
Int J Comput Vis (2009) 81: 317–330
DOI 10.1007/s11263-008-0178-9

Spectral Curvature Clustering (SCC)

Guangliang Chen · Gilad Lerman

Received: 15 November 2007 / Accepted: 12 September 2008 / Published online: 10 December 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract This paper presents novel techniques for im-
proving the performance of a multi-way spectral cluster-
ing framework (Govindu in Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05), vol. 1, pp. 1150–1157, 2005;
Chen and Lerman, 2007, preprint in the supplementary web-
page) for segmenting affine subspaces. Specifically, it sug-
gests an iterative sampling procedure to improve the uni-
form sampling strategy, an automatic scheme of inferring
the tuning parameter from the data, a precise initialization
procedure for K-means, as well as a simple strategy for iso-
lating outliers. The resulting algorithm, Spectral Curvature
Clustering (SCC), requires only linear storage and takes lin-
ear running time in the size of the data. It is supported by
theory which both justifies its successful performance and
guides our practical choices. We compare it with other exist-
ing methods on a few artificial instances of affine subspaces.
Application of the algorithm to several real-world problems
is also discussed.

Keywords Hybrid linear modeling · Multi-way spectral
clustering · Polar curvature · Iterative sampling · Motion
segmentation · Face clustering

This work was supported by NSF grant #0612608.
Supplementary webpage: http://www.math.umn.edu/~lerman/scc/.

G. Chen · G. Lerman (�)
School of Mathematics, University of Minnesota, 127 Vincent
Hall, 206 Church Street SE, Minneapolis, MN 55455, USA
e-mail: lerman@umn.edu

G. Chen
e-mail: glchen@math.umn.edu

1 Introduction

We address the problem of hybrid linear modeling. Roughly
speaking, we assume a data set that can be well approxi-
mated by a mixture of affine subspaces, or equivalently, flats,
and wish to estimate the parameters of each of the flats as
well as the membership of the given data points associated
with them. More precise formulations of this problem ap-
pear in Ma et al. (2008) and Chen and Lerman (2007).

There are many algorithms that can be applied to this
problem. Some of them emphasize modeling of the under-
lying flats and then use the models to infer the clusters (see
e.g., Independent Component Analysis (Hyvärinen and Oja
2000), Subspace Separation (Kanatani 2001, 2002), Gen-
eralized Principal Component Analysis (GPCA) (Vidal et
al. 2005; Ma et al. 2008)). A few others address the clus-
tering part and then use its output to estimate the parame-
ters of the underlying flats (see e.g., Multi-way Cluster-
ing algorithms (Agarwal et al. 2005, 2006; Govindu 2005;
Shashua et al. 2006), Tensor Voting (Medioni et al. 2000),
k-Manifolds (Souvenir and Pless 2005), Grassmann Cluster-
ing (Gruber and Theis 2006), Poisson Mixture Model (Haro
et al. 2006)). There are also algorithms that iterate be-
tween the two components of data clustering and subspace
modeling (see e.g., Mixtures of PPCA (MoPPCA) (Tip-
ping and Bishop 1999), K-Subspaces (Ho et al. 2003)/k-
Planes (Bradley and Mangasarian 2000; Tseng 1999)).

In this paper we mainly focus on the special case of hy-
brid linear modeling where all the flats have the same di-
mension d ≥ 0. We emphasize the clustering component,
and thus refer to this special case as d-flats clustering. We
follow Govindu’s framework of multi-way spectral cluster-
ing (Govindu 2005) and Ng et al.’s framework of spectral
clustering (Ng et al. 2002). In our setting, the former frame-
work starts by assigning to any d + 2 points in the data

http://www.math.umn.edu/~lerman/scc/
mailto:lerman@umn.edu
mailto:glchen@math.umn.edu


318 Int J Comput Vis (2009) 81: 317–330

an affinity measure quantifying d-dimensional flatness, thus
forming a (d +2)-way affinity tensor. Next, it obtains a simi-
larity matrix by decomposing the affinity tensor so that spec-
tral clustering methods can be applied.

However, there are critical issues associated with this
framework that need to be thoroughly addressed. First of
all, as the size of the data and the intrinsic dimension d

increase, it is computationally prohibitive to calculate or
store, not to mention process, the affinity tensor. Approx-
imating this tensor by uniformly sampling a small subset
of its “fibers” (Govindu 2005) is insufficient for large d

and data of moderate size. Better numerical techniques have
to be developed while maintaining both reasonable perfor-
mance and fast speed. Second, the multi-way affinities con-
tain a tuning parameter which crucially affects clustering. It
is not clear how to select its optimal value while avoiding an
exhaustive search. There are also smaller issues, e.g., how to
deal with outliers.

Our algorithm, Spectral Curvature Clustering (SCC),
provides specific solutions to the above issues. More specif-
ically, it contributes to the advancement of multi-way spec-
tral clustering in the following aspects.

• It introduces an iterative sampling procedure to signifi-
cantly improve accuracy over the standard random sam-
pling scheme used in Govindu (2005) (see Sect. 3.1.1).

• It suggests an automatic way of estimating the tuning pa-
rameter commonly used in multi-way spectral clustering
methods (see Sect. 3.1.2).

• It employs an efficient way of applying K-means in its
setting (see Sect. 3.1.3).

• It proposes a simple strategy to isolate outliers while clus-
tering flats (see Sect. 3.4).

Careful analysis of the theoretical performance of the
SCC algorithm appears in Chen and Lerman (2007).

The rest of the paper is organized as follows. In Sect. 2
we first introduce our multi-way affinities, and then review
a theoretical version of the SCC algorithm (Chen and Ler-
man 2007). Section 3 discusses various techniques that are
used to make the theoretical version practical, and the SCC
algorithm is formulated incorporating these techniques. We
compare our algorithm with other competing methods using
various kinds of artificial data sets as well as several real-
world applications in Sect. 4. Section 5 concludes with a
brief discussion and possible avenues for future work.

2 Background

2.1 Polar Curvature

Let d and D be integers such that 0 ≤ d < D. For any
d + 2 distinct points z1, . . . , zd+2 in R

D , we denote by

Vd+1(z1, . . . , zd+2) the volume of the (d + 1)-simplex
formed by these points. The polar sine at each vertex zi

is

psinzi
(z1, . . . , zd+2)

= (d + 1)! · Vd+1(z1, . . . , zd+2)
∏

1≤j≤d+2
j �=i

‖zj − zi‖ , 1 ≤ i ≤ d + 2. (1)

The polar curvature of the d + 2 points is defined as fol-
lows (Chen and Lerman 2007; Lerman and Whitehouse
2008d):

cp(z1, . . . , zd+2) = diam({z1, . . . , zd+2})

×
√
√
√
√

d+2∑

i=1

(
psinzi

(z1, . . . , zd+2)
)2

, (2)

where diam(S) denotes the diameter of the set S. We re-
mark that when d = 0, the polar curvature coincides with
the Euclidean distance.

It is shown in Lerman and Whitehouse (2008d) (follow-
ing the methods of Lerman and Whitehouse 2008a, 2008b,
2008c) that under certain conditions the least squares error
of approximating certain probability measures μ by d-flats
is comparable to the average of c2

p (with respect to μd+2).
This observation is used in the theoretical analysis of the
SCC algorithm (Chen and Lerman 2007).

2.2 The Affinity Tensor and its Matrix Representation

We assume a data set X = {x1,x2, . . . ,xN } in R
D sampled

from a collection of K d-flats (possibly with noise and out-
liers), where K > 1 and N is large. Using the above polar
curvature cp and a fixed constant σ > 0, we construct the fol-
lowing multi-way affinity for any d + 2 points xi1, . . . ,xid+2

in X:

A(i1, . . . , id+2)

=
{

e
−c2

p(xi1 ,...,xid+2 )/(2σ 2)
, if i1, . . . , id+2 are distinct;

0, otherwise.
(3)

We will explain in Sect. 3.1.2 how to select the optimal value
of the tuning parameter σ .

Equation (3) defines a (d + 2)-way tensor A of size
N × N × · · · × N , but we will only use a matrix representa-
tion of A, which we denote by A and call the affinity matrix.
The size of A is N × Nd+1. For each 1 ≤ i ≤ N , the ith row
of the matrix A (i.e., A(i, :)) is expanded from the ith slice
of the tensor A (i.e., A(i, :, . . . , :)) following some arbitrary
but fixed order, e.g., the lexicographic order, of the last d +1
indices (see e.g., Bader and Kolda 2004, Fig. 2). This order-
ing is not important to us, since what we really need is the
product AA′ (see Algorithm 1 below), which is independent
of such ordering.



Int J Comput Vis (2009) 81: 317–330 319

2.3 The SCC Algorithm in Theory

The Theoretical Spectral Curvature Clustering (TSCC) al-
gorithm (Chen and Lerman 2007) is presented below (Algo-
rithm 1) for solving the d-flats clustering problem.

Algorithm 1 Theoretical Spectral Curvature Clustering
(TSCC)

Input: X = {x1,x2, . . . ,xN } ⊂ R
D : data, d : dimension, K :

number of d-flats, σ : tuning parameter.
Output: K disjoint clusters C1, . . . ,CK .
Steps:

1: Construct the affinity tensor A using (3). Unfold A to
obtain an affinity matrix A and compute W = A · A′.

2: Calculate the degrees D = diag{W · 1}, where 1 is the
vector of all 1’s, and normalize W using D to get Z =
D−1/2 · W · D−1/2.

3: Find the leading K eigenvectors u1,u2, . . . ,uK of Z
and define U = [u1u2 . . .uK ] ∈ R

N×K .
4: Apply K-means to group the rows of U (possi-

bly normalized to have unit length) into K subsets,
and correspondingly divide X into K disjoint clusters
C1, . . . ,CK .

We justify this algorithm and give conditions under
which it is expected to work well in Chen and Lerman
(2007). The first step of the justification is to establish the
precise segmentation of the TSCC algorithm in an ideal
case, where the affinity tensor attains 1 at the entries that
correspond to d + 2 distinct points from a single underlying
cluster and is otherwise 0 (this tensor is called the perfect
tensor). It is then extended to more general cases using per-
turbation analysis and concentration inequalities. We remark
that we will use this ideal case to guide various techniques
when developing a practical algorithm in Sect. 3.

Remark 2.1 The question of whether or not to normalize
the rows of U (to have unit length) is an interesting one. We
further discuss it in Chen and Lerman (2007). In this paper
we choose not to normalize the rows of U. However, the
strategies presented in Sect. 3 apply to either case.

2.4 Assessment of Algorithm

We evaluate the performance of the TSCC algorithm using
two types of errors: eOLS, e%. For any K detected clusters
C1, . . . ,CK , the averaged Orthogonal Least Squares (OLS)
error is defined as follows:

eOLS =
√
√
√
√ 1

N

K∑

k=1

∑

x∈Ck

dist2(x,Fk), (4)

where Fk is the OLS d-flat approximating Ck (obtained by
Principal Component Analysis (PCA)), and dist(x,Fk) de-
notes the orthogonal distance from x to Fk . In situations
where we know the true membership of the data points, we
also compute the percentage of misclassified points. That is,

e% = # of misclassified points

N
· 100%. (5)

3 The SCC Algorithm

We first introduce several numerical techniques (in Sect. 3.1)
to make the TSCC algorithm practical and then form the
SCC algorithm (in Sect. 3.2). We next analyze its complex-
ity in terms of both storage and running time (in Sect. 3.3),
and finally propose two more strategies: one for isolating
outliers (in Sect. 3.4), and the other for segmenting flats of
mixed dimensions (in Sect. 3.5).

3.1 The Novel Methods of SCC

3.1.1 Iterative Sampling

The TSCC algorithm is not applicable in practice for two
reasons: First, the amount of space for storing the affinity
matrix A ∈ R

N×Nd+1
can be huge (O(Nd+2)); Second, full

computation of A and multiplication of this large matrix and
its transpose (to produce W) can be computationally pro-
hibitive. One solution might be to use uniform sampling, i.e.,
randomly select and compute a small subset of the columns
of A, to produce an estimate of W (Drineas et al. 2006;
Govindu 2005),1 which is stated below.

Denoting by A(:, j) the j th column of A, we write W in
the following way:

W =
Nd+1
∑

j=1

A(:, j) · A(:, j)′. (6)

Consequently, W is a sum of Nd+1 rank-1 matrices. Let
j1, . . . , jc be c integers that are randomly selected between 1
and Nd+1. Then W can be approximated as follows (Drineas
et al. 2006):2

W ≈
c∑

t=1

A(:, jt ) · A(:, jt )
′. (7)

1In Drineas et al. (2006) a more accurate sampling scheme according
to the magnitudes of the columns is also suggested. Nevertheless, since
we do not have the full affinity matrix A, this technique can not be
applied in our setting.
2More precisely, a scaling constant needs to be used in front of the sum
in order to have the right magnitude (see Drineas et al. 2006, Sect. 4).
However, since we are only interested in the eigen-structure of W, this
constant is omitted.



320 Int J Comput Vis (2009) 81: 317–330

(a) Uniform Sampling: The averaged errors obtained using different choices of c. On each curve a symbol represents a distinct value of c. Left:

c is taken to be N,2N, . . . ,10N respectively; Right: c = N,5N,10N,50N,100N

(b) Iterative Sampling: The mean (left) and standard deviation (right) of the errors obtained in the initial step (uniform sampling) and the first 9

updates using iterative sampling with c = N = 100 · K always fixed

Fig. 1 Plots of the errors (eOLS) using different sampling strate-
gies against time. In each experiment we randomly generate K = 3
d-dimensional linear subspaces in R

D . Each subspace contains

100 points, so N = 100 · K . The model error is 0.05 in all situations
(indicated by the dashed lines). We repeat this experiment 500 times
(for each fixed pair (d,D)) in order to compute an average of eOLS

In practice, in order to have at most quadratic complex-
ity, we expect the maximum possible c to be an absolute
constant or a small number times N , resulting in c/Nd+1 ≤
O(N−d). We thus conclude that uniform sampling (main-
taining quadratic complexity) is almost surely not able to
capture the column space of A when N is large and d is
moderate. Indeed, this is demonstrated in Fig. 1(a): In the
two cases where d > 2, the error eOLS does not get close to
the model error even with c = 100 ·N . This illustrates a fun-
damental limitation of uniform sampling. In the following
we explain our strategy to resolve this issue.

We note that each column j of A uniquely corresponds
to an ordered list of d + 1 points (xj1,xj2, . . . ,xjd+1) in the

data, and moreover, repeated points lead to a zero column
(see (3)). Thus, we will select only tuples of d + 1 distinct
points in X when sampling columns of A.

We say that an n-tuple of points is pure if these n points
are in the same underlying cluster, and that it is mixed other-
wise. Similarly, a column of the matrix A is said to be pure if
it corresponds to a pure (d + 1)-tuple, and mixed otherwise.
We use these two categories of columns of A to explain our
sampling strategy.

In the ideal case (see Sect. 2.3), any mixed column of A
is identically zero and thus makes no contribution to com-
puting the matrix W. On the other hand, the pure columns
lead to a block diagonal structure of W, which guarantees a



Int J Comput Vis (2009) 81: 317–330 321

perfect segmentation (Chen and Lerman 2007, Sect. 4.1). In
practice the mixed columns are typically not all zero. Since
the percentage of these columns in A is high, the matrix W
loses the desired block diagonal structure. If we only use the
pure columns of A, then we can expect W to be nearly block
diagonal.

The iterative sampling scheme is motivated by the above
observations and works as follows. We fix c to be some con-
stant, e.g., c = 100 · K . Initially, c columns of A are ran-
domly selected and computed so as to produce W, and then
an initial segmentation of X into K clusters is obtained with
this W (we call this initial step the zeroth iteration). We then
re-sample c columns of A by selecting c/K columns from
within each of the K initially found clusters, or from the
points within a small strip around the OLS d-flat of each
such cluster, and obtain K newer clusters. In order to achieve
the best segmentation, one can iterate this process a few
times, as the newer clusters are expected to be closer to the
underlying clusters.

We demonstrate the strength of this sampling strategy by
repeating the experiments in Fig. 1a, but with iterative sam-
pling replacing uniform sampling. Due to the randomness of
sampling, we compute both the mean and the standard de-
viation of the errors eOLS in the 500 experiments in each of
the intermediate steps of iterative sampling (see Fig. 1b).
In all cases, the mean drops rapidly below the model er-
ror when iterating, and the standard deviation also decays
quickly.

We remark that as d increases, we should also use larger
c in the zeroth iteration in order to capture “enough” pure
columns. Indeed, in order to have (on average) c0 pure
columns sampled from each underlying cluster in the ze-
roth iteration, we need to have c ≈ c0 · Kd+2. Afterwards,
we may still reduce c to a constant multiple of K in the
subsequent iterations. We plan to study more carefully the
required magnitudes of c (for the zeroth iteration and the
subsequent iterations respectively) to ensure convergence.
When the theoretical value of c is unrealistically large, we
can sample columns from the output of other d-flats cluster-
ing algorithms (e.g., K-Subspaces) to initialize SCC.

3.1.2 Estimation of the Tuning Parameter σ

The choice of the tuning parameter σ is crucial to the perfor-
mance of any algorithm involving Gaussian-kernel affinities.
However, selecting its optimal value is not an easy task, and
is insufficiently investigated in the literature. Common prac-
tice is to manually select a small set of values and choose
the one that works the best (e.g., Ng et al. 2002). Since the
optimal value of σ should depend on the scale of the data,
subjective choices may work poorly (see Fig. 2). We develop
an automatic scheme to infer the optimal value of σ (or an
interval containing it) from the data itself.

We start by assuming that all curvatures are computed
(which is unrealistic when d > 1). In this case, we estimate
the correct choice of σ , starting with the clean case and then
corrupting it by noise. We follow by examining the practical
setting of c sampled columns, i.e., when only a fraction of
the curvatures are computed.

In the clean case, the polar curvatures of all pure (d + 2)-
tuples are zero. In contrast, (almost) all mixed (d +2)-tuples
have positive curvatures.3 By taking a sufficiently small
σ > 0 the resulting affinity tensor can closely approximate
the perfect tensor (defined in Sect. 2.3), thus an accurate seg-
mentation is guaranteed. When the data is corrupted with
moderate noise, we still expect the curvatures of most pure
(d + 2)-tuples to be small, and those of most mixed (d + 2)-
tuples to be large. The optimal value of σ , σopt, is the max-
imum of the small curvatures corresponding to pure tuples
(up to a scaling constant). Indeed, transforming the curva-
tures by exp(−(·)2/(2σ 2

opt)) will produce affinities that are
close to zero (for mixed tuples) and one (for pure tuples). In
other words, this transformation serves like a “low-pass fil-
ter”: It “passes” smaller curvatures by producing large affini-
ties toward one, and “blocks” bigger curvatures toward zero.

Therefore, in the case of small within-cluster curvatures
and large between-cluster curvatures, one can compute all
the curvatures, have them sorted in an increasing order, esti-
mate the number of small curvatures corresponding to pure
tuples, and take as σopt the curvature value at that particular
index in the sorted vector. The key step is determining the
index of that curvature value. For this reason we refer to our
approach as index estimation.

We next obtain this index in two cases. We denote by
P(n, r) the number of permutations of size r from n avail-
able elements, where n ≥ r ≥ 1 are integers. For any 1 ≤
j ≤ K , let Nj denote the size of the j th underlying clus-
ter. First of all, we suppose that these Nj are given. Then
the proportion of pure (d + 2)-tuples to all (d + 2)-tuples
equals:

γ =
∑

1≤j≤K P (Nj , d + 2)

P (N,d + 2)
≈

K∑

j=1

(
Nj

N

)d+2

. (8)

That is, the curvature value at the index of γ · P(N,d + 2)

can be used as the best estimate for the optimal σ . Second,
when Nj are unknown, we work out the absolute minimum4

3When a mixed (d + 2)-tuple happen to be lying on a d-flat, the polar
curvature will be correspondingly zero. However, such mixed tuples
should be rare.
4The absolute minimum can be obtained by solving a constrained op-
timization problem:

min
γ1,...,γK≥0

K∑

j=1

γ d+2
j subject to

K∑

j=1

γj = 1.

The minimum is attained when γj = 1/K, j = 1, . . . ,K .



322 Int J Comput Vis (2009) 81: 317–330

Fig. 2 Segmentation results with different choices of σ . The value 1.3846 is inferred from the data using our strategy (explained in Example 3.1);
the other values are manually selected

of the last quantity in (8) and use it as a lower bound for the
fraction γ :

γ � K ·
(

1

K

)d+2

= 1

Kd+1
. (9)

We note that if all Nj are equal to N/K , then this lower
bound coincides with its tighter estimate provided in (8).
The following example demonstrates this strategy.

Example 3.1 We take the data in Fig. 2 which consist of
three lines in R

2, each having 25 points. This data set has a
relatively small size, so we are able to compute all the polar
curvatures. We apply (8) (or (9)) and obtain that γ ≈ 1/9.
Thus, we use the 1/9 · P(75,2) = 617th smallest curvature
as the optimal value of the tuning parameter: σ = 1.3846.

We now go to our practical setting (Sect. 3.1.1) where
we iteratively sample only c columns of A and thus do not
have all the curvatures. We assume convergence of the it-
erative sampling so that the proportion of pure columns (in
the c sampled columns) increases with the iterations. Con-
sequently, we obtain a lower bound for σ from the zeroth
iteration, and an upper bound from the last iteration.

In the zeroth iteration (uniform sampling) c columns of
A are randomly selected. We expect to have the same lower
bound as in (9) for the proportion of pure (d + 2)-tuples in

these c columns. We note that there are exactly N − d − 1
tuples of d + 2 distinct points in each of these c columns.
Denoting by c the vector of the (N −d −1) ·c corresponding
curvatures sorted in an increasing order, we write a lower
bound for σ as follows:

σmin = c
(
(N − d − 1) · c/Kd+1

)
. (10)

In the last iteration (when the scheme converges to find-
ing the true clusters), c/K columns are sampled from each
of the K underlying clusters, thus all the c columns are
pure. In this case, the number of pure (d + 2)-tuples in the c

columns attains the following maximum possible value:

K∑

j=1

(Nj − d − 1) · c

K
= N · c/K − (d + 1) · c.

Therefore, we have the following upper bound for σ :

σmax = c((N/K − d − 1) · c). (11)

We present two practical ways of searching the interval
[σmin, σmax] for the optimal value of σ . First, one can start
with the upper bound σmax and divide it by a constant (e.g.,√

2) each time until it falls below the lower bound σmin. Sec-
ond, one can search by the index of the vector c, i.e., choose



Int J Comput Vis (2009) 81: 317–330 323

the optimal value from a subset of c:

{c (
N · c/Kq

) | q = 1, . . . , d + 1}. (12)

We will use the second strategy (which only tests d + 1 val-
ues) in the SCC algorithm, as we find in experiments that
it works sufficiently well. To further improve efficiency, we
can gradually raise the lower bound (i.e., σmin) in the subse-
quent iterations.

3.1.3 Initialization of K-Means

The clustering step in the TSCC algorithm applies K-
means to the rows of U. In the ideal case, these rows co-
incide with K mutually orthogonal vectors (the “seeds”)
in R

K (Chen and Lerman 2007, Proposition 4.1); in the
case of noise, the rows of U correspond to more than K

points that originate from those seeds and possibly overlap
in between. See Fig. 3 for an illustration. We locate these
seeds by maximizing the variance among all possible com-
binations of K rows of U, and then use them to initialize
K-means.

Formally, the indices of these seeds can be found by solv-
ing the following optimization problem:

{s1, . . . , sK }

= arg max
1≤n1<···<nK≤N

K∑

i=1

∥
∥
∥
∥
∥
∥

U(ni, :) − 1

K
·

K∑

j=1

U(nj , :)
∥
∥
∥
∥
∥
∥

2

.

(13)

With a little algebra we obtain an equivalent representation:

{s1, . . . , sK }
= arg max

1≤n1<···<nK≤N

∑

1≤i<j≤K

∥
∥U(ni, :) − U(nj , :)

∥
∥2

.

(14)

We thus apply an inductive scheme (via (14)) to solve the
above maximization problem. The first index s1 is chosen
to be that of the row farthest from the center of all N rows.
That is,

s1 = arg max
1≤n≤N

∥
∥
∥
∥
∥

U(n, :) − 1

N

N∑

i=1

U(i, :)
∥
∥
∥
∥
∥

. (15)

Suppose now that 1 ≤ k < K seeds have been chosen, then
the index of the (k + 1)st seed is determined by

sk+1 = arg max
1≤n≤N

n�=s1,...,sk

k∑

i=1

‖U(si, :) − U(n, :)‖2 . (16)

Remark 3.2 When the rows of U are normalized to have
unit length, we still use the criterion in (14), which corre-
spondingly reduces to minimizing the sum of inner products
among all possible combinations of K rows of U. In this
case, our strategy, i.e., (15) and (16), is still different from
that of Ng et al. (2002).

3.2 The SCC Algorithm

We combine together the theoretical algorithm (Algo-
rithm 1) and all the techniques introduced in Sect. 3.1 to
form a comprehensive Spectral Curvature Clustering (SCC)
algorithm for practical use (Algorithm 2).

Algorithm 2 Spectral Curvature Clustering (SCC)
Input: Data set X, intrinsic dimension d , number of d-flats

K , number of sampled columns c (default = 100 · K).
Output: K disjoint clusters C1, . . . ,CK and error eOLS.
Steps:

1: Sample randomly c subsets of X, each containing ex-
actly d + 1 distinct points.

2: Compute the polar curvature of any subset and each of
the rest of N −d −1 points in X by (2), and sort increas-
ingly these (N − d − 1) · c curvatures into a vector c.

3: for q = 1 : d + 1 do

• Use (3) together with σ = c (N · c/Kq) to compute
the c selected columns of A. Form a matrix Ac ∈
R

N×c using these c columns.
• Compute D = diag{Ac · (A′

c ·1)} and use it to normal-
ize Ac: A∗

c = D−1/2 · Ac.
• Form the matrix U whose columns are the top K left

singular vectors of A∗
c .

• Apply K-means, initialized using (15) and (16), to
the rows of U (possibly normalized to have unit
length), and separate them into K clusters.

• Use these detected clusters to group the points of X
into K subsets, and compute the corresponding error
eOLS using (4).

end for

Record the K subsets C1, . . . ,CK of X that correspond
to the smallest error eOLS in the above loop.

4: Sample c/K (d + 1)-tuples from each Cj ,1 ≤ j ≤ K

found above (or the points within a small strip around
each of their OLS d-flats), and repeat Steps 2 and 3 to
find K newer clusters. Iterate until convergence to ob-
tain a best segmentation result.

Remark 3.3 (Linear SCC Algorithm (LSCC)) If all the sub-
spaces are known to be linear, then one can take any d + 1



324 Int J Comput Vis (2009) 81: 317–330

Fig. 3 Three data sets of the same model but with increasing levels of noise, and their images in the embedded space

points together with the origin to compute a curvature. This
simplifies the SCC algorithm by producing a smaller affin-
ity tensor (of order d + 1). Moreover, it can improve the
segmentation result for the following two reasons: (1) The
new matrix A has less columns than before by one order of
N , so the same number of sampled columns can be a bet-
ter representative of the column space of A; (2) For d + 1
points and the origin, a small curvature always implies that
the d +1 points are close to being on some underlying linear
subspace. This excludes the unfavorable small curvatures for
d +2 points around an affine subspace (which is the case for
SCC).

3.3 Complexity of the SCC Algorithm

The implementation of the SCC algorithm is mainly through
standard matrix operations, such as elementwise manipula-
tion, matrix-vector multiplication, Singular Value Decom-
position (SVD), etc. Consequently, the complexity of SCC
is completely determined by the sizes of the matrices used
in the algorithm and the types of operations between them.

The storage requirement of the algorithm is O(N · (D +
c)). Indeed, the biggest matrices are X (when considered as
a matrix), whose size is N × D, and Ac,A∗

c (defined in Al-
gorithm 2), which have size N × c. In order to estimate the
running time, we first note that it takes O((d +1) ·D ·N ·c))

time to compute Ac by using matrix manipulations (see code
at the supplementary webpage). Also, it takes O(N · c) time
to compute D, Ãc, and O((N + c) · K2) time to calculate U
by fast SVD algorithms (e.g., Brand 2003). Thus, each iter-
ation takes O((d + 1)2 · D · N · c) time (the computation is
repeated d + 1 times in Step 3 of Algorithm 2). Let ns de-
note the number of sampling iterations performed. We then
obtain that the total running time of the SCC algorithm is
O(ns · (d + 1)2 · D · N · c).
3.4 Outliers Detection

We detect outliers according to the degrees of the data
points, i.e., the diagonal elements of the matrix D in Al-
gorithm 2. We assume that the percentage of outliers is
known. In each sampling iteration, after the degrees D have
been computed, we isolate the percentage of points with
the smallest degrees as intermediate outliers, and remove
the corresponding rows from the matrix Ac. We then re-
compute D and follow the subsequent steps of SCC to ob-
tain K clusters. In the next iteration, we will sample c/K

columns only from each of the previously detected clusters
to form the matrix Ac ∈ R

N×c (thus excluding the previous
outliers). Those outliers isolated in the final sampling itera-
tion will be the ultimate outliers.

To evaluate the performance of this outliers detection
strategy associated with SCC, we plot in Fig. 4 a Receiver



Int J Comput Vis (2009) 81: 317–330 325

Fig. 4 ROC curves corresponding to SCC and RGPCA. We randomly
generate K = 3 linear lines in R

2, and sample 100 points from each
line. The samples are then corrupted with 5% Gaussian noise and
further contaminated with some percentage of outliers. The percent-
ages used are 5%,10%,15%, . . . ,95% respectively, as indicated by the
symbols on each curve. For each fixed percentage, 500 experiments are
repeated in order to compute an average for each of the two rates TPR
and FPR

Operating Characteristic (ROC) curve in the case of lines
contaminated with outliers. An ROC curve is the plot of
the true positive rates (TPR) against the false positive rates
(FPR). The TPR is the percentage of correctly detected out-
liers, while the FPR is the percentage of the data points in
the stable distribution which are falsely detected as outliers.
A large area under the ROC curve is indication of good per-
formance in outliers detection for a wide range of FPRs. The
area of the region under the ROC curve corresponding to
SCC is 0.8105. In comparison, the Robust GPCA algorithm
(RGPCA) (Ma et al. 2008) has an area of 0.7613 under its
ROC curve. The figure also emphasizes the fact that SCC
has a better performance than RGPCA at low FPRs which
are practically more important.

3.5 Mixed Dimensions

The SCC algorithm is formulated in the setting of data sam-
pled from flats of the same dimension d . In fact, it can
be easily adapted to cluster flats of mixed dimensions, i.e.,
when the dimensions d1, d2, . . . , dK are not necessarily the
same.

Our strategy is to use the maximum of the dimensions

dmax = max
1≤j≤K

dj , (17)

and apply SCC to segment K dmax-dimensional flats. We
find in experiments that this technique results in small seg-
mentation errors e%. At this stage we cannot compute eOLS

since we do not know the intrinsic dimensions of the de-
tected clusters. We will try to resolve this issue in later re-
search.

4 Numerical Experiments

4.1 Simulations

We compare the SCC algorithm (and also LSCC when ap-
plicable) with other competing methods on a number of ar-
tificial data sets in the setting of hybrid linear modeling.

The three methods that we compare with are the Mix-
tures of PPCA algorithm (MoPPCA) (Tipping and Bishop
1999), the K-Subspaces algorithm (KS) (Ho et al. 2003),
and the GPCA algorithm with voting (GPCA) (Ma et al.
2008). We use the Matlab codes of the GPCA algorithm
at http://perception.csl.uiuc.edu/gpca/. We also borrow from
that website the Matlab code that generates various data sets.
MoPPCA and KS were implemented by Stefan Atev and
ourselves respectively (see codes at the supplementary web-
page). These two methods are always initialized with a ran-
dom guess of the membership of the data points. Due to the
randomness in the initialization, multiple restarts are used
and the best segmentation result is recorded.

The three multi-way clustering algorithms (Agarwal et
al. 2005; Govindu 2005; Shashua et al. 2006) seem highly
related and should have been included for comparison. How-
ever, they mainly focus on how to process a given affin-
ity tensor; many practical issues are not fully discussed
in the context of hybrid linear modeling, and are also
missing from their implementation. In fact, we have com-
pared with Govindu (2005) regarding random sampling and
choices of the tuning parameter σ (see Figs. 1 and 2).

In the following we conduct experiments in the cases
of linear/affine subspaces of the same dimension/mixed di-
mensions to compare the performance of the four algo-
rithms, namely MoPPCA, KS, GPCA, and SCC. The sim-
ulations were performed on a compute server with two dual-
core AMD Opteron 64-bit 280 processors (2.4 GHz) with
8 GB of RAM. We remark that when applying SCC (Algo-
rithm 2) we fix c = 100 · K , and do not normalize the rows
of U.

We first randomly generate K linear subspaces of a fixed
dimension d in some Euclidean space R

D , which we write
dK ∈ R

D for short. We follow Ma et al. (2008) to restrict
the angles between these subspaces to be at least 30 degrees
in order to ensure enough separation. Also, the diameter of
each subspace is fixed to be 1. We then randomly draw 100
samples from each of the subspaces, and corrupt them with
5% Gaussian noise. We apply the four algorithms to the data
and record both types of errors eOLS and e% as well as the
computation time t . This experiment is repeated 500 times
and the averaged errors and time are shown in Table 1. In all

http://perception.csl.uiuc.edu/gpca/


326 Int J Comput Vis (2009) 81: 317–330

Table 1 The two types of errors eOLS, e% and computation time t (in
seconds) of the four methods when clustering linear subspaces. The
number of subspaces K and the intrinsic dimension d are given to

all algorithms. The MoPPCA and KS algorithms are randomly initial-
ized. Ten restarts are used for each of them, and the smallest error is
used

16 ∈ R
3 24 ∈ R

3 33 ∈ R
4 43 ∈ R

6

eOLS e% t eOLS e% t eOLS e% t eOLS e% t

MoPPCA .048 8.3% 0.8 .042 19.2% 0.7 .043 16.8% 0.4 .048 3.2% 0.4

KS .048 8.0% 0.4 .043 19.5% 0.2 .043 16.3% 0.2 .048 3.1% 0.2

LSCC .048 8.6% 1.6 .043 19.8% 1.8 .044 17.3% 1.5 .048 3.4% 1.8

SCC .050 9.9% 3.1 .048 23.1% 3.0 .044 18.2% 2.0 .048 3.6% 2.1

GPCA .184 39.8% 3.7 .088 39.5% 1.5 .077 32.5% 1.3 .126 31.7% 3.1

Table 2 The two types of errors eOLS, e% and computation time t

(in seconds) of the four algorithms when clustering affine subspaces.
The number of subspaces K and the intrinsic dimension d are given to

all algorithms. The MoPPCA and KS algorithms are randomly initial-
ized. Ten restarts are used for each of them, and the smallest error is
used

14 ∈ R
2 23 ∈ R

3 33 ∈ R
4 43 ∈ R

5

eOLS e% t eOLS e% t eOLS e% t eOLS e% t

GPCA .174 29.1% 1.3 .116 20.1% 1.0 .128 25.2% 1.2 .138 30.2% 1.5

MoPPCA .110 35.4% 0.7 .115 47.6% 0.6 .101 49.6% 0.7 .089 49.0% 0.9

KS .089 25.5% 0.2 .113 45.4% 0.1 .101 49.2% 0.2 .090 49.3% 0.2

SCC .049 4.2% 1.3 .049 2.8% 1.0 .048 2.0% 1.4 .048 1.4% 2.1

Table 3 The percentage of misclassified points e% and elapsed time
t (in seconds) by all algorithms when clustering hybrid data sampled
from linear/affine subspaces of mixed dimensions. The dimensions of

the subspaces are given to all the algorithms. The MoPPCA and K-
Subspaces algorithms are randomly initialized. Ten restarts are used
for each of them, and the smallest error is used

(1,2,2) ∈ R
3 (1,1,2) ∈ R

3 (1,1,2,2) ∈ R
3 (1,2,3) ∈ R

4

Linear Affine Linear Affine Linear Affine Linear Affine

e% t e% t e% t e% t e% t e% t e% t e% t

KS 10.6% 0.1 34.1% 0.1 11.2% 0.1 26.9% 0.1 21.8% 0.2 36.6% 0.2 19.5% 0.1 38.6% 0.1

MoPPCA 8.0% 0.4 41.4% 0.6 24.0% 0.4 37.6% 0.6 20.4% 0.8 44.0% 1.0 24.0% 0.6 31.8% 0.7

GPCA 7.3% 2.2 11.7% 2.5 17.8% 2.1 18.1% 1.9 25.2% 3.5 24.7% 3.6 13.2% 6.4 17.4% 4.5

SCC 7.2% 1.2 1.0% 0.9 9.2% 1.1 0.5% 0.9 18.6% 2.2 1.4% 1.6 8.4% 1.6 0.3% 1.4

LSCC 6.1% 0.7 7.1% 0.8 10.8% 1.3 6.6% 1.5

the four scenarios, MoPPCA, KS, SCC and LSCC have
comparable performance, but they all outperform GPCA at
1–10−7 confidence level using paired t-tests.

We next compare the SCC algorithm with the other meth-
ods on clustering affine subspaces. We generate affine sub-
spaces with the same controlling parameters as in the linear
case. We remark that the software we are using (borrowed
from http://perception.csl.uiuc.edu/gpca/) tries to avoid in-
tersection of these affine subspaces, or more precisely, of the
sampled clusters. We note that, since SCC does not distin-
guish between linear and affine subspaces, its performance
in the case of intersecting affine subspaces can be reflected
in Table 1 (where we have intersecting linear subspaces).

The two types of errors due to all four methods and their
computation time are recorded in Table 2. The results of
paired t-tests between SCC and the other three methods
show that SCC performs better at 1–10−7 confidence level
in terms of both errors.

We finally compare all the algorithms on clustering lin-
ear/affine subspaces of mixed dimensions in order to further
evaluate their performance. We follow the notation in Ma et
al. (2008) to denote data sampled from subspaces of mixed
dimensions by (d1, . . . , dK) ∈ R

D . All the parameters used
in generating the data are the same as above, except that
the noise level becomes 3%. Table 3 shows the percentage
of misclassified points (i.e., e%) and elapsed time by each

http://perception.csl.uiuc.edu/gpca/


Int J Comput Vis (2009) 81: 317–330 327

of the four algorithms in eight scenarios. Without determin-
ing the true dimensions, the LSCC (resp. SCC) algorithm in
the case of linear (resp. affine) subspaces still exhibits better
performance in terms of e% than its competitors at 1–10−7

confidence level (using paired t-tests).

4.2 Applications

Hybrid linear modeling has broad applications in many ar-
eas, such as computer vision, image processing, pattern
recognition, and system identification. We exemplify below
the application of the SCC algorithm to a few real-world
problems that are studied in Vidal et al. (2005) and Ma et al.
(2008).

4.2.1 Motion Segmentation under Affine Camera Models

Suppose that a video sequence consists of F frames of
images of several objects that are moving independently
against the background, and that N feature points y1, . . . ,

yN ∈ R
3 are detected on the objects and the background.

Let zij ∈ R
2 be the coordinates of the feature point yj in the

ith image frame for every 1 ≤ i ≤ F and 1 ≤ j ≤ N . Then
zj = [z′

1j z′
2j . . . z′

Fj ]′ ∈ R
2F represents the trajectory of the

j th feature point across the F frames. The problem is how to
separate these trajectory vectors z1, . . . , zN into independent
motions undertaken by those objects and the background.

It has been shown (e.g., in Ma et al. 2008) that, under
affine camera models and with some mild conditions, the
trajectory vectors corresponding to different moving objects
and the background across the F image frames live in dis-
tinct linear subspaces of dimension at most four in R

2F , or
affine subspaces of dimension at most three within those lin-
ear subspaces.

We borrow the data from Sugaya and Kanatani (2004),
which is also used in Ma et al. (2008). This data consist of
two outdoor sequences taken by a moving camera tracking
a car moving in front of a parking lot and a building (Se-
quences A and B), and one indoor sequence taken by a mov-
ing camera tracking a person moving his head (Sequence C),
as shown in Sugaya and Kanatani (2004), Fig. 7.

Following the above theory, we first apply SCC (Algo-
rithm 2) as well as LSCC to segment two 4-dimensional
linear subspaces in R

2F for each of the three sequences. We
also apply SCC to each sequence and segment 3-dimensional
affine subspaces in R

2F . In all these cases, SCC obtains
100% accuracy. In contrast, GPCA cannot be applied di-
rectly to the original trajectories in Sequences A and C, as
it is computationally too expensive to find all the normal
vectors of these low dimensional linear subspaces within a
high dimensional ambient space. Even in Sequence B where
we could apply GPCA (since 2F = 34 is moderate), it pro-
duces varying errors, which are sometimes nearly 40% (see
Table 4).

Table 4 Percentage of misclassified points e% by SCC and GPCA re-
spectively using different combinations (d,D). Here d is the dimension
of the subspaces, and D is the ambient dimension. Both algorithms are
without post-optimization. In the table below N/A represents Not Ap-
plicable, while VE is short for Varying Errors

Sequence A B C

Number of points N 136 63 73

Number of frames F 30 17 100

SCC/LSCC d = 4,D = 2F 0% 0% 0%

SCC d = 3,D = 2F 0% 0% 0%

PCA+SCC d = 3,D = 4 0% 0% 0%

GPCA d = 3/4,D = 2F N/A VE N/A

SVD+GPCA d = 4,D = 5 0% 0% 40%

To further evaluate the performance of the two algo-
rithms, we have also applied GPCA and SCC to the three
sequences after reducing the ambient dimensions. We first
project the trajectories onto a 5-dimensional space by direct
SVD (to maintain the linear structure), and apply GPCA to
segment 4-dimensional linear subspaces in R

5 as suggested
in Ma et al. (2008), but without post-optimization by KS.
A segmentation error of 40% is obtained for Sequence C
(see Table 4). The equivalent way of applying SCC is to
first project the data onto the first four principal components
by PCA, and then segment 3-dimensional affine subspaces
in R

4. Again, SCC achieves zero error (see Table 4).

4.2.2 Face Clustering under Varying Lighting Conditions

We study the problem of clustering a given collection of im-
ages of human faces in fixed pose under varying illumination
conditions. It has been proved that the set of all images of
a Lambertian object under a variety of lighting conditions
form a convex polyhedral cone in the image space, and this
cone can be accurately approximated by a low-dimensional
linear subspace (of dimension at most 9) (Ho et al. 2003;
Basri and Jacobs 2003; Epstein et al. 1995). If we assume
that images of different faces lie in different subspaces, then
we can cluster these images by segmenting an arrangement
of linear subspaces using SCC (and also LSCC).

Following Vidal et al. (2005) we use a subset of the Yale
Face Database B (Georghiades et al. 2001) consisting of the
frontal face images of three subjects (numbered by 5, 8, and
10) of the ten (see Fig. 5) under 64 varying lighting con-
ditions. There are N = 64 × 3 images in total. For com-
putational efficiency, we have downsampled each image to
120 × 160 pixels, so the dimension of the image space is
D′ = 120 × 160. We then stack these images (after vector-
ized) into a D′ × N matrix X and apply SVD to reduce



328 Int J Comput Vis (2009) 81: 317–330

Fig. 5 The ten subjects in the Yale Face Database B. First row: sub-
jects 1 through 5; second row: subjects 6 to 10

Table 5 Combinations (d,D) with which SCC and GPCA achieves
a perfect segmentation respectively. Here d is the dimension of the
subspaces, while D is the ambient dimension

Methods (d,D)

SVD+SCC (0,2/3/4), (1,3/4),2 ≤ d < D ≤ 10

SVD+LSCC (1,3/4/5/7/8),2 ≤ d < D ≤ 10

SVD+GPCA (3,5), (4,6), (4,7), (5,7), (4,8), (6,8)

the ambient dimension to D � D′, forming a new matrix
Y ∈ R

D×N .
We apply SCC to the columns of Y and cluster three

d-dimensional linear subspaces in R
D . The above theory in-

dicates that d should be at most 9. We have tried all the pos-
sible combinations 0 ≤ d < D ≤ 10. The pairs (d,D) with
which SCC and LSCC give a perfect segmentation are listed
in Table 5. In comparison, we have also applied the GPCA-
voting algorithm to the columns of Y with 0 ≤ d < D ≤ 10.
There are many situations where GPCA does not give 100%
accuracy but SCC does (see Table 5).

Vidal et al. (2005) suggest to first project the data onto
the top three principal components and then apply GPCA
to the data in homogeneous coordinates by fitting three lin-
ear subspaces of dimensions 3, 2, and 2 in R

4. They obtain
zero error in this case. However, we are not aware of the
reason of using mixed dimensions. We follow their strategy
but instead we apply GPCA using the same dimension 3 for
each linear subspace. Then a segmentation error of about
4% is obtained. We note that applying GPCA with d = 3 for
each linear subspace (in homogeneous coordinates) in R

4 is
equivalent to applying SCC with D = 3 and d = 2. In this
case, SCC achieves a perfect segmentation.

4.2.3 Temporal Segmentation of Video Sequences

We consider the problem of partitioning a long video se-
quence into multiple short segments corresponding to dif-
ferent scenes. We assume that all the image frames having
the same scene live in a low dimensional subspace of the im-
age space, and that different scenes correspond to different

Fig. 6 The first, 56th and last (135th) frames of the Fox video se-
quence

Table 6 The pairs (d,D) with which each algorithm obtains 100%
accuracy. Here D is the ambient dimension, while d is the dimension
of the subspaces

Method (d,D)

SVD+SCC (0,1/2/3/4), (1,3/4), (2,3/4/5)

SVD+LSCC (1,3), (2,3/4), (3,4)

SVD+GPCA NONE

subspaces. We show that the SCC and LSCC algorithms can
be applied to solve this problem.

We borrow the video sequence from Vidal et al. (2005),
which is about an interview at Fox TV (Fig. 6). It con-
sists of 135 images of size 294 × 413, each containing
either the interviewer alone, or the interviewee alone, or
both. We would like to segment these images into the
three scenes. We view each image frame as a sample point
in R

D′
, where D′ = 294 × 413. We first apply SVD to

reduce the ambient dimension from D′ to D ≤ 10, and
then apply SCC/LSCC to segment three d-dimensional lin-
ear subspaces within R

D . The combinations (d,D) with
which SCC/LSCC obtains 100% accuracy are reported in
Table 6.

Vidal et al. (2005) applied GPCA to solve this problem
and obtained 100% accuracy. We do not know what dimen-
sions of the ambient space and the subspaces they used.
We also apply GPCA to segment d-dimensional linear sub-
spaces in the projected space R

D , where 1 ≤ d < D ≤ 10.
However, we did not find any combination that leads to a
perfect segmentation.



Int J Comput Vis (2009) 81: 317–330 329

5 Conclusions and Future Work

We have formed the Spectral Curvature Clustering (SCC)
algorithm by introducing various techniques and combining
them with its preliminary theoretical version (Chen and Ler-
man 2007). The complexity of the algorithm, i.e., the storage
and running time, depends linearly on both the size of the
data and the ambient dimension. We have performed exten-
sive simulations to compare our algorithm with a few other
standard methods. It seems that our algorithm is at least
comparable to its competitors. It has a marked advantage in
the case of affine subspaces and in certain instances of mixed
dimensions. We have also applied our algorithm to several
real-world problems, and obtained satisfactory results in all
cases. Our algorithm performs well even in relatively high
dimensional projected spaces, sometimes including the full
space, and thus does not require aggressive dimensionality
reduction as other algorithms.

Our work suggests many interesting future directions. In
addition to those mentioned in Chen and Lerman (2007),
this paper suggests the following avenues:

• Justification of Iterative Sampling: Our heuristic idea
of iterative sampling seems to work well in all cases and
thus results in a fast and accurate algorithm. We are in-
terested in a more rigorous foundation for this procedure,
in particular, finding conditions under which it converges
(e.g., how large c should be to ensure convergence).

• Improving the Outliers Detection Strategy: We are in-
terested in improving the strategy for detecting outliers,
especially when the outliers percentage is not given. We
would also like to study the robustness of the SCC algo-
rithm.

• Improving the Case of Mixed Dimensions: Currently,
when dealing with mixed dimensions, we use the highest
dimension. This strategy works well in terms of e%. To
improve the performance of SCC in this case, and conse-
quently to more accurately evaluate the other error eOLS,
we plan to explore estimation of the true dimensions of
the detected flats. Another strategy might be to hierarchi-
cally perform SCC according to different intrinsic dimen-
sions.

• Determining the Number of Flats and Their Dimen-
sions: Throughout this paper we have assumed that K and
dk are given. In many cases prior knowledge of these pa-
rameters may not be available. We thus need to develop
techniques and criterions to select an optimal model.

Acknowledgements We thank the anonymous referees and the ac-
tion editor for their valuable comments that have helped improve this
paper, Tyler Whitehouse for commenting on an earlier version of this
paper, Guillermo Sapiro for providing valuable references, Sameer
Agarwal, Amnon Shashua, and Ron Zass for providing us their codes
and for helpful email correspondence, Fei Yang for the contribution
to the application of SCC to motion segmentation, Rene Vidal and

Rizwan Chaudry for sending us the FOX video data. Special thanks go
to Stefan Atev for insightful discussions and great help with program-
ming. We are also grateful to IPAM and Mark Green for inviting us to
participate in various programs on extracting information from high di-
mensional data and multiscale geometry. Those programs had a strong
effect on the research described here. GL thanks Ingrid Daubechies
who encouraged him to think about hybrid linear modeling already
in 2002 (motivated by a brain imaging problem). This work was sup-
ported by NSF grant #0612608.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Agarwal, S., Branson, K., & Belongie, S. (2006). Higher order learning
with graphs. In Proceedings of the 23rd international conference
on machine learning (Vol. 148, pp. 17–24).

Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., &
Belongie, S. (2005). Beyond pairwise clustering. In Proceedings
of the 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05) (Vol. 2, pp. 838–845).

Bader, B., & Kolda, T. (2004). Matlab tensor classes for fast algo-
rithm prototyping (Technical Report SAND2004-5187). Sandia
National Laboratories.

Basri, R., & Jacobs, D. (2003). Lambertian reflectance and linear sub-
spaces. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 25(2), 218–233.

Bradley, P., & Mangasarian, O. (2000). k-plane clustering. Journal of
Global Optimization, 16(1), 23–32.

Brand, M. (2003). Fast online SVD revisions for lightweight recom-
mender systems. In Proc. SIAM international conference on data
mining.

Chen, G., & Lerman, G. (2007, submitted). Curvature-driven diffusion
and hybrid flat-surfaces modeling. Foundations of Computational
Mathematics. Latest version available at the supplementary web-
page.

Drineas, P., Kannan, R., & Mahoney, M. (2006). Fast Monte Carlo
algorithms for matrices I: Approximating matrix multiplication.
SIAM Journal on Computing, 36(1), 132–157.

Epstein, R., Hallinan, P., & Yuille, A. (1995). 5 ± 2 eigenimages suf-
fice: An empirical investigation of low-dimensional lighting mod-
els. In IEEE workshop on physics-based modeling in computer
vision (pp. 108–116).

Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to
many: Illumination cone models for face recognition under vari-
able lighting and pose. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(6), 643–660.

Govindu, V. (2005). A tensor decomposition for geometric grouping
and segmentation. In Proceedings of the 2005 IEEE computer
society conference on computer vision and pattern recognition
(CVPR’05) (Vol. 1, pp. 1150–1157).

Gruber, P., & Theis, F. (2006). Grassmann clustering. In Proc. EU-
SIPCO 2006. Florence, Italy.

Haro, G., Randall, G., & Sapiro, G. (2006). Stratification learning:
Detecting mixed density and dimensionality in high dimensional
point clouds. Neural Information Processing Systems.

Ho, J., Yang, M., Lim, J., Lee, K., & Kriegman, D. (2003). Clustering
appearances of objects under varying illumination conditions. In
Proceedings of international conference on computer vision and
pattern recognition (Vol. 1, pp. 11–18).

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: al-
gorithms and applications. Neural Networks, 13(4–5), 411–430.



330 Int J Comput Vis (2009) 81: 317–330

Kanatani, K. (2001). Motion segmentation by subspace separation and
model selection. In Proc. of 8th ICCV (Vol. 3, pp. 586–591). Van-
couver, Canada.

Kanatani, K. (2002). Evaluation and selection of models for motion
segmentation. In 7th ECCV (Vol. 3, pp. 335–349).

Lerman, G., & Whitehouse, J. T. (2008a). On d-dimensional
d-semimetrics and simplex-type inequalities for high-dimen-
sional sine functions. Journal of Approximation Theory.
doi:10.1016/j.jat.2008.03.005. See also http://front.math.ucdavis.
edu/0805.1430.

Lerman, G., & Whitehouse, J. T. (2008b). High-dimensional Menger-
type curvatures—part I: Geometric multipoles and multiscale in-
equalities. http://front.math.ucdavis.edu/0805.1425.

Lerman, G., & Whitehouse, J. T. (2008c). High-dimensional Menger-
type curvatures—part II: d-Separation and a menagerie of curva-
tures. http://front.math.ucdavis.edu/0809.0137.

Lerman, G., & Whitehouse, J. T. (2008d, in preparation). Least squares
approximations for probability measures via multi-way curva-
tures. Will appear at the supplementary webpage once ready.

Ma, Y., Yang, A. Y., Derksen, H., & Fossum, R. (2008). Estimation
of subspace arrangements with applications in modeling and seg-
menting mixed data. SIAM Review, 50(3), 413–458.

Medioni, G., Lee, M.-S., & Tang, C.-K. (2000). A computational
framework for segmentation and grouping. Amsterdam: Elsevier.

Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral clustering: Analy-
sis and an algorithm. In Advances in neural information process-
ing systems (Vol. 14).

Shashua, A., Zass, R., & Hazan, T. (2006). Multi-way clustering using
super-symmetric non-negative tensor factorization. In ECCV06
(Vol. IV, pp. 595–608).

Souvenir, R., & Pless, R. (2005). Manifold clustering. In The 10th in-
ternational conference on computer vision (ICCV 2005).

Sugaya, Y., & Kanatani, K. (2004). Multi-stage unsupervised learning
for multi-body motion segmentation. IEICE Transactions on In-
formation and Systems, E87–D(7), 1935–1942.

Tipping, M., & Bishop, C. (1999). Mixtures of probabilistic principal
component analysers. Neural Computation, 11(2), 443–482.

Tseng, P. (1999). Nearest q-flat to m points (Technical report).
Vidal, R., Ma, Y., & Sastry, S. (2005). Generalized principal com-

ponent analysis (GPCA). IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(12), 1945–1959.

http://dx.doi.org/10.1016/j.jat.2008.03.005
http://front.math.ucdavis.edu/0805.1430
http://front.math.ucdavis.edu/0805.1430
http://front.math.ucdavis.edu/0805.1425
http://front.math.ucdavis.edu/0809.0137

	Spectral Curvature Clustering (SCC)
	Abstract
	Introduction
	Background
	Polar Curvature
	The Affinity Tensor and its Matrix Representation
	The SCC Algorithm in Theory
	Assessment of Algorithm

	The SCC Algorithm
	The Novel Methods of SCC
	Iterative Sampling
	Estimation of the Tuning Parameter sigma
	Initialization of K-Means

	The SCC Algorithm
	Complexity of the SCC Algorithm
	Outliers Detection
	Mixed Dimensions

	Numerical Experiments
	Simulations
	Applications
	Motion Segmentation under Affine Camera Models
	Face Clustering under Varying Lighting Conditions
	Temporal Segmentation of Video Sequences


	Conclusions and Future Work
	Acknowledgements
	Open Access
	References


