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SPECTRAL CONVERGENCE OF RIEMANNIAN MANIFOLDS
ATsUsHI KASUE* AND HIRONORI KUMURA
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Abstract. We introduce a spectral distance on the set of compact Riemannian
manifolds, making use of their heat kernels, and show some basic properties of the
distance on a class of compact Riemannian manifolds with diameters uniformly bounded
from above and Ricci curvatures uniformly bounded from below.
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Introduction. Gromov [10] introduced a distance on the set of compact Rie-
mannian manifolds and established, among other things, a precompactness theorem
on a class of compact Riemannian manifolds with a uniform upper bound for the
diameters and a uniform lowgr bound for the Ricci curvatures. Various works of interest
have since appeared around the Gromov-Hausdorff distance. For example, Fukaya [9]
gave a notion of measured Hausdorff topology on the set of compact Riemannian
manifolds and discussed the eigenvalue problem for the Laplace operators. The main
result in [9] concerns the convergence of the spectra with respect to the topology in
the set of compact Riemannian manifolds with a uniform bound for the diameters and
a uniform bound for the sectional curvatures in their absolute values. It was improved
later in [12].

On the other hand, from the point of view of spectral geometry, Bérard, Besson
and Gallot [3] defined a family of ditances on the set of compact Riemannian manifolds
and proved a precompactness theorem under the assumption similar to the one used
by Gromov (see also Muto [15]). .

In this paper, motivated by these results, we shall introduce a new uniform topology
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on the set of compact Riemannian manifolds, making use of the heat kernels, and then
discuss some basic properties of the topology in relations with the Gromov-Hausdorff
distance under certain geometric conditions.

Now we shall explain briefly the main results of this paper. For a compact
Riemannian manifold M, we denote by p,(¢, x, y) the heat kernel of M with respect to
the normalized Riemannian measure u$3" (i.e., the Riemannian measure divided by the
volume of M). Given two compact Riemannian manifolds M and N, not necessarily
continuous maps f: M—N and h: N> M are said to be e-spectral approximations
between M and N if they respectively satisfy

et 0] pyy(t, x, Y)—palt, (9, fON)|<e  forall >0 and x,yeM
and
e~ p (1, h(a), h(b))—px(t, a, b) | <& forall (>0 and a,beN.

The spectral distance between M and N is by definition the lower bound of the numbers
¢>0 such that they admit e-spectral approximations. The spectral distance gives a
uniform structure on the set of compact Riemannian manifolds. Given an integer n> 1,
and constants D>0 and x>0, we write .#(n, D, k) for the set of compact Riemannian
manifolds of dimension n with diameter diam(M) < D and Ricci curvature > —(n— 12
Then we can show the following results:

(i) On #(n, D, k), the topology given by the spectral distance is finer than that
of the Gromov-Hausdorff distance (cf. Theorem 3.5).

(ii) #(n, D, x) is precompact with respect to the spectral distance (cf. Theorem
3.6). Moreover, a boundary element of .#(n, D, ) in its completion with respect to the
spectral distance can be regarded as a triad (X, u, p) of a compact length space X, a
Radon measure u of unit total mass on X, and a positive Lipschitz function p on
(0, o) x X x X which is the heat kernel of a C,-semigroup on L2(X, u) (cf. Theorem 3.8).

(iii) The continuity of eigenvalues and the convergence of eigenfunctions in a
certain sense hold in .#(n, D, k) with respect to the spectral distance (cf. Theorem 4.5).

To prove these results, we use basically several estimates on the heat kernels obtained
by some authors (cf. §2).

As indicated later in Example 1 of §1, from the nature of the problem considered
here, we shall in fact investigate Riemannian manifolds endowed with weight functions
and the associated operators rather than Riemannian manifolds and the Laplace
operators.

1. Spectral distance. In this section we shall introduce a uniform topology on
the set of equivalence classes of compact Riemannian manifolds endowed with weight
functions.

1.1. To begin with, we recall the definiton of the Hausdorff distance on the set
of isometry classes of metric spaces introduced by Gromov [10]. Given two metric
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spaces X and Y, a distance § on the disjoint union XL |Y is said to be admissible if its
restriction to X and Y are equal to the original distances dy and dy in X and Y,
respectively. The Gromov-Hausdorff distance HD(X, Y)is by definition the lower bound
infH%(X, Y), where & runs over all admissible distances on XY and H%(X, Y) stands
for the Hausdorff distance in (X | |Y, 8), namely, the lower bound of the numbers ¢>0
such that §(x, Y)<e¢ and 8(y, X)<e¢ for all xe X and ye Y. The Gromov-Hausdorff
distance HD enjoys all the properties of a distance when it is restricted to the set of
compact metric space. Observe that if HD(X, Y) <e, then there exists a map f: X—>Y
such that (i) the 2e¢-neighborhood of f(X) covers Y; and (ii) |dx(x, y)—dy(f(x),
f(M) <2 for all x,yeX, and also there is a maph: Y- X satisfying (i) and (ii).
Indeed, we take a distance 6 on XL]Y such that H%(X, Y)<e and then choose maps
f:X-Yand h: Y- X in such a way that §(x, f(x))<e and d(a, h(a))<e for all xe X
and ae Y. Not necessarily continuous maps f: X— Y and 4: Y- X satisfying the above
properties (i) and (i) are called 2e- Hausdorff approximations between X and Y. Let us
denote by HD'(X, Y) the lower bound of the numbers ¢>0 for which there exist
e-Hausdorff approximations f: X—Y and h: Y—X. Then we have

%HD’(X, Y)<HD(X, Y)<2HD/(X, Y).

For this reason, HD'(X, Y) induces the same uniform topology in the set of isometry
classes of compact metric spaces as the Gromov-Hausdorff distance.

1.2. Let M be a complete Riemannian manifold without boundary and w a positive
smooth function on M. Throughout this paper, manifolds are always assumed to be
connected. We consider an elliptic differential operator Z, of second order defined by

L,=—Ay—Viogw,

where A, stands for the Laplace operator of M acting on functions, namely, A,/ =
traceVdy. This operator &, is associated with the quadratic form 2(¢, )=
[1<V®, VY >wdvol,, on the space of smooth functions with compact support, where
dvol,, denotes the Riemannian measure of M. In what follows, we write simply y,,
for the (Radon) meaure wdvol,,, and we denote by p,(t, x, y) the heat kernel of the
operator ., in L*(M, u,,). When M is compact, by the Sturm-Liouville decomposition,
we have the eigenfunction expansion of the kernel:

Pult, X, )= Y. e Mu,(xu,(y).
v=0
Here 0=1,<4;<A,<- - 700 are the eigenvalues of &, and {u,} is a complete

orthonormal system of L*(M, u,,) consisting of eigenfunctions with u, having eigenvalue
Ay

Throughout this paper, two triads (M, u,, p,) and (N, y,, p,) are said to be
equivalent and will be identified if there is a map f: M—N which preserve the heat
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kernels, namely,

Pt X, Y)=pult, £(x), ()

for all t>0 and x, ye M. In fact, since
lim4tlogp,(t, X, y) = —dp(x, y)*
t—0

for all x, ye M and for every triad (M, u,, p,) by a theorem due to Varadhan [20] and
Cheng, Li and Yau [7], we see that dim M =dim N and the above map f: M—>Nisa
distance preserving map from M onto N, and hence an isometry between M and N.

Moreover for a continuous function ¥ on N,
ror

f Y (x))dp,(x)= 1ing Pult, f(x), DY (b)dp,(b)dp,(x)
M 20 JMJN
ror

=lim pu(t, S0, SO (P)dp,(x)d,(f (¥))
M

t_'ouMu

=lim Pt x, YW (f (¥))dpx)dp,(f ()

tqouMdM

= J Y(fMdpf(») -
M

This shows that f preserves the measures, f u,=pu,.

Given two triads 7, =(M, u,, p,) and t,=(N, p,, p,,), not necessarily continuous
maps f: M—N and h: N— M are said to be e-spectral approximations between 7, and
1, if they satisfy

e—(t'+ l/t)lpv(t’ X, y) —pw(t, f(x)s f(y)) | <e
e~ 10| p (1, h(a), (b)) —p.(t, a, b)| <&

for all 1>0, x, ye M and a, be N. The spectral distance SD(z,, T,) between 1, and 1, is
defined to be the lower bound of the numbers ¢>0 so that they admit e-spectral
approximations. Here we understand SD(t,, 7,) = oo if there are no such maps. Let us
denote by .#, . the set of the equivalence classes of all triads (M, u,, p,) with M compact,
then obviously SD(t,, 7,) is finite for all 7, and 7, € .#,, .. Moreover if SD(z,, 7,)=0,
then 7, =1, in .#, .. Indeed, by the definition of the spectral distance SD, we have a
sequence of e(i)-spectral approximations f;: M—»N and h;: N-M between 7,=
(M, p,, p,) and t, =(N, p,, p,) with &(i) converging to zero as i tends to infinity. Taking
a subsequence if necessarily, we may assume that these maps f;: M—N and h;: N> M
respectively converge to maps f: M— N and h: N— M which preserve the heat kernels.
Thus 4, equipped with the spectral distance SD becomes a metric space.

In the above definition of ¢-spectral approximations, we multiply the function
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e~@*1/ by the differences of the heat kernels for convenience, to take the asymptotic
behavior of the heat kernels as r—0 into account.

1.3. Before concluding this section, we shall exhibit some examples. In the rest
of the section, for a compact Riemannian manifold M, we denote simply by u5® the
normalized Riemannian measure of M, namely, the Riemannian measure dvol,, of M
divided by its volume vol(M), and also by p,, the heat kernel of the Laplace operator
of M in L2(M, u$3").

ExampLE 1. Let M be a compact Riemannian manifold of dimension n and w a
positive smooth function with p,(M)=1. Take another compact Riemannian manifold
N of dimension k, and denote by M, the warped product of M and N with warping
function ew'’* (¢>0). Letting ¢ tend to zero, we see that (M,, u3i", py,) converges to
(M, u,, p,) with respect to the spectral distance. Indeed, the canonical projection
n: M,~»M and any section o: M—>M, give J(¢)-spectral approximations with
lim,,, 8(¢) =0. We remark that the push-forward measure 7 u3 coincides with u,, for
any &.

ExaMpLE 2. Let n: E-T be a Riemannian covering over a compact flat
Riemannian manifold T and let I" be the covering transformation group. Suppose we
have an isomertic action of I' on a compact Riemannian manifold S, namely, we have
a homomorphism «: I'-»Isom(S). Then we obtain a family of Riemannian manifolds
which consists of the quotient manifolds M,=(E) xS (¢>0) of the Riemannian
products (¢E) x S with respect to the diagonal action of I'. Observe that as & tends to
zero, the triad (M., u3", py,) converges to (S/K, u, p) with respect to the spectral distance.
Here K denotes the closure of the subgroup ofI') in Isom(S), u is the push-forward
measure p, ug™" of ug* under the canonical projection p: S—S/K, and the pull-back
p*p of p is given by

p*plt, x, y)= ZO e Mu,(uly),

where {u,}>°_ is a complete orthonormal system of eigenfunctions of S in the subspace
L*(S/K, p,ug™ of L*(S, ug™ which consists of K-invariant square integrable functions,
and A, stands for the corresponding v-th eigenvalue of S in L*(S/K, p, ug"). We note
that at a regular point a of the quotient space S/K, the density of the measure u with
respect to the m-dimensional Hausdorff measure of S/K (m=dim.S—dimp~'(a)) is
equal to the ratio of the volume of the submanifold p~!(a) to that of S.

This is a typical example of Riemannian manifolds collapsing to a lower-dimension-
al space while keeping their curvatures and diameters bounded. According to Fukaya
[9], when such a family, say {M,}, converges to a metric space with a Radon measure
with respect to the measured Hausdorff topology in his sense, the eigenvalues and
eigenfunctions of M; converge in a certain sense. In fact, the triad (M, u§i", pu,)
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converges with respect to the spectral distance SD.

ExampPLE 3. We consider an example in [21] of Riemannian manifolds col-
lapsing to a lower-dimensional space while keeping their curvatures bounded below
and their diameters bounded above. Let G be a compact Lie group of positive dimension
acting on a compact Riemannian manifold M effectively. Take a G-invariant metric g
on M, and consider a G-action ¢ on Gx M defined by ¢ (b, x)=(ab, a(x)). Let
n: Gx M—-M, n(a, x)=a"'(x), be the projection along the G-orbits, and w the
connection on the principal bundle (G x M, =, M) such that 0 x T, M (xe M) are the
horizontal spaces. We define a family of metrics g, on G x M by

g¢, &) =g(dn(&), dn(Z") +e*(w(&), (),

where { , > denotes a bi-invariant metric of G. Let  be another G-action on G x M
defined by (b, x)=(ba"!, x). Since g, is Y-invariant, g, induces a metric g* on M,
and we write M, for (M, g¥). Then M, converges to the quotient metric space M/G with
respect to HD as ¢ tends to zero. Moreover if we denote by w,(x) (xe M) the volume
of G x {x} with respect to g, and set w;"(x)=w£(x)/_fMa wdvoly, , then we see that as ¢
tends to zero, the triad (M,, u,z:, p,:) converges to (M/G, u, p) with respect to the
spectral distance. Here (M/G, pu, p) is given in a manner similar to Example 2.

The sequences of these examples converge to lower-dimensional spaces. See for
instance, [1], [2], [9], [11], [16] and the references therein for different kinds of
examples and related topics.

2. Bounds for heat kernels. Throughout this section, M is assumed to be an
n-dimensional complete Riemannian manifold. Let w be a positive smooth function on
M and u the Radon measure wdvol,, as in Section 1. The purpose of this section is to
give an analog of the Bishop-Gromov inequality and then derive some geometric
estimates for the heat kernel p,(t, x, y) of £ . Our arguments are based on the methods
which have been established when w is constant. We refer the reader to Bérard, Besson
and Gallot [3], Chavel [5], Davies [7], Li and Yau [13], [14], Sturm [19] and the
references therein. The results of the present section provide the basic ingredients in
proving the main theorems in this paper.

2.1. First of all, we introduce a symmetric tensor associated with a given positive
function w. For an integer k>0, we define a symmetric tensor R, , by

Ddw'*

R =Ric,, —
w,k M
Wl/k

1 .
=RicM—? dlogw® dlogw— Ddlogw ,

where Ric,, stands for the Ricci tensor of M. For k=0, we set R,, ,=Ric,,. In this case,
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w is always assumed to be a constant. In the case k=1, the tensor R, ; was introduced
in Setti [17], [18], where upper and lower estimates for the first nonzero eigenvalue of
£, for M compact, and also those for the heat kernel of .#,, were given in terms of
a lower bound of R, ;. In what follows, we shall explain some implications of a lower
bound for R,,; and then derive some results which will be needed later.

Let us fix any compact Riemannian manifold N of dimension k and consider the
warped product M, =M x,,.xN of M and N with warping function w'/*. We denote
by n the natural projection of M, , onto M. Then the Ricci tensor Ricy, , of M, ;
restricted to the horizontal subspaces coincides with the pull-back of the tensor R, ; by
7. Namely we see that

@.1) Ricy,, (X, V)= R, (dn(X), dn(Y))

for all horizontal vectors X and Y of M, ,. We notice that for any smooth function y
on an open set of M,

(i) the gradient of ot is the horizontal lift of the gradient of ¥ ;
(i) Ay, Yom)={Ayy+Viogw-ylon=—(L Y)om.

Let r be the distance to a point x in M and r* the distance to the fiber 77 1(x)={x} x N
in M, ,. Clearly r*=r-mn. Suppose that

(2.3) R, > —(n+k—1)x?

on M, where n=dim M and «x is a positive constant. Then the standard comparison
argument together with (2.1) yields the following estimate:

h *
2.4) Ape r*<(nk— D 30—
' sinh xr*
on M, ,, or equivalently,
h
4) — L r<(nrk—T
sinh kr

on M. Because r and r* are only Lipschitz functions on the cut loci, respectively, (2.4)
and (2.4") should be understood in a generalized sense. In fact, an argument due to
Calabi allows us to assume without loss of generality that they are smooth when applying

the comparison theorem or the maximum principle (cf. [5]). Now let us put for
convenience

t
Vo sin(t)= J (x lsinhxs)"t*1ds .
(o]

Then the proof of the Bishop-Gromov inequality combined with the inequality (2.4)
shows that the ratio of the volume of n~'(B,(¢)) in M, to ¥, (¢) is monotone
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decreasing in ¢>0, where B.(¢) stands for the metric ball of M around a point x with
radius ¢. Since the ratio of the volume of n~ (B,(¢)) in M,,, to the volume of N is equal
to the mass u,,(B,(2)) of the ball with respect to the measure p,,, we obtain the following:

ProPOSITION 2.1. Let M be a complete Riemannian manifold of dimension n and
w a positive smooth function on M satisfying (2.3) for dan integer k>0 and a constant
k>0. Then

”W(Bx(r)) > Vn +k,x(r)
”w(Bx(R)) Vn + k,x(R)

for all xe M and 0<r<R.

Let M, w, k and k be as above. Then it follows immediately from the proposition
that given R>0 and &> 0, there exists a positive integer v depending only on n, k, x,
R and ¢ such that the ball B,(R) around a point x of M with radius R contains at most
v disjoint balls of radius ¢. Thus by virtue of Gromov’s precompactness theorem [10,
Chap. 5], we have the following:

COROLLARY 2.2. Given constants n, k and k as above and given D >0, the set of
(isometry classes of ) all compact Riemannian n-manifolds M, each of which admits a
positive smooth function w satisfying (2.3), and the diameter of which is bounded from
above by D, is precompact with respect to the Gromov-Hausdorff distance HD.

2.2. We now derive some bounds for the heat kernel p,(t, x, y) of &, under the
assumption (2.3). We begin with the following:

ProOPOSITION 2.3. Let M and w be as in Proposition 2.1. Let u(t, x) be a positive
solution on (0, o0) x M of the equation

<%+ $w>u(t, x)=0.

Then (i) for any a>1,

| Vu |2 —a&s (n+k)a? {i+ (n+k—1)x? };
u? u 2 t 2(x—1)

(i) forall t>0,5>0,a>1 and x, ye M,

+5 \Or a2 ( ady(x, ¥)*  (n+k)(n+k—1)k2s >
exp + :
ds 4a—1)

wt, x)<u(t+s,y) (

PrOOF. On account of (2.1) and (2.2), this proposition follows in the same methods
as those for [14, Theorems 1.3 and 2.2]. qg.ed.

Secondly, we shall give upper bounds for the heat kernel.
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PROPOSITION 2.4. Let M and w be as in Proposition 2.1. Then the heat kernel
D.u(t, x, ¥) satisfies
pult, X, ¥) <

dp(x, y)?
Cn +k,x(8)uw(Bx(\/7)) - llzluw(By(\/T)) —lz exp < - (1 - 8) ‘% + (8 - j'0)’)

Jor all t>0, e>0 and x, ye M, where C, ., (¢) is a positive constant depending only on
n+k, k and ¢ in such a way that C,., (g) diverges as ¢ tends to zero, and A, is the
bottom of the spectrum of the operator &, on L*(M, u,,). Moreover if M is compact
and the diameter is bounded above by a positive constant D, then

- ] n+k,k(E) ( dM(x’ y)2 >
Wby s < n+kxc(E)Hyw M 1 — Pt — 1— — ¢t
P (t X J) C k, (8) ( ) "+k,x(\/7) €X ( 8) lt £

for all te(0,D?], e>0 and x, ye M.

ProoF. The same arguments as in [7] combined with (2.1) and (2.2) give the first
estimate, which implies the second, because of Proposition 2.1. g.e.d.

As for a lower bound of the heat kernel, we have:

PROPOSITION 2.5. Let M and w be as in Proposition 2.1. Then the heat kernel
Pw(ts X, )/') SatiSﬁes

Pult, X, ¥) =
: —1/2 -1/2 dy(x, y)? "
Ch @B/ 1)) P (B 1) P exp| —(1 +8) = — (e O

for all t>0, e>0 and x, ye M, where C, ., (€) is a positive constant depending only on
n+k,x and ¢ in such a way that C, ., (€) converges to zero as ¢ tends to zero, and
C'"=(n+k—1)*c?/4.

Proor. This follows by the same arguments as in [197] together with (2.1) and
(2.2). q.e.d.

We notice that the Poincaré inequality holds for a Riemannian manifold endowed
with a measure. Namely we have the following:

ProrosITION 2.6. Let M and w be as in Proposition 2.1 and let f be a smooth
Sfunction on M. Then

J ]f_fx,r,wlzd#wscl-'—mrzjv lVledﬂw,
Bx(r)

Bu(r)

for all xe M and r>0, where C is a positive constant depending only on n+k and
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1
Jerw=——"r" fap, .
uw(Bx(r )) Bx(r)

PrOOF. This can be derived by the same arguments as in [4] together with (2.1)
and (2.2). q.e.d.

2.3. We have considered so far a complete Riemannian manifold M with a weight
function w. In what follows, we shall discuss the case where M is compact and derive
several estimates for the heat kernel p, and also for the eigenvalues and eigenfunc-
tions of &,,. Let {4,:0=14,<4;<A,<--- /oo} be the eigenvalues of £, and {u,} a
complete orthonormal system of L%(M, u,) consisting of eigenfunctions with u, having
eigenvalue A,. Noting (2.1) and (2.2), and then applying the same methods as in Li
and Yau [13] and also Cheng [6], we are able to verify the following:

PROPOSITION 2.7. In the above notation and under the assumption (2.3), the following
assertions hold.:
(1) An eigenfunction u of & ,, with eigenvalue 1 satisfies

(n+k—1)pA

IVuIZS4{ +(n+k—1)2'€2}(ﬁsup|ul—u)2

for any f>1.
(i) The first nonzero eigenvalue A, enjoys

exp[— 1 —/1+4(n+k— 1)’k 2 diam(M)?]

A= -
2(n+k—1)diam(M)?

(iii) The v-th eigenvalue A, satisfies

A, <Ck2+C’ L
diam(M)?
Sfor some positive constants C and C' depending only on n+k.
Let us now assume, in addition to (2.3), that the diameter diam(M) of M satisfies
2.5) diam(M)<D
for a constant D >0, and further the measure y has unit total mass

(2.6) p(M)=1.

Then the same arguments as in [3: Theorem 3] yield the following estimates:
2.7 2. A%e™ M uy(0) [l u ()| < Cy (o~ 02
v=1

for any «>0 and for all #>0 and x, ye M, where C,(«) is a positive constant depending
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only on n+k, D, k and «;

(2.8) A, > C et
V2 (n+k)/2
(2.9) ul<C, <1c2+_4> ,
diam(M)?

where C, and C, are some positive constants depending only on n+k, D and «x. In
particular, letting «=1 in (2.7), we have

O x| <Car@m e (c,=cy()

(2.10) -

for all >0 and x, ye M, and hence by Proposition 2.3 (i), we obtain
2.11) | VPt X, p) | < Cs(ic? + 17T 0I2Z)

for all t>0 and x, ye M, where C5>0 is a constant depending only on n+k, D and «.
Hence it follows from (2.10) and (2.11) that

(212) |pw(s’ X, y) —pw(t, x,’ y/) I < C‘S(K2 + t_(n+k+ 1)/2)(dM(x9 x’) +dM(y> y’))
2C,
n+k

+ lt—(n+k)/2_s—(n+k)/2| .

Now rescaling what we have obtained in (2.7), (2.8), (2.9) and (2.12), we can deduce
the following:

ProPosITION 2.8. Let M be a compact Riemannian manifold of dimension n and w
a positive smooth function on M satisfying (2.3), (2.5) and (2.6) for some k>0, x>0 and
D>0. Let p,(t, x, y) be the heat kernel of %, {A,}%, the eigenvalues of &, written in
increasing order and repeated according to multiplicity, and {u,} a complete orthonormal
system in L*(M, p,,) of eigenfunctions with u, having eigenvalue 1,. Then

(i) for any a>0 and for all t>0 and x, ye M,

Y, A u () | ()| < Clyd == thr,
v=1
where C(a) is a positive constant depending only on o, n+k and xD,
(ii) foralls,t>0and x,x’,y,y' eM,

lpw(sa X, y)_pw(ts x” y,)l

d<d2 5 < d >n+k+1 < d >n+k+1) 4 4
<C +| —— +| — (%, X)) +dy(y, ¥y’
K ﬁ \/7 (Apelx, x7) »y))

AT

>
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(iii) for all v>1,
'1v > C(3)d— 2v2/(n+k) ;
(iv) forallv>1and xe M,
U (x)2 < CO(d*k2+v2)nthiz

Here we put d=diam(M), and C’, C”, C® and C™ are all positive constants depending
only on n+k and kD.

3. A precompactness theorem. One of Gromov’s theorems asserts that the set &
of isometry classes of compact metric spaces of length is complete with respect to the
Gromov-Hausdorff distance HD (cf. [10, Chap. 5]). In particular, the completion of
the set .#, of isometry classes of compact Riemannian manifolds endowed with HD
can be realized as a subspace of (#, HD). In this section, we shall restrict our attention
to certain subspaces of .#,, ., and carry out the completion of them. More precisely,
given integers n>1, k>0, and constants D >0, k>0, let .#¥(n, k, D, k) be the subspace
of 4, consisting of triads (M, u,, p,,) such that the dimension of M is equal to n, and
the conditions (2.3), (2.5) and (2.6) are respectively satisfied by these constants. Here
the weight function w is assumed to be equal to 1/vol(M) in the case k=0. First of all,
we shall show that the projection p of .#,,, onto .#_ which sends (M, u,,, p,) to M is
uniformly continuous on the subspace #*(n, k, D, k) (cf. Theorem 3.5). Hence the
restriction of the projection p to this subspace extends uniquely to a uniformly continuous
map p from the completion of the subspace into .#. Then Gromov’s precompactness
theorem says, as mentioned in Corollary 2.2, that the image is precompact. Actually
we shall show that the subspace .#%(n, k, D, ) itself is precompact (cf. Theorem 3.6).
Finally, we shall be concerned with the boundary elements of .#*(n, k, D, k) in its
completion (cf. Theorem 3.8).

3.1. Let us begin with the following:

Lemma 3.1. Let (M, u,, p,,) be an element of M¥(n, k, D, k). Then
|4t1og p,(t, X, y) +dp(x, y)* | <ey(2)

for all x,ye M and te(0, D?], where ¢,(t) is a positive continuous function on (0, D?]
depending only on n+k, D and k which converges to zero as t tends to zero.

Proor. By Proposition 274, we first have

VirnlD dy(x, y)?

Pults %30 < Copaal®) — 222D exp( ~(1-2) Mw)
Vn+k,x(\/?) 4t

for all x, ye M, te (0, D?] and £>0. Let us here choose a positive continuous function

&(t) on (0, D?] so that &(¢) converges to zero as ¢ tends to zero and
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Corixl&(t)) <expt™1/2
for te (0, D?]. Then we obtain
atlog p. (1, x, )+ dpy(x, y)*
<4172 +e(r)dp(x, y)* +4e(1)1* +4t{log V,, 1 (D) —log V,,,,k,x(\/T)} .
Secondly, applying Proposition 2.5, we can deduce that
dtlogp,(t, x, )+ dy(x, y)* = — 412 — &' () dp(x, y)*> — (de' (1) + (n+ k—1)2x )22,

for some positive continuous function ¢'(¢) on (0, ) chosen in such a way that &£'(¢)
converges to zero as ¢ tends to zero and

Criwn(e'@@)=exp(—t~ 12y

where C,, ., .(¢) is as in Proposition 2.5. The above two inequalities show the lemma.
q.e.d.

LemMa 3.2. Let(M, p,, p,) and (N, u,, p,,) be two triads of M ¥(n, k, D, k). Suppose
there are a mapping f: A— N of a subset A of M into N and a positive number r satisfying

e~ T p(t, x, y)—pult, f(x), fOI)|<r
Jorall x,y of A and t>0. Then
| du(x, y)—dn(f (x), F(I)I<ex(r)

for all x, y of A, where &,(r) is a continuous increasing function on (0, o) with
lim,_, 4 &,(¢) =0, which depends only on n+k, D and x.

Proor. We first notice that
(3.1 [log p.(t, f(x), f(¥)—logp,(t x, y)|

C
<Cexp <*ti+ Cst)lpw(t, S, F(9) =Pt x, y) |
for all x, ye A and te(0, o), because
. 1 C
mln{pw(ta f(X), f(y))5 pv(ta X, y)} ZF CXp<-—Tz— C3t>
1

by Proposition 2.5, where C,, C, and Cj are positive constants depending only on n+k,
D and x. In view of the identity

dy(x, Y —dy(f (%), f(M)*
={dy(x, y)* +4tlogp,(t, x, )} — {dy(f(x), f(»))*+4tlogp,(t, f(x), f(¥)}
+4t{logp,(¢t, f(x), f(»)—logp,(t, x, y)}
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it follows from Lemma 3.1, Proposition 2.1, and (3.1) that

1

. C,+
B2 ldu(x, y)*~dy(f(x), f(?)? | <8ey(1) +4Cyri exp< 2 (Gt 1)t>
for all x, ye 4 and te(0, D?]. Let us choose a continuous function £(r) with ¢(0)=0
and a positive constant C, depending only on #+k, D and « in such a way that #(r)<D?
and

1
4C,t(r) exp( Ctz(:; + C3t(r)> <r 24C,.

Then substituting #(r) into ¢ on the right-hand side of (3.2), and defining &,(r) by
£,(r)? =8¢, (t(N) +r'*+C,r,
we obtain
| da(x, ) —dn(f (), f())? | <eq(r)?
for all x, ye A, which implies

| dr(x, Y)—dn(f(x), f(P)<e5(r) .

This shows the lemma. g.e.d.

LemMMA 3.3, Let (M, u,, p,) and (N, pu,,, p,) be elements of #M¥(n, k, D, k) and let
A be a -dense subset of M. Suppose there is a map f: A— N from A into N such that
(i) f(A) is 6'-dense in N for some &' >0,

(i) e T p(t, x, ) —pult, f(), S| <r
Jfor some r>0, and for all t>0 and x, yc A. Then there are r'-spectral approximations
f: M>N and k: N-M between (M, p,, p,) and (N, p,, p,,)) satisfying

dy(x, ho f(x))<d+e,(r), dy(a, f o h(a)) <6’

for all xe M and ae N, where r'=r+Cs5(5+08'), &,(r) is as in Lemma 3.2, and Cs is a
positive constant depending only on n+k, D and k.

Here a subset 4 of a metric space X is said to be §-dense if dy(x, A) < for any xe X.

Proor oF LEMMA 3.3. From the second assumption (ii) in this lemma and Lemma
3.2, we can deduce that

| dr(x, y)—dn(f (x), f(D)) | <e2(r)

for all x, ye A. Since A4 is é-dense in M, let us take a map {: M— A4 of M into A4 such
that dy({(x), x) <& for all xe M, and extend the map f to a map f: M—N by setting
f=f (. Then it follows from Proposition 2.8 (i) that

e~ p (2, x, Y)—p,(t, f(x), FO)|<r+Csd
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for all t>0 and x, ye M, and for some constant Cg >0 depending only on n+k, D and
k. Now we choose a map A: f(4)— M from the image of f into M in such a way that
foh(a)=a for all ae f(A), and further define a map h: N—>M by hA=hon, where 5 is
a map from N into f(A) satisfying dy(n(a), a)<é’ for all ae N. Then it is easy to see
that these maps f: M—N and h: N— M give r’-spectral approximations. g.e.d.

The following lemma is an easy consequence of the theorem by Gromov mentioned
at the beginning of this section and so we omit the proof.

LEMMA 3.4. Let K be a relatively compact subset of (¥, HD). Given >0, there
exists >0 such that for any pair of elements X, Ye K, and for every pair of maps
f:X—>Y and h: Y- X, the image of f and that of h are respectively e-dense in Y and

X, provided that they satisfy respectively
| dx(x, y) —dy(f (%), f(¥) <
for all x,ye X, and

| dx(h(a), k(b)) —dy(a, b)| <o
for all a,beY.
Now the following is clear from the above Lemmas 3.1-3.4.

THEOREM 3.5. The natural projection of (M., SD) onto (M., HD) which sends
(M, u,, p,) to M is continuous uniformly on the subspace M ¥(n, k, D, k) for given integers
n>1, k>0, constants D>0 and x>0.

3.2. We are now in a position to prove the following:

THEOREM 3.6. For given integers n>1, k>0, constants D>0 and x>0, the sub-
space ME(n, k, D, x) of the uniform space (M, ., SD) is precompact.

ProoF. Let {(M,, u,,, Pu,)}i=1,2,... be a sequence in .#%(n, k, D, k). We would like
to show that it contains an SD-Cauchy subsequence. Taking Corollary 2.2 into ac-
count, we may assume that M; converges to a €ompact metric space X with respect
to the Gromov-Hausdorff distance, namely, there are r(i)-Hausdorff approximations
Ji: Mi—>X and h;: X— M, between M; and X with r(i)—0. Let us consider a sequence
{g:} of functions on (0, o) x X x X defined by ¢,(t, a, b)=p,, (t, h;(a), h;(b)). Observe first
from Proposition 2.8 (ii) that

n+k+1 n+k+1
| ai(s, @, B)— (s, @, b')|sc7d,-<d.-2x2+<—d" ) +(_d" ) )
/s NG

(£)"(2)"

x {dy(a, a’)+dy(b, b') + 2r(i)} + C,
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for all 5,t>0 and a, b, a’, b’ € X, where d; stands for the diameter of M; and C, is a
positive constant depending only on #+k and xD. We now prove that the sequence
{g;} contains a subsequence which converges to a positive Lipschitz function p(t, a, b)
on (0, o0) x X x X. For this, we choose a family of finite subsets 4, (v=1,2,...) of X
such that A, is (1/v)-dense in X. Then {g;} is uniformly bounded and equicontinuous
on [1/v, v] x A, x A, for each v. Hence we have a subsequence {i,} such that ¢, converges
to a function on [1/v,v]x 4,x A, as i, tends to infinity. Here we may assume that
{i,+1} < {i,}. Then by the diagonal argument, we can assert that there exists a sub-
sequence {g;} of {g;} which converges to a function p on (0, ©)x A4 x 4 as j tends
to infinity, where we set A=(J ", 4,. This function p clearly satisfies

(3.3) |p(s,a,b)—q,-(r,a',b')lsC7d<d2K’+<j?)n+m+(\% ))
( d >”+" < d >n+k
/s /7

for all s,t>0 and a, b, a’, b’ € A, where we set d=diam(X). Since A4 is dense in X, the
function p extends uniquely to a Lipschitz function on (0, o0) x X' x X, which will be
denoted by the same letter p. It is easy to see that ¢;(t, a, b) converges to p(t, a, b) for

every (t, a, bye (0, c0) x X x X. Hence p satisfies (3.3) for all 5,t>0 and g,b,a’, b’ e X;
in particular

y potiscar(iw e () e (L)
. t,a, b)—1|<C, 2 — +C| ——
G4 Iptab—1| <x+\/7 (=

x {dx(a, a")+dx(b,b")} + C;

for all t>0 and a, be X. We claim that

3.5 e” 10 gy(t, a,b)—p(t, a, b) |<r'(j),

for all (¢, a, b)e (0, ) x X x X, where {r'(j)} is a sequence of positive numbers which
goes to zero as j tends to infinity. Indeed, suppose to the contrary that there exist a
positive constant p, a sequence {¢;} of positive numbers, and families of points {a;}
and {b;} of X for which the following inequality holds:

e~ Wt q;(t;, aj, b;)—p(t;, a;, b;) | =2p>0.

Then by (3.4), we may assume that ¢; converges to a number >0, and further both a;
and b; converge respectively to some points a and b of X, since X is compact. Hence
we see that the left-hand side of the above inequality tends to zero as j goes to infinity.
This is absurd. Thus our claim (3.5) is verified.

Now it is not hard to see that {(M}, p,,, p,,,)} is an SD-Cauchy sequence. Indeed,
for any (j, k) and for every (t, x, y) € (0, 0c0) x M; x M, we have
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e T p, (t, X, Y) = Pu (b, o £5(%), By o f;00))]
<e 0| p, (8, X, Y)—Pu,(t, by f5(x), Bjo f;(»)]
+e” W p, (8, by f5(x), by () —p(t, £5(x), f;(0)]
+e”C0 p, (t, [0, 50— punt, Bio (), By f(¥)]

d— n+k
<C e"'“/"d-<d?x2+2("> )
7 J J \/7

x {du,(x, hjo () +dp,(3; By (YN} +1' () +1' (k)
<Cer(N+r'(N+r'k),

where we have applied Proposition 2.8 (ii) and put

D n+k
cs=c7maxe-«+wp<pzxz+z(_) )

t>0 t

This implies that Ao f;: M;—M, and h;o f,: M,—M; are r(j, k)-spectral approxima-
tions with r(j, k) converging to zero as j, k—co. Thus the proof of Theorem 3.6 is
completed. g.e.d.

3.3. Let {(M;, 4, Pw)}i=1,2,... be an SD-Cauchy sequence in .#¥(n, k, D, k). In
the rest of this section, we shall describe the limit element in the completion. By virtue
of Theorem 3.5, we see that M, converges, as i tends to infinity, to a compact metric
space X in the topology of the Gromov-Hausdorff distance. Moreover, it turns out
from the argument in the proof of Theorem 3.6 that there exist a Lipschitz function
p(t, a, b)on (0, o) x X x X and r(i)-Hausdorff approximations f;: M;—»Xand h;: X—>M,,
with r(f) converging to zero as i— o0, which enjoy

(3.6) e” T p (8, x, Y)—p(t, fix), Fi(yNI<r(D)
e~ T p,, (¢, hi(a), hy(b))—p(t, a, b) | <r(i)
for all t>0, x, ye M,, and a, be X
3.7 dy (%, hio fi))<r()),  dxla, fio hi(a)) <r(D)
for all xe M; and ae X. In particular, in addition to (3.3) and (3.4), p satisfies

2,
(3.8) p(t,a,b)<C, 4y K(S)Mexp<~(l—e)—m+st>
, I/n+k,lc(\/7 ) 4t
for all 1€(0, D*], ¢>0 and g, be X, where C,; (¢) is as in Proposition 2.4.
Now without loss of generality, we may assume that the above maps f; and A; are
all Borel measurable. As a result, we have a family of the push-forward measures f;, 4.,
on X. Each f;, u,, has unit total mass. We claim the following:
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LemMa 3.7. There is a measure | on X such that as i tends to infinity, (M, u,,)
converges to (X, ) with respect to the measured Hausdorff topology in the sense of [9],
namely

3.9 Sishw,— 1 in the weak* topology .

The proof of this lemma will be postponed until the end of this section. Let us
continue the arguments. We observe that the limit measure g also has unit total mass,
and further it satisfies

ﬂ(Ba(r)) > Vn+k,x(r)
p‘(‘Ba(R)) - Vn+k,x(R)

for all r, R with 0<r<R, and ae X, because of Proposition 2.1 and the fact that

HBLP) = B, (f 7 (BUr)) = im 1, (Bir)

As a result, u(Q)>0 for any open set 2 in X, which implies in particular that the space
C(X) of continuous functions on X is dense in L2(X, u). Moreover we see that p has
the same bounds as in Propositions 2.4 and 2.5, namely,

dy(a, b)?
P(t, 4, b) < Cpr i (B 1)) (B 1)1 exp(—(l —g) L:t)*het) ;

dX (a, b) 2
4¢

P(t, 0, B) = Chi i OB/ 1)) 2By ¢ )™ exp( —(1+¢) —(e+ C">r)

for any £>0 and for all >0 and a, be X, where C”=(n+k+1)*x?/4.
Now we can deduce from (3.3), (3.4), (3.6), and (3.7) that

(3.10) f p(t, a, bydu(b)=1,
X

f p(t, a, o)p(s, ¢, bydu(c)=p(t+s, a, b) .
Thus if we set
T,(Y)(a)= J p(t, a, by (b)du(b)
X

for y € L2(X, p), then {T,} is a symmetric Markov semigroup on L*(X, u). Moreover,
we can show that for any continuous function ¥ on X, T,(}) converges to y uniformly
on X as 1—0:

(3.11) lim | T,0) ~ ¥l =0.
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Indeed, given ¢>0, we first take a positive number 4 such that |y(a)—y(b)|<¢ if
dx(a, b)<$é. Secondly, by virtue of (3.8), we can choose a positive number T in such a
way that p(t, a, b)<e¢ for any t< T and all g, be X with dy(a, b)>05. Therefore we see
that for every ae X,

| X @)—¥(a) |=| Ty —¥(a))|
SJ p(t, a, )| Y (b)Y (a) | du(b)+j p(t, a, D) [ Y(b)— Y (a) | du(b)
Ba(3) X \Ba(3)

<e(1+2|¥lla) -

Thus (3.11) is verified. As a consequence, we see that {7,} is a strongly continuous
semigroup with kernel p on L*(X, ). Let us denote by £, the infinitesimal generator
of {T,}. Then %, has the eigenvalues {4,};>, written in increasing order and repeated
according to multiplicity. Let &= {u,} be a complete orthonormal system in L3(X, ),
which consists of eigenfunctions of %, with u, having eigenvalue A,. Then the kernel
p has the eigenfunction expansion

ptab)=Y e ulayu,b).
v=0

Thus we are allowed to use the notion of r-spectral approximations between two
elements in the completion of the uniform space .#¥(n, k, D, k) for given constants »,
k, D and «x as before.

Summing up what we have observed so far, we have the following:

THEOREM 3.8. The limit element of a sequence {t,=(M,, p,,, p,,)} in the uniform
space M%(n, k, D, x) can be regarded as a triad 1=(X, u, p) which consists of a compact
metric space X ,of length, a Radon measure p of unit total mass on X, and a positive
Lipschitz function p(t, a, b) on (0, ) x X x X such that

(1) X is the limit of {M,} with respect to the Gromov-Hausdorff distance;

(il) pu satisfies

”(Ba(r)) > Vn +k,n(r)
”(Ba(R)) - Vn+k,x(R)

foraeX, 0<r<R;
(iii) p is the heat kernel of a strongly continuous semigroup on L*(X, u) enjoying

2
Pty 3, B) < Cy i @(Bol) 1) By 1)) exp( (-9 @+ ez) :

dX (aa b) 2
4t

Pt 6, 0)2 Crp (OB 1) 2By 1)1 eXD(—(l +é) —(e+C ”)t>
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Jor any £>0 and for all t>0 and a, be X, where C"' =(n+k+ 1)*c?/4. In addition, p satisfies
d n+tk+1 d n+k+1
|p(s,a,b)—p(t,a’,b')|sC-,d<d2K2+< ) +<——> )
Vs Jt
< d >n+k ( d >n+k
NE Jt

foralls,t>0anda,b,a’, b’ € X, where we set d=diam(X). Furthermore, there exist Borel

measurable r(i)-spectral approximations f;: M;—X and h;: X—->M; between t; and 1
satisfying (3.7) and (3.9).

x {dy(a, a’)+dx(b, b')} + C,

PrOOF OF LEMMA 3.7. Suppose there exist two subsequences, say {fju;} and
{ festti}» Of {fiuht:}, Which converges respectively to measures u and u’ in the weak*
topology. Then for any Y € C(X), we have

J Y(a)du(a)= ling fj p(t, a, by (b)du'(b)du(a)
b'¢ ng XxX

=lim J J p(t, a, bydu(a)y(b)dp'(b)

t=0
= f Y(b)du'(b) -
X
This shows that u=y'. q.ed.

4. Convergence of eigenvalues and eigenfunctions. Bérard, Besson and Gallot [3]
defined a family of spectral distances on the set of compact Riemannian manifolds by
embedding them into the same Hilbert space, the space of real-valued, square integrablé
series. The embedding is built by means of the heat kernels of the manifolds, and it is
proved that the set .#%(n, 0, D, k) is precompact with respect to each of the spectral
distances in their sense. Their distances are, however, different from ours. For instance,
as we have seen in Theorem 3.5, the spectral distance SD in our sense is closely related
to the Gromov-Hausdorff distance. Moreover taking the Sturm-Liouville decomposition
of the heat kernel into account, we may consider a point of a compact Riemannian
manifold endowed with a measure as a curve in the Hilbert space. This is our point of
view.

In this section we shall first define a distance on the set of equivalence classes of

elements (M, u,, p,,, ) where (M, p,,, p,)€ A, with p (M)=1and &={u},_o ,  is
a complete orthonormal system in L*(M, p,,) consisting of the eigenfunctions of &,
and discuss its properties in relations with the spectral distance SD and the
Gromov-Hausdorff distance (cf. Theorems 4.1 and 4.2). Secondly, we shall show that
when a sequence {t,=(M, u,,p,)} in Mkn k D, k) converges to an element

7=(X, u, p), the v-th eigenvalue of z; tends to that of T and moreover the eigenfunctions
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of 1; also converge to those of 7 in a certain sense (cf. Theorem 4.6).
4.1. Let us begin with defining two Hilbert spaces /, and 4, by

12={(av)v=1,2,...: z a3< +(D}
v=1

h1={(av)v=1,2,...: Y (+vHal< +00} .
v=1

We remark that the embedding 4, —/, is a compact operator. Let us consider the space
C([0, ), 1) of continuous curves y: [0, c0)—I, such that the I,-norm |y(¢)|,, of y(¢)
tends to zero as t—oco. This space is endowed with the distance

(v, 0):=Sup |9 (1) —o() | -

For any subset 4 of C_([0, o), /,) and a positive constant r, #",(4) stands for the
r-neighborhood of A4, namely, A (A4):={yeC ([0, ©0),1,):d (4,y)<r}, and the
Hausdorff distance 4 on the set of bounded closed subsets of the metric space
C ([0, o0), [,) is defined by

Su(A, B)=inf{r>0: Ac A (B), Bc N (A)} .

Given a positive constant C and a nonnegative continuous function #(¢) (¢>0) which
tends to zero at r— o0, if we set

K(C,n):={ye C ([0, ©), ) :|y() In,<n(t)  forall >0,
lp(t)—y(s),<Clt—s| for all t,s>0},

then it is easy to see that K(C, n) equipped with the distance d,, becomes a compact
metric space. Here we recall a well-known fact that the set of closed subsets of a compact
metric space is compact with respect to the Hausdorff distance (cf. Federer [8, p. 183]).
4.2. Let M be a compact Riemannian manifold of dimension » and w a positive
smooth function on M which gives a positive Radon measure u,,=wd vol,, of unit mass:
u,(M)=1. Using the eigenvalues and the eigenfunctions of the operator #,,, we embed
M into the metric space C_([0, o), ;) as follows: Let 0=41,<1;<1,<--- be the
eigenvalues of ¥, and ®={u,} a complete orthonormal system of eigenfunctions of
&, in L*(M, u,) with u, having eigenvalue A,. For a point x of M, we define an element

Fg[x] of Ci([0, ), [;) by
Folx](1)=(e™ ¢ 102e™ 112y (x)), -1,

Then it turns out that the map Fy of M into C ([0, ©), I,) given by xi— Fg[x] gives
rise to a continuous imbedding of M. Indeed, the injectivity of the map follows from
the fact that the eigenfunctions of .#,, separate the points of M. We observe that for
all x, yeM and >0,
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CFo[X1(1), Fol yX(1)>1, =™ " 1p (2, x, y)—1)

do(Fo[x1, Foly])*= sup e I(p (8, X, X)+ P L, ¥, Y) = 2Pu(t: X, ¥)) »
t>

where p(t, x, ) stands as before for the heat kernel of the operator £, on L*(M, p,).
If we set

1/2
Opr(Xs y) = { supe™ T p(t, X, X)+pults ¥, ) —2p(0, X, y))}
t>0

for x, ye M, then we have a distance &,,,, on M which induces the same topology of
M. This distance will play an important role when we investigate a class of compact
Riemannian manifolds endowed with measures such that no uniform lower bound for
the modified Ricci tensors R, , exists. This topic will be discussed elsewhere.

Let us now define a pseudo-distance on the set of elements (M, u,, p,,, 2={u,})
as above by

SD*(a, B)=0g(Fo[ M1, Fu[N])
for a=(M, p,, p,, ®={u,}) and f=(N, p,, p,,, ¥={v,}). Notice that
SD*(a, ) <r

if and only if there exist not necessarily continuous maps f: M—N and #: N- M such
that

0
@) et Y | () — P (f(x)) P <r?

v=1

for all t>0 and xe M,

4.2) e” I N e M 2u (W(a))—e "o (@) P < r?
v=1

for all >0 and aeN. Here {4,:0=45<A;<A,<- -} and {p,:0=po<p; <p, <"}
are respectively the eigenvalues of &, and %, In particular, SD*(«, f)=0 if and only
if there is an isometry f: M— N between M and N so that f*w=v and f*v,=u, for
all v=1,2,3,.... In what follows, we identify such elements and denote by #.4,, ,
the set of equivalence classes of elements (M, y,,, p,,, ® = {u,}) equipped with the distance
SD*. Let a=(M, u,, p,, ®={u,}) and f=(N, p,,, p,, ¥ ={v,}) be two elements of F.4,
such that SD*(a, f) <r, and then take maps f: M—N and h: N—> M satisfying (4.1)
and (4.2), respectively. Let p,(t, x, ¥) (resp. p,(t, a, b)) be the heat kernel of ¥, on M
(resp. £, on N). Since

e” I p(t, X, ) —put, f(x), FN} = Folx1(6) — Folf ()1(2), Fol Y101,
+<{Fplf ()W), Faly)(t) — Flf (D)4, ,
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it follows that for all x, ye M and t>0,

4.3) e T I0 p(t, x, Y)—pult, f(x), f(P) <o,
where g =sup{| Fo[x1(?)|;, +| Fe[al(?)|,,: x€ M, ae N, t>0}.In the same way, we have
(4.4) e~ T I0| p.(t, h(a), (b)) —pu(t, a, b) |<ar

for all @, be N and ¢>0.
4.3. Given positive integers n> 1, k>0 and positive constants D, k, we set

FM3n k, D, )={(M, p,, p,, PYeF M, (M, p,, p,) € M(n k, D, x)} .
Then it follows from Proposition 2.8 (i) and (iii) that

Fo[M]=K(C, 1)

for any (M, p,, p.,, ®)e FM¥En, k, D, k), where C and n depend only on n+k, D and
k. Thus we have the following:

THEOREM 4.1. The metric space FME(n, k, D, k) with the distance SD¥* is pre-
compact.

Now if we denote by = (resp. n') the natural projection from #.#,, onto 4, .
(resp. £) which sends (M, u,, p., ®) to (M, u,,, p,,) (resp. M), then by (4.3), (4.4) and
Lemma 3.2, we have the following:

THEOREM 4.2. Given constants n, k, D and x as before, both of the projections n
and ' are uniformly continuous on the space F.M¥(n, k, D, k). To be precise, given two
elements a=(M, p,, p,, ®={u,}) and p=(N, p, p,,, ¥ ={v,}) of FM¥(n, k, D, k), there
exist 6(SD*(a, B))-spectral approximations f: M—N and h: N->M between n(o) and
(B), which are also 6(SD*(«a, f))-Hausdorff approximations between 7'(a) and n’'(p),
such that

0
o™ Y e M2y (x)— e~ P (1)) [P <12
v=1

for all t>0 and xe M,

eI Y ey (h(@) — e P 0 (a) P <r?
v=1
for all t>0 and ae N. Hence we put r=2SD*(a, ), A, and p, are the v-th eigenvalue of

o and B, respectively, and &(t) is a monotone increasing continuous function depending
only on n+k, D and x with 5(0)=0.

By this theorem, the projection = (resp. ') extends uniquely to a continuous map
7 (resp. ©') from the completion of F.#%(n, k, D, k) onto that of A ¥%(n, k, D, k) (resp.
that of n'(FM%(n, k, D, k))=p(M¥(n, k, D, x)) in F). Therefore Theorem 3.6 and also
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Corollary 2.2 can be derived from Theorems 4.1 and 4.2 without referring to Gromov’s
precompactness theorem.

4.4 We shall now prove the uniform continuity of the eigenvalues with respect
to SD.

LEMMA 4.3. Let n, k, D and x be as before, and let D' be a positive constant less
than D. Then given a positive integer v, there exists a monotone increasing continu-
ous function ¢,t) with £,0)=0, depending only on n+k, D, k, D' and v, such that
Sfor all o=(M, p,, p,, D), B=(N, u,, p,, V)EFME(, k, D, k) with diam(M)>D' and
diam(N)=>D’,

l 'lv_o-v ‘ SG‘,(SD*((Z, ﬁ)) s
where A, and o, are the v-th eigenvalues of £, and & ,,, respectively.

PrOOF. Let u, and v, be the v-th eigenfunctions of ¥, and ¥, having the
eigenvalues 4, and o,, respectively, and let f: M—N and h: N-> M be as in Theorem
4.2. Then we have

e—(t+ 1/t)| e—}.vtlzuv(x)_e—avt/ZUv(f(x)) '2 < r2
for all t>0 and xe M;
e—(t+1/t)| e—}.vt/Zuv(h(a))_e—avt/ZDv(a)IZ <'.2

for all >0 and ae N. Here we put r=2SD*(«, f). Since |,, uZdu, =1, there is a point
x, of M such that |u,(x,)|=1. Therefore we see that

v INI2 < ppt+ a2 4 |y (f(x,))] .
Recall that
O'vSCv s |Uv(f(xv))|3C:’

for some positive constants C, and C’, depending only on n+k, D, x, D’ and v, be-
cause of Proposition 2.7 (iii) and Proposition 2.8 (iv), respectively. Let us set
E(t)y=exp(t+1/t+ C,2) for simplicity and denote by 4, the positive number where ¢,
takes the minimum value m,, and in addition, let us take a continuous function 7,(s)
insuch a way that & (T,(s))=1/sfors< 1/m,and T(s)= A4, for s > 1/m,. Then we have

1
log(t+C) if r<—
Tv(r) m,
g,—A,<
2 . 1
log(m,r+C) if r>—.
T(r) m,
In exactly the same way, we get this bound for A,—¢,. q.e.d.

4.5. At this stage, we shall study the boundary of #.#*(n, k, D, k) in its com-
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pletion (F.M%(n, k, D,x))”. Let {o;=(M,, p,, P, P;={u’})} be an SD*-Cauchy se-
quence in FM¥n k, D,x). Then {n(x;)=(M, p,,p,,)} is an SD-Cauchy sequence
in M¥n, k, D, k). Indeed; if we set r(i, j)=SD*(«;, «;) and r'(i,j)=05(r(i, j)), then by
Theorem 4.2, we have r'(i, j)-spectral approximations f;;: M;—»M; and h;;: M;— M,
between n(e;) and n(x;), with 7'(i, j) tending to zero as i, j— o0, wh1ch enjoy 4. 1) and
(4.2), namely,

et/ glle ALt/2 ui(x)— e~ M2y, V(f,](X))|2<r(l,J)2
for all >0 and xe M;;
(4'5) e—(t+1/t) Z |e—}.'t/2 '(h”(a)) e—;_lt/z ’(a)|2<r(l J)z
v=1

for all £>0 and ae M;, where {i,:0=4,<1{<1,<---} are the eigenvalues of Z,,.
Suppose that M; does not converge to a point, that is, the diameters of M, are uniformly
bounded below. Let (X, u, p) be the limit of the sequence {m(e;)=(M;, fi,, py,)} In
M*(n, k, D, x). Then there exist r'(i)-spectral approximations f;: M;—X and h;: X->M,
between 7(a;) and (X, u, p), with r'(i) tending to zero as i— oo, which satisfy

(4.6) dyg,(hijo hi(@), hi(@) <2r'G, j)

for all ae X. Observe that

e G Z |e—}.'t/2 '(h (a)) e—;Jt/Z v(h (a))|2
y=1

Sze—(t+1/t) Z le—z‘t/z '(h (d)) e—lvt/Z '(huoh (a))|2

v=1

+2e7 U Y o= M2yl (B0 h(a)) — e~ 2ui(hy(a)) 2 .

v=1

The second term on the right-hand side in this inequality is bounded from above by
2r(i, j)?, because of (4.5). On the other hand, if we put x=#h,(a) and y="h;;o h;(a) for
simplicity, the first term is equal to

2e I P, (8, %, %) +Pu L, ¥, V)= 2P (L, X, D)} -

Hence by Proposition 2.8 (ii) and (4.6), we see that the first term is less than Cr'(i, j),
where C is a positive constant depending only on n+k, D and x. Thus we obtain

@.7) e 3 oKy (o)) e Ky (@) [ < )

for all t>0 and ae X, where r”(i,j) converges to zero as i,j—oo. In particular, this
implies that for any fixed integer v>0,
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4.8) eI = M2yl h (@) — e TR 2ui(hy(@)) 12 <7 (i )

for all £>0 and aeX. Since {A}};-, , 5 ... for each v is a Cauchy sequence by Lemma
4.3, we have the limit, say A,. Moreover it follows from (4.8) that {u’-h,} is also a
Cauchy sequence in L*(X). Let us denote by u, the function to which u? o h; converges
as i tends to infinity. Then it is not hard to see that u, is a Lipschitz continuous function
on X and further it is an eigenfunction of %, with the eigenvalue 4,. Here £, stands
for the infinitesimal generator of the Cy-semigroup {7,} in L%(X, u) with kernel p(z, a, b).
Thus by putting u,=1, we obtain a complete orthonormal system &={u,},_¢ ; .. in
L*(X, p) and also we have an embedding F,: X—C_([0, o), ;) in exactly the same
manner as in the case of Riemannian manifolds. Clearly the image Fg[X] coincides
with the Hausdorff limit of Fy[M;] in C ([0, ), [;) as i tends to infinity. In other
words, a;=(M;, i, Py, P;) converges to (X, u, p, P) with respect to the distance SD*
as i tends to infinity. In particular, letting j go to infinity in (4.7), we get

00
e e AUl (@) e Pua) <),
=1

for all t>0 and ae X, where r”(i) converges to zero as i tends to infinity. In addition,
the same argument as above shows that

o0
e—(t+1/t) Z lf—’ t/2 :(x) e ).vt/zu (f(X))|2<r”(l)
v=1

for all t>0 and xe M,. Thus we have:

THEOREM 4.4. Given constants n, k, D and x as before, the completion
(FM¥(n, k, D, k)" of FM¥(n, k, D, ) consists of the elements (X, p, p, ©={u,}), where
(X, u, p) belongs to the completion (M*(n, k, D, k)~ of M*(n, k,D, k) and ®={u,} is a
complete orthonormal system of eigenfunctions of £, with u, having the v-th eigenvalue.

4.6. We are now in a position to state the main theorem in this section. For two
elements o, t of (A X(n, k, D, x))~, we set

I'(6, 7)=max{SD*(a, 7~ }(z)): e~ (o)},
O(o, 1)=min{SD*(, f):a €~ 1(0), e ()} .

Then given a sequence {g;} and an element t in (4 *(n, k, D, x))~, we can assert that
the following three conditions are mutually equivalent:

(i) lim;, , SD(o;, 7)=0, namely ¢; converges to t in (A *(n, k, D, k))~;

(ii)) lim,,  I'(c;, 7)=0;

(iii) lim,, , @(a;, 7)=0.

In particular, for an element t=(X, u, p)e (A ¥(n, k, D, x))~, if we denote by 4,(1)
the v-th eigenvalue of the operator .Z,, then it follows from Lemma 4.3 that
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lim ,(0)=1,(1),
provided a sequence {g;} converges to 7. Here we understand 4,(t)= oo for v>0, when
X is a point. In this trivial case, we set evidently p=1. We notice that if every eigen-
value of 7 is simple, then the following condition (iv) is also equivalent to the above
ones (i)—(iii):
@iv) lim,, I'(z, 0;)=0.
Thus we obtain the following:

THEOREM 4.5. Given integers n>1, k>0, positive constants D and k, the following
assertions hold:

(i) The v-th eigenvalue A, for each v, which is regarded as a function on the uniform
space ME(n, k, D, k), extends continuously to the completion (M ¥(n, k, D, x))~.

(i) Suppose a sequence {(M,, u,,, p,,)} in #%n, k, D, k) converges to an element
t=(X, , p). Then for any complete orthonormal system ®;={u'},_, , . in L*(M,, p,,)
which consists of eigenfunctions u’ with u' having the v-th eigenvalue, there exist such a
system ¥;={v'} in L*(X, p), and r(i)-spectral approximations f;: M~ X and h;: X—M,
satisfying

e—(t+1/t) Z |e }.vt/z l(h (a)) e—;.vr/z '(a)l2<r(1),
=1
for all t>0 and ae X;
e—(t+1/t) z |e ez :(x) e—-).vt/z ‘(f,(x))l2<r(1)
v=1

for all t>0 and xe M. Here r(i) does not depend on the choice of ®; and tends to zero
as i—oo.

5. Spectral convergence and resolvents, Let t=(M,u,,p,) be a triad of .4, .
For a positive number o, the inverse R, , of the operator #,,+ o/ in L*(M, u,,) has the
kernel g, ,, called the Green function, which is given by

ge,o(%, ¥) =f e~ 7p,(t, x, y)dt .
V]

This holds for an element 7 of the completion of the uniform space #¥(n, k, D, k) for

given constants n, k, D and « as before. In this section, we describe some conditons for

the convergence of a sequence in .#¥(n, k, D, ) in terms of the resolvents.

5.1. Let {t;=(M,, p,,, Pw)}i=1,2,... be a sequence of .#}(n, k, D, k) such that M;
converges to a compact metric space X with respect to the Gromov-Hausdorff distance
as i tends to infinity. Let f;: M;—»X and h;: X— M, be r(i)-Hausdorff approximations
between M; and X with r(i) converging to zero as i tends to infinity. Without loss of
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generality, we may assume that both maps f; and A; are Borel measurable. Fix a positive
number o. Then we have a sequence of linear maps R} : C(X)— B(X) of the space of
continuous functions on X into that of bounded Borel measurable functions defined by

RIW)a)=h-R . fX)ND=| g.,.(h(a), YW (fi(¥)dp, (»)
M;
for Y € C(X) and ae X. In addition, we have a sequence of the push-forward measures
Jixti on X. The main result of this section is stated as follows:

THEOREM 5.1. Let 1,=(M,, u,,, p,), X, fi» hi, R¥ and f, u,, be as above. Then the
conditions below are mutually equivalent:.

(1) The maps f; and h; are r'(i)-spectral approximations between t; and an element
T =(X, 4, p) with lim,_, ,, r'({)=0.

(ii) The measure f, u,, converges as i tends to infinity in the weak* topology and,
Surthermore, lim,_, ., R¥()(a) exists for any Yy e C(X) and ae X.

(i) The measure f; ., converges as i tends to infinity to a measure p in the weak*
topology and further lim,_, ., [, R¥(Y)ddu exists for any Y e C(X) and every ¢ € B(X).

When one (and hence all) of these conditions is satisfied, for any y € C(X) and a€ X,

R, ()@= lim R¥ W)@ .

5.2. We prove two lemmas for the proof of this theorem. The first is stated as
follows:

LEMMA 5.2. Let1=(M, pu,, p,,) be an element of M¥(n, k, D, x) and g, , the Green
Sfunction of (£, +0cI)" 1. Then for any >0 and 6> 0, there is a constant y >0 depending
only on n+k, D, x, ¢ and  such that

‘ gt,o‘(x’ y) —gr,a(xa Z) , <&
if dy(x, ¥)=9, dy(x, z)=>06 and dy(y, z)<y.
Proor. Observe first from Proposition 2.4 (¢=1/2) that if dy(x, y) =>4,
T T \ V D
G.H J e "p,(t, x, y)dt<C, j e~ ot % B2 n+kl(D)

0 0 Vn + k,x(\/T)

for any T:0< T<D?, where C, is a positive constant depending only on n+k, D and
k. Secondly by Proposition 2.8 (ii), we have

dt

SCZJ t—(n+k+1)/ze—ctdth(y’ Z)
T

f e_ﬂ{pw(ts X, y) _pw(t7 X, Z)}dt

T

for all 7>0 and x, y, ze M, where C,>0 depends only on n+k, D and x. Hence it
follows that if dy(x, y) >3 and d,,(x, z)>4,
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Igt,o'(x9 y) —gt,a'(x’ Z) |

T 0
szclf emer-sm sz _VasinD) dt+sz (@A DIZg =0ty g (y, z)

Y Vn + k,K(\/T) T

for any Te(0, D?]. Hence taking T appropriately, we see that the assertion of the
lemma holds. q.e.d.

LeMMA 5.3. In the same notation as in Theorem 5.1, suppose the first condition (i)
holds. Let >0 and 6 >0 be given constants. Then for sufficiently large i, one has

19e..o(hi(@), hi (D)) —g..,.(a, b)|<e
if dx(a, b)=9;

192,.0(X, Y) =G, o fi(x), fi(¥))I<e
if dy(x,y)29.

Proor. Let us consider indices i so large that 2r(i)<4. Then for all a, be X with
dy(a, b) > d, we have

d (hi(@), hi(B)) > dy(a, b)—r(i) % 5

and hence by (5.1)

J e "{ pw,(t, (@), h;(B)) —p(t, a, b)}dt

0

<2C, JTe“"“”/’”*'/2 VD)

0 Vn+k,x(\/7)
for any 7:0<T<D? On the other hand, since 4; is an r'(i)-spectral approximation,
we obtain

f e " Py, (t, hi(a), hy(b))—p(t, a, b)}dt

T

Sr’(i)J e—at+t+1/tdt
T
for all T>0. Thus we can deduce that for all a,be X with dy(a, b)> and for any
Te(0, D?],
| 9e..a(hi(@), (D)) — 9., o(a, D)

T ©
SZCI f e—o‘t—62/81+t/2 Vn+k,x(D) dl_i_rr(l)f e—at+t+1/tdt .
T

0 Vs 1)

This shows the first assertion of the lemma. In a similar way, we can verify the second
one. q.ed.

5.3. We are now in a position to give a proof for Theorem 5.1.

ProoF oF THEOREM 5.1. (i) = (ii) We have already shown that f, u; converges
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to a measure u in the weak* topology (cf. Lemma 3.7). Let y be a continuous func-
tion on X. For any ¢>0, take d >0 so small that

|Y(a)—y(b) | <oe

if dy(a, b)<$é. Fix a point ae X and set ¥, =y —y(a). For simplicity, we write B for the
metric ball around a with radius § and put B°=X\ B, B;= f; !(B) and B{= M\ B,
Then

(52)  [IR!Y)a)—-R. W) |=|RFWNa)— R, ()9
J Guo(hi(a), y)lﬁa(fi(y))duw,.(y)l+ f PO b)l//a(b)dl‘l(b)'

i

<

| {ge,ohi@), ¥) =g, o (hi(@), Bio (W)W (D)di, () ‘
Bf

+ | {geori(@), 1i(B)—4g....o(a, b)}¥(B)dfiyirn (b) '
-

r

| Gewnol@® DWa(B)dS bt (B) — g o0, DI L(b)du(b) ’ :

JvB

The first two terms on the right-hand side of this inequality are both -bounded by ¢,
since |, |<ae on B. As for the third term, we observe that

dp, (3, hie () <r(i)
for all ye M;, and further notice that if y € B¢, then

Ay (hi(@), o fi() 2 dx(fi(y), @) —r() =6 —r(D) ;
Ay (hi(@), y) Z dx(fi(D), Jio hi(@) —r(D)
2dx(fi(¥), @) —dx(a, fi°h(@))—r()=6—-2r(J).

Hence taking sufficiently large i so that 6 >4r(i), and applying Lemma 5.2 to the third
term on the right-hand side of the inequality (5.2), we see that this is bounded by ¢ for
large i. Moreover by virtue of Lemma 5.3, we deduce that the fourth term there is also
bounded by ¢ for large i. Finally, since the push-forward measure f;, u; converges weakly
to the measure y as i— o0, it follows that the last term there converges to zero as i-» 0.
Thus we have shown that

| RF()Na)— R, (¥ )a) |<5e

for large i.

(ii) = (ii1) is trivial.

(iii) = (i) is also clear from the arguments in the proof of Theorem 3.6 and that
of the first assertion (i) = (ii).
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6. Further discussions. Let M be a compact Riemannian manifold of dimension
n. Given smooth functions w>0 and ¥ on M, we consider the equation

0
(E"— ngw,l’)“(ta X)=0 ’

where we set

Lovf=—Ayf—Viogw-f+Vf .

Let us denote by p,, ,(t, x, y) the fundamental solution of the above equation. We have
restricted our attention so far to the case V'=0. However, it is possible to introduce
the spectral distance SD on the set of equivalence classes of triads (M, w, p,, ;) and
carry out the discussions similar to what we have done in the previous sections, although
some obvious changes should be made.

In fact, given integers n>1, k>0 and positive constants D, k and #, we write
ME v(n, k, D, x, n) for the uniform space of elements (M, w, p,, ) as above such that
the dimension of M is equal to n, (2.3) the tensor R, ;> —(n+k—1x?, (2.5) the
diam(M)< D, (2.6) the measure u,, has unit total mass u, (M)=1, and moreover V
satisfies

6.1 | V]e<n?.

Furthermore, let ZA4% (n, k, D, x, 1) be the metric space with the distance SD* which
consists of elements (M, w, p,, ,, ®={u,}), where (M, w, p,, ;)€ A} (n, k, D, k, ) and
®={u,},-0.1.2,... is as before a complete orthonormal system in L*(M,p,) of
eigenfunctions u, of &, , with u, having the v-th eigenvalue A,. We remark that u, is
uniformly Hélder continuous, namely,

V14,0 — (D) | < COYpe(%, )

for some a (0, 1) depending only on the given constants n, k, D, x and #, and a positive
constant C(v) depending only on v and the given constants in such a way that C(v) < O(v?).
This can be verified by the standard elliptic regularity theory together with the Poincaré
inequality described in Proposition 2.6. Then results similar to those in Sections 3-5
can be shown to be true for these spaces .43 ,(n, k, D, x, n) and FA}¥ (n, k, D, x, n).
Obviously the constants and the functions there must depend also on the given constant
n, and the equality in (3.10), for example, should be read as

e‘"'sj p(t, a, bydu(b)<e*™ .
X

In addition, the components of the embedding Fp: M—C ([0, o), /,) in 4.2 should
be begun by

Lo(t)e ™ 2ug(x) ,
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where {,(¢)=exp(—t—1/t—nt)/2.
Let us conclude this section with a direct application of the generalization men-
tioned above.

THEOREM 6.1. Let M be a compact Riemannian manifold of dimension n and let
w>0 and V be smooth functions on M. Suppose (2.3), (2.5) and (6.1) are satisfied
for some positive constants k, k, D and n, respectively. Then there is a constant
C=C(n+k, D, x, n) depending only on the quantities in the parenthesis such that

Ay—Ag————,
T diam(M)?

where A; (i=0, 1) are the first two eigenvalues of the operator £, .

PrOOF. By rescaling the metric of M and multiplying the weight function w by a
constant if necessarily, we may assume that the diameter of M is equal to one and the
measure p,, has unit total mass. Moreover, replacing the given V' by V'—min V, we may
assume that V' >0. Then the assertion follows by contradiction. Indeed, suppose to the
contrary that there exists a sequence {7;=(M;, w;, pwj,yj)} in A% y(n k, D, x,n) with
diam(M;)=1 such that the gap between the first two eigenvalues of £, , tends to zero
as j—o0. Then by virtue of an analog to Theorem 3.8, we may assume that this sequence
converges to an element 7= (X, g, p) in the completion of .#% ,(n, k, D, k, n). This leads
to a contradiction, because we have an analog to Theorem 4.5, and the first eigenvalue
of 7 is simple.

ReMARK. Inthe present paper, we have focused on compact Riemannian manifolds
without boundary. However it is possible to discuss a class of complete (pointed)
Riemannian manifolds including noncompact manifolds or manifolds with boundary.
This topic will be taken up elsewhere.
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