-
tral method with a physically implicit
nature, suggesting an accelerated conver-
gence of tne lterations. As will be seen,
the spectral computations exhiblt rapid
convergence, even for flows exhibiting
Separated regions large encugh that other
(finite~difference) schemes fail.

Oetails of the metnod as well as
results of computations for both incompres-
sible and supersonic flows are given below.
In both cases, the spectral results are
snown to compare well with those of finite-
difference computations.

II. The Mathematical Problem

The problem considered is the flow dis-
turocance produced by a shallow perturbation
of the surface height at a distance L from
the leading edge of an otherwise plane
wall. Let u_ be the flow speed and v, the
kinematic viscosity of the fluid, the sub-
script (=) referring to conditions in the
undisturbed freestream. The Reynolds nume
ver R = u L/v_ 18 regarded as large. As
1s common in triple-deck analyses, it 1is
convenient to define the small parameter ¢
as R71/8, Then if the surface height per-
turbation is of order ¢°L and extends over
a lengtn of order c3L, the flow disturbance
is contained in the triple~deck structure
originally deduced by Messiterl3, Neiland
and Stewartson7. Since this asymptotic
flow structure has been described by many
authors, we nmerely state here that the
problem reduces to solving the conventional
incompressible boundary~layer equations
(governing the lower-deck flow) subject to
an unconventional outer boundary condition
whose form depends on whether the outer
flow 1s incompressaible or supersonic. (&
hypersonic version exists as well, but is
not conslidered in this work; See Ref. 15).

14

It i3 convenlent to describe the
triple-deck disturbance using variables
with magnitude of order one. These are
denoted by upper case letters while lower
case letters designate the corresponding
physical variable. Thus, the coordinate
repiresenting distance parallel to the sure-
face 1s x = e3aLx while the normal coor-
dinate 1s y = csbLY. The origin is taken
at a convenient point on tne disturbed
surface. The corresponding velocity
components are u = €{d/b)uV and v =
53(d/a)umv. while the pressure p = p (1 +
ech). Here a, b, ¢ and d are constant
scale factors depending on Mach number,
wall~-temperature ratio, and the surface
stress of the undisturbed flow. Their
values are glven, for example, in Refs. 7
and 10 for supersonic flow, and in Refs. 1
and 16 for incompressible flow. Following
Jenson, el alg'lo, we introduce the shear
T = UY as basic dependent variable, where
subscripts denote partial derivatives.
Then the equation to be solved in the
lower deck is the shear transport equation,

Uz, + Vty " Tyy (1)

X
together with the continuity equation

U, + v, = 0 (2)

The conventional no-slip conditions apply:
U=s«Vaea(0 on ¥Y=29 (3)

The remaining boundary conditions taxe a

form governed by the triple-deck structure.

Upstream the shear must match to that of
the undisturbed flow near the wall; tnus,

T+ 1 for X * == (4)

Moreover, the triple-deck structure
requires that the main-deck solution cor-
respond to a simple vertical displacement
of the original undisturbed boundary layer
by the lower deck. Consequently, match-
ing of main and lower deck solutions
requires

!
|
§
{




The correspoading condition for U is
U~Y +A(X) as Y » =

wiere a(i) s tne (negative) displacement
of tae main decx. For supersonlic flow,
tne pressure 1s given by linearized poten-
tlial theory as

P o= d'(X) - A'(X)
«here i(X) 1s the nelgnt of tihe surface
perturbation in lower-decxk scaling. The
ooundary-layer compatipility condition
states tiat the pressure gradient balances
the normal gradlent of tne snear at the
sall, osxpressing A in the form

ACX) = Lim (U - ¥) -J‘ (r - 1)d¥,
G

Yo

tne compatiitility condition for sugersonic
flow can tnen oe expressed as

T o> = q"(X) -f tox 3 (%)
[+]

Jn the otner .and, tne elliptlc nature of
incompressible flow gives rise to a Hilbert
ntegral for tne pressure:

pix) = b H'(S) - A'(S) )
= S -«

Tnus, an interaction condition very similar
20 £3. (5) can be glven for incompressitle
fio4. 7Tnls Will Le postporned, Lowever, as
tne similarity {s mucn more remarkable in
3pectral variables.

Tre Fourler transform ls now applied
to tne governing equations. Using an over-
sar to denote :ransformed variables, the
transform (w) of any real function #(X)
is given as
wX

O(K)e'i dax

"w

o(w) 2 Flo(x))

Actually to permit convergence of the inte-
grals, tne transformation 1s performed on
tne perturoation {low quantities. Deflne

1T o1 -1

UeiUa~-1

T(w, ¥) = Fl1(x, 1)}
Ulw, 1) = FLUX, )}
Viw, ¥) = F{V(X, )}
In terms of tnese perturcation varilaboles,
tne shear transport equation (1) tecomes
er - Tyy * -(Urx + VrY) R (3)
where the second-order perturtation terms
nave been placed on the riznt side of tne

equation. The spectral form of tals equa-
tion 1s

LYT - Tyy = R o2 -(Ury + Viy) (9)

The rignt-side function I nas the form of
a complicated convolution integral. iiOow-
ever, it need not be given here, since the
term will be evaluated by another method
(pseudo-spectrally). The continuity equa-
tion (2) is expressed spec;rally as

‘-’y . —10U --mf Tay (123)
o)

The boundary conditions (3)-(§) also
must be expressed in spectral variables.
Thus,

U=o0 on Y=0 (11)
V=0 on Y =0 (12)
T~+0 as Y + = (13)

and the interaction condition (6) for
supersonic flow becomes

?Y . —w?(f(w) -f T(w, Y)AY)} (14)
Y=0 o

For incompressitle flow, the pressure
is given by Eq. (7), so tnat the compati-
bility condltion becomes

Ty - 1w§

Y=0

Applying tne Fourier transform 0 the
Hilbert integral in Zq. (7) thus ylelds
the incompressible interaction condition

H o ~twlw| (H(w) - T(w, Y)Y} (15)
Tlyeo A




#nich 1s very similar in form to the super-
sonic interaction condition, In fact, this
slignt difference between zZqs. (1l4) and
(13) 1s the only difference in the triple-
deck theorles for supersonic and incom-
pressible flow. Yet as will be Jjemon-
strated, large apparent differences 1n the
paysical flow properties result. The
significance with regard to computer pro-
sramming 1s that tne change of a single
FCRTRA.l statement permits computing either
supersonic or incompressible flows with

vie same conputer code.

I1I. The Solution Procedure

The spectral shear-transport equation
(3) nas veen written in the form of a
linear ordinary differential operator on
the left side, with the non-linear inertia
terms collected together into the right-
side function R. The solution is obtained
oy iteration, solving first with R set
identically zero; then in later 1iterations
R 1s evaluated from the subsequent solu-
tion, as

lwy;(n) - ?‘y’{‘l) - §(n-l)

(16)

#{n=1)_(n=1) (n-1)_(n=1)
-(U 194 +V Ty )

Central differences in Y are applied
to 3. (1€), as well as to tne interaction
condition, elther (14) or (15). The
result of tae first iteration 1s the
linearized tneory of Stewartson17, which
provides a reasonacly accurate prediction
for 3mall disturbances, For disturbances
large enougn to produce flow separation,
furtner iteration is necessary to bring in
the effects of the non-linear lnertia
terms.

The rignt-sije function R in Eq. (16)
can be expre ised a3 a convolution of the
velocity referred to two different points
in spectral space., ilowever, evaluating

tinls convolution integral is a very inef-
ficient way of aetermining R, requiring

-
of order JYR; muitiplications, for each

complete iteration, where RY and Nw are
the number of grid points in the Y and w
(spectral) directions, respectively.

A much more efficient method is to use
tne so-called Fast PFourier Transforam (FFT)
algorithm of Cooley and Tuxeyls. The pro-
cedure used here 1s to invert tae trans-
forms T and iwT to obtain the physical
variables t and Tyo From these 6, Ux, and
V are determined, permitting the inertia
function R of Zq. (8) to be evaluated.
Applying tne direct transform to R then
results in the desired inertia transform
term R. Eq. (15) is then solved for tne
next approximation, and the above procedure
i{s iterated until tne solution repeats to
tane desired numver of decimal places. Lhe
advantage of this method arises from the
efflciency of the FFT algoritum; tae schenme
outlined here requires only of the order of
HYHW log2 Hu multiplications for egch com-
plete iteration, compared with “Ynu for tne
direct metnod based on the convolution inte-
gral. An order of magnitude reduction in
computing tine is achieved for guite rea-
sonavle grid resolution. It may be noted
that the method used here is the reverse
of the pseudo-spectral metnhod described ty
Orszaslg and Roachezo, wno solve tne egqua-
tions of motion in the physical plane and
use tue Fourler transform to evaluate
derivatlives.

The discretization of the Fourler
transforms was carried out as follows.
Define the discrete physicai and spectral
varlables XJ and w. . as

X, = (J=1-M)AX for J = 1,2,...,4%; (17a)

J

w = (k=1=M)dw for & = 1,2,...,54; (17%)
where for convenience we take N = ZM.
Denote any physical function O(XJ) oy °J'
and tne corresponding spectral function
3(uk) by 3k. Choose the range of vari-
ables sucn tnat ¢(X) is negligable for

K < X;, X > Xy e and %(w) is negligabtle
for w < Wiy w > Weyy e Then tihe Pourler




integral transform ;(m), defined in tne
last section, can be approximated by the
finite sum

N
e mex T ey e iy (18)
J=1
The range of integration is slightly
uncentered, from X = -(M + 1/2)AX to
X = (M~ 1/2)8X. Since ¢(X) is real, it
follows from the form of the transform
tnat ¢(-w) = ;.(u), where the asterisk
denotes the complex conjugate. 3ecause of
this property the transform variables need
not be stored for, say, positive values of
w, . The midrange parameter M in Egs. (17)
15 now required to be an even integer and
the grid spacings AX and Aw satisfy the
relation

AXdw = 2n/N (19)

Then, Eq. (13) can be reduced to the
finite Fourler transform

N
- . -12n(k=-1)(J=1)/N
= (=1)K - 3
s, = (=D JZl( e, e (20)

For the inverse Fourier integral trans-
form, the centered range of integration
w * -MAw t°_“N+1 -_gAm is taken and,
noting that °N+1 L] ‘1’ the trapezoidal
rule results in the finite sum

N
- - - 1w, X
o = %% [%(01 + 0;) + :Z: ¢, e Ky
k2
fw 1SV _° LI Loy Xy
= lze -0+ o e )
kel

-. -
Since ¢, 1s real and (¢1 - ol) is imagin-
ary, the result is
N
y rOw -
°J .Rz [3‘; ’k e
k=l

iukXJ]

Substituting for w, and xJ from Eqs. (17)
and (18), and again recalling that M is
even, the inverse finite Pourier trans-

form results:

N
o d2m(k-1)(J-1)/u
oy =RLT(-1)) 48 37 (155, e )
k=l (21)

Eqs. (20) and (21) are best evaluated using
the Cooley-Tukey FFT algorithmls, for the
reasons discussed above. In that case, 4
must be a power of 2.

The range of integration was approxi-
mately centered about the origin in both
physical and spectral varilables because of
the symmetry property ;(—m) = ;.(w). The
real variable ¢(X) may be quite unsymmet-
rical, nowever, and aliasing errors may be
observed. Thls effect arises because the
non-periodic function ¢(X) is represented
by the finite Fourier transform as the
periodic function ¢(X), with period NaX.
Consequently, if an improperly aligned
interval of length WAX 1s sampled from ¢(X),
aliasing may occur on either the left or
right side of the sample interval. If on
tne left, for example, the allased values
actually would correspond to the correct
values taken from ¢{(X) on the_right of the
interval. No such errors exist in ¢(w) as
computed here, since the inertla terms are
evaluated at each X-grid point indepen-
dently. Aliasing does occur in the
physical results, but is easlly recognized
since the flow properties decay to the
undisturbed Blasius values at infinity.
The effect can be avolded either by
restricting the X-range of the data pre-
sented, or by use of a special inversion
formula based on a properly uncentered
integration interval. Both metnods were
used for the results presented in the fol-
lowing section. A better method of sup-
pressing aliasing errors would be to
evaluate the truncated tails of the Fourier
integral by asymptotic analysis and add
their contributions to the FPFT result.
This procedure is cumbersome and was not
necessary for the cases dealt with here.

IV. Resuits

Two surface-height configurations,
indicated by Hl(x) and H,(X), have been

il




chosen to illustrate the spectral triole-

deck metnod. The shapes are shown in Fig-

ure 1, ana are defined by the relatlons

Hi (0 = a/(1 + %)

o for |X] > 1
H, (X) =
2 2,2
(a(l = X°)° for [X| <1

The first of these snapes exnibits a long
gentle variatlon of helght, but nas a
Fourier transform that 1s much sharper,
cseing significant only over a narrow range
of w:

ﬁl(w) = aﬂe-lu|
The second shape has the opposite behavior:
it differs from zero only over a narrow
J range, but has a slowly varying Fourier
transform:

§2(w) = «16({3wcos w + (w2 - 3) sinm)/u5
witn

32(0) = 16/15

The opposing behavior of these two shapes
in ohysical and spectral coordinates make
them useful for case studles of the spec-
The secggd snape HZ(X) was
, and his finite-
: difference results will serve as a check

tral method.
] used earlier by Sykes

case for incompressible flow. For super-

sonic flow, an independent check case was
¢ run for H,(X) using the time-marching
} finite-difference program of Jenson9 and
: Rizzectalo, modified to incorporate
second-order accurate Crank-Nicolson dif-
- ferencing in X.
Pigure 2 displays results for super-
sonic flow over tne surface contour H,(X)
for values of amplitude a from -3 to +3.
(Positive a corresponds to a hump, nega-
i tive a to a hollow in the surface.) The
‘ curves represent surface stress computed
by the spectral program for N, ot 128,
AX = 0,25, NY = 25, AY = 0.5, The grid
interval 1is obvious in the figure since
values at grid points are connected by

straight lines. 7The symbols are for the

checg-case results from tne finite-dif-
ference program for a = - 2, witn Hy = 81,
4 = 0.25, NY = 37, oY = 0,25, Obviously,
the results of tne two metnods are in
excellent agreement. The spectral method

was much faster, however, requiring only .
10 iterations for a = -2, wnhile the time-

marching finite-difference program required |
300 time steps to converge to the steady

state. In terms of processing time, tne ?
spectral method is an order of magnitude
faster, requiring for these cases about 10
seconds CPU time on an Amdahl 470/V6 com-
puter verses about 81 seconds for tne
finite-difference program.

For the humps (a = 1,2,3), the flow
coming from the left at first decelerates,
reducing the shear below the Blasius value
(ro = 1 in lower-deck scaling).
ficiently tall humps (a > 7, approx.) the

For suf-

flow would be expected to separate here,

as well as on the lee side of the hump. !
Near the top of tne hump the lower-deck
flow 13 sjueezed by the rapidly increasing
surface height and the surface stress
peaks to very high values, For the hol=-
lows (a = -1,-2,-3) the reverse of these
effects occurs.
separation bubble occurs at the bottom of
the hullow for a < -2.6 (approx.). The
non-linear effects can be seen in Figure

In this case, a flow=-

2, but are more clear in the table of

values below, where the difference between

the center-point shear and the Blasius

value of unity is normalized with respect

to a., The effect of non-linearity 1s

demonstrated by the deviation from the )
value 0.537 for a = 2.
linearity 1s more important for the hol-

Clearly non-

lows than for the humps, accounting for a ]
change of about 30% from the linear-theory '
value for a = -3,

The effect of spatlal resolution on
accuracy 1s indicated in Pigure 3 for
a s =2,

The symbols represent results

for a coarse grid having N“ = 32, X = 1.0,
and the curve represents fine-grid results
with N, = 128, 84X = 0,25, (The fine-grid

results are the same as those of Figure 2.)




For both grids dy = 25 and 4Y = 0.5. Both
cases used the same X-range (-16 £ X 5 16,
approx.), whica is clearly large enough to
yleld accurate results. As Nw is reduced
celow 32, with the same i-range, the
accuracy degrades qulckly owing to poor
approximation to tne surface shape for

4X > 1. Also reducing tne X-range below
apout =8 < X < 3 severely degrades the
accuracy, most likely due to truncation of
tne wake-=lice flow decay downstream.

TA3LE 1
SURFACE STRESS AT X = 0
H(K) = as(l + %9)

a 15(0) [16(0) - 21)/a
3 2.807 0.602
2 2.179 0.589
1 1.563 0.568
o] 0.0 3.537
-1 0.508 0.492
-2 3.132 0.434
-3 =-0.120 0.369

A comparison of separated supersonice
flow results witn those for incompressible
flow past the surface contour Hl(x) is
given in Figure 4, The amplitude a = -5
was cnosen for the comparison, since the
incompressible flow does not separate for
a < -4, The incompressible flow (upper
curve) converged in 30 iterations, but
the supersonic flow (lower curve) did not
converge to the same accuracy until 80
iterations. In the supersonic case, the
residuals did not decuy monotonically,
and an under-relaxation factor of 0.5 was
applied to obtain convergence. This case
was the only one of those analyzed in this
study that required under-relaxation. In
general, the supersonic and incompressible
flows show quite similar surface shear-
3tress patterns, especially in the sepa-
rated region. It may be noted that the
separated T,(X) distribution is very much
like that computed for other configura-

tlons such as in the ramp study of
Rizzetta, et allo.

Jur last comparison is for tne quartic
hump HZ(X), which orovides a severe test
case for triple-deck computations, Syke52l
considered ilncompressible flow past this
shape as an exampie of topographic effects
on the Earth's boundary layer; nils results
are compared here with results obtained
spectrally. Ragab and .‘Jayfeh22 also
obtained solutions Jor tnis shape witn
moderate amplitude (ag2.4), but reported
that their finite-difference program would
not converge for a = 3, even with under-
relaxation factors as small as 0.1. A
similar failure was reported for
Napolitano's23 finite-difference scheme.
The spectral method described here treated
the problem with no difficulty, converging
in 30 iterations without needing under-
relaxation. The spectral results are
shown in Figure 5 by the solid curve, and
Sykes results are indicated by tnhe symbols.
The grid parameters are N, 256,

AX = 0.125, :Y = 31, oY = 0.5 for the
spectral results, and N, = 256, aX = 0,08,
NY = 60, AY = 0.25, for the finite-dif-
ference results of Sykes. The two numer-
ical solutions compare fairly well, with
the spectral results displaying a smoother
varlation in the reversed flow region.
There appears to be a slight oscillation
in the finite-difference results, suggest-
ing the need for a finer grid, already
finer than that used in the spectral com-
putations. It is interesting that both
results show a sharp break in the slope

of the snear-stress curve just downstream
of the leading edge of the hump. These
results for surface stress in incompres-
sible flow appear qualitatively quite
similar to those for supersonic flow past
the Hl(x) hump. The main difference 1s
that the supersonic flow showed a stronger
tendency to separate upstream of tne hump,
while the incompressible flow generates a
rather large separation bubble in the lee
of the a = -3 hump. These trends would
not appear to contradict pnysical insight
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regarding tne behavior of supersonic and
incompressible flows.

V. Concluding lemarks

This study has demonstrated that the
spectral metnod 1s fast and effective for
solving triple-deck problems, with the
ability to nhandle easily problems that
some recent finite-difference methods are
unable to solve. I[foreover, tne accuracy
of tne spectral method 1s compatible with
that of the better finite-difference
scnemes, In this regard, 1t is often
stated tnat the spectral metnod 1s of
infinite-order accuracy, converging faster
than any power of N. This statement would
be true for finite domains 1f the boundary
conditions did not introduce boundary dis-
continuities into the function represented
by the Fourler serles. Chebyshev polyno-
mial representation is preferred for this
reason.19 For infinite domains, as in the
present application, the Fourier integrals
themselves lead to algebraic-order accu-
racy when discretized (2nd order when
using tne trapezoidal rule). In addition,
truncating the infinite range of integra-
tion leads to additional error depending
on the asymptotic behavior of the physical
and spectral functions involved. The use
of too restricted a range of integration
can lead to quite large errors. As can be
seen from Eq. (19), the finite-range (NaX)
error in physical variables is equivalent
to grid-size Aw error in spectral vari-
ables, and vice versa. Consequenély, it
is necessary to use care in choosing grid
size in both physical and spectral vari-
ables to ensure an accurate solution. Of
course, similar considerations hold for
finite-difference solutions.
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Figure 1, Surface Helght Contours.
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Pigure 2. 3Surface Stress for Supersonic

Flow Past Contour Hl(x).
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sible Flow Past Contour Hz(x).







