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Abstract. We consider the effect of feedback delays in the stabilization of linear
time-invariant plants with sampled outputs. In particular, we obtain an estimate on
the "minimum" sampling frequency (in terms of the spectrum of the plant and the
delay in the feedback mechanism) needed for stabilization and provide an explicit
expression for a stabilizing feedback control.

1. Introduction. Hybrid systems (i.e., continuous plant with discrete (sampled)
controller) and their analysis have received considerable attention in the literature
(see, e.g., [3], [5] and the references therein). Our main interest here is to study the
effect of feedback delays in the stabilization of such systems. Throughout the paper
we shall assume that the plant (to be stabilized) is linear time invariant and finite
dimensional and that in the feedback process there is a time delay, r, which is greater
or equal to some given constant (minimum delay), rmjn > 0. Another parameter in
the problem is the sampling period, h , and it is assumed that

r = Nh > rmin , N e Z+, (1.1)

i.e., the delay is an integer multiple of the sampling period.
Consider the equation

x(t) = Ax(t) + Bu(t) (1.2)

where A, B are n x n, n x m matrices, respectively, and xel" and u e Rm . For
given minimum feedback delay, r ■ > 0, we want to find the "maximum" sampling
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period, h (or minimum sampling frequency \/h), and the corresponding feedback
control

u(t) = Kx([t/h]h - Nh) (1.3)
such that «(•) given by (1.3) stabilizes the system (1.2), i.e., the zero solution of the
equation

x{t) = Ax(t) + BKx{[t/h]h-Nh) (1.4)
is exponentially stable. (Note that the symbol [•], appearing in (1.3) and (1.4), stands
for the greatest integer part of the argument.) Equation (1.3) is "zero order hold,"
and together (1.2) and (1.3) constitute the hybrid system.

For t e [kh , (k + \)h), k € Z+ , the solution of Eq. (1.4) can be written as

x(t) — eA(t kh^x(kh) + [ eM chBKx((k - N)h), (1.5)
J o

and therefore (by continuity)
rh

x((k + l)h) — eA x(kh) + / eM dTBKx((k - N)h). (1.6)
J o

Introducing the notations

ld •

and

rh
An := e , Bd := / eAr dzB (1.7)

J o

zk=x(kh), k = -N, -(TV- 1), ... , 0, 1, 2, ... , (1.8)
we obtain from (1.6) the difference equation

<*+i =ADek + BDKZk_N, k> 0. (1.9)

We remark here that (1.9) represents a discrete-time version of the hybrid system
(1.2) with

uk — u(kh) — K£k_N (1-10)
and it is stabilizable whenever (1.2) is stabilizable assuming that the continuous plant,
A, satisfies certain mild conditions. Also, as a simple consequence of (1.5) and the
fact that eA(t~kh) and fo~kh eAx dx are bounded functions of t on [kh, (k + \)h),
if for some K the sequence {^} is exponentially convergent to zero, so is x(t), the
solution to (1.5).

In the next section we provide a sufficient condition for the stabilizability of (1.2),
(1.3) and obtain an explicit expression for K that allows an estimate on the maxi-
mum achievable sampling period.

2. Explicit and sufficient criteria for stabilization. The retarded equation

x = Ax + Bx{[t - a]), (2.1)

where a is a nonnegative integer and A and B are n x n, has been studied by
Cooke and Wiener [2].
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If xn{t) is a solution of (2.1) on t e [n, n + 1) and we define x(n - a) — cn_a,
then

*1.(0 = Axn(t) + Bcn-a- (2-2)

If A~x exists and we let x(n - i) = cn_i, / = 0, 1,2, , n, then the general
solution of (2.2) is

xn{t) = eA(t n)c-A XBcn_a (2.3)

where c is a constant of integration. Since xn{n) = cn , it follows from (2.3) that

c = cn + A~lBcn_a, (2.4)

xn(t) = eA('-n)cn + (eA(t~n) - I)A~'Bcn_a, (2.5)

and
A(t—n+1) , / A(t—n+1) ,-1 „ ,«

x#l_1(0 = e c„_i+(e -I)A Bcn_{_a. (2.6)
Continuity requires xn_x(n) = xw(n) = cn , so that from (2.5) and (2.6) we get

cn-eAcn_,-{eA-I)A-'Bcn_(a+xy (2.7)

Looking for a nonzero solution cn = k , with constant vector k , we conclude that
A satisfies

det(/+17 - e'V - (eA - I)A~{ B) = 0. (2.8)
The asymptotic stability of the zero solution x - 0 of (2.1) is assured when all

solutions X 6 C of the characteristic equation (2.8) have moduli less than 1.
Equation (2.1) is very closely related to Eq. (1.4), and it is clear that the derivation

of (1.6) and (2.6) are very similar.
The characteristic equation of (1.4), analogous to (2.8), is

dt\{XN+XI - ADXN - BdK) = 0, (2.9)

or, when A"1 exists,
det(XN+lI - eAhXN - (eAh - I)A~lBK) = 0. (2.10)

Conditions sufficient to ensure that the zero solution of (1.4) is asymptotically stable
guarantee the stabilizability of the hybrid equation (1.2), (1.3).

When A and B are n x n and nonsingular, K can be specified as a function of
A , the spectrum of A , and the sampling period h so that x = 0 is an asymptotically
stable solution of (1.4). From this, bounds on the spectrum of A and on the max-
imum sampling period h can be obtained ensuring the stabilization of (1.2), (1.3).
In particular, we have the following result.

Theorem 2.1. Let an be the double (real) zero of the polynomial

\rN, . JV+l N N
p{ a) = a — a +

(N + \)N+l

so that for small e > 0, a0 - S2 and aQ + (5, are the real zeros of the polynomial
\rN, \ n+\ n , Jyp,(a) = a -a + ——^ - s.
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Let r = Nh , N e Z+ , h € (0, r], and let A and B be n x n and nonsingular.
Then the closed-loop hybrid feedback system (1.2), (1.3) is stabilizable if

r. , a\ ( \ , r + hRea(A) c — oo, -r In 
\ h r

Any matrix of the form

„ ( NN A -| Ah r,~\ (N+l)AhK = £ rr-r B Ate -1) eV (N+i)N+lJ

is a stabilizing matrix if e is determined so that

c — max Re a(Ah) NS, < e1 N + I'

The following two lemmas play an important role in the proof of Theorem 2.1.

Lemma 2.2. Suppose p(z) = zN+l - zN + Nn/(N + l)^"1"1 , N e Z+ . Then if a is
a zero of p(z), |a| < N/(N + 1).

Proof. Elementary calculations show that

N / xr \ 2, , N+1 N N ( NP(z) = z -Z +——
(iV+l)^1 V ^V+l

( N N-j-1

y'Z' 'I" (2-11)
\J-

=1 (N + l)N~j

Introducing the notation g(z) = a,z' f°r the second term on the right-hand
side of (2.11), we can observe that the at's satisfy

(i) aN-1 — ®N-2 — — a0 — ® '
(ii) for i€[\,N-\], ai_l/ai = (i/(i+ 1)){N/(N + 1))<N/(N+ 1).

An application of the Enestrom-Kakeya Theorem [7, p. 173] shows that if /? is
a zero of g(z) then \f}\ < N/(N + 1). It follows that if a is a zero of p(z) then
\a\ < N/(N+ 1). □
Lemma 2.3. If the n x n matrix A is nonsingular and at / a]., 1 < i < j < m,
at e C, then the mn x mn block Vandermonde matrix

K K ••• K
a{A a2A ... amA
2 a2 2 .2 2 .2axA a2A ... amA

m—\ jtn-l m-\ Am-\ m—\Am—\
ax A a2 A ... am A

(2.12)

is nonsingular.
Proof. Straightforward calculations show that det S =

K K K
0 {a2-ax)A (a3 - a{ )A ... (am-ai)A
0 (a2-a2at)A2 (a2 - a3at)A2 ... (a2m - ama,)A

0, m-1 m-2 \ .m-1 , m — 1 m—2 ,m-1 —1 m-2 „ s. .m-1(a2 - a2 ax)A (a3 -a3 a{)A ... (am - am a{)A
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(If Ri is the z'th row of block matrices of (2.5) then the above equality may be seen
by placing (-aiA)Rj + Rj+l into Rj+l for /' = m - 1, m -2, , 1 respectively.)

We then obtain

det5 =

{a2-ax)A (a3 - a{)A ... (am-a,)A
(a2-a2ax)A2 (a2 - a3a,)A2 ... (am-amax)A2

/ m— 1 m—2 x >w— 1 , m— 1 m—2 x 1 / m— 1 m—2 % Am—\{a2 -a2 ax)A {a3 - a3 a,)/! ... (am - am ax)A

II(fl;-ai)
J=2

yi .4 ... /I
a

(m-l)n
a2A2 a3A2 ... am^2

2 i3 2 .3 2 .3M M ••• amA

m

im-a,)1-""
j=2

m-2 ,m-l m-2 «m—1 m-2 >m-l
a2 ^ a3 ^ ... am ^

.4 /I ... /I
0 (a3-a2)^2 ... (am-a2)^2
0 (a2-a3a2)A3 ... (aj, - flmtf2)/l3

0/ m—2 m—3 \ Am— 1 / m—2 m—3 \ ; w — 1
(a3 -a3 a2)A ... (am -am a2M

(a3 - a2M2 ... (am - a2)yl2
m

= tl(aj - {del A)
j=2

(a2 - a3a2)^3 ... (a2 - ama2)^3

z m—2 m-3 \ Am— 1 / m-2 m—3 >m— 1(a3 -a3 a2)^ ... (aOT -aTO a2)^

w \ / m

Hn(^^.r 1 nK-r2)"j
{j=2 J \k=3

,2 .2 /2.4 y4 ... A
a3A3 a4/l3 ... am^3

m—3 ^m— 1 m —3 >w— 1 m —3 ^m—1
a3 a4 A ... am A

n (%,-«,)(",_1)'!1 (fi(%-^im-2)n\ (nK-3)M)"
t,=2 7 V^2=3

A3 ... ^3

M4 ••• *nA*(detv4)(det^42)

m-4 ,m-l m-4 Am-1
a4 ^ ••• Um A
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Am—2)n

Arrl~A

det(AA ■■■Am~ )• m—i ' m_i
am- iA amA

m— 1 j m
= n n K,-ai)(m~l)n ] ■ det(AA2 ■ ■ ■ A

i=l yfc/=l'+l

m — 1 \

i=

m— 1

= n | n k,-a,)"-""I<det11/2
i=i It=/+i

(2.13)
The right-hand side of (2.13) is zero if and only if ak = a(, 1 < i < ki < m or

det^ = 0. By hypothesis, then, S is nonsingular. □
Now we are ready to prove our main result.
Proof of Theorem 2.1. Introduce the notation

Le{k) = kN+iI - eAhkN - (,eAh - I)A~lBK (2.14)

where
f / N \ „-l .4/1 -1 (AT+1)/1A . ..K=\e 77—7 I B A(e -I) e[ . (2.15)v (N+i)N+lJ '

It is understood that x = 0 is an asymptotically stable solution of (1.2), (1.3) if, for
all k satisfying detL£(A) = 0, we have |A| < 1 . Le(k) is a monic matrix polynomial
of degree N + 1 and we wish to capture spectral information, i.e., determine the
latent roots (see [6]) of Lg(k).

Temporarily, we shall assume e = 0 and use the simplified notation L0(k) = L(k).
Note that L(aeAh) = (a^"1"1 - aN + Nn/(N + \ )N+l)e(N+l)Ah ancj this equals 0 if and
only if p0(a) = p{a) = aN+X - aN + NN/(N + 1 )N+l = 0 .

Now p'(a) — aN 1 ((N + 1 )a - N), so p'{a) = 0 iff a = 0 or N/(N + 1). Since
p{0) is not 0 but p(N/(N + 1)) = 0, it follows that a = N/(N + 1) is the only zero
of p(a) of multiplicity > 1 . In fact it is a zero of multiplicity 2 and we may write

where the zeros of

are necessarily distinct.

N N-j-l

g{a) = — xr-a7-1 (2.17)
(N + I) J '
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Now, we may conclude from Lemma 2.3, that if all zeros of p(a) are distinct,
then the {N + \ )n x (N + \ )n block Vandermonde matrix associated with the N + 1
solvents, , of L{k)

K K ■ ■ K
Ah Ah Ah

axe a2e ■ ■■ aN+\e

N AhN N AhN N AhN
laxe a2e ... aN+xe

(2.18)

is nonsingular, in which case the set {aieAh}fJll is a complete set of solvents of L(k)
(see, e.g., [6]). However, since p(a) has a double zero at a = N/(N + 1), only (at
most) N of the set of N + 1 zeros are distinct.

Next we consider the case e > 0, i.e., Le(k) and (respectively) pe{a).
The graphs of p(a) and pg{a) are shown in Figs. 1 and 2, respectively.
(Note. If N is an even integer then the degree of p(a) or pE(a) is odd and,

therefore, there exists a second or third real zero. However, this root, along with the
other complex roots, has modulus less than N/(N + 1). For this reason we examine
the graphs of p(a) and pe(a) near a = N/(N+ 1). We are interested in the increase
of magnitude of the zero of maximum modulus of with respect to the zero of
maximum modulus of p(a).

Since the zeros of a polynomial are continuous functions of the coefficients [7],

" (»TT + ■")) (° " (STT " ' n'(« " «■> (2'19>
where |d-| = |a-|±St, 3 < i < N+ \ , a. is a zero of g(a) and the St.'s are continuous
functions of e . Then the zeros of pE(a) are {(N/(N + 1)) - d2 , (N/{N + 1)) + <5, ,
{d,}^1} and are distinct if e is sufficiently small. It then follows that

<9> = {((N/(N+l))-d2)eAh,((N/(N+ l)) + Syh,
is a complete set of solvents of L (A).

p( a)

.N+1
Fig. 1. Graph of p(a)



154 K. L. COOKE, J. TURI, and G. TURNER

P£( «)

(-^-5 0)\N+1 2 )

( —"8p0)\N+1 1 /

► a

(\n+ r /
Fig. 2. Graph of pe(a)

Now, from Lemma 2.2, if a is a zero of p(a) then |a| < N/(N + 1) and, in
particular, the zeros of g(a) — Yiy=\(jNN~J~l/(N + all have modulus
smaller than the real zero (= N/(N + 1)). From the continuity of the zeros of p(a)
[7], it follows that the zero of maximum modulus of pe(a) is a = {N/(N + 1)) + 8X
(for e sufficiently small).

Moreover, if S' is a complete set of solvents of L£(X), then the latent roots of
L (A) are ki = axef~*h where ai is a zero of pe{a) and XAh is an eigenvalue of Ah.
Then,

|A,| = |d,.| \e*M\ = \ai\eRe*Ah < {{N/{N + 1)) + S1)e*elM

- ((N/(N+ l)) + <J1)eReW"
< ((N/(N + 1)) + <5[)£>max/!Re'1-'

= ((N/(N + 1)) +J )/maxRe^

(2.20)

where max ReA 4 is the largest real part of all eigenvalues of A .
In view of inequality (2.20), the asymptotic stability of the zero solution of (1.4)

is guaranteed (or (1.2), (1.3) is stabilized) if

((N/(N + 1)) + )e/imaxReA4 < 1 (2.21)

is satisfied for some > 0, or equivalently, if we have

e~h™xRe'-A > N/{N + \). (2.22)

Since (N + \)/N - (r + h)/r, it is easy to see that (2.21) is equivalent to

r, , as ( 1 , >' + hRe (7(A) c -oo, T In V h r
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We may express this spectral-bound sufficiency condition in terms of r and N,
the number of sampling intervals. In this case,

I, r + h N, N+ 1
T ln = — Inh r r N

with e (0, r] so that the positive integer N e [1, oo). This motivates the following

Corollary 2.4. Let h 6 (0, r], N e Z+ , and A and B be nxn and nonsingular.
Then Rea(^) c (-oo, 1 jr) implies that the system (1.2), (1.3) is stabilizable.

Proof. As the integer N —> +oo and h —► 0+, lim(l//z)ln((r + h)/r) - l/r.
In fact, the function (of a real variable x) <p(x) = (l/x) ln((r 4- x)/r) is mono-
tone decreasing. So therefore when h e (0, r], it follows that (l//?)ln((r + h)/r) e
[(I/OIn2, l/r).

If maxReA^ < l/r, we can find h e (0, r] such that (l/h) ln((r + h)/r) e
(maxReA^, l/r). Hence max Re < (l/h) ln((r + h)/r), which implies that (1.2),
(1.3) is stabilizable. □

Remark 2.5. Assume that max ReXA < l/r, and we wish to determine the min-
imum N (or, equivalently, the largest h) such that (1.2), (1.3) is stabilizable; how-
ever, no explicit formulation for h or N as a function of maxReA4 and r maybe
obtained, for this would require either

1 , r + h
h

or

ln—-—> max Re XA (2.23)

N . N + 1
— ln—77—> max Re A.. (2.24)
r N A

To determine h or N in (2.15) or (2.16) (respectively), we must resort to numerical
means.

Example 2.6. Suppose we wish to stabilize

.28 10
0 -3 x + 2 -8

0 -.1 u,

u — Kx([t/h]h — 3.0), Nh = 3.0 = r.
First, we utilize the criterion described in the previous theorem to see if this system

is stabilizable. If so, we will then determine the maximum sampling period h and
finally explicitly determine the stabilizing matrix K .

In this example, r = 3 = Nh . Since max ReXA = .28 and this is < l/r = 1/3,
we are assured this system is stabilizable (i.e., can determine K to stabilize).

Next, we determine hmax for this to occur. We proceed, first determining (the
smallest) N such that (N/r) \n((N + l)/iV) = (N/3)ln((N + \)/N) > .28. In this
case, N = 3 suffices giving h = 1 . Finally,

K=(e- (33/44))
2 -8
0 -.1

.28 10
0 -3

.28 10
0 -3exp I )exp 4 .28 10

0 -3
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and it then remains to determine e. We compute maxReCT('4) - iV/(iV+1) = 28-
.75 » .0058 . Now p{a) = a4 - a + 33/44 = {a - .75)2(a + (a/2) + 3/16) and we
want to select e so that pe(a) = a4 - a3 + 33/44 - e is such that the larger of the two
real zeros belongs to (.75, .7558). So select, for example, e = 4.516 x 10~6.

This last example suggests the following corollary that will explicitly formulate e
as a function of max Re and N .

Remark 2.7. Assume the hypothesis of this section's theorem. Let

1 /AT \ \ ^/ AT \ \ ^ AT^I I iv — max Re a(A) \ \ (i N - max Re a(A) \ \ N
+ e - U Tr ! T + € +2 \iV + 1 JJ \2 \N + \ JJ (TV + 1 )N+l'

Then K = (e - Nn/{N + 1 )N+l)B~l A(eAh - I)~xe(N+m stabilizes (1.2), (1.3).
Proof. We want e such that <5, < e~maxReiA) - N/{N + \ ) where p((N/(N + 1)) +

<5[) = 0; that is, the larger of the two (positive) real zeros of p£{a), (N/(N + 1)) + ^, ,
must be in the interval (N/(N + 1), {N/(N + 1)) + (y-maxRe<TM) _ jv/(jV + 1))) =
(N/(N + 1), *>~maxRe<T(/l)).

Choose £, for example, so that (N/(N + 1)) + is the midpoint of this in-
terval, i.e., so that {N/{N + 1)) + <5, = (1/2)(e"maxReaM) + N/(N + 1)). But since
(N/(N+\))+d] isazeroof pja) it follows that pe((l/2)(^~maxReff</4)+A^/(A^+l))) =
0. Equivalently,

1 ( ^-max Recr(^) N \ \ /I / - max Recr(.4) TV X X
2 V N+l) J V2V N+l

nn
(N + l)N+i

- e = 0.

Solving for e produces the result.

3. Conditions for oscillatory solutions. We now consider oscillatory solutions of
the hybrid system (1.2), (1.3).

A scalar solution, x{t), of a differential equation is said to oscillate if it has
arbitrarily large zeros; i.e., for any t2 > tx , there exists a point ty > t2 such that
x{t3) = 0. The solution of a system of differential equations is said to oscillate if
each component is oscillatory [4],

A necessary and sufficient condition for solutions of a system of differential equa-
tions to be oscillatory is that all solutions of the system's characteristic equation are
nonreal. For analogous discrete and hybrid systems, oscillatory solutions occur when
solutions of the characteristic equation are nonpositive [4],

Applying this criterion to the difference equation (1.9) of Sec. 1, we conclude that
the system (1.2), (1.3) is oscillatory if and only if there exist no positive solutions A
of the characteristic equation (2.10).
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Fig. 3

Specifically, we now offer an explicit criterion concerning oscillatory solutions to
(1.2), (1.3).
Theorem 3.1. Suppose A is nxn with real eigenvalues, B is nxn and nonsingular,
and e is positive. Then (1.2), (1.3) is oscillatory with

f / .riV,,,, , „-l ,, Ah rN-l (N+l)AhK = (~e-N /(N+ 1) )B A(e -1) e

Proof. Analogous to (2.14), (2.15), let

t /1 \ t N+1 r Ah * N , -xtN // -xt i \ N +1 \(iV+l)/4/? / ■■) i \L£+(A) = A I-e A +{N /(N + 1) + e)e . (3.1)

Now, again considering L(X) (e = 0), we see that A = ajeAh is a solvent of L(A)
when a. is a zero of

/ \ Ar+1 N , \tN I/at, 1 n(w+!)p(a) = a —a +N /(N + \)

and ateAh is a solvent of L£+(A) with

! ^ jV+l N , ATN // AT , . \W+1 ,pE+(a) = a -a +N /(N + 1) + e.

The set {aieAh}*J11 is a complete set of solvents so the latent roots of L£+(A) are
A = aie^AI' .

There are two cases to consider.
When N is an odd integer, pe+(a) looks like the graph in Fig. 3.
That is, all zeros of pe+(a), ai, are of the form x + iy, y / 0. If A has real

eigenvalues then the imaginary part of each latent root of L£+(A) is nonzero. In
particular, the latent roots then are nonpositive.

If N is an even integer then pE+{a) looks like the graph in Fig. 4 (see p. 158).
The one real zero of pE+(a) is negative, so then if the eigenvalues of A are real,

the latent roots of L£+(A) are either complex (nonzero imaginary part as when N
was odd) or < 0. Thus, in either case, the latent roots are nonpositive.

From the previous lemma, we conclude that every solution of (1.2), (1.3) must be
oscillatory (i.e., oscillates componentwise). □
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Fig. 4

4. Some generalizations. In [12] Yong considers the continuous system

x - Ax + Bu (4.1)

with feedback control
u = Kx(t - r), (4.2)

where A is nxn , B is nxm , and r > 0 . The system is defined to be r-stabilizable
if there exists a matrix K that stabilizes (4.1); that is, if K ensures that the solution
of

x = Ax + BKx(t - r) (4.3)
is asymptotically stable for any initial condition. The system is defined to be uni-
formly r-stabilizable if there exists a matrix K that ensures the asymptotic stability
of

x = Ax + BKx(t - r) (4.4)

for all r e [0, r].
It is shown that if [A, B] is completely controllable and Rea(^) c (—00, 0],

then (4.3) is r-stabilizable. (4.3) is also r-stabilizable if [A, B] is completely con-
trollable, Re<r(/1) c (-00, 0] U {a} and a e (0, l/r) when the Jordan blocks of A
corresponding to a are of order 1. Similar conditions are also delineated that ensure
the uniform r-stabilizability (discussed for single-input systems only) of (4.3).

In the case of the hybrid system (1.2), (1.3), Corollary 2.4 guarantees the r-
stabilizability if Rea(A) c (-00, l/r) and A and B are n x n and nonsingu-
lar. Note that for any r e (0, r], \/r > l/r. It follows that if we assume
Re<j(/I) < l/r, then Kta{A) < l/r' and (1.2), (1.3) is r'-stabilizable. But the
K that stabilizes (1.2), (1.3) may not be sufficient to ensure the asymptotic stability
of

x = Ax + BK{[t/h]h - r'). (4.5)
In other words, the existence of sufficient spectral conditions on A ensuring the
uniform r-stabilizability of (1.2), (1.3) is not evident.



HYBRID SYSTEMS 159

Yong has also detailed conditions [13] sufficient for the stabilization of the pure
discrete system

x(k + 1) = Ax(k) + bu(k),
(4.6)u(k) = Kx(k -N)

where N is a positive integer, A is nxn,b is nxl, and [A, b] is completely
controllable.

If it is assumed, once again, that A and B are both n x n and nonsingular,
we may use an argument analogous to Theorem 2.1 to obtain a condition ensuring
stabilization of (4.6) different from that of Yong. For if the spectral radius of A is
less than N/(N + 1), we let

(4.7)V (w+1) /
and the asymptotic stability of

x(k + 1) = Ax{k) + BKx(k - N) (4.8)
follows.

Ultimately, it is of interest to generalize from the restriction that B is n x n
in (1.2), (1.3). In this regard, an explicit formulation of the stabilizing matrix K
becomes difficult. It can be shown [9], however, that controllability of the pair [A , B]
with certain restrictions on the spectrum of A implies the controllability of the pair
[Ad , Bd] . So that if we assume b to be n x 1 and [A, b] completely controllable
in the continuous system (1.2), the r-stabilization of (1.9), the discrete-time version
of (1.2), (1.3), follows from results of Yong [13].

These issues will be addressed in a forthcoming paper.
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