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Abstract

Background: The last decades witnessed an explosion of large-scale biological datasets whose analyses require the

continuous development of innovative algorithms. Many of these high-dimensional datasets are related to large

biological networks with few or no experimentally proven interactions. A striking example lies in the recent gut

bacterial studies that provided researchers with a plethora of information sources. Despite a deeper knowledge of

microbiome composition, inferring bacterial interactions remains a critical step that encounters significant issues, due

in particular to high-dimensional settings, unknown gut bacterial taxa and unavoidable noise in sparse datasets. Such

data type make any a priori choice of a learning method particularly difficult and urge the need for the development

of new scalable approaches.

Results: We propose a consensus method based on spectral decomposition, named Spectral Consensus Strategy, to

reconstruct large networks from high-dimensional datasets. This novel unsupervised approach can be applied to a

broad range of biological networks and the associated spectral framework provides scalability to diverse reconstruction

methods. The results obtained on benchmark datasets demonstrate the interest of our approach for high-dimensional

cases. As a suitable example, we considered the human gut microbiome co-presence network. For this application,

our method successfully retrieves biologically relevant relationships and gives new insights into the topology of this

complex ecosystem.

Conclusions: The Spectral Consensus Strategy improves prediction precision and allows scalability of various

reconstruction methods to large networks. The integration of multiple reconstruction algorithms turns our approach

into a robust learning method. All together, this strategy increases the confidence of predicted interactions from

high-dimensional datasets without demanding computations.
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Background
Discovering complex interactions is a long-standing prob-

lem which led over the past years to the development

of many network reconstruction methods that exhibit

competitive results on various types of data. As suc-

cessfully demonstrated, networks are invaluable tools
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to comprehensively relate biological variables [1–3] and

possibly gain insights into their direct causal relation-

ships [4]. Interestingly, recent studies have shown that

the available approaches would not generally perform

optimally across all dataset types and the integration

of diverse inference methods can provide an improved

robust performance [5–8]. However, several well-known

and widely used algorithms cannot directly process high-

dimensional data or actually perform better on small

networks. Bringing these methods within a lower dimen-

sional space would enable researchers to fully benefit from

their strengths under high-dimensional settings, andmore
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interestingly, to integrate their outcome in community-

based predictions.

We propose a consensus approach, named Spectral

Consensus Strategy (SCS), to reconstruct complex bio-

logical networks from high-dimensional datasets. This

method provides scalability to various reconstruction

methods and can be applied to a broad range of com-

plex biological networks. Our approach unfolds in three

parts. First, it relies on a spectral framework to iden-

tify sets of significantly related variables. Specifically, the

subset selection uses the magnitude of the normalized

Laplacian eigenvector elements. These subsets are then

considered in a second phase for multiple parallel local

reconstructions from which global effects are inferred.

By enabling each reconstruction method to locally avoid

high-dimensional settings, this second phase improves

individual prediction accuracy and scalability. In the last

phase, the individual reconstructions that benefited from

the spectral embedding are integrated in a consensus

network.

All together, this strategy provides robust and accu-

rate reconstructions from high-dimensional observational

data for which no suitable learning approach is known

beforehand, as for instance frequently encountered in

metagenomics. To our knowledge, our contribution is the

first attempt to introduce a consensus network recon-

struction approach based on a spectral framework.

Network reconstruction background

Generally speaking, network learning algorithms can

be divided into two categories: constraint-based and

score-based approaches. The constraint-based methods

ascertain (conditional) independence relationships from

statistical tests [9, 10] to learn structural constraints in

causal graphs. These approaches are highly efficient on

sparse networks and are guaranteed to learn the Markov

equivalent class of the underlying graphical model if

the exact list of conditional independence relationships

is given. However, constraint-based methods have also

proved to be very sensitive to sampling noise from finite

datasets. Alternatively, score-based methods identify the

model that best fits the data through the maximization

of a score function over the space of (ideally all) possi-

ble Bayesian networks [11, 12]. To learn the networks in

reasonable time, the search procedure usually follows a

heuristic algorithm that identifies a local optimum. More

recently, several mutual information-based approaches

have been proposed to infer direct relationships from

noisy observational datasets containing few samples

[1, 2]. Nevertheless, as demonstrated by the growing num-

ber of hybrid approaches [4, 13–15], the wide range of

high-dimensional data is still challenging state-of-the-art

methods, both in terms of accuracy, or time and memory

consumption.

Spectral methods background

Spectral theory has provided a number of approaches to

uncover dataset structure. A well-known result is the abil-

ity to optimally bi-partition a graph based on the second

eigenvector of the normalized Laplacian matrix, also

known as algebraic connectivity or Fiedler vector [16, 17].

Following this idea, recursive two-way cut methods

[18–20] that rely solely on the second eigenvector, and

k-way cut approaches [21–26] that are based on trun-

cated eigenvector basis, have been successfully applied to

dimensionality reduction or clustering problems. Specifi-

cally, the truncated eigenvector basis provides a new rep-

resentation that amplifies the similarity between closely

related variables while reducing the affinity of unrelated

variables [26–29]. Many biological systems are usually

composed of overlapping sub-units that involve function-

ally related features, such as found in metabolic or gene

regulatory networks. Hence, learning large biological net-

works from multiple local reconstructions appears to be

a reasonable procedure as much as it follows the natural

dataset structure. Spectral methods hold great potential

for guiding learning algorithms that perform better on

small graphs towards improving inference of large net-

works.

Consensus reconstruction approaches

The idea of consensus or ensemble learning is recently

gaining interest in the field. An example is given in [30]

where the yeast metabolic network was reconstructed

based on a complex consensus procedure that involved a

number of statistical methods and an important amount

of prior knowledge. As previously demonstrated [31], con-

sensus approaches can be efficiently exploited to recon-

struct Bayesian networks and provide robust models from

biological data. A consensus method that mainly rely on

significance tests is proposed in [32] to learn dependen-

cies between gene regulatory factors in the human frontal

lobe, resulting in a high-confidence model. The commu-

nity structure in complex networks can also be revealed

by consensus clustering as reported in [33], where a

stable partitioning approach based on several stochastic

method results is proposed. Marbach et al. [5] motivates

the development of consensus methods by demonstrat-

ing the benefits of combining complementary inference

approaches. Specifically, they have evaluated the perfor-

mance of diverse learning algorithms and shown that their

combination performs robustly across various datasets

while providing as good or better results than individual

methods.

The complex gut microbiome system

The human gut hosts a high density of commensal bacte-

ria whose collective genome, also known as metagenome,

exceeds more than a hundred times the size of the human
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genome [34]. This rich ecosystem provides the host with

vital functions that affect nutritional efficiency and over-

all health [35, 36]. Over the past few years, the role of

gut microbiota in human health has received unprece-

dented attention [37]. In particular, several chronic dis-

eases such as obesity [38, 39], inflammatory bowel disease

[40, 41], liver cirrhosis [42, 43], type-I [44], and type-II

diabetes [45, 46] have been associated with gut micro-

biota. For a long time, the composition of human gut

microbial ecosystem was unknown, especially due to the

large number of non-cultivable species. The recent avail-

ability of metagenomic data along with different binning

techniques allows now to obtain a better picture of the

taxonomical groups that inhabit the gut microbiome [47].

These species are organized in complex ecological net-

works and can be involved in different types of interac-

tions such as competition ormutualism [48]. Yet, mapping

these relationships with high confidence remains a com-

plicated task for multiple reasons. First of all, as many

species are usually absent from one sample to another,

metagenomic datasets are very sparse. This sparsity adds

on technical artifacts inherent to the obligate multi-step

data processing. Hence, metagenomic data are challeng-

ing available reconstruction methods, which may indi-

vidually yield different topologies for the same set of

observations.

Methods
We propose a simple yet highly efficient method called

Spectral Consensus Strategy (SCS) that simultaneously

embeds multiple discovery algorithms within a spec-

tral framework for the reconstruction of large graphi-

cal model. The strength of the SCS method hinges on

two key points that are (i) the accuracy improvement

of each individual learning algorithm and (ii) the com-

bination of predictions from complementary reconstruc-

tion methods. Specifically, sets of path-related variables

are first identified based on the magnitude of the graph

Laplacian eigenvector elements (Fig. 1,a), then multiple

parallel local reconstructions are performed using dif-

ferent learning methods (Fig. 1,b) and lastly a consen-

sus network is built on the previous multiple outcomes

(Fig. 1,c).

In the following, we provide theoretical support to

the uncovering of connected variable subsets from the

first phase of the SCS approach (SCS-spectral step,

Fig. 1,a). In particular, we demonstrate that subsets

of path-related vertices can be directly retrieved from

the magnitude and sign of individual eigenvector ele-

ments. These subsets, which correspond to possibly

overlapping dense subgraphs, are given as input to the

second phase of the SCS approach (SCS-learn step,

Fig. 1,b). We finally detail the whole Spectral Consensus

Strategy.

Normalized Laplacian eigenvectors

We consider the random-walk normalized Laplacian

matrix Lrw as it entails the random walk dynamics from

one vertex to another in the corresponding graph G. This

matrix is defined as Lrw = I − D−1W , where I is the

identity matrix, W = (wij) is a weight matrix over all

pairs of variables and D the diagonal degree matrix with

dii =
∑

j wij.

Communitymembership indicators

As already established [49], the null eigenvalues of the

graph Laplacian matrices are associated with the number

of connected components. A subset of vertices Ak ⊂ V is a

connected component if (i) all intermediate points that lie

on a path between two vertices ofAk also belong toAk and

(ii) there is no connection between the vertices of Ak and

its complementary subset Ak (Additional file 1: Proposi-

tion 1). Interestingly, for the case of finding k > 2 clusters,

the first k eigenvectors of the normalized Laplacianmatrix

Lrw minimize the normalized cut (NCut) criterion of the

relaxed problem [18, 50],

Ncut(A1, . . . ,Ak) =
1

2

k
∑

i=1

W (Ai,Ai)

vol(Ai)
(1)

whereW (A,B) =
∑

i∈A
j∈B

ωij, and vol(Ai) =
∑

j∈Ai
dj.

In a nutshell, the solution of the relaxedNcutminimiza-

tion problem consists of the orthonormal matrix H ∈

R
p×k whose columns are the first k eigenvectors of the

normalized Laplacian eigenvector matrix U, associated

with the first k smallest eigenvalues.

When the between-cluster similarity is exactly 0, these

eigenvectors are the indicator vectors {hj}j∈[1,k] (hj ∈ R
p

and hij = 1 if xi ∈ Aj, otherwise 0) of the k con-

nected components [50]. In practice, the distribution of

the data points in distinct clusters is hardly encountered,

and one should expect the between-cluster similarity to

be greater than 0. Yet, under nearly ideal conditions the

eigenvectors are still close to the indicator vectors, and the

elements magnitude and sign of each eigenvector contain

information on vertices membership strength [18, 50, 51].

Path-related vertices subsets

Beyond the membership indication, the Laplacian matrix

eigenvector elements also convey path-relationship infor-

mation. In the following we assume that vk is the k-th

eigenvector of the normalized Laplacianmatrix associated

with the connected component Ak . Under ideal condi-

tions, xi ∈ Ak ⇒ vk(i) = 1, otherwise vk(i) = 0 [50]. In

addition, we demonstrate that similar elements of a given

eigenvector (|vk(i)−vk(j)| = 0) indicate path-related vari-

ables (xj is path connected with xi) based on the Rayleigh

quotient [52] (Additional file 1: Proposition 2).
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Fig. 1 Overview of the Spectral Consensus Strategy (SCS). The SCSmethod unfolds in three parts. a The SCS-spectral phase identifies sets of

path-related variables based on the magnitude of the graph Laplacian eigenvector elements. b The SCS-learn phase performs multiple parallel local

reconstructions using different learning methods. c The SCS-consensus phase provides a consensus network built on the individual outcomes from

the SCS-learn step

For the case of a connected graph G (i.e. there is a

path between any pair of variables in G) Fiedler’s Nodal

Domain theorem (Additional file 1: Theorem 1) indicates

that while xi and xj belong to different clusters A and B,

|vk(i) − vk(j)| < ε can be found. However, if there exists a

subset of vertices S at a distance less than a step ρ ≥ 2

from A that separates A and B, then vk is such that [53]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

if i ∈ A, then vk(i) = 1,

if i ∈ B, then vk(i) = −1,

if i ∈ S, then − 1 + 2/ρ ≤ vk(i) ≤ 1 − 2/ρ,

if i, j are adjacent then |vk(i) − vk(j)| ≤ 2/ρ.

Taking ρ = 2 we obtain the case which is commonly

used for separators. Hence, |vk(i) − vk(j)| is a measure

of the distance between the vertices i and j reflecting the

cluster assumption which stipulates that close data points

are expected to lie within the same cluster (Additional

file 1: Proposition 3).

In summary, under ideal conditions, the first k eigenvec-

tors of the normalized Laplacian matrix provide indicator

vectors of the k connected components. In practice, the

magnitude and sign of the eigenvector elements contain

information on vertex membership strength to the cor-

responding component (Additional file 1: Proposition 1).

Furthermore, path-connected variables have similar eigen-

vector elements (Additional file 1: Proposition 2), that are

distinct from the element of vertices belonging to a dif-

ferent component (Additional file 1: Proposition 3). Thus,

subsets of nodes that correspond to large positive or neg-

ative eigenvector elements (retrieved in the SCS-spectral

step) correspond to dense subgraphs (to be reconstructed

in the SCS-learn step). These subgraphs associated to

large eigenvector elements can be redundantly found in

the first eigenvectors [54]. However, higher eigenvectors

can also be used to identify different subsets of connected

nodes, as observed in the context of anomalous graph

detection [55].

The spectral consensus strategy

This section details the three steps of the SCS approach

and provides the algorithms associated with each phase

(Fig. 1).

(a) SCS-spectral, identifying graph sub-paths

The first phase of the SCS approach, called SCS-spectral,

identifies subsets of vertices that are at a small walk

distance from each other within the graph G (Fig. 1,a).

This information is conveyed by the magnitude of the

Laplacian eigenvector elements [51].
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In the following, the input datamatrix isRn×p with n the

number of observations and p the number of variables. In

Algorithm 1, the eigenvectors of the normalized Laplacian

matrix Lrw are computed to identify vertices that lie on

common sub-paths (Algorithm 1, lines 4 − 5).

Algorithm 1: SCS-spectral→ Path indicators

1 In: input data matrix Rn×p, with n the number

of observations and p the number of variables

2 Out: U, normalized Laplacian eigenvector matrix

3 ComputeW ∈ R
p×p, the mutual information

matrix for the data points {xi}i∈[1,p]
4 Construct the unnormalized Laplacian L = D−W

5 Compute the generalized eigenvectors {vk} of the

generalized eigenproblem Lv = λDv

6 Set U the matrix containing all the eigenvectors

{vk} as columns in increasing order of {λk}.

In our consensus approach, we choose the mutual infor-

mation to model vertex similarity as it provides a general

measure of relationship between variables [56, 57]. More-

over, previous studies have shown that information theo-

retic measures are well suited to study high-dimensional

biological data [58–60], which was one of our objectives

when designing the SCS approach.

(b) SCS-learn, high-dimensional spectral embedding

The second phase of our approach, called SCS-learn,

relies on the sign and magnitude of the first k eigenvector

elements to reconstruct possibly overlapping sub-graphs

that involve path connected vertices (Fig. 1,b). Specifically,

each eigenvector vk is associated with two sub-graphs,

G
m,−
vk and G

m,+
vk , that relate the m data points corre-

sponding to either the most negative or the most positive

eigenvector elements (Algorithm 2, line 7).

For clustering purposes, the subspace spanned by the

first k eigenvectors would normally be preferred to their

individual interpretation [28]. However the SCS-learn

step does not aim at partitioning the variables, but rather

to learn the whole underlying network based on overlap-

ping sub-graphs. In particular, the non high-dimensional

settings (m ≪ n) obtained for each local reconstruction

G
m,+/−
vk restrict the number of false positive edges. Alterna-

tively, the overlaps between selected subsets ofm variables

limit the number of false negative interactions. At the end

of this phase, the edges eventually retained in each indi-

vidual network Gl are those that were learned every time a

sub-graph G
m,+/−
vk involved the corresponding pair of ver-

tices (Algorithm 2, lines 17 − 18). Lastly, whenever the

input reconstruction method Rl provides orientations,

a majority rule is applied to set the final orientation or

Algorithm 2: SCS-learn → Embedded networks

1 In: U, first k eigenvector matrix (SCS-spectral

output)

2 {Rl}, a set of L network reconstruction

methods

3 Out: {Gl = (V,El)}, a set of L (possibly oriented)

networks

4 forall theRl // in parallel do

5 forall the vk with lowest λk // in parallel do

6 Sort elements of vk = (v1k , ..., v
p
k) in

increasing order

7 Using theRl method, reconstruct two

networks, Gm,+
vi and G

m,−
vi , from them

most positive andmmost negative

elements of vk
8 for pairs (xi, xj) ∈ V2

G
m,+/−
vi

do

9 occurence
xixj
Gl

++

10 if (xi, xj) adjacent in G
m,+/−
vi then

11 adjacency
xixj
Gl

++

12 if (xi ← xj or xi → xj) then

13 orient
xixj
Gl

← orient
xixj
Gl

∪ +/−1

14

15

16 end

17 end

18 end

19 Set Gl = (V,El) for each {Rl}whereV = {xi}i∈[1,p]

and El = {(xi, xj)|occurence
xixj
Gl

= adjacency
xixj
Gl

}

20 with orient
xixj
Gl

← majority{orient
xixj
Gl

}

resolve possible conflicts over all the inferred orienta-

tions for two adjacent vertices (Algorithm 2, line 19). If no

majority can be achieved, the edge is set undirected.

(c) SCS-consensus, final network

In this last phase, called SCS-consensus, networks

inferred by individually embedded reconstruction meth-

ods are combined (Fig. 1,c). Specifically, for each learning

approach Rl, we rank the predicted edges by decreasing

strength or confidence (Algorithm 3, lines 4 − 6). Then,

following the integration procedure proposed in [5], an

average is computed to provide a consensus rank for the

(xi, xj) edge in the final graph G (Algorithm 3, line 8). If an

individual reconstruction method gives no edge between

(xi, xj), the pair receives the worst possible rank for this

method, i.e. rank
xixj
Gl

= 1. A weighted average over the

(sub)set {R}L′ of learning approaches that predicted ori-

entations is also computed, giving greater weight to upper

rank edge orientations (Algorithm 3, lines 9 − 12). Lastly,
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Algorithm 3: SCS-consensus→ Final network

1 In: {Gl = (V,El)} for each {Rl} (SCS-learn

output)

2 emax, most significant edges threshold

3 Out: {G = (V,E)}, consensus (oriented) network

4 forall theRl // in parallel do

5 Order {(xi, xj)} ∈ El by decreasing strength

6 end

7 forall the (xi, xj) ∈ V2 // in parallel do

8 rank
xixj
G

= 1
L

∑L
l

(

rank
xixj
Gl

/|El|

)

9 orient
xixj
G

=

1
∑L′

l w
rank(xixj)

Gl

∑L′

l orient
xixj
Gl

w
rank(xixj)

Gl

10 with

11 w
rank(xixj)

Gl
= (1 − rank

xixj
Gl

/|El|)

12 orient
xixj
Gl

= 1 if xi → xj, −1 if xi ← xj

13 else 0

14 end

15 Set G = (V,E) where

16 V = {xi}i∈[1,p] and E = {(xi, xj)|rank
xi,xj
G

≤ emax}

only the emax most significant edges are retained in the

consensus network (Algorithm 3, line 15).

Results
The SCS approach embeds multiple reconstruction

methods in a spectral framework to learn possibly ori-

ented interactions from high-dimensional data by (i) com-

bining the edges discovered from overlapping sub-graphs

(Fig. 1, SCS-learn, (b)) and (ii) computing a consensus

network (Fig. 1, SCS-consensus, (c)). In the following,

the reconstructed networks are evaluated for an increas-

ing proportion of eigenvectors (Fig. 2, horizontal axis).

Results are discussed in terms of Precision (TP/(FP+TP)),

Recall (TP/(TP+FN)) and F-score (2×Prec×Rec/(Prec+Rec))

(FN ,TP,FP; false negative, true positive and false positive

edges resp.). In particular, falsely oriented TP edges are

considered as FP. For these evaluations, a benchmark

network of 223 nodes and 338 edges has been consid-

ered (ANDES benchmark [61, 62]). This choice was in

particular motivated by the fact that each variable of

the ANDES benchmark network has exactly two cate-

gories, as encountered for metagenomics co-presence or

presence-absence data. Besides, the 223 variables of this

network enable us to reproduce high-dimensional con-

ditions while evaluating the SCS results against recon-

struction performed by each learning approach without

the SCS embedding. We also considered a larger bench-

mark network composed of 1,041 nodes and 1,397 edges,

MUNIN [63], and provide the corresponding results in

(Additional file 1: Figures S3 and S9). We randomly

sampled 5 datasets of sizes 150 and 200 to perform

the experiments under high-dimensional conditions for

ANDES, and 5 datasets of size 935 for MUNIN. The embed-

ded reconstruction methods are ARACNE [1], a mutual

information-based approach, 3off2 [4], a hybrid method

that combines constraint-based and scoring approaches

based on multivariate information measures, and a hill-

climbing algorithm using the Bayesian Dirichlet equiva-

lent score. We also considered a random classifier in our

SCS-spectral and SCS-learn step evaluations (Additional

file 1: Figures S4).

SCS-learn network evaluations

As previously established [5], adding high quality recon-

struction methods to a consensus approach significantly

improves consensus predictions. We have thus evaluated

the accuracy improvement achieved in the SCS-learn

phase that relies on the SCS-spectral step. Specifically,

we have compared reconstructions obtained from variable

subsets selected with the element magnitude of the first k

eigenvectors to networks learnt based on variable subsets

derived from different partitioning or clustering meth-

ods. Alternative subset selections are provided by spectral

fuzzy C-means partitioning, spectral K-means clustering

and recursive bi-partitioning. Random subset selection is

also considered as a mere comparison.

Evaluations of embedded network reconstructions from

subgraphs of m = 12 nodes using n = 150 samples

(results for different subgraph and dataset sizes follow a

similar trend, see Additional file 1) for the ANDES bench-

mark are given in Fig. 2 (top three rows). Reconstructions

obtained from randomly sampled subsets exhibit a poor

Precision (green solid line). This highlights that guided

local reconstructions improve prediction accuracy. Net-

works reconstructed from subgraphs that rely on spectral

K-means (darkblue solid line) or spectral fuzzy C-means

(lightblue solid line) subsets do not provide better Preci-

sion than the SCS-learn method (red solid line) up to 30

eigenvectors (14% of the total number). Although bipar-

tition of the variables (salmon solid line) allows for better

Precision than the random or spectral clustering, it is still

largely outperformed by the SCS-learn phase.

This high Precision is at the slight expense of the Recall

(Fig. 2, middle column), although it still outperforms the

bi-partitioning approach and performs almost as better

as clustering-based reconstructions. It is worth noting

that reconstructions obtained with the SCS-learn step are

consistent with Proposition 2 and 3. In particular, Fig. 2

shows an increase of the Recall as the number of eigen-

vectors grows (middle column, red solid line) as well as

a higher Precision with the first eigenvectors (left col-

umn, red solid line). This is in line with a progressive

discovery of the true underlying network and further show
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Fig. 2 SCS-learn and SCS-consensus evaluations for ANDES benchmark network [223 nodes, 338 edges, 〈k〉 = 3.03]. Precision, Recall and F-score

results for an increasing proportion of eigenvectors (up to 40%), subgraphs of 12 nodes (5% variables) and 150 samples. Scores take misorientations

into account. Each point is an average over 5 datasets (results for different subgraph and dataset sizes follow a similar trend, see Additional file 1).

(SCS-learn, top three rows) Three learning algorithms are embedded to reconstruct a network from subgraphs whose vertices are selected from the

magnitude of eigenvector elements (SCS-learn, red solid line), spectral fuzzy C-means partitioning (light blue solid line), spectral K-means clustering

(dark blue solid line), random subsets (green solid line) and recursive bi-partitioning (salmon solid line). Results are compared to scores obtained

without spectral or partitioning embedding (red dashed line). (SCS-consensus, bottom row) The SCS-learn reconstructions are combined in a

consensus network (red solid line) and compared with individual SCS-learn outcomes (gray dashed lines). Scores are computed from the top 338

consensus edges (results for different number of consensus edges follow a similar trend, see Additional file 1)
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that non principal eigenvectors, although less informative

than the first eigenvectors, carry relevant information on

connected vertices. This can also be observed, to a lesser

extent, when a random classifier is embedded in the SCS-

learn step (Additional file 1: Figure S4). Interestingly, the

Recall of networks based on spectral clustering parti-

tions decreases when too many eigenvectors are consid-

ered (Fig. 2, middle column, lightblue and darkblue solid

lines). As already established [26–29], truncated eigenvec-

tor basis are expected to emphasize variable similarities

and thus, should indicate relevant variable subsets. Yet,

due to the approximation error from the real valued solu-

tion, non principal eigenvectors are unreliable and worsen

variable partitioning. Consequently, connected vertices

may be assigned to distinct clusters as the number of

eigenvector grows, leading to local reconstructions with a

low Recall.

All together, the association of the SCS-spectral and

SCS-learn steps leads to higher F-score results (Fig. 2,

right column; Additional file 1: Figure S3, left column) as

compared to reconstructions obtained with various par-

titioning approaches. This improvement is achieved from

a relatively small number of eigenvectors (5% of the total

number), thus enabling a good trade-off between recon-

struction quality and the number of required subgraphs.

Lastly, the ANDES benchmark network was considered as

its size allows for a direct reconstruction by each learn-

ing method. Results provided in Fig. 2 (dashed red line)

show that SCS-learn performs better than, or as well as,

reconstruction methods alone.

SCS-consensus network evaluations

Evaluations of consensus networks reconstructed from

embedded learning approaches based on subgraphs of

m = 12 nodes and using n = 150 samples are given

in Fig. 2 (bottom row). The ANDES benchmark net-

work having 338 edges, scores for the consensus outcome

are given based on the 338 first ranked edges (results

for different number of edges follow a similar trend, see

Additional file 1). The consensus Precision scores (Fig. 2,

bottom left, red solid line) clearly outperform the individ-

ually embedded learning approaches (gray dashed lines)

as the proportion of eigenvector grows. Similar results are

observed for the MUNIN benchmark network (Additional

file 1: Figure S9).

Interestingly, these results emphasize the complemen-

tarity of the different reconstruction methods, as already

demonstrated [5]. In particular, it has been shown that

ARACNE and other mutual information reconstruction

methods detect more easily feedfoward loop (A→B→C and

A→C) and fan-in (A→C and B→C) patterns. Conversely, cas-

cade (A→B→C and (A,B) not adjacent) and fan-out (A→C

and A→B) patterns are more easily inferred by Bayesian

learning approaches [5].

All together, the SCS-consensus phase provides high F-

score network reconstructions (Fig. 2, bottom right, red

solid line) for a reasonable number of eigenvectors (pro-

portion ≥ 11.5%). The SCS-consensus predictions also

exhibit high F-scores when considering variable subsets

of larger sizes in the SCS-learn phase (Additional file 1:

Figures S7–S9).

Reconstruction of microbial ecosystems

We applied the SCS method to a complex biological

dataset generated by high-throughput sequencing of gut

microbiome samples from 663 patients recruited in the

MetaHIT project (Metagenomics of the Human Intestinal

Tract). The nearly 4 million genes whose abundance was

measured using quantitative metagenomics were binned

to generate representative variables based on their mean

co-abundance as introduced by Nielsen et al. [47]. These

co-abundance groups (CAG) can be either classified as

genomic units (GU) for small groups (between 3 and 700

genes) or metagenomic species (MGS) for larger groups

(more than 700 genes). The authors produced a first

reconstruction of the gut microbial ecosystem based on

Fisher’s exact test between pairs of CAGs.

In our study we used this extensively annotated dataset

where information on phylogenetic classification and gene

assembly is also available. Here we focused on p = 2,101

CAGs with more than 50 genes as already proposed in

[64]. Figure 3a represents 307 co-presence relationships

(edges) between these 2,101 CAGs (vertices) with at least

one connection (leading to a subset of 445) as already

provided by Nielsen et al. [47]. The number of genes com-

posing a CAG is proportional to the vertex size. CAGs

from the same phylum have similar color hues that are

specified at the family level of their phylogenetic classi-

fication (e.g. Firmicutes are given in a range of blue and

Bacteroides in a range of pink).

The SCS approach which embeds three reconstruction

methods (ARACNE, 3off2, hill-climbing) inferred a con-

sensus network of 6,389 edges from the above-mentioned

dataset. To compare our results with the pairwise net-

work reconstructed by Nielsen et al. [47], we selected the

same number (307) of top-ranked SCS edges which repre-

sent approximately 5% of the consensus interactions. This

network composed of 443 nodes yieldsmore complex sub-

structural patterns as illustrated in Fig. 3b. When compar-

ing networks (A) and (B), only 111 out of the 307 edges

(36%) inferred by Fisher’s exact test are also predicted

by the SCS method. Interestingly, 105 of these common

edges (95%) have genetic elements that share same assem-

bly contigs, bringing strong biological evidence for these

predicted relationships. Conversely, out of the remaining

196 edges solely inferred by Fisher’s exact test, a signifi-

cantly smaller number (121, 62%) have genetic elements

that share same assembly contigs (p < 8 × 10−10, χ2).
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Fig. 3Microbial co-presence ecosystem. Microbial ecosystem reconstructed with the pairwise Fisher’s exact test [47] (a) and the SCS approach

(b,c). Data for 2,101 co-abundant groups (CAGs) and n = 663 patients recruited in the MetaHIT project were used. Edges depict co-presence

(gray edges) or absence-presence (red edges) relationships. a Gut microbial ecosystem based on Fisher’s exact test between pairs of CAGs [47] (307

edges between 445 CAGs of at least 50 genes). b The same number of top-ranked edges (307) obtained with the SCS approach which involve 443

CAGs of at least 50 genes. c The 15% most significant edges obtained with the SCS approach (654 nodes and 639 edges)

Complementary evaluations for different number of com-

mon edges (from 55 to 146 edges) follow the same

trend (Additional file 1: Table S4 and Additional file 1:

Figure S9). We hypothesize that a non negligible number

of edges inferred by pairwise reconstruction techniques

may correspond to indirect relationships.

We explored the topology of the SCS consensus gut

microbial ecosystem at different most significant edges

threshold (emax) and illustrate the network at 15% in

Fig. 3c (654 vertices and 639 edges). The modular

structure of this network is highlighted by tightly related

vertices sharing similar colors. This indicates that species

of the same family or phylum are mostly co-present as

previously discussed [43]. This can be explained by the

fact that closely related species have similar genetic back-

ground adapted for the same environmental niche. Of

interest is also the fact that small CAGs (GU) are strongly

linked with large CAGs (MGS) having the same phylo-

genetic annotations as depicted in Fig. 3(a & b) and pre-

viously described [47]. The SCS microbial network also
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includes consensus directed edges computed from the

orientations of the embedded 3off2 and hill-climbing

algorithms. Gray oriented edges (A → B) indicate ordered

co-presence relationships (i.e. the presence of A species is

expected whenever B is found). Conversely, red oriented

edges provide presence-absence information.

We further analysed the SCSmicrobial network by con-

sidering the edge rank correlations between individual

reconstructions and the consensus result (Fig. 4). The

3off2 and the ARACNE algorithms have a strong cor-

relation (Fig. 4, ρ = 0.77), as it could be expected for

approaches that rely on similar metrics. Conversely, the

edge ranks between 3off2 or ARACNE and hill-climbing

heuristic exhibit weak correlation coefficients (Fig. 4, ρ =

0.31 and ρ = 0.22 resp.). The slightly higher correla-

tion between 3off2 and hill-climbing approaches may be

related to the fact that 3off2 is a hybrid approach that is

also score-based. All together, these results demonstrate

the complementarity of the individual approaches from

which the human gut microbial consensus predictions can

benefit.

Discussion
In this paper, we propose a consensus network learn-

ing approach called Spectral Consensus Strategy which is

based on spectral decomposition. Our method proceeds

in three steps, namely SCS-spectral, SCS-learn and SCS-

consensus. The first and second phases enable any recon-

struction method to learn a possibly oriented network

under high-dimensional settings. In addition to accuracy

improvement of each reconstruction method, the spectral

framework on which the SCS approach relies, also sup-

ports fast processing of high-dimensional datasets. The

last phase combines the outcome of each reconstruction

method to provide consensus predictions.

This strategy, as well as being accurate, scales up

extremely well. Specifically, as the SCS-learn step pro-

cesses in parallel local reconstructions related to the

first k eigenvectors (Algorithm 2, lines 5 − 15), it is

the time complexity of the reconstruction methods that

mainly impedes the whole running time. The SCS frame-

work itself does not add any demanding computations.

In particular, the running time for each individual recon-

struction method embedded in the SCS-learn phase

grows with the number of variables p as O(p log p)

(Algorithm 2, line 6). Furthermore, all reconstruction

methods can simultaneously learn the network within the

second phase. As an example, gut microbiota consen-

sus reconstruction (2,101 variables, 663 samples, Fig. 3c)

required 43 seconds to reconstruct all subgraphs (m = 40

vertices, 63 eigenvectors) needed for the Gl individual net-

works, and 52 seconds to build the consensus outcome G

using 40 CPUs. Besides, the early step of the SCS-spectral

phase which involves the computation of the mutual

information matrix (Algorithm 1, line 3) and the last step

of the SCS-learn phase which is dedicated to the assem-

bling of local reconstructions (Algorithm 2, lines 17−19),

can be efficiently optimised and implemented [65, 66]. All

together, the SCS approach could efficiently reconstruct

the microbiome ecosystem, while the hill-climbing algo-

rithm alone did not converge in 48 hours (see Additional

file 1: Section 4, for detailed evaluations). These results

highlight the ability of our method to improve the scala-

bility of the embedded learning approaches.

The subgraph size m for the SCS-learn phase influ-

ences the quality of individual reconstructions (Gl graphs).

Specifically, too small subgraphs lead to low Recall and

very high Precision, while conversely too large sub-

graphs (even still under non high-dimensional condi-

tions) increase the Recall at the expense of the Preci-

sion, both cases impeding the F-score results (Additional

file 1: Figures S1–S3). Yet, predictions output by the SCS-

learn step remain better than predictions derived from

classical clustering and partitioning approaches for var-

ious sizes m. Interestingly, although the parameter m

significantly impacts individual reconstructions, it only

slightly impedes the consensus F-score. In particular,

larger subgraphs still provide a consensus network of

good quality from high-dimensional dataset (Additional

file 1: Figures S7–S9). Similarly, the eigenvector pro-

portion influences individual reconstructions Gl as too

many eigenvectors lead to lower Precision and higher

Recall. Yet, the consensus network based on the first emax

most significant edges achieves good and stable quality

as the number of eigenvectors grows (Additional file 1:

Figures S7–S9).

To define the minimal number of eigenvectors that

would bring sufficient amount of information for a

good consensus reconstruction, we designed a heuristic

approach based on the decreasing interval between suc-

cessive eigenvalues. For classical clustering approaches,

the eigengap heuristic has been proposed to define the

most suitable cluster number. This eigengap heuristic

method is related to the fact that under ideal condi-

tions, k distinct connected components are associated

to the first k null eigenvalues and thus, a gap can be

found between λi≤k = 0 and λk+1 > 0. In prac-

tice, the eigengap heuristic sets the number k such that

λi≤k are small but λk+1 is relatively large. The SCS

approach objective is not to partition variables but rather

to reconstruct a consensus network from overlapping

subgraphs, using as much as possible of the informa-

tion conveyed by each eigenvector. As shown from the

counts and cumulative counts of true positive interac-

tions for the ANDES benchmark network (Additional

file 1: Figure S5), although most of the true positive inter-

actions are retrieved from the first eigenvectors, non

principal eigenvectors also conveyed relevant information
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Fig. 4 Edge rank correlations between SCS-learn and SCS-consensus outcomes for human gut microbial ecosystem. 6,389 edges were predicted

from a dataset of 663 observations and 2,101 CAGs (MetaHIT project [47]). Rank of edges predicted by only one embedded learning method are

given in blue (ARACNE, 159 edges), red (3off2, 498 edges) and yellow (hill-climbing, 2,889 edges). Rank of edges predicted by two individual

learning methods are given in green (ARACNE & hill-climbing, 31), orange (3off2 & hill-climbing, 573 edges) and purple (3off2 & ARACNE, 720

edges). Rank of edges predicted by all individual methods are given in black (1,519 edges)

on connected vertices. Hence, we consider the first

k eigenvectors for which the successive eigenvalues

are dissimilar enough as being the best number of eigen-

vectors to be used for the SCS consensus reconstruction.

As an example, our heuristic method evaluated at 30

(14%) the most suitable number of eigenvectors for the

ANDES benchmark network. This number approximately

corresponds to the number of eigenvectors from which

the consensus network achieves better F-score results than

networks obtained from individually embedded methods

(Fig. 2).

The SCS approach is mainly designed to reconstruct

large unknown biological networks, thus no weights

have been assigned to individual reconstruction meth-

ods. However, if any prior knowledge is available on the

underlying network topology, such as bias in particular
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connection patterns, weights can be easily assigned when

computing the average interaction rank.

Conclusion
Our contribution addresses the problem of large network

reconstructions. The Spectral Consensus Strategy aims

to reconstruct networks from high-dimensional dataset

by overlapping subgraph parallel learning and consen-

sus predictions. Although this approach is not intended

to partition the data points, it takes advantage of spec-

tral decomposition to identify tightly related vertices. We

show by our experiments on both standard benchmark

and real complex data that the performance of the pro-

posed approach is extremely competitive. Our method is

efficient from a computational viewpoint, its implemen-

tation is straightforward, and no effort has to be spent on

hyper-parameter tuning.

Additional file

Additional file 1: Contains complementary demonstrations as well as

supplementary evaluations for the SCS approach. Specifically, Section 1

provides Propositions and associated sketches of proof that support our

method. Complementary evaluations of the SCS first steps, namely

SCS-spectral and SCS-learn, are given in Section 2. We also provide in

Section 3 complementary evaluations of the SCS last step, named

SCS-consensus. Execution time comparisons are given in Section 4.

Supplementary statistics on the application to human gut microbiota close

this Additional file 1. (PDF 606 kb)
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