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Abstract

Photon-counting detectors can acquire x-ray intensity data in different energy bins. The signal to 

noise ratio of resultant raw data in each energy bin is generally low due to the narrow bin width 

and quantum noise. To address this problem, here we propose an image reconstruction approach 

for spectral CT to simultaneously reconstructs x-ray attenuation coefficients in all the energy bins. 

Because the measured spectral data are highly correlated among the x-ray energy bins, the intra-

image sparsity and inter-image similarity are important prior acknowledge for image 

reconstruction. Inspired by this observation, the total variation (TV) and spectral mean (SM) 

measures are combined to improve the quality of reconstructed images. For this purpose, a linear 

mapping function is used to minimalize image differences between energy bins. The split 

Bregman technique is applied to perform image reconstruction. Our numerical and experimental 

results show that the proposed algorithms outperform competing iterative algorithms in this 

context.
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I. Introduction

DUE to its high spatial and temporal resolution, computed tomography (CT) is playing an 

irreplaceable role in biomedical and industrial applications [1]. However, conventional CT is 

based on energy-integrating detectors and yet reconstructs an attenuation coefficient 

distribution based on a monochromatic x-ray transmission model. The characteristic 

mismatch between polychromatic x-rays and energy-integrating detectors often cause loss of 

energy-dependent information and artifacts in a reconstructed image [2].

Recently, the research and development of spectral CT, which is also referred to as multi-

energy, spectroscopic, energy-selective and energy discrimination CT, has attracted 

considerable interest. In the past, dual-energy CT, which can be seen as the simplest version 

of spectral CT, has been utilized in many applications such as material decomposition [3], 

automated bone removal [4] and detection of hepatocellular carcinoma and portal 

venography [5, 6]. Dual-energy CT can be implemented in several ways, such as dual 

sources, dual layer sandwich detectors, and fast kVp switching [7–9]. However, dual-energy 

CT still relies on the energy-integrating detectors, which integrate all of the incoming 

photons by the weights proportionally to their energy levels, subject to spectral blurring and 

beam hardening.

Different from dual-energy CT, spectral CT uses photon counting detectors (PCDs) to 

capture more spectrally dependent information [9]. Due to the sensitive energy 

discrimination and rapid photon counting, PCDs can efficiently identify a single photon and 

record it in a corresponding energy bin [10, 11]. Therefore, PCDs can reveal the spectral 

information of structures being scanned. Spectral CT has immediate and important 

applications, for example, low-dose CT, contrast imaging, and K-edge imaging [12–14].

For spectral CT reconstruction, a number of studies were reported. Algorithms based on the 

algebraic reconstruction technique (ART) perform image reconstruction by solving a system 

of linear equations [15], which can utilize various constraints. Statistical models are effective 

to handle quantum noise in a polychromatic situation [16, 17]. Some PCDs based scanners 

still work in the step-and-scan mode and take long data acquisition time. One solution in this 

situation is to reduce the number of projection views. When projection data are highly 

under-sampled and/or rather noisy, it would be challenging to produce a correct solution 

without strong prior information.

Recently, compressive sensing (CS) has been widely used in biomedical imaging [18, 19]. A 

critical step of CS is to choose a sparsifying transform. Valuable choices include total 

variation (TV) [20], wavelet [21], fast Fourier transform (FFT) [16], dictionary learning 

(DL) [22], and so on. As a natural application, CS was used to handle dual-energy CT and 

spectral CT reconstruction. Gao et al. proposed a multi-energy CT reconstruction algorithm 

based on the prior rank, intensity and sparsity model (PRISM) [23]. Li et al. folded images 

in different energy bins into a tensor form to improve the PRISM reconstruction [24]. 

Following the same idea, Semerci et al. presented a tensor-based nuclear norm regularization 

algorithm [25]. By introducing a pixel-wise penalty on the rank of the Jacobian matrix, 

which generalizes the gradient operator over the vector field constructed by multi-channel 
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images, Rigie and La Riviere proposed a joint spectral CT reconstruction model via 

constrained total nuclear variation (TNV) minimization [26]. In [27], a local constrained 

backprojection reconstruction technique [28] was adapted for spectral CT imaging, making 

use of correlations in the spectral domain. Although these and other methods obtained better 

results than the traditional analytical reconstruction, the differences and similarities were not 

fully considered between images in different energy bins.

In this paper, we propose a class of spectral CT reconstruction algorithms incorporating the 

sparsity and similarity in both the image and spectral domains [29]. The general 

regularization term can be expressed as

(1)

where λ is a parameter to balance the two terms. To measure the similarity among images in 

different energy bins, we propose spectral mean (SM) to calculate the similarity patch by 

patch. Directly measuring the similarity between images in different energy bins will suffer 

from the variation of linear attenuation coefficients depending on the x-ray energy. A 

mapping function is constructed to improve the performance of SM by normalizing all the 

images in a unified fashion. With this mapping function, we formulate an objective function 

in a form combining data fidelity and regularization terms. Our proposed methods are 

different from PRISM and TNV that the similarity among images includes both edge and 

content. What’s more, the content of each energy image is transformed by proposed linear 

mapping approach. The success of linear mapping applying will lead better result to spectral 

mean parts. Thus, linear mapping is the key of our method and the worst case of our 

proposed method is degraded to conventional TV-based reconstruction that only sparsity 

within image is considered. Here we discuss possible implementations of our reconstruction 

strategy. First, CT slices corresponding to different energy bins are reconstructed 

simultaneously. Then, TV and SM are used for two different regularization terms to capture 

internal sparsity and external correlations respectively.

The rest of the paper is organized as follows. In the next section, we present the details of 

our proposed model. In the third section, we describe experiments to evaluate the proposed 

methodology. In the last section, we discuss relevant issues and conclude the paper.

II. METHODOLOGY

A. Spectral CT Measurement Model

When a polychromatic x-ray beam passes through an object, the photon intensity at an 

energy level E measured by a photon counting detector can be formulated according to the 

Beer-Lambert law

(2)
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where μ(x, E) is the linear attenuation coefficient at E and position x along the x-ray path 

l(x), I0(E) is the intensity of incident x-rays in a spectral CT system, which can be measured 

by a photon counting detector in an air scan.

For current PCDs, x-ray photons are divided into several energy bins, and the number of 

photons in each bin is recorded. The intensity for each bin is described as

(3)

where Ek denotes the energy bin which is indexed by k ∈ {1,2,…, K}, and K is the total 

number of energy bins. Introducing Eq. (2) into Eq. (3), we obtain

(4)

Because the width of an energy bin is narrow with PCDs [23–26], we have the following 

mean value integral formula from Eq. (4),

(5)

where  is the average attenuation coefficient in the energy bin Ek, and I(Ek) is the 

intensity of incident x-rays in the energy bin Ek. The assumption behind Eq. (5) is 

reasonable under the condition of a narrow energy bin width. Otherwise, a beam-hardening 

correction method can be applied to obtain approximate results associated with infinitesimal 

energy bin widths. In the experimental section, we will also validate the assumption with a 

polychromatic projection test. From above formula, we obtain a line integral formula at 

energy bin Ek

(6)

Eq. (6) can be discretized into a system of linear equations as follows,

(7)

where Mk is a system matrix describing an imaging geometry,  is 

an attenuation coefficient distribution at the k-th energy bin, N is the number of image 
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pixels, and  denotes projection data from 

intensity data measured by Z different detector elements for the k-th energy bin, I(Ek,i) and 

I0(Ek,i) represent measured intensities with and without any object in the beam at the i-th 

detector position, respectively. Ideally, the system matrix should be identical for all energy 

bins.

Once we have Eq. (7), the purpose of the image reconstruction for spectral CT is to recover 

fk from the projection data yk, k = 1,2,⋯,K. For each energy bin k, traditional analytical or 

iterative reconstruction algorithms can be indeed applied for spectral CT. However, due to 

the narrow energy bins associated with spectral CT, the photon number measured in each 

energy bin is much less than that with conventional energy-integrating detectors, resulting in 

a rather low signal to noise ratio.

B. TV-TV and TV-SM Models

Recently, CS has become popular to deal with low-dose CT reconstruction. A CS-inspired 

CT reconstruction model can be expressed as

(8)

wherec Φ(·) is a sparsifying transform and the inequality constraint with an error tolerance 

factor ε is used to implement the data fidelity allowing some inconsistency in a practical 

situation. The symbols in the inequality constraint have the same meaning as in Eq. (7). TV 

is a popular sparsifying transform for image reconstruction [20, 30–35]. Also, other 

sparsifying transforms were also proposed [21, 22, 36].

CS-based CT image reconstruction methods are promising for spectral CT. In spectral CT, 

except the image sparsity itself, the similarity among images from different energy bins is 

also important for image reconstruction.

Fig. 1 shows typical spectral CT image reconstructions at different energy levels (The 

spectral CT data were acquired on a GE Discovery CT 750 HD scanner). Although the 

images were acquired in different energy bins, the structural information is highly 

correlated. Based on this observation, it is natural to utilize two different regularization 

terms, TV and nonlocal means (NLM). In the previous studies, TV (also called the discrete 

gradient transform) has shown an effect in suppressing artifacts and it has been applied for 

CT image reconstruction [18]. The power of TV stems from the model of image functions 

being piecewise constant. However, this assumption is not always valid with clinical images, 

which can have complex structures such as in the chest and abdominal regions. The TV 

regularization would blur boundaries and cause blocky effects [30, 32]. To improve the TV-

based reconstruction, we will introduce a SM regularization term, which is inspired by 

NLM. NLM (originally developed for image denoising) has been widely used in medical 

imaging [37]. A major strength of NLM is that it recovers content-based information (both 

structural and contrast information) based on the fractal assumption of images (or images are 

self-similar). The system matrices Mk in our models may be different for various energy 
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channels due to the imaging physics of spectral CT. For coherent portions of the system 

matrices, artifacts cannot be eliminated by NLM. Hence, we still need a sparsity requirement 

such as the TV term to minimize artifacts in the prior image  from being relayed to the 

final image, as stated in [35]. Thus, TV and NLM are two powerful tools to address the 

sparsity and similarity of images simultaneously.

Based on above analysis, we give two spectral CT image reconstruction models as follows. 

In the first model, we use TV to incorporate the structural similarity among the images from 

different energy bins. The proposed model called TV-TV which is similar to the PICCS 

model [36, 39], and can be formulated as the following minimization problem:

(9)

where  is the mean of spectral images which will be dynamically updated in our 

algorithm, j is the index for the j-th energy bin, J is the total number of energy bins involved 

in the regularization (in this paper we usually set J = K), and δ ∈ [0,1] is a tuning parameter 

to balance two TV regularization terms. The first TV term can be seen as a constraint to 

couple with similar structures from different energy bins, and the second TV term is to have 

the sparsity inside an individual spectral image. Different from the conventional CT 

reconstruction, here we reconstruct images from multiple energy bins simultaneously. In 

[38], the authors generated the prior image using all of the data (mixed energy projection 

data) collected over a complete rotation. This method is designed for dual/spectral CT image 

reconstruction based on slow kVp switching technique. Different from this method, no 

predefined prior image is needed by the proposed TV-TV model. We use  as a dynamically 

updated prior image in the regularization term, which is more flexible and suitable for 

PCDs-based spectral CT image reconstruction.

The use of TV as the similarity measurement has an intrinsic high frequency differences of 

signals, which can be also seen as edges in 2D images, and the low frequency differences are 

not well captured. On the other hand, NLM is an efficient similarity measurement based on 

the L2 norm focusing on both high and low frequency components. Meanwhile, NLM can 

take account of the similarity of adjacent pixels.

Motivated by the idea of NLM, the second model we propose is called TV-SM, and 

expressed as

(10)

where  is the SM regularization term modified from NLM we will discuss later, λ 
and α are the tuning parameters. The other parameters have the same meanings as in the TV-
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TV model. Similar to TV-TV, with the TV-SM method we also reconstruct images in 

multiple energy bins {fk} simultaneously.

Inspired by the prior work on the nonlocal operator [39, 40], we construct the SM 

regularization term  in the energy domain,

(11)

where Rt is a patch extraction operator, t = 1,2,..., Np is the index of patches, and Np is the 

total number of patches. In this paper, let us use SP = np×np to denote the patch size, and set 

the overlap between adjacent patches to 1. It is noted that Eq. (11) is different from the 

popular nonlocal means operator in [39]. Without involving any searching window, we only 

consider the similarity between the patches in different energy bins centered at the same 

location. There are two reasons for this modification. The first reason is for computational 

efficiency. The NLM is notorious for a high computational cost. Our algorithm 

simultaneously reconstructs images from different energy bins. It will be time-consuming to 

perform the NLM reconstruction in the original sense. The other reason is that different from 

4D CT reconstruction [41], the structural similarity in spectral CT images is generally 

maximized at the same position across energy bins, and it will occupy most of the weights 

while calculating the weighting factors. As a result, it makes the search of neighboring 

pixels fairly insignificant. The weighting factor wt between patches Rtfk and  is defined 

as

(12)

where h is the parameter to control the sensitivity. The numerical schemes for TV-TV and 

TV-SM will be described in detail below. In our numerical schemes, wt will be dynamically 

updated in each iteration as in [41].

C. Linear Mapping Function

Even if the structures in the images from different energy bins are highly correlated, the 

images are not completely identical. Due to the spectral dependence of linear attenuation 

properties, the attenuation coefficients will vary from bin to bin. This makes the images have 

different contrasts and HU values, as shown in Fig. 2.

The proposed TV-TV and TV-SM models can be further improved if the images from 

different energy bins are made more similar before the similarity computation. For this 

purpose, here we design a linear mapping function to minimalize these image differences 

between different energy bins. It will play an important pre-processing role for our TV-TV 

and TV-SM methods.

Let us first explain the physical principle and mathematical specifics of the linear mapping 

function. The purpose of this function is to adjust HU values from different energy bins into 
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a normalized form so that the impact of energy-dependent contrasts is minimized. 

Heuristically, this normalization would facilitate the regularization in both the TV-TV and 

TV-SM models. The physical principle of the linear mapping function is based on the 

material decomposition. It is well known that in a certain energy range without a K-edge, the 

attenuation coefficient as a function of energy can be represented as a linear combination of 

two base functions

(13)

where ρ is the mass density of material. ac and ap are material-related constants. gc and gp 

are energy dependent functions corresponding to Compton scattering and photoelectric 

absorption respectively [42]. Hence, measurements by two different energies through a 

homogeneous material of thickness L can be expressed as

(14)

In Eq. (14), there are only two unknown variables, which can be solved uniquely to 

characterize the material. This is the basis for material decomposition with dual-energy CT 

[43], and over-determined with spectral CT.

By Eq. (14), any material ξ can be represented as a linear combination of two base materials 

α and β [43]:

(15)

where the linear coefficients a1 and a2 can be computed from physical properties of α and β.

Without loss of generality, we can use water and bone as the base materials to approximate 

the linear attenuation coefficients of most components in the human body with least square 

method in the range of 40–100 keV. The linear combination coefficients for material 

decomposition and root mean square errors (RMSE) are listed in Table I [43]. The data listed 

in Table I were calculated with the real mass attenuation coefficients of elements and 

mixtures from the NIST x-ray attenuation databases [44].

With Eq. (15), we let bone as the material α and water as the material β. The reason for 

some negative coefficients is the involved least squares fitting. Here, in the linear 

representation a more accurate estimation is preferred, so the coefficients in Table I are more 

for mathematical purpose, not based on physical consideration. If we relax the restriction of 

RMSE, material decomposition coefficients with physical meaning, which are within [0, 1] 

can be obtained. It is seen that the accuracy of linear representation is very high for the 

human body, as RMSE is rather close to zero. Also, an interesting phenomenon is that for 

most soft tissues, the main contribution is from water, and the coefficient is almost 1. It is 
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easy to explain that water-like liquids and soft tissues have similar linear attenuation 

coefficients in the range of 40–100 keV, which are very similar that of water. Based on this 

remark, attenuation coefficient of all the materials in the human body can be well 

represented in terms of a high absorption material and a low absorption material, such as 

water and bone. Fig. 3 shows relationships between different energy bins for the pure base 

materials.

In Fig. 3, all the points are located only in three positions indicated as air, water and bone. 

The other human tissues indicated by red crosses in Table I are all near the water. To more 

clearly demonstrate the relationship between any two images from different energy bins in 

real situations, Fig. 4 replots the HU values for the images in Fig. 1. The x coordinate 

denotes the HU value of one image, and the y coordinate denotes the HU value of another 

image in a different energy bin at the same position.

Evidently, the shapes of the curves in Fig. 4 are similar to those in Fig. 3. From Figs. 3 and 

4, all of the curves indicate nonlinear relationships among different energy bins, and can be 

approximately seen as two linear function separated by an inflection point near 0 HU, as 

indicated by the red dashed line in Fig. 4. Therefore, we let the linear mapping function take 

the following form:

(16)

where Lj,k(·) denotes the linear mapping function to transform an image fk to , , 

 and  are the coefficients for the two linear functions, which can be estimated with a 

linear fitting method, Nthres indicates the singular point for the two linear functions, and is 

approximately equal to the HU value of water. In this paper, we set Nthres=0.

To estimate the coefficients of the linear mapping function, an ideal way is to use the curves 

in Fig. 3. However, due to the confidentiality of the calibration parameter, this method is not 

suitable for the images from current commercial scanner. An alternative way is to plot 

similar curves for the existing spectral images acquired by the same scanner. Hence, the 

coefficients can be calculated from these curves.

To evaluate the performance of our proposed linear mapping function, we tested it on the 

images in Fig. 1. We used the images in the first row of Fig. 1 to estimate the coefficients in 

Eq. (16). After that, we tested those coefficients on the images in the second row of Fig. 1 

according to Eq. (16). The results are in Fig. 5.

In Fig. 5, the images predicted from different energy bins are quantitatively close to the 

original ones. The differences are not visibly noticeable. From the second and third rows of 

Fig. 5, the differences after linear mapping are much smaller than those from the original 

images. However, we can also find that the accuracy is energy-dependent, which is 

consistent with the visual inspection of Fig. 4. The result from 80 to 100 keV is better than 

that from 60 to 100 keV. A reason is that when the energy is higher, the reconstructed image 
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will have less noise, and the estimated linear coefficients will be more accurate. Another 

reason is that the 80 keV image is spectrally closer to the 100 keV image than the 60 keV 

image.

D. TV-TV-LM and TV-SM-LM Models

With the linear mapping Eq. (16), we immediately have the improved versions for the TV-

TV and TV-SM models, which are called TV-TV-LM and TV-SM-LM respectively 

expressed as

(17)

and

(18)

where the only difference is that  is replaced by  with the other 

symbols being the same.

E. Split Bregman Implementation for the Proposed Models

Now, we have obtained four models for spectral CT reconstruction, which are TV-TV, TV-

TV-LM, TV-SM, and TV-SM-LM respectively. For computational efficacy and numerical 

stability, we use the split Bregman method [40, 45] to implement our algorithms. In this 

section, we only describe the TV-SM-LM as an example, since the other models can be 

similarly implemented.

Two popular choices for the discrete TV are the isotropic TV and the L1 -based anisotropic 

TV [45]. In this paper, we use an anisotropic version. First, let us give the complete discrete 

form of Eq. (18):

(19)

To enable Bregman splitting, we introduce three auxiliary variables dx, dy and df for ∇xfk, 

∇yfk and  respectively. This yields the joint optimization can be rewritten as

(20)
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where β and γ are respectively the weights of the penalty terms. Consequently, we have the 

complete form of the split Bregman iteration scheme:

(21)

In this form, we can decouple the original problem into several sub-problems that can be 

solved via alternating minimization:

(22)

(23)

(24)

and

(25)

These sub-problems can be sequentially solved as

(26)
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(27)

(28)

and

(29)

where .

Finally, the main steps of the proposed algorithm can be summarized in Table II.

F. Experimental Data Acquisition

To evaluate the performance of the proposed approach, three datasets were used, which are 

numerical, ex vivo and in vivo respectively. The TV-based method for monochromic image 

reconstruction (TV) [20], tensor-based PRISM (tPRISM) [24], TV-TV, TV-TV-LM, TV-SM 

and TV-SM-LM were used for comparison. For fairness, all the algorithms were 

implemented using the split Bregman technique. Since the split Bregman iteration converges 

fast, we set the iteration number to 25. In all the experiments, we experimentally set δ=0.5, 

η=0.5, λ=10, α=0.5, β=100, γ=100, h=0.1, Nouter=25, and tol=0.001. For TV and tPRISM, 

the parameters were set according to the recommendation in the original papers. For the 

linear mapping function, in clinical data study, we used the coefficients estimated with the 

images of the first row of Fig. 1 and in ex vivo and in vivo, we used the coefficients 

estimated from identical scanner.

Image quality was assessed by two metrics that are typical. The first metric to evaluate noise 

reduction is the relative root mean square error (rRMSE), which is defined as

(30)

where f is the reconstructed attenuation coefficient distribution, f* is the ideal attenuation 

counterpart of f.

The second one is SSIM, which measures the structural and perceptual similarity between 

the ideal and reconstructed images:

(31)
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where ef and  are the mean values of f and f*, σf and  are the standard deviations of f 

and f* respectively,  is the covariance of them, and c1 and c2 are constants [46].

1) Clinical Data Study—In this study, the data were collected on a GE Discovery CT 750 

HD, which is a dual-energy CT scanner using the fast kVp-switching technology. VMI 

images were generated using the GE commercial software at 10 keV monochromatic energy 

level increments from 60 to 100 keV, resulting in 5 image sets. A representative slice was 

specified from the image volume to evaluate our methodology. The image is of 256×256 

pixels. Without loss of generality, the projection data were simulated by projecting the image 

into its sinogram. Siddon’s ray-driven algorithm [47] in fan-beam geometry was used to 

simulate projections. The source-to-rotation center distance was set to 100 cm, and the 

detector-to-rotation center to 50 cm. The image array covered 51.2×51.2 cm2. The detector 

whose length was 76.8 cm and modeled as a straight-line array of 512 elements. To 

demonstrate the capability of the proposed methodology for low dose reconstruction, 36 

views of each energy bin were collected, and these energy bins were uniformly distributed 

over a full scan range.

2) Phantom Study—To validate the robustness of the assumption used in Eq. (5), we 

performed a phantom experiment with noisy polychromatic measurements. A modified 

FORBILD thorax phantom containing 256×256 pixels was generated for this experiment. 

The phantom consisted of seven different materials to simulate lung, heart, artery, bone, soft 

tissue, air, and a contrast agent composed of 0.5% gadolinium plus 99.5% water. The mass 

attenuation coefficients of all elements and mixtures were obtained from the NIST x-ray 

attenuation databases [44]. Fig. 6 plots a 110 kVp polychromatic spectrum which is 

generated according to the method in [48]. The spectrum is divided into 7 segments and five 

central parts are used in the simulation. The central energy values are 40, 50, 60, 70 and 80 

keV and the widths of the energy bins are 10 keV. The spectrum resolution is 1 keV. The k-

edge of the contrast agent is near 50keV. Fig. 7 is the modified thorax phantom at 50keV 

with material indicators and six ROIs. The lines marked by blue letters crossing the edges in 

different contrast levels were used for the modulation transfer function (MTF) computation 

to characterize the spatial resolution of the reconstructed images. The geometry is the same 

as that in the clinical case. The modified thorax phantom was undersampled by each energy 

bin with 16 views. The ideal PCD detector was assumed here and we synthesized the 

polychromatic measurements with the spectral weights in Fig. 6. Meanwhile, Poisson noise 

with b0 = 5 × 105 was added into each projection. Because TV directly deals with individual 

images, instead of reconstructing images from all energy bins simultaneously, there is no 

need for us to give the results of TV in this part.

3) Ex Vivo Data Study—We test our methods on an ex vivo dataset from a fresh lamb 

chop acquired by a MARS spectral CT scanner equipped with the latest Medipix3RX photon 

counting detector from University of Canterbury, Christchurch, New Zealand [49]. The 

scanner used a 2 mm thickness CdTe sensor (128×128 pixels, 110μm in pixel size), bump 

bonded to a Medipix3RX readout chip. The focal spot size was ~33μm in size. The bias 

voltage applied to the sensor was −440V. The source to detector distance (SDD) was 

131.8mm, and the object to detector distance (ODD) was 48mm. The tube was operated at 
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50 kVp and 120 mA. Four low energy thresholds were used which are 15, 20, 25, and 30 

keV. The exposure time was 40 ms. The original number of projection views was 651. To 

demonstrate the performance of our proposed approach in accelerating the scanning time, 

we reduced the number of views to 81, which was about 1/8 of the original number. These 

energy bins were uniformly distributed over a full scan range. The dataset can be publicly 

accessed online. More details about this dataset can be found in [49]. Dark pixel correction 

and projection data stitching were performed before reconstruction. Due to no post-

processing operations applied, it can be seen that all the images contain some ring artifacts.

III. RESULTS

A. Clinical Data Study

1) Visual inspection—Fig. 8 displays the reconstructed 80 keV image. The images were 

reconstructed using TV, tPRISM, TV-TV, TV-TV-LM, TV-SM and TV-SM-LM algorithms 

respectively. The full-view FBP reconstruction in Fig. 1(e) serves as the reference. It is 

observed in Fig. 8 that there are still visibly noticeable artifacts in the TV and tPRISM 

images. In the other results, the artifacts are basically eliminated. To visualize the results 

better, Fig. 9 give a narrow window presentation demonstrating the differences of TV, 

tPRISM, TV-TV, TV-TV-LM, TV-SM and TV-SM-LM reconstructions relative to the 

reference.

As expected, TV and tPRISM had evident noise and artifacts. Although the TV-TV and TV-

TV-LM algorithms eliminated more artifacts than the popular TV algorithm, some structural 

information was lost. In contrast, the TV-SM algorithm obtained a better reconstruction than 

TV-TV and TV-TV-LM, but there are still artifacts near the spine in the middle of Fig. 9(e). 

The TV-SM-LM algorithm achieved the best reconstruction in terms of artifact reduction 

and structural fidelity. Fig. 10 focuses on the zoomed parts indicated by the red box in Fig. 

8.

Given the nature of TV, blocky artifacts of different degrees can be seen in the TV, tPRISM, 

TV-TV and TV-TV-LM images. Although in the TV-SM and TV-SM-LM images, the TV 

term still played a role, the inclusion of the SM term effectively suppressed the blocky 

problem while preventing the soft tissue edges from being blurred.

2) Quantitative measurement—To quantitatively evaluate the proposed TV-TV, TV-TV-

LM, TV-SM and TV-SM-LM algorithms, the rRMSE and SSIM indices were measured for 

the reconstructed images, as listed in Tables III and IV.

All the algorithms that utilized information from other energy bins yielded better indices 

than TV in terms of either rRMSE or SSIM. In Table III, the proposed TV-SM-LM 

algorithm worked the best. It can be oberseved as an evidence that TV-SM-LM has a great 

potential to suppress artifacts caused by the lack of projection views. In Table IV, TV-SM-

LM also gave the highest SSIM value except for 100keV. A possible reason for this small 

disturbance in SSIM is that when the energy bin is of high keV, a reconstructed image could 

contain less information of soft tissue, and become smoother. Nevertheless, the SSIM value 

at 100keV for TV-SM-LM was still comparable to the counterpart for TV-TV. This 
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demonstrates that the TV-SM-LM algorithm is the most competitive among all the 

algorithms under investigation.

3) Influence of the linear mapping function—The linear mapping function is 

important in our proposed methodology. We have given the quantitative results of TV-TV, 

TV-TV-LM, TV-SM and TV-SM-LM in Tables III and IV. It is seen that when the energy bin 

is lower than 80 keV, the rRMSE and SSIM indices of TV-TV-LM were better than those of 

TV-TV, and in most cases, the results of TV-SM-LM are better than TV-SM. The reason is 

that TV is only sensitive to the structural information, being not sensitive to the contrast 

variation between different tissues. On the other hand, SM not only preserves the structural 

information but also captures the contrast difference. That is also the reason why TV-SM can 

be improved with the linear mapping function.

4) Influence of other parameters—To evaluate the effects of the algorithmic 

parameters, we obtained data on the same image used in the previous experiments.

a) Size of an image patch: We studied the effect of the size of an image patch for TV-SM-

LM. In this simulation, we fixed other parameters and just changed the patch size from 3×3 

to 9×9. The rRMSE and SSIM values of TV-SM-LM are plotted against the patch size np in 

Fig. 11. It is seen that with the increment in the patch size, the rRMSE values initially 

declined, but when the patch size was greater than 7, they became saturated. Also, the SSIM 

curves revealed consistent results. Hence, we empirically set np =7 as an optimal choice. In 

the subsequent experiments, the optimal choice of patch size may fluctuate with the images, 

but we fixed it to 7 for fairness and simplicity.

b) Number of energy bins J: We set the patch size np=7 and fixed other parameters as well 

except for the number of energy bins J. The rRMSE and SSIM results at 80keV are shown in 

Fig. 12 with J=1,3,5 respectively. When J=3, we used images at 70, 80 and 90 keV. When 

J=5, we added 60 and 100 keV. It is seen in Fig. 12 that with the increment in the number of 

energy bins, both the quantitative indexes became better which are consistent with the 

heuristics that the more the energy bins used, the more information we have to improve the 

image reconstruction. This is also similar to the idea of nonlocal means that use of more 

image patches from different positions with similar structures will statistically improve the 

SNR of the averaged patches.

B. Phantom Study

1) Visual inspection—The reconstructed results on the both sides of the k-edge (40 and 

50 keV) are in Fig. 13. In Fig. 13, tPRISM and TV-SM-LM clearly outperformed the other 

methods. The simulated sternum, artery and vertebra areas indicated by the white arrows can 

be seen as three reference regions. TV-SM-LM eliminated most of the artifacts due to the 

beam hardening and lack of projection data. In the region of contrast agent, except TV-TV 

and TV-TV-LM, all the other methods can achieve a satisfactory result.

2) Quantitative measurement—Tables V and VI show the values of rRMSE and SSIM 

for five energy bins.
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It can be seen that the quantitative results have a similar trend with visual inspection. 

tPRISM achieved the best rRMSE performance, but the results of TV-SM-LM came very 

close. Meanwhile, TV-SM-LM had the highest SSIM values, which can be regarded as an 

evidence for structure preservation.

Table VII demonstrates the statistical analysis of variances for the ROIs. The results from 

FBP is regarded as standard reconstruction algorithm. It is obvious that TV-SM-LM 

significantly improved the imaging quality, and it reduced the SDs to a very small range and 

the mean close to the theoretical values. In most situations in Table VII, the P values are 

smaller than 0.05, which suggests the improvements dedicated by TV-SM-LM.

Fig. 14 demonstrates the MTFs obtained by TV-SM-LM, TV-TV-LM and tPRISM models in 

both high and low contrast levels from 40 and 50 keV images. It can be observed that TV-

SM-LM yield a better spatial resolution than other two models in all the cases.

3) Influence of contrast agent—This simulation tested whether our methods will 

impact on the use of contrast agent which is also important for spectral CT. In Fig. 15, we 

plotted the means of linear attenuation coefficients inside a contrast agent region for 

different energy bins reconstructed by tPRISM, TV-TV-LM and TV-SM-LM respectively.

In Fig. 15, it is observed that two methods we proposed based on the linear mapping 

function can reconstruct the contrast enhanced region accurately. In all the five energy bins, 

the results are almost identical. The result shows that although the design of the linear 

mapping function is based on the fact that there are no k-edge materials in the human body 

in the energy range of [40 100] keV, the image quality will not be significantly affected 

when the amount of K-edge contrast agents is not large. The reason is that when the amount 

of contrast agents is small, the induced error will only have a weak influence on the accuracy 

of the linear mapping of the total cross section/volume. However, when the body contains a 

large amount of contrast agents that are spread over several regions, like in tumor perfusion 

studies, the accuracy of the linear mapping will be compromised, and the quantitative 

analysis about the relationship between the accuracy of the linear mapping and the amount 

of contrast agents will be performed in the future.

C. Ex vivo data

Limited by the hardware of PCDs, current spectral CT scanners based on PCDs can only 

scan small objects and suggests the preclinical potential of spectral CT enabled by PCDs. 

The purpose of this experiment is twofold. First, we can evaluate the proposed methods with 

a real PCD dataset; and second, we can demonstrate the potential of spectral imaging of 

tissue without contrast agents. In Fig. 16, the results of different methods with data at 20 and 

25 keV are shown and it is clear that comparing to the other methods, TV-SM-LM had the 

best performance. Although some artifacts remained near the bones, it suppressed most of 

the artifacts, and meanwhile avoided the blurring effect like that with tPRISM and the beam 

hardening problem with FBP. The contrast between meat and fat is also decent with our 

method. These observations suggest that our method is powerful for spectral CT 

reconstruction PCD data.
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IV. DISCUSSIONS AND CONCLUSION

In the experimental work, we evaluated our proposed methods on three datasets. Although 

the first dataset was not from PCD detectors, the virtual monochromic images (VMIs) can 

still be used as a reasonable dataset to compare spectral CT image reconstruction algorithms 

[50]. In this contest, the proposed four methods outperformed the TV-based monochromatic 

image reconstruction model, and the tensor-based PRISM model for spectral CT 

reconstruction. The tensor-based PRISM model also utilized the correlation among different 

energy bins, but the low-rank decomposition cannot always the best for clinical images. The 

second experiment was conducted to evaluate the image quality for CTA with our approach. 

The proposed linear mapping function was designed based on a piecewise linear 

approximation, and it is necessary to measure the impact of contrast material on our 

approach. The use of the linear mapping of spectral attenuation coefficients is the key idea of 

this paper. It is based on the assumption that each tissue type in the human body can be 

represented by basis materials, such as water and bone. Fortunately, most materials can be 

well represented in this way, as listed in Table 1. Thanks to the data fidelity term in the 

reconstruction formula, the k-edge or other abnormal materials will not affect the final 

reconstruction quality significantly, as demonstrated in the phantom experiment. The worst 

case is that images reconstructed using our proposed methods will degrade to those 

comparable to that reconstructed using the conventional TV-based method. Since there is no 

PCD-based clinical spectral CT scanner available to us at present, the first experiment with 

VMIs was used to evaluate the performance of the proposed models. VMIs can be seen as 

quasi-spectral CT images, with major differences in imaging physics. Hence, the third 

experiment with PCD data offers complementary information.

Due to the narrow widths of energy bins and the limited number of projection views, the 

reconstructed results from FBP were contaminated by severe artifacts and noise. The beam 

hardening effect was also visible in each energy bin. Although the results of tPRISM 

eliminated part of the artifacts, our proposed TV-SM-LM gave the best image quality.

There are several parameters in our methods. Although all the parameters were 

experimentally set in our experiments, there is no critical need to adjust the parameters 

patient by patient for the following reasons. β and γ are the parameters for the splitting 

method. Once they are manually chosen to obtain a good converging rate, they can be 

approximately treated constants for input images in the same or similar categories, which 

has been reported as one of the advantages of Bregman iteration [45]. Nouter, and tol are the 

parameters to control the iterations. Normally, the convergence of the Bregman iteration is 

fast. To guarantee the best performance, we empirically set the numbers iterations to 

reasonable numbers. To stop the iteration while it has reached an optimum, we use tol as an 

additional control of the iteration process. The regularization parameters δ, η, λ and α in 

Eqs. (17) and (18) should be chosen to balance the data fidelity term and the regularization 

terms. There are some general strategies for choosing values of these parameters [51]. 

However, it is difficult to define the “optimal” regularization parameters at this moment. As 

far as we know, most regularization parameters required by iterative reconstruction 

algorithms are empirically chosen. Therefore, in this paper we have set these parameters in 

an empirical fashion.
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In all of our proposed algorithms, the images in different energy bins are iteratively and 

simultaneously reconstructed, and it will be time-consuming. The SM-based algorithms even 

calculate the similarity values based on image patches. We improved the computational 

efficiency in two ways. First, we have used the split Bregman technique which has been 

proved computationally efficient and already applied in many fields. More details can be 

found in [45]. Second, we proposed spectral mean term instead of NLM, and it makes the 

computational complexity much reduced. Except for the techniques, we mentioned above, 

another possible way to accelerate the computation is to use a parallel computing technique. 

The computation for each energy bin is independent, and can be distributed on a graphic 

processing unit (GPU), a computer cluster or other concurrent computation systems. In the 

practical cases, the system will be large. Hence, the use of the Gauss-Seidel algorithm to 

solve Eq. (27) will become inefficient due to the required matrix inversion. One of the 

possible ways to remedy this problem is to use the Krylov subspace method, such as 

conjugate gradient (CG), MINRES, IDR and GMRES. Some of these methods involve a 

series of matrix-vector, scalar-vector and vector-vector operations, which are suitable for 

GPU implementation. Meanwhile, our methods are patch-based, and reconstruct the images 

in different channels simultaneously, which can be implemented in a parallel fashion.

In conclusion, we have proposed four spectral CT image reconstruction algorithms. In 

addition to the use of TV to extract the image sparsity, TV and SM have been utilized to 

measure the similarity of component images in the energy domain. A linear mapping 

function has been defined to improve the similarity measurement. The results have showed 

the merits of our approach.
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Fig. 1. 
Three exemplary spectral CT image reconstructions. The first column of images was 

acquired at 60 keV, the second column at 80 keV, and the third column at 100 keV. The 

display window is [845 1295] HU.
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Fig. 2. 
Differences between the images in Fig. 1. (a) f60keV – f80keV for the first image example, (b) 

f60keV – f100keV also for the first example, (c) f60keV – f80keV for the second example, and 

(d) f60keV – f100keV for the second example. The display window is [−50, 50] HU
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Fig. 3. 
Idealized plots for main materials in the human body respectively in different energy bins. 

The plots for (a) x-axis 60 keV and y-axis 80 keV, (b) 60 keV and y-axis 100 keV, and (c) x-

axis 80 keV and y-axis 100 keV.
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Fig. 4. 
Piecewise linear relationships between two images in different energy bins. (a)–(c) The plots 

for the 1st image example, and (d)–(f) the plots for the 2nd image example.
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Fig. 5. 
Results using the linear mapping function. (a) The 60 keV image estimated from the 100 

keV image, (b) the 80 keV image estimated from the 60 keV image, (c) the 100 keV image 

estimated from the 80 keV image, (d) the difference between the estimated and original 60 

keV images, (e) the difference between the estimated and original 80 keV images, (f) the 

difference between the estimated and original 100 keV images, (g) the difference between 

the 60 and 100 keV images, (h) the difference between the 80 and 60 keV images, and (i) the 

difference between the 100 and 80 keV images. The display window for the spectral images 

and difference images are [845 1295] and [−50 50] HU respectively.
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Fig. 6. 
X-ray spectrum at 110 kVp which was divide into seven energy bins.
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Fig. 7. 
FORBILD thorax phantom at 50keV. The display window is [−150 300] HU.
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Fig. 8. 
Reconstructed 80 keV images using different methods for comparison. (a) TV, (b) tPRISM, 

(c) TV-TV, (d) TV-TV-LM, (e) TV-SM, and (f) TV-SM-LM images respectively. The display 

window is [845, 1295] HU.

Zhang et al. Page 30

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Difference images relative to the reference. (a) TV, (b) tPRISM, (c) TV-TV, (d) TV-TV-LM, 

(e) TV-SM and (f) TV-SM-LM reconstructions in the 80 keV energy bin. The display 

window is [−50, 50] HU.
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Fig. 10. 
Zoomed reference (a) and the images reconstructed using the (b) TV, (c) tPRISM, (d)TV-TV, 

(e) TV-TV-LM, (f) TV-SM and (g) TV-SM-LM algorithms respectively in the 80 keV energy 

bin. The display window is [845, 1295] HU.
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Fig. 11. 
Image quality indices with TV-SM-LM with respect to the patch size np. The performances 

of TV-SM-LM are quantified by (a) rRMSE and (b) SSIM values for different patch sizes.
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Fig. 12. 
Results of TV-TV, TV-TV-LM, TV-SM and TV-SM-LM versus the number of energy bins J. 

The performances of TV-TV, TV-TV-LM, TV-SM and TV-SM-LM are quantified by (a) 

rRMSE and (b) SSIM values for different numbers of energy bins.
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Fig. 13. 
Reconstructed 40 and 50 keV images from noisy polychromatic measurements for 

comparison. The display window is [0, 1500] HU.
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Fig. 14. 
MTF curves obtained for different algorithms at (a) 40 keV in high contrast level (line a), (b) 

50 keV in high contrast level (line a), (c) 40keV in low contrast level (line b), and (d) 40 keV 

in low contrast level (line b).
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Fig. 15. 
Means of linear attenuation coefficients in the region of contrast agent for different energy 

bins reconstructed by various methods respectively.
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Fig. 16. 
Reconstructed images at 20keV and 25 keV respectively for comparison. The display 

window is [0, 500] HU.
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Zhang et al. Page 39

TABLE I

LINEAR COMBINATION COEFFICIENTS OF MATERIAL DECOMPOSITION VIA LEAST SQUARES 

FITTING

Material a1 a2 RMSE

Water 0.000 1.000 0.000

Bone 1.000 0.000 0.000

Adipose Tissue −0.034 1.011 0.021

Blood 0.005 1.041 0.004

Brain 0.005 1.020 0.004

Breast Tissue −0.017 1.045 0.011

Eye Lens −0.013 1.110 0.008

Lung 0.006 1.029 0.004

Muscle 0.004 1.034 0.004

Testes 0.004 1.025 0.003

Soft Tissue −0.006 1.003 0.008

Iodine −213.693 132.795 0.023

Gadolinium 298.907 −1.784 0.445

Renal Calculi −0.443 1.321 0.018
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Zhang et al. Page 40

TABLE II

MAIN STEPS FOR TV-SM-LM

Algorithm of TV-SM-LM

Initialization:

Given yk for k=1,2,…,K, h, λ, α, β, γ, Nouter, tol.

Calculate the linear coefficients for the linear mapping functions L(·).

Main Loop:

while  and i < Nouter

  Update wt according to Eq. (12).

   

   

   

    

   

   

   

 i = i + 1

end while
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