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Abstract

Approximate Bayesian computation (ABC) has become one of the major tools of likelihood-free statistical inference in com-

plex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool

for modelling time-dependent, real-world phenomena with underlying random effects. When applying ABC to stochastic

models, two major difficulties arise: First, the derivation of effective summary statistics and proper distances is particularly

challenging, since simulations from the stochastic process under the same parameter configuration result in different trajec-

tories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the

derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the

intrinsic stochasticity of the model, we propose to build up the statistical method (e.g. the choice of the summary statistics)

on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map

the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are

kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based

and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both

with simulated data and with real electroencephalography data. The derived summaries are particularly robust to the model

simulation, and this fact, combined with the proposed reliable numerical scheme, yields accurate ABC inference. In contrast,

the inference returned using standard numerical methods (Euler–Maruyama discretisation) fails. The proposed ingredients

can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterised by an invariant

distribution and for which a measure-preserving numerical method can be derived.

Keywords Approximate Bayesian computation · Likelihood-free inference · Stochastic differential equations · Numerical

splitting schemes · Invariant measure · Neural mass models

1 Introduction

Over the last decades, stochastic differential equations

(SDEs) have become an established and powerful tool
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for modelling time-dependent, real-world phenomena with

underlying random effects. They have been successfully

applied to a variety of scientific fields, ranging from biology

over finance to physics, chemistry, neuroscience and others.

Diffusion processes obtained as solutions of SDEs are typi-

cally characterised by some underlying structural properties

whose investigation and preservation are crucial. Examples

are boundary properties, symmetries or the preservation of

invariants or qualitative behaviour such as the ergodicity or

the conservation of energy. Here, we focus on a specific

structural property, namely the existence of a unique invari-

ant measure. Besides the modelling, it is of primary interest

to estimate the underlying model parameters. This is par-

ticularly difficult when the multivariate stochastic process

is only partially observed through a 1-dimensional func-

tion of its coordinates (the output process), a scenario that
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we tackle here. Moreover, due to the complexity of SDEs,

needed to understand and reproduce the real data, the under-

lying likelihood is often unknown or intractable. Among

several likelihood-free inference approaches, we focus on the

simulation-based approximate Bayesian computation (ABC)

method. We refer to Marin et al. (2012) and to the recently

published book “Handbook of approximate Bayesian com-

putation” for an exhaustive discussion (Sisson et al. 2018).

ABC has become one of the major tools for parameter

inference in complex mathematical models in the last decade.

The method is based on the idea of deriving an approximate

posterior density targeting the true (unavailable) posterior

by running massive simulations from the model to replace

the intractable likelihood. It was first introduced in the con-

text of population genetics; see, e.g. Beaumont et al. (2002).

Since then, it has been successfully applied in a wide range of

fields; see, e.g. Barnes et al. (2012), Blum (2010a), Boys et al.

(2008), McKinley et al. (2017), Moores et al. (2015) and Toni

et al. (2009). Moreover, ABC has also been proposed to infer

parameters from time series models (see, e.g. Drovandi et al.

2016; Jasra 2015), state space models (see, e.g. Martin et al.

2019; Tancredi 2019) and SDE models (see, e.g. Kypraios

et al. 2017; Maybank et al. 2017; Picchini 2014; Picchini and

Forman 2016; Picchini and Samson 2018; Sun et al. 2015;

Zhu et al. 2016). Several advanced ABC algorithms have

been proposed in the literature, such as sequential Monte

Carlo (SMC) ABC, Markov Chain Monte Carlo (MCMC)

ABC, sequential annealing ABC, noisy ABC; see, e.g. Fan

and Sisson (2018) and the references therein for a recent

review. The idea of the basic acceptance–rejection ABC algo-

rithm is to keep a sampled parameter value from the prior

as a realisation from the approximate posterior, if the dis-

tance between the summary statistics of the synthetic dataset,

which is generated conditioned on this parameter value, and

the summaries of the original reference data is smaller than

some tolerance level. The goal of this paper is to illustrate

how building up the ABC method on the structural properties

of the underlying SDE, and using a numerical method capa-

ble of preserving them in the generation of the data from the

model, leads to a successful inference even when applying

ABC in this basic acceptance–rejection form.

The performance of any ABC method depends heavily

on the choice of “informative enough” summary statistics,

a suitable distance measure and a tolerance level ǫ. The

quality of the approximation improves as ǫ decreases, and

it has been shown that, under some conditions, the approxi-

mated ABC posterior converges to the true one when ǫ → 0

(Jasra 2015). At the same time though, the computational

cost increases when ǫ decreases. A possibility is to use ad

hoc threshold selection procedures; see, e.g. Barber et al.

(2015), Blum (2010b), Lintusaari et al. (2017), Prangle et al.

(2014) and Robert (2016). Here, we fix the tolerance level ǫ

as a percentile of the calculated distances. This is another

common practice known as “reference table acceptance–

rejection ABC” (Cornuet et al. 2008) and used, for example,

in Beaumont et al. (2002), Biau et al. (2015), Sun et al. (2015)

and Vo et al. (2015). Instructions for constructing effective

summaries and distances are rare, and they depend on the

problem under consideration; see, e.g. Fearnhead and Pran-

gle (2012) for a semiautomatic linear regression approach,

Jiang et al. (2017) for an automatic construction approach

based on training deep neural networks and Blum (2010b)

and Prangle (2018) for two recent reviews. To avoid the

information loss caused by using non-sufficient summary

statistics, another common procedure is to work with the

entire dataset; see, e.g. Jasra (2015) and Sun et al. (2015).

This requires the application of more sophisticated distances

d such as the Wasserstein metric (Bernton et al. 2019; Musku-

lus and Verduyn-Lunel 2011) or other distances designed for

time series; for an overview see, e.g. Mori et al. (2016) and

the references therein.

When working with stochastic models, simulations from

the stochastic simulator, conditionally to the same param-

eter configuration, yield different trajectories. To consider

summary statistics that are less sensitive to the intrinsic

stochasticity of the model (Wood 2010), we choose them

based on the structural property of an underlying invariant

measure. The idea is to map the data, i.e. the realisations of

the output process, to an object that is invariant for repeated

simulations under the same parameter setting and is instead

sensitive to small changes in the parameters. In particular, we

map the data to their estimated invariant density and invari-

ant spectral density, taking thus the dependence structure of

the dynamical model into account. The distance measure can

then be chosen according to the mapped data.

As other simulation-based statistical methods, e.g. MCMC,

SMC or machine learning algorithms, ABC relies on the

ability of simulating data from the model. However, the

exact simulation from complex stochastic models is rarely

possible, and thus, numerical methods need to be applied.

This introduces a new level of approximation into the ABC

framework. When the statistical method is build upon the

structural properties of the underlying model, the successful

inference can only be guaranteed when these properties are

preserved in the synthetic data generated from the model.

However, the issue of deriving a property-preserving numer-

ical method when applying ABC to SDEs is usually seen

as not so relevant, and it is usually recommended to use the

Euler–Maruyama scheme or one of the higher-order approxi-

mation methods described in Kloeden and Platen (1992); see,

e.g. Picchini (2014), Picchini and Forman (2016), Picchini

and Samson (2018) and Sun et al. (2015). In general, these

standard methods do not preserve the underlying structural

local and global properties of the model; see, e.g. Ableidinger

et al. (2017), Malham and Wiese (2013), Moro and Schurz

(2007) and Strømmen Melbø and Higham (2004).
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Here, we propose to apply structure-preserving numeri-

cal splitting schemes within the ABC algorithm. The idea

of these methods is to split the SDE into explicitly solv-

able subequations and to apply a proper composition of the

resulting exact solutions. Standard procedures are, for exam-

ple, the Lie–Trotter method and the usually more accurate

Strang approach; see, e.g. Leimkuhler et al. (2016). Since

the only approximation enters through the composition of the

derived explicit solutions, numerical splitting schemes usu-

ally preserve the structural properties of the underlying SDE

and accurately reproduce its qualitative behaviour. Moreover,

they usually have the same order of convergence as the fre-

quently applied Euler–Maruyama method and are likewise

efficient. We refer to Blanes et al. (2009) and Mclachlan

and Quispel (2002) for an exhaustive discussion of splitting

methods for broad classes of ordinary differential equa-

tions (ODEs), which partially have already been carried over

to SDEs; see, e.g. Misawa (2001) for a general class of

SDEs, Ableidinger and Buckwar (2016) for the stochastic

Landau–Lifshitz equations, Bréhier and Goudenège (2019)

for the Allen–Cahn equation and Ableidinger et al. (2017)

for Hamiltonian type SDEs.

The main contribution of this work lies in the combi-

nation of the proposed invariant measure-based summary

statistics and the measure-preserving numerical splitting

schemes within the ABC framework. We demonstrate that

a simulation-based inference method, here ABC, can only

perform well if the underlying simulation method preserves

the structural properties of the SDE. While the use of pre-

serving splitting schemes within the ABC method yields

successful results, applying a general purpose numerical

method, such as the Euler–Maruyama discretisation, may

result in seriously wrong inferences. We illustrate the pro-

posed spectral density-based and measure-preserving ABC

method on the class of stochastic Hamiltonian type equations

for which the existence of an underlying unique invari-

ant distribution and measure-preserving numerical splitting

schemes have been already intensively studied in the liter-

ature; see, e.g. Ableidinger et al. (2017), Mattingly et al.

(2002), Leimkuhler and Matthews (2015) and Milstein and

Tretyakov (2004). Hamiltonian type SDEs have been inves-

tigated in molecular dynamics, where they are typically

referred to as Langevin equations; see, e.g. Leimkuhler and

Matthews (2015). Recently, they have also received consid-

erable attention in the field of neuroscience as the so-called

neural mass models (Ableidinger et al. 2017).

The paper is organised as follows: In Sect. 2, we recall the

acceptance–rejection ABC setting. We introduce the invari-

ant measure-based summary statistics and propose a proper

distance. We then discuss the importance of considering

measure-preserving numerical schemes for the synthetic data

generation when exact simulation methods are not applicable

and provide a short introduction to numerical splitting meth-

ods. In Sect. 3, we introduce Hamiltonian type SDEs and

recall two splitting integrators preserving the invariant mea-

sure of the model. In Sect. 4, we validate the proposed method

by investigating the stochastic harmonic oscillator, for which

exact simulation is possible. In Sect. 5, we apply the proposed

ABC method to the stochastic Jansen and Rit neural mass

model (JR-NMM). We refer to Jansen and Rit (1995) for the

original version, an ODE with a stochastic input function, and

to Ableidinger et al. (2017) for its reformulation as a Hamilto-

nian type SDE. This model has been reported to successfully

reproduce electroencephalography (EEG) data. We illustrate

the performance of the proposed ABC method with both sim-

ulated and real data. Final remarks, possible extensions and

conclusions are reported in Sect. 6. A supplementary material

(Online Resource 1) with further illustrations of the proposed

method is available online, and a sample code used to gen-

erate the main results is available on github at https://github.

com/massimilianotamborrino/sdbmpABC.

2 Spectral density-based and
measure-preserving ABC for partially
observed SDEs with an invariant
distribution

Let (Ω,F , P) be a complete probability space with right

continuous and complete filtration F = {F}t∈[0,T ]. Let

θ =(θ1, . . . , θk), k ∈ N, be a vector of relevant model param-

eters. We consider the following n-dimensional, n ∈ N,

non-autonomous SDE of Itô-type describing the time evo-

lution of a system of interest

dX(t) = f (t, X(t); θ) dt + G(t, X(t); θ) dW (t)

X(0) = X0, t ∈ [0, T ].
(1)

The initial value X0 is either deterministic or a R
n-valued

random variable, measurable with respect to F. Here,

W=(W (t))t∈[0,T ] is a r -dimensional, r ∈ N, Wiener process

with independent and F-adapted components. We further

assume that the drift component f : [0, T ] × R
n → R

n

and the diffusion component G : [0, T ] × R
n → R

n×r fulfil

the necessary global Lipschitz and linear growth conditions,

such that the existence and the pathwise uniqueness of an

F-adapted strong solution process X = (X(t))t∈[0,T ] ∈ R
n

of (1) are guaranteed; see, e.g. Arnold (1974).

We aim to infer the parameter vector θ inherent in the

SDE (1), when the n-dimensional solution process X is only

partially observed through the 1-dimensional and parameter-

dependent output process

Yθ = (Yθ (t))t∈[0,T ] = g(X), (2)
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where g : R
n → R is a real-valued continuous function

of the components of X. Here, we assume that the process

Yθ is observed without measurement error, referring to, e.g.

Picchini (2014) and Picchini and Forman (2016), where the

measurement error is taken into account.

Further, we assume a specific underlying structural model

property, namely the existence of a unique invariant measure

ηYθ
on (R,B(R)) of the output process Yθ , where B denotes

the Borel Sigma-algebra. The process has invariant density

fYθ and mean, autocovariance and variance given by

E[Yθ (t)] = ημ ∈ R,

Cov[Yθ (t), Yθ (s)] := rθ (t, s) = rθ (t − s), s ≤ t,

Var[Yθ (t)] = rθ (0) = ησ 2 ∈ R
+.

(3)

If the solution process X of SDE (1) admits an invariant

distribution ηX on (Rn,B(Rn)), then the output process Yθ

inherits this structural property by means of the marginal

invariant distributions of ηX. Furthermore, if X(0) ∼ ηX,

then the process Yθ = (Yθ (t))t∈[0,∞) evolves according to

the distribution ηYθ
for all t ≥ 0. Our goal is to perform

statistical inference for the parameter vector θ of the SDE

(1), when the solution process X is partially observed through

discrete time measurements of the output process Yθ given

in (2), by benefiting from the (in general unknown) invariant

distribution ηYθ
satisfying (3).

2.1 The ABCmethod

Let y = (y(ti ))
l
i=1, l ∈ N, be the reference data, correspond-

ing to discrete time observations of the output process Yθ .

Let us denote by π(θ) and π(θ |y) the prior and the poste-

rior density, respectively. For multivariate complex SDEs, the

underlying likelihood is often unknown or intractable. The

idea of the ABC method is to derive an approximate posterior

density for θ by replacing the unknown likelihood by many

simulations of synthetic datasets from the underlying model

(1) that are mapped to Yθ through (2). The basic acceptance–

rejection ABC algorithm consists of the following three

steps: i. Sample a value θ ′ from the prior π(θ); ii. Condition-

ally on θ ′, simulate a new artificial dataset from the model

(1) and derive the synthetic data yθ ′ = (yθ ′(ti ))
m
i=0, t0 = 0,

tm = T , m ∈ N, from the process Yθ ′ given by (2); iii. Keep

the sampled parameter value θ ′ as a realisation from an ABC

posterior if the distance d(·) between a vector of summary

statistics s = (s1, . . . , sh), h ∈ N, of the original and the

synthetic data is smaller than some threshold level ǫ ≥ 0, i.e.

d(s(y), s(yθ ′)) < ǫ. When ǫ = 0 and s is a vector of suffi-

cient statistics for θ , the acceptance–rejection ABC produces

samples from the true posterior π(θ |y). Due to the complex-

ity of the underlying SDE (1), we cannot derive non-trivial

sufficient statistics s for θ . Moreover, due to the underly-

ing stochasticity of the model, P(d(s(y), s(yθ ′)) = 0) = 0.

Thus, ǫ is required to be strictly positive.

Algorithm 1 Reference table acceptance–rejection ABC

Input: Observed data y

Output: Samples from the posterior πABC(θ |y)

1: Precompute a vector of summary statistics s(y)

2: Choose a prior distribution π(θ) and a percentile p

3: for i = 1 : N do

4: Draw θ i = (θ i
1, ..., θ

i
k) from the prior π(θ)

5: Conditionally on θ i , simulate a new realisation yθ i from the

output process Yθ

6: Compute the summaries s(yθ i )

7: Calculate the distance Di = d(s(y), s(yθ i ))

8: end for

9: Compute ǫ as the percentile p of the calculated distances

10: If Di < ǫ, keep θ i as a sample from the posterior, for i = 1, . . . , N

Throughout, we set ǫ a posteriori, in the spirit of the refer-

ence table acceptance–rejection ABC (Cornuet et al. 2008),

summarised in Algorithm 1, that is, we first produce the ref-

erence table (θ i , Di ), i = 1, . . . , N , and then obtain ǫ as

a percentile p of the calculated distances Di . Algorithm 1

yields samples from an approximated posterior πABC(θ |y)

according to

π(θ |y) ≈ πABC(θ |y) = π{θ |d(s(y), s(yθ )) < ǫ}.

Besides the tolerance level ǫ, the quality of the ABC

method depends strongly on the choice of suitable summary

statistics combined with a proper distance measure and on the

numerical method used to generate the synthetic data from

the model. In the following, we introduce summaries that are

very effective for the class of models having an underlying

invariant distribution, we suggest a proper distance based on

them, and we propose the use of measure-preserving numer-

ical splitting schemes.

2.2 An effective choice of summaries and distances:
spectral density-based ABC

When applying ABC to stochastic models, an important

statistical challenge arises. Due to the intrinsic random-

ness, repeated simulations of the process Yθ under the same

parameter vector θ may yield very different trajectories.

An illustration is given in Fig. 1 (top and middle panels),

where we report two trajectories of the output process of the

stochastic JR-NMM (25) generated with an identical param-

eter configuration. This model is a specific SDE of type (1),

observed through Yθ as in (2), and admitting an invariant

distribution ηYθ
satisfying (3). See Sect. 5 for a description

of the model. In the top panel, we visualise the full paths for a

time T = 200, while in the middle panel we provide a zoom,

showing only the initial part.
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Fig. 1 Two realisations of the output process of the stochastic JR-NMM

(25) generated with the numerical splitting method (17) for an identical

choice of θ . The lengths of the time intervals are T = 200 and T = 3

(to provide a zoom) in the top and middle panel, respectively. The two

invariant densities and two invariant spectral densities, estimated from

the two full datasets shown in the top panel, are reported in the lower

panel on the left and right, respectively

Proposal 1 To use the property of an invariant measure ηYθ

and to map the data yθ to their estimated invariant density

f̂yθ
and invariant spectral density Ŝyθ

.

Instead of working with the output process Yθ , we take

advantage of the structural model property ηYθ and focus on

its invariant density fYθ
and its invariant spectral density SYθ

.

Both are deterministic functions characterised by the under-

lying parameters θ and thus invariant for repeated simulations

under the same parameter configuration. The invariant spec-

tral density is obtained from the Fourier transformation of

the autocovariance function rθ , and it is given by

SYθ
= F{rθ }(ω) =

∫ ∞

−∞

rθ (τ )e−iωτ dτ, (4)

for ω ∈ [−π, π ]. The angular frequency ω relates to the

ordinary frequency ν via ω = 2πν. Since both fYθ
and

SYθ
are typically unknown, we estimate them from a dataset

yθ . First, we estimate the invariant density fYθ
with a kernel

density estimator, denoted by f̂yθ
; see, e.g. Pons (2011). Sec-

ond, we estimate the invariant spectral density SYθ
(4) with

a smoothed periodogram estimator (Cadonna et al. 2017;

Quinn et al. 2014), denoted by Ŝyθ
, which is typically eval-

uated at Fourier frequencies. Differently from the invariant

density, the invariant spectral density does not account for

the mean E[Yθ ] but captures the dependence structure of

the data coming from the model. We define the invariant

measure-based summary statistics s of a dataset yθ as

s(yθ ) := (Ŝyθ
, f̂yθ

). (5)

Figure 1 shows the two estimated invariant densities (left

lower panel) and invariant spectral densities (right lower

panel), all derived from the full paths of the output process

Yθ (top panel).

After performing the data mapping (5), which significantly

reduces the randomness in the output of the stochastic sim-

ulator, the distance d(·) can be chosen among the distance

measures between two R-valued functions. Here, we con-

sider the integrated absolute error (IAE) defined by

IAE(g1, g2) :=

∫

R

∣∣∣g1(x) − g2(x)

∣∣∣ dx ∈ R
+. (6)
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Another natural possibility could be a distance chosen among

the so-called f -divergences (see, e.g. Sason and Verdú 2016),

or the Wasserstein distance, recently proposed for ABC

(Bernton et al. 2019). Within the ABC framework (see Step

7 in Algorithm 1), we suggest to use the following distance

d(s(y), s(yθ )) := IAE(Ŝy, Ŝyθ
) + w · IAE( f̂y, f̂yθ

), (7)

returning a weighted sum of the areas between the densities

estimated from the original and the synthetic datasets. Here,

w ≥ 0 is a weight that we assign to the part related to the

IAE of the invariant densities such that the two errors are of

the same “order of magnitude”. This is particularly needed

because, differently from the invariant density, the invariant

spectral density does not integrate to 1. We obtain a value

for the weight by performing an ABC pilot simulation. It

consists in reiterating the following steps L times:

1: Draw θ ′ from the prior π(θ)

2: Conditionally on θ ′, simulate two artificial datasets

y1
θ ′ and y2

θ ′ from the output process Yθ

3: Compute the corresponding summaries as in (5), i.e.,

s(y1
θ ′) = (Ŝy1

θ ′
, f̂y1

θ ′
) and s(y2

θ ′) = (Ŝy2
θ ′
, f̂y2

θ ′
)

4: Determine a value for the weight using (7), i.e.,

w′ =
IAE(Ŝ

y1
θ ′

,Ŝ
y2
θ ′

)

IAE( f̂
y1
θ ′

, f̂
y2
θ ′

)

Then, we take the median of the resulting L values w′. See,

e.g. Prangle (2017) for alternative approaches for the deriva-

tion of weights among summary statistics. Since the densities

f̂yθ
and Ŝyθ

are estimated at discrete points, the IAE (6) is

approximated applying trapezoidal integration.

In our applications we consider M ∈ N realisations of the

output process Yθ sampled at l ∈ N discrete points in time,

resulting in observed data arranged as a matrix y ∈ R
M×l .

Under this experimental scenario, the median of the distances

(7) computed for each of the M datasets

D = median

{(
IAE(Ŝyk

, Ŝyθ
) + w · IAE( f̂yk

, f̂yθ
)
)M

k=1

}

(8)

is then returned as a global distance in Step 7 of Algorithm 1.

Other strategies can be adopted. For example, considering the

mean instead yields similar results in all our experiments.

One can interpret y as a long-time trajectory (when using

simulated observed reference data) or as a long-time record-

ing of the modelled phenomenon (when using real observed

reference data) that is cut into M pieces. Alternatively, y

would consist of M independent repeated experiments or

simulations, when dealing with real or simulated data, respec-

tively. As expected, having M > 1 datasets improves the

quality of the estimation due to the increased number of

observations.

2.3 A new proposal of synthetic data generation:
measure-preserving ABC

A crucial aspect of ABC and of all other simulation-based

methods is the ability of simulating from the model (Step 5

of Algorithm 1). Consider a discretised time grid with the

equidistant time step Δ = ti+1 − ti , and let ỹθ = (ỹθ (ti ))
m
i=1

be a realisation from the output process Ỹθ = (Ỹθ (ti ))
m
i=1,

obtained through a numerical method, approximating Yθ at

the discrete data points, i.e. Ỹθ (ti ) ≈ Yθ (ti ). The lack of exact

simulation schemes, i.e. Ỹθ (ti ) = Yθ (ti ), introduces a new

level of approximation in the statistical inference. In partic-

ular, Algorithm 1 samples from an approximated posterior

density of the form

π(θ |y) ≈ πnum
ABC(θ |y) := π{θ |d(s(y), s(ỹθ )) < ǫ}.

As a consequence, yθ in Step 5 of Algorithm 1 is replaced

by its numerical approximation ỹθ .

The commonly used Euler–Maruyama scheme yields dis-

cretised trajectories of the solution process X of the SDE (1)

through (Kloeden and Platen 1992)

X̃(ti+1) = X̃(ti ) + f (ti , X̃(ti ); θ)Δ + G(ti , X̃(ti ); θ)ξi ,

(9)

where ξi are Gaussian vectors with null mean and variance

ΔIn , where In denotes the n×n-dimensional identity matrix.

As previously discussed, in general, the Euler–Maruyama

method does not preserve the underlying invariant distribu-

tion ηYθ
.

Proposal 2 To adopt a numerical method for the synthetic

data generation that preserves the underlying invariant mea-

sure of the model.

We apply numerical splitting schemes within the ABC

framework and provide a brief account of their theory. Let

us assume that the drift f and the diffusion G of SDE (1) can

be written as

f (t, X(t); θ) =

d∑

j=1

f [ j](t, X(t); θ),

G(t, X(t); θ) =

d∑

j=1

G[ j](t, X(t); θ), d ∈ N.

The goal is to decompose f and G in a way such that the

resulting d subequations

dX(t) = f [ j](t, X(t); θ) dt + G[ j](t, X(t); θ) dW (t),

for j ∈ {1, . . . , d}, can be solved exactly. Note that, the

terms G[ j] can be null, resulting in deterministic equations
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Fig. 2 Comparison of the true invariant density of the weakly damped

stochastic harmonic oscillator (23) (blue solid lines) with the densities

estimated using a kernel density estimator applied on data yθ generated

by the measure-preserving splitting scheme (22) (orange dashed lines)

and the Euler–Maruyama method (9) (green dotted lines) with time step

Δ up to time T = 103. The values of the time steps are Δ = 10−3 (left

panel), 3 ·10−3 (central panel) and 4.5 ·10−3 (right panel), respectively.

(Color figure online)

(ODEs). Let X [ j](t) = ϕ
[ j]
t (X0) denote the exact solutions

(flows) of the above subequations at time t and starting from

X0. Once these explicit solutions are derived, a proper com-

position needs to be applied. Here we use the Strang approach

(Mclachlan and Quispel 2002; Strang 1968)

(
ϕ

[1]
Δ/2 ◦ · · · ◦ ϕ

[d−1]
Δ/2 ◦ ϕ

[d]
Δ ◦ ϕ

[d−1]
Δ/2 ◦ · · · ◦ ϕ

[1]
Δ/2

)
(x),

x ∈ R
n , that provides a numerical solution for the original

SDE (1).

In Fig. 2, we illustrate how the numerical splitting method

preserves the underlying invariant measure of the weakly

damped stochastic harmonic oscillator (23), independently

from the choice of the time step Δ. This is a specific SDE

of type (1), observed through Yθ as in (2) and with a known

invariant distribution ηYθ
. See Sect. 3 for the detailed numeri-

cal splitting scheme and Sect. 4 for a description of the model.

In contrast, the Euler–Maruyama scheme performs worse as

Δ increases. Each subplot shows a comparison of the true

invariant density (blue solid lines) and the corresponding

kernel estimate f̂yθ
based on a path yθ from the model, gener-

ated from the measure-preserving numerical splitting scheme

(22) (orange dashed lines) or the Euler–Maruyama approach

(green dotted lines). The data are generated under T = 103

and different values for the time step, namely Δ = 10−3,

3 · 10−3, 4.5 · 10−3.

2.4 Notation

We apply the summary statistics (5) and the distance

(8) in Algorithm 1. We use the notation Algorithm 1

(i) [spectral density-based ABC method] when the syn-

thetic data are simulated exactly, Algorithm 1 (ii) [spectral

density-based and measure-preserving ABC method] when

a measure-preserving numerical splitting scheme is applied

and Algorithm 1 (iii) when we generate the data with the

non-preserving Euler–Maruyama scheme.

To evaluate the performance of the proposed ABC method,

we analyse the marginal posterior densities, denoted by

π∗
ABC(θ j |y), j ∈ {1, . . . , k}, obtained from the posterior den-

sity π∗
ABC(θ |y) corresponding to πABC(θ |y), πnum

ABC(θ |y) or

πe
ABC(θ |y), depending on whether we obtain it from Algo-

rithm 1 (i), (ii) or (iii). Following this notation, we define by

θ̂∗
ABC, j the marginal ABC posterior means.

3 An illustration on Hamiltonian type SDEs

We illustrate the proposed ABC approach on Hamiltonian

type SDEs and define the n-dimensional (n = 2d, d ∈ N)

stochastic process

X := (Q, P)′ = (Q(t), P(t))′t∈[0,T ],

consisting of the two d-dimensional components

Q = (X1, . . . , Xd)′ and P = (Xd+1, . . . , X2d)′,

where ′ denotes the transpose. The n-dimensional SDE of

Hamiltonian type with initial value X0 = (Q0, P0)
′ and d-

dimensional (r = d) Wiener process W describes the time

evolution of X by
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d

(
Q(t)

P(t)

)

︸ ︷︷ ︸
X(t)

=

(
Od

Σθ

)

︸ ︷︷ ︸
G(θ)

dW (t)

+

(
∇P H(Q(t), P(t))

−∇Q H(Q(t), P(t)) − 2Γθ P(t) + G(Q(t); θ)

)

︸ ︷︷ ︸
f (X(t);θ)

dt .

(10)

We denote with Od the d × d-dimensional zero matrix

and with ∇Q and ∇P the gradient with respect to Q and P ,

respectively. The SDE (10) consists of 4 parts, each repre-

senting a specific type of behaviour. In this configuration, the

first is the Hamiltonian part involving H : R
d × R

d → R
+
0

given by

H(Q, P) :=
1

2
(‖P‖2

Rd + ‖ΛθQ‖2
Rd ),

where Λθ = diag[λ1, . . . , λd ] ∈ R
d×d is a diagonal matrix.

The second is the linear damping part, described by the diag-

onal matrix Γθ = diag[γ1, . . . , γd ] ∈ R
d×d . The third is

the nonlinear displacement part, consisting of the nonlin-

ear and globally Lipschitz continuous function G : R
d →

R
d . The fourth corresponds to the diffusion part, given by

Σθ = diag[σ1, . . . , σd ] ∈ R
d×d .

3.1 Structural model property

Under the requirement of non-degenerate matrices Λθ , Γθ

and Σθ , i.e. strictly positive diagonal entries, Hamiltonian

type SDEs as in (10) are often ergodic. As a consequence,

the distribution of the solution process X (and thus of the

output process Yθ ) converges exponentially fast towards a

unique invariant measure ηX on (Rn,B(Rn)) (and thus ηYθ

on (R,B(R)); see, e.g. Ableidinger et al. (2017) and the ref-

erences therein.

3.2 Measure-preserving numerical splitting
schemes

Two splitting approaches for SDE (10) are provided, see

Ableidinger et al. (2017). Due to the nonlinear term G, the

SDE (10) cannot be solved explicitly. With the purpose of

excluding G, the Hamiltonian type SDE (10) is split into the

two subsystems

d

(
Q(t)

P(t)

)
=

(
Od

Σθ

)

︸ ︷︷ ︸
G[1](θ)

dW (t)

+

(
∇P H((t), P(t))

−∇Q H(Q(t), P(t)) − 2Γθ P(t)

)

︸ ︷︷ ︸
f [1](X(t);θ)

dt, (11)

d

(
Q(t)

P(t)

)
=

(
0d

G(Q(t); θ)

)

︸ ︷︷ ︸
f [2](Q(t);θ)

dt, (12)

where 0d denotes the d-dimensional zero vector. This

results in a linear SDE with additive noise (11) and a

nonlinear ODE (12) that can be both explicitly solved.

Indeed, since ∇P H(Q(t), P(t)) = P(t) and ∇Q H(Q(t),

P(t))=Λ2
θ Q(t), Subsystem (11) can be rewritten as

dX(t) = A · X(t) dt + B dW (t), t ≥ 0, (13)

with A =

(
Od Id

−Λ2
θ −2Γθ

)
and B =

(
Od

Σθ

)
. The exact path

of System (13) is obtained through (Arnold 1974)

X(ti+1) = eAΔ · X(ti ) + ξi , (14)

where ξi are n-dimensional Gaussian vectors with null mean

and variance C(Δ), where the matrix C(t) follows the

dynamics of the matrix-valued ODE

Ċ(t) = AC(t) + C(t)A′ + B B ′, C(0) = On . (15)

Moreover, since the nonlinear term G depends only on the

component Q, the exact path of Subsystem (12) is obtained

through

X(ti+1) = X(ti ) +

(
0d

ΔG(Q(ti ); θ)

)
. (16)

We apply the Strang approach given by

(ϕb
Δ/2 ◦ ϕa

Δ ◦ ϕb
Δ/2)(x), x ∈ R

n, (17)

where ϕa
t and ϕb

t denote the exact solutions (14) and (16)

of (11) and (12), respectively. Hence, given X(ti ), we obtain

the next value X(ti+1) by applying the following three steps:

1: Xb = X(ti ) +

(
0d

Δ
2

G(Q(ti ); θ)

)

2: Xa = eAΔ · Xb + ξi

3: X(ti+1) = Xa +

(
0d

Δ
2

G(Qa; θ)

)

The derivation of the subsystems is not unique. For exam-

ple, another possibility is to combine the stochastic term with

the nonlinear part, yielding the subsystems

d

(
Q(t)

P(t)

)
=

(
∇P H(Q(t), P(t))

−∇Q H(Q(t), P(t)) − 2Γθ P(t)

)

︸ ︷︷ ︸
f [1](X(t);θ)

dt, (18)

123



Statistics and Computing (2020) 30:627–648 635

d

(
Q(t)

P(t)

)
=

(
0d

G(Q(t); θ)

)

︸ ︷︷ ︸
f [2](Q(t);θ)

dt +

(
Od

Σθ

)

︸ ︷︷ ︸
G[2](θ)

dW (t). (19)

The exact path of (18) is given by

X(ti+1) = eAΔ · X(ti ), (20)

while the exact path of (19) is obtained through

X(ti+1) =

(
Q(ti )

P(ti ) + ΔG(Q(ti ); θ) + Σθ · ξi

)
, (21)

where ξi are d-dimensional Gaussian vectors with null mean

and variance ΔId . The Strang approach is now given by

(ϕc
Δ/2 ◦ ϕd

Δ ◦ ϕc
Δ/2)(x), x ∈ R

n, (22)

where ϕc
t and ϕd

t denote the exact solutions (20) and (21) of

(18) and (19), respectively. Thus, given X(ti ), the next value

X(ti+1) is obtained via:

1: Xc = eA Δ
2 · X(ti )

2: Xd = Xc +

(
0d

ΔG(Qc; θ) + Σθ · ξi

)

3: X(ti+1) = eA Δ
2 · Xd

3.3 Implementation details

The ABC procedure is coded in the computing environment

R (R Development Core Team 2011), using the package

Rcpp (Eddelbuettel and François 2011), which offers a

seamless integration of R and C++, drastically reducing the

computational time of the algorithms. The code is then paral-

lelised using the R-packages foreach and doParallel,

taking advantage of the for loop in the algorithm. All simula-

tions are run on the HPC cluster RADON1, a high-performing

multiple core cluster located at the Johannes Kepler Univer-

sity Linz. To obtain smoothed periodogram estimates, we

apply the R-function spectrum. It requires the specifica-

tion of a smoothing parameter span. In all our experiments,

we use span = 5T . In addition, we avoid using a log-

arithmic scale by setting the log parameter to “no”. To

obtain kernel estimates of the invariant density, we apply

the R-function density. Here, we use the default value

for the smoothing bandwidth bw and set the number of

points at which the invariant density has to be estimated

to n= 103. The invariant spectral density is estimated at

the default values of the spectrum function. A sample

code is publicly available on github at https://github.com/

massimilianotamborrino/sdbmpABC.

4 Validation of the proposed ABCmethod
when exact simulation is possible

In this section, we illustrate the performance of the pro-

posed ABC approach on a model problem (weakly damped

stochastic harmonic oscillator) of Hamiltonian type (10) with

vanishing nonlinear displacement term G ≡ 0. Linear SDEs

of this type reduce to (13) and allow for an exact simulation of

sample paths through (14). Therefore, we can apply the spec-

tral density-based ABC Algorithm 1 (i) under the optimal

condition of exact and thus ηYθ
-preserving data generation.

Its performance is illustrated in Sect. 4.2. To investigate

how the numerical error in the synthetic data generation

impinges on the ABC performance, in Sect. 4.3 we com-

pare πABC(θ |y) with the posterior densities πnum
ABC(θ |y) and

πe
ABC(θ |y) obtained from Algorithm 1 (ii) and (iii) using the

measure-preserving numerical splitting scheme (22) and the

non-preserving Euler–Maruyama method (9), respectively.

4.1 Weakly damped stochastic harmonic oscillator:
themodel and its properties

We investigate the 2-dimensional Hamiltonian type SDE

d

(
Q(t)

P(t)

)
=

(
P(t)

−λ2 Q(t) − 2γ P(t)

)
dt +

(
0

σ

)
dW (t),

(23)

with strictly positive parameters γ , λ and σ . Depending

on the choice of γ and λ, (23) models different types of

harmonic oscillators, which are common in nature and of

great interest in classical mechanics. Here, we focus on the

weakly damped harmonic oscillator, satisfying the condition

λ2 −γ 2 > 0. Our goal is to estimate θ = (λ, γ, σ ) assuming

that the solution process X = (Q, P)′ is partially observed

through the first coordinate, i.e. Yθ = Q. An illustration of

the performance of Algorithm 1 (i) for the critically damped

case satisfying λ2 − γ 2 = 0, when only the second coordi-

nate is observed, is reported in the supplementary material.

The solution process X of SDE (23) is normally distributed

according to

X(t) ∼ ηX(t) := N
(

eAt · E[X0], Var[eAt · X0] + C(t)
)
,

with A and C introduced in (13) and (15), respectively. The

invariant distribution ηX of the solution process X is given

by

ηX = lim
t→∞

ηX(t) = N

((
0

0

)
,

(
σ 2

4γ λ2 0

0 σ 2

4γ

))
.

Consequently, the structural property ηYθ
of the output pro-

cess Yθ becomes
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Fig. 3 Top panels: ABC marginal posterior densities πABC(θ j |y) (blue

lines) of θ = (λ, γ, σ ) of the weakly damped stochastic harmonic oscil-

lator (23) and uniform priors (red lines). The posteriors are obtained

from Algorithm 1 (i). The vertical lines represent the true parameter

values. Lower panels: Pairwise scatterplots of the kept ABC posterior

samples. (Color figure online)

ηYθ
= N

(
0,

σ 2

4γ λ2

)
, (24)

and the stationary dependency is captured by the autocovari-

ance function

rθ (Δ) =
σ 2

4λ2
e−γΔ

[
1

γ
cos(κΔ) +

1

κ
sin(κΔ)

]
,

where κ =
√

λ2 − γ 2.

4.2 Validation of the spectral density-based ABC
Algorithm 1 (i)

To compare the performances of Algorithms 1 (i)–(iii) on

the same data, we consider the same M = 10 observed

paths simulated with the exact scheme (14), using a time

step Δ = 10−2 over a time interval of length T = 103. As

true parameters for the simulation of the reference data, we

choose

θ t = (λt , γ t , σ t ) = (20, 1, 2).

We use the exact simulation scheme (14) to generate

N = 2 · 106 synthetic datasets in [0, T ] and with the same

time step as the observed data. We choose independent uni-

form priors, in particular,

λ ∼ U (18, 22), γ ∼ U (0.01, 2.01), σ ∼ U (1, 3).

The tolerance level ǫ is chosen as the 0.05th percentile of

the calculated distances. Hence, we keep 103 of all the sam-

pled values for θ . In all the considered examples (see also the

supplementary material), the performance of the ABC algo-

rithms for the estimation of the parameters of SDE (23) does

not improve when incorporating the information of the invari-

ant densities into the distance (7). This is because the mean

of the invariant distribution (24) is zero. Hence, to reduce

the computational cost, we set w = 0 and base our distance

only on the invariant spectral density, estimated by the peri-

odogram.

Figure 3 (top panels) shows the marginal ABC posterior

densities πABC(θ j |y) (blue lines) and their flat uniform pri-

ors π(θ j ) (red lines). The proposed ABC Algorithm 1 (i)

provides marginal posterior densities centred around the true
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values θ t , represented by the black vertical lines. The poste-

rior means are given by

(λ̂ABC, γ̂ABC, σ̂ABC) = (20.015, 1.022, 2.011).

In the lower panels of Fig. 3, we report the pairwise scat-

terplots of the kept ABC posterior samples. Note that, since

the kept values of λ are uncorrelated with those of the other

parameters, the support of the obtained marginal posterior

density is approximately the same as when estimating only

θ = λ or θ = (λ, γ ) (cf. supplementary material). Vice

versa, since the kept ABC posterior samples of the parame-

ters γ and σ are correlated, the support of πABC(γ |y) is larger

than that obtained when estimating θ = (λ, γ ). Despite this

correlation, Algorithm 1 (i) allows for a successful inference

of all the three parameters.

4.3 Validation of the spectral density-based and
measure-preserving ABC Algorithm 1 (ii)

In Fig. 4, we report the approximated marginal posteriors

πABC(θ j |y) (blue solid lines) andπnum
ABC(θ j |y) (orange dashed

lines) obtained with the same priors, ǫ, T , w, M and N as

before, for different values of the time step Δ. In particu-

lar, we choose Δ = 5 · 10−3 (top panels), Δ = 7.5 · 10−3

(middle panels) and Δ = 10−2 (lower panels). The pos-

teriors obtained from Algorithm 1 (ii) successfully targets

πABC(θ |y), even for a time step as large as Δ = 10−2. On

the contrary, Algorithm 1 (iii) is not even applicable. Indeed,

the numerical scheme computationally pushes the amplitude

of the oscillator towards infinity, resulting in a computer

overflow, i.e. Ỹθ (ti ) ≈ ∞. Thus, neither f̂ ỹθ
nor Ŝỹθ

can

be computed and the density πe
ABC(θ |y) cannot be derived.

As a further illustration of the poor performance of the

Euler–Maruyama scheme, even for smaller choices of Δ, we

now consider the simplest possible scenario where we only

estimate one parameter, namely θ = λ. We set N = 105,

M = 10, ǫ = 1st percentile and we choose a uniform prior

λ ∼ U (10, 30). To be able to derive πe
ABC(λ|y), we simulate

the synthetic data using the Euler–Maruyama method with

the time steps Δ = 10−3, 2.5 · 10−3 and 3.5 · 10−3. Figure 5

shows the three ABC posterior densities πABC(θ |y) (blue

solid lines), πnum
ABC(θ |y) (orange dashed lines) and πe

ABC(θ |y)

(green dotted lines) for the different choices of Δ. The hori-

zontal red lines and the black vertical lines denote the uniform

prior and the true parameter value, respectively. In all cases,

Algorithm 1 (iii) does not lead to a successful inference. In

addition, these results are not stable for the different choices

of Δ, and the derived ABC posterior density may not even

cover the true parameter value.

5 Validation of the spectral density-based
andmeasure-preserving ABC
Algorithm 1 (ii) on simulated and real data

We now illustrate the performance of Algorithm 1 (ii)

by applying it to the stochastic JR-NMM. We rely on

the efficient numerical splitting scheme (17) to guaran-

tee measure-preserving synthetic data generation within the

ABC framework. After estimating the parameters from simu-

lated data, we infer them from real EEG data. In the available

supplementary material, we illustrate the performance of

Algorithm 1 (ii) also on the nonlinear damped stochastic

oscillator, an extended version of the weakly damped har-

monic oscillator discussed in Sect. 4.

5.1 The stochastic Jansen and Rit neural mass model

The stochastic JR-NMM describes the electrical activity of an

entire population of neurons through their average properties

by modelling the interaction of the main pyramidal cells with

the surrounding excitatory and inhibitory interneurons. The

model has been reported to successfully reproduce EEG data

and is applied in the research of neurological disorders such

as epilepsy or schizophrenia (Wendling et al. 2000, 2002).

The model is a 6-dimensional SDE of the form

d

(
Q(t)

P(t)

)
=

(
0

Σθ

)
dW (t)

+

(
P(t)

−Γ 2 Q(t) − 2Γ P(t) + G(Q(t); θ)

)
dt,

(25)

where the 6-dimensional solution process is given by

X = (Q, P)′ with components Q = (X1, X2, X3)
′ and

P = (X4, X5, X6)
′. None of the coordinates of X is directly

observed. Only the difference between the second and third

coordinates can be measured with EEG recording techniques,

yielding the output process

Yθ = X2 − X3.

In (25), the diagonal diffusion matrix is given by

Σθ = diag[σ4, σ5, σ6] ∈ R
3×3 with σi > 0, i = 4, 5, 6.

The matrix Γ = diag[a, a, b] ∈ R
3×3 is also diagonal with

coefficients a, b > 0, representing the time constants of

the excitatory and inhibitory postsynaptic potentials, respec-

tively. The nonlinear displacement term is given by

G(Q; θ) =

⎛
⎝

Aa[Sigm(X2 − X3)]

Aa[μ + C2Sigm(C1X1)]

Bb[C4Sigm(C3X1)]

⎞
⎠ ,
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Fig. 4 ABC marginal posterior densities of θ = (λ, γ, σ ) of the weakly

damped stochastic harmonic oscillator (23) obtained from Algorithm 1

(i) with the exact simulation method (14) (blue solid lines) and Algo-

rithm 1 (ii) combined with the splitting scheme (22) (orange dashed

lines) for different choices of the time step Δ. In particular, Δ = 5·10−3

(top panels), 7.5 · 10−3 (middle panels) and 10−2 (lower panels). The

red horizontal lines denote the uniform priors and the black vertical

lines the true parameter values. (Color figure online)

where the sigmoid function Sigm: R → [0, vmax] is defined

as

Sigm(x) :=
vmax

1 + exp[r(v0 − x)]
,

with vmax > 0 referring to the maximum firing rate of the

neural populations, v0 ∈ R describing the value for which

50 % of the maximum firing rate is attained and r > 0 denot-

ing the slope of the sigmoid function at v0. The parameters

entering in G are μ, A, B and Ci , i = 1, 2, 3, 4 ∈ R
+.

The coefficients A and B describe the average excitatory and

inhibitory synaptic gain, respectively. The parameters Ci are

internal connectivity constants, which reduce to only one
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Fig. 5 ABC posterior densities of θ = λ of the weakly damped

stochastic oscillator (23) obtained from Algorithm 1 (i) using the exact

simulation scheme (14) (blue solid lines), (ii) using the splitting scheme

(22) (orange dashed lines) and (iii) using the Euler–Maruyama method

(9) (green dotted lines) for different choices of the time step Δ. The

horizontal red lines and the vertical black lines represent the uniform

priors and the true parameter values, respectively. (Color figure online)

parameter C , by using the relations C1 = C , C2 = 0.8C ,

C3 = 0.25C and C4 = 0.25C ; see Jansen and Rit (1995).

5.2 Parameter inference from simulated data

Not all model parameters of the JR-NMM are of biological

interest or can be simultaneously identified. For example,

the noise coefficients σ4 and σ6 were introduced mainly for

mathematical convenience in Ableidinger et al. (2017). To

guarantee the existence of a unique invariant measure ηX on

(R6,B(R6)), they are required to be strictly positive. How-

ever, from a modelling point of view, only the parameter

σ := σ5 plays a role. Hence, we fix σ4 = 0.01 and σ6 = 1.

The coefficients A, B, a, b, v0, vmax and r have been experi-

mentally recorded; see, e.g. Jansen et al. (1993), Jansen and

Rit (1995) and van Rotterdam et al. (1982). Thus, we fix them

according to these values reported, for example, in Table 1 of

Ableidinger et al. (2017). In contrast, the connectivity param-

eter C , which represents the average number of synapses

between the neural subpopulations and controls to what

extent the main population interacts with the interneurons,

varies under different physiological constraints. Changing C

allows, for example, a transition from α-rhythmic activity

to epileptic spiking behaviour; see, e.g. Ableidinger et al.

(2017). Here, we focus on the α-rhythmic activity, which

has a frequency of around 10 Hz. Since the parameters σ

and μ are new in the SDE version (25), they have not yet

been estimated. They can be interpreted as stochastic and

deterministic external inputs coming from neighbouring or

more distant cortical columns, respectively. Thus, together

with the internal connectivity parameter C , they are of spe-

cific interest. Before inferring θ = (σ, μ, C), we take into

account the coefficients A and B to discuss a model-specific

issue of identifiability.

5.2.1 Identifiability issues: the detection of an invariant

manifold, i.e. a set of parameters yielding the same

type of data

For the original JR-NMM, it has been shown that different

combinations of the parameters A, B and C yield the same

type of output, namely α-rhythmic brain activity. Applying

the proposed spectral density-based and measure-preserving

ABC Algorithm 1 (ii) for the inference of θ = (A, B, C),

with given μ = 220 and σ = 2000, we confirm that the same

nonidentifiability arises for the SDE version (25). We choose

M = 30 observed paths generated assuming

θ t = (At , Bt , C t ) = (3.25, 22, 135),

as suggested in the literature (Jansen and Rit 1995). The ref-

erence data and the synthetic data are generated over a time

interval of length T = 200 and using a time step Δ = 2·10−3.

Within the algorithm, we generate N = 2.5 · 106 synthetic

datasets. We choose the weight w in (7) according to the pro-

cedure introduced in Sect. 2.2 (based on L = 105 iterations)

and fix the tolerance level ǫ = 0.04th percentile to keep 103

of all the sampled values for θ , as in the previous examples.

Further, we choose independent uniform prior distributions,

namely

A ∼ U(1, 10), B ∼ U(10, 100), C ∼ U(10, 600).

Figure 6 (top panels) shows the marginal ABC posterior

densities πnum
ABC(θ j |y) and the uniform prior densities π(θ j ).

Clearly, the parameters cannot be inferred simultaneously.

The kept ABC posterior values of the parameters A, B and

C are strongly correlated, as observed in the pairwise scat-

terplots (middle panels) and in the 3-dimensional scatterplot

(two different views, lower panels). The cuboid covers all
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possible values for θ drawn from the prior. After running the

ABC algorithm, the kept values of θ from the ABC posterior

form an invariant manifold, in the sense that all the parameter

values θ lying on this manifold yield similar paths ỹθ of the

output process. This is shown in Fig. 7, where we report four

trajectories that have been simulated with the same pseudo-

random numbers but using the parameters θ t (green dot in

Fig. 6) and three of the kept ABC posterior samples lying on

the invariant manifold (red, orange and grey dots in Fig. 6).

A segment of T = 10 is split in the top and middle panels. In

addition, we visualise the corresponding estimated invariant

densities (bottom left) and invariant spectral densities (bot-

tom right). This explains why the parameters A, B and C

are not simultaneously identifiable from the observed data.

Similar results are obtained when choosing smaller values of

ǫ. Interestingly, when increasing ǫ, a second invariant mani-

fold arises. Values for θ lying on this manifold yield similar

estimated densities and spectral densities that slightly devi-

ate from those derived under the observed data (cf. Section

3 of the supplementary material).

Since the internal connectivity parameter C has an impor-

tant neuronal meaning, in the following we assume A and

B to be known and infer θ = (σ, μ, C). The estimation of

θ = (σ, μ) when C is known is reported in the supplementary

material.

5.2.2 Inference of� = (�, �, C)

Now, we keep the same ABC setting as before, except for

defining ǫ = 0.05th percentile. Further, we choose indepen-

dent uniform priors π(θ j ) according to

σ ∼ U(1300, 2700), μ ∼ U(160, 280), C ∼ U(129, 141).

The reference data are simulated under

θ t = (σ t , μt , C t ) = (2000, 220, 135).

In Fig. 8, we report the marginal ABC posterior densities

πnum
ABC(θ j |y) (blue lines), the uniform prior densities π(θ j )

(red lines) and the true parameter values θ t (black verti-

cal lines). We obtain unimodal posterior densities, centred

around the true parameter values. The posterior density of

σ is slightly broader compared to that obtained when C is

known (cf. Figure 21 of the supplementary material). This

results from a weak correlation that we detect among the kept

ABC posterior samples of the parameters σ and C (figures

not reported). The posterior means are equal to

(σ̂ num
ABC, μ̂num

ABC , Ĉnum
ABC) = (1992.253, 219.744, 134.899)

and are thus close to θ t . These results suggest an excel-

lent performance of the proposed spectral density-based and

measure-preserving ABC Algorithm 1 (ii).

Similar satisfactory results are obtained even when adding

a fourth parameter, for example, when inferring

θ = (σ, μ, C, b) (cf. Figure 22 of the supplementary mate-

rial). When applying Algorithm 1 (ii) to real EEG data (cf.

Figure 23 of the supplementary material), the marginal pos-

terior for b is centred around the value b = 50, which is

that reported in the literature. Due to the existence of under-

lying invariant manifolds, identifiability issues, similar to

those reported in Fig. 6, arise when adding further or other

coefficients, revealing model-specific issues for the stochas-

tic JR-NMM.

To illustrate again the importance of the structure preser-

vation within the ABC method, we now apply

Algorithm 1 (iii). We use the same conditions as before,

except for a smaller time step Δ = 10−4 used for the genera-

tion of the observed reference data with the Euler–Maruyama

method aiming for a realistic data structure. In Fig.9, we

report the marginal ABC posterior densities πe
ABC(θ j |y) (top

panels) and the uniform prior densities. In the 3-dimensional

scatterplot of Fig. 9 (lower panel), the green dots in the middle

of the cuboid represent the kept ABC posterior samples when

applying Algorithm 1 (ii) (see the previous results reported in

Fig. 8), which are nicely spread out around the true param-

eter vector θ t (black dot). The red dots correspond to the

kept ABC posterior samples from πe
ABC(θ |y). Hence, Algo-

rithm 1 (iii) based on the Euler–Maruyama scheme provides

a posterior that is far off from the true parameter vector.

5.3 Parameter inference from real EEG data

Finally, we use the spectral density-based and measure-

preserving ABC Algorithm 1 (ii) to estimate the parameter

vector θ = (σ, μ, C) of the stochastic JR-NMM from real

EEG recordings. We use M = 3 α-rhythmic recordings,

rescaled to a realistic range. The EEG data were sampled

according to a sampling rate of 173.61 Hz, i.e. a time step

Δ of approximately 5.76 ms over a time interval of length

T = 23.6 s. All measurements were carried out with a stan-

dardised electrode placement scheme; see Andrzejak et al.

(2001) for further information on the data.1 Figure 10 shows

the first 20 seconds of one of the observed EEG datasets.

Here, we simulate N = 5 · 106 synthetic paths from the

output process of the stochastic JR-NMM (25) over the same

time interval T as the real data, with a time step Δ = 2 ·10−3

1 The data are available on: http://ntsa.upf.edu/downloads/

andrzejak-rg-et-al-2001-indications-nonlinear-deterministic-and-

finite-dimensional.
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Fig. 6 Top panels: ABC marginal posterior densities πnum
ABC(θ j |y) (blue

lines) of θ = (A, B, C) of the stochastic JR-NMM (25) obtained from

Algorithm 1 (ii). The horizontal red lines and the vertical black lines

represent the uniform priors and the true parameter values, respectively.

Middle panels: Pairwise scatterplots of the kept ABC posterior samples.

Lower panels: Two different views of a 3-dimensional scatterplot of the

kept ABC posterior samples within a cuboid formed by the prior. The

green dot corresponds to θ t , and the red, orange and grey dots repre-

sent highlighted samples from the ABC posterior lying on the invariant

manifold. (Color figure online)
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Fig. 7 Top and middle panel: Four paths of the output process Yθ =

X2 − X3 of the stochastic JR-NMM (25) generated under θ t (green

lines) and with the three highlighted kept ABC posterior samples lying

on the invariant manifold of Fig. 6 (red, orange and grey lines) using

the same pseudo-random numbers. Lower panels: Corresponding esti-

mated invariant densities (left) and estimated spectral densities (right).

(Color figure online)
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Fig. 8 ABC marginal posterior densities πnum
ABC(θ j |y) (blue lines) of θ = (σ, μ, C) of the stochastic JR-NMM (25) obtained from Algorithm 1 (ii).

The horizontal red lines and the vertical black lines represent the uniform priors and the true parameter values, respectively. (Color figure online)

and ǫ = 0.02nd percentile. We choose independent uniform

priors π(θ j ) according to

σ ∼ U(500, 3500), μ ∼ U(70, 370), C ∼ U(120, 150).

Figure 11 shows the resulting marginal ABC posterior den-

sities πnum
ABC(θ j |y) and the uniform prior densities π(θ j ).

All ABC marginal posteriors are unimodal, with means

given by

(σ̂ num
ABC, μ̂num

ABC , Ĉnum
ABC) = (1859.211, 202.547, 134.263).

Since μ and σ have not been estimated before, we cannot

compare the obtained results with those available in the lit-

erature. The ABC posterior density for C is centred around
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Fig. 9 Top panels: Marginal ABC posterior densities πe
ABC(θ j |y) (blue

lines) of θ = (σ, μ, C) of the stochastic JR-NMM (25) obtained from

Algorithm 1 (iii) using the non-preservative Euler–Maruyama scheme

(9). The horizontal red lines and the vertical black lines represent the

uniform priors and the true parameter values, respectively. Lower panel:

3-dimensional scatterplot of the kept ABC posterior samples using

Algorithm 1 (ii) (green dots; see the previous results reported in Fig. 8)

and Algorithm 1 (iii) (red dots). The cuboid is formed by the prior. The

black dot corresponds to θ t . (Color figure online)

C = 135 that is the reference literature value for α-rhythmic

EEG data.

In Fig. 12 (top two panels), we report the median (blue

solid line) and the shaded 95% credible bands (obtained

from the central posterior intervals) of the first 10 seconds

of trajectories simulated from the fitted stochastic JR-NMM

(25). The paths are generated with the numerical splitting

scheme (17) for Δ = 2 · 10−3 and T = 23.6, using the 103

kept ABC posterior samples derived from Algorithm 1 (ii)

under the same seed for pseudo-random numbers. The narrow

95% confidence bands suggest how the kept ABC posterior

samples yield similar paths. When using different pseudo-

random numbers, both the median and the 95% credible

bands of the generated trajectories look constant in time, as

expected due to the underlying invariant distribution of the

model (figures not shown). The bands show a similar oscil-

latory behaviour as shown in Fig. 10, with an approximate

frequency of 10 Hz, successfully reproducing the underlying

α-rhythmic behaviour. This can be clearly distinguished in

the middle lower panel, where we report a zoom of 1 second.

The successful ABC inference is also confirmed by noting

the matches between the invariant densities (bottom left) and

the invariant spectral densities (bottom right) estimated from

the EEG recording shown in Fig. 10 (red dashed lines) and

from the fitted model when considering the median (blue

solid lines) and the 95% credible bands (grey shaded areas).
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Fig. 11 Marginal ABC posterior densities πnum
ABC(θ j |y) (blue lines) of θ = (σ, μ, C) of the stochastic JR-NMM (25) fitted on real EEG data using

Algorithm 1 (ii). The red lines correspond to the uniform priors. (Color figure online)

The match is poor only for low frequencies of the invariant

spectral density, even when choosing broader priors. This

may result from a lack of fit of the JR-NMM or of station-

arity in the considered EEG data. A deeper investigation of

the model (including adapted versions, see, e.g. Wendling

et al. 2002) and of its ability in reproducing real EEG data

is currently under investigation, but it is out of the scope of

this work.

6 Conclusion

When performing parameter inference through ABC, cru-

cial and non-trivial tasks are to propose suitable summary

statistics and distances to compare the observed and the

synthetic datasets. When the underlying models are stochas-

tic, repeated simulations from the same parameter setting

yield different outputs, making the comparison between the

observed and the synthetic data more difficult. To derive

summary statistics that are less sensitive to the intrinsic ran-

domness of the stochastic model, we propose to map the
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Fig. 12 Top and middle top panel: Median (blue solid line) and

95% credible bands (shaded grey areas) of 10 s of trajectories

of the output process of the stochastic JR-NMM (25) generated

with the numerical splitting scheme (17) for Δ = 2 · 10−3 and

T = 23.6 using the kept ABC posterior samples derived from

Algorithm 1 (ii) under the same seed for pseudo-random numbers. Mid-

dle low panel: zoom of 1 s highlighting a frequency of around 10 Hz,

confirming the α-rhythmic behaviour. Lower panel: Estimated invari-

ant density (left) and invariant spectral density (right) obtained from

the EEG dataset shown in Fig. 10 (red dashed lines) plotted against the

median (blue solid lines) and the 95% credible bands from the posterior

predictive samples (shaded grey areas). (Color figure online)

data to their invariant density and invariant spectral density,

estimated by a kernel density estimator and a smoothed peri-

odogram, respectively. By doing this, different trajectories of

the output process are mapped to the same objects only when

they are generated from the same underlying parameters,

provided that all parameters are simultaneously identifiable.

These transformations are based on the existence of an under-

lying invariant measure for the model, fully characterised by

the parameters. A necessary condition of ABC, and of all

other simulation-based methods, is the ability to generate

data from the model. This is often taken for granted but, in

general, it is not the case. Indeed, exact simulation is rarely

possible and property-preserving numerical methods have to

be derived.

The combination of the measure-preserving numerical

splitting schemes and the use of the spectral density-based

distances in the ABC algorithm lead to a successful inference

of the parameters, as illustrated on stochastic Hamiltonian

type equations when the process Yθ is observed without mea-

surement error. We validated the proposed ABC approach on

both linear model problems, allowing for an exact simula-

tion of the synthetic data, and nonlinear problems, including

an application to real EEG data. Our choice of the crucial

ingredients (summary statistics and distances based on the

underlying invariant distribution and a measure-preserving

numerical method) yields excellent results even when applied

to ABC in its basic acceptance–rejection form. However, they

can be directly applied to more advanced ABC algorithms.

In contrast, the ABC method based on the Euler–Maruyama
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scheme drastically fails. Its performance may improve for

“small enough” time steps. However, there is a trade-off

between the runtime and the acceptance performance of

Algorithm 1 (iii). Indeed, the simulation of one trajectory

with a time step 10−4 requires approximately hundred times

more than the generation of one trajectory using a time step

10−2. Hence, a runtime of a few hours would turn to months.

In addition, even for “arbitrary small” time steps, one can-

not guarantee that the Euler–Maruyama scheme preserves

the underlying invariant measure. For these reasons, it is

crucial to base our ABC method on the reliable measure-

preserving numerical splitting scheme combined with the

invariant measure-based distances. Our results were dis-

cussed in the case of an observable 1-dimensional output

process. However, the approach can be directly applied to

d-dimensional output processes, d > 1, as long as the under-

lying SDEs are characterised by an invariant distribution and

a measure-preserving numerical method can be derived. In

particular, one can compute the distances in (8) for each of

the d components and derive a global distance by combining

them, e.g. via their sum. Moreover, to account for possi-

ble dependences between the observed components, one can

incorporate the cross-spectral densities which are expected

to provide further information resulting in an improvement

in the performance of the method. An investigation in this

direction is currently undergoing. Finally, our proposed ABC

method may be also used to investigate invariant manifolds

characterised by sets of parameters yielding the same type

of data, as illustrated on the stochastic JR-NMM. This may

result in a better understanding of the qualitative behaviour

of the underlying model and its ability of reproducing the

true features of the modelled phenomenon.

7 Supplementary material

Further illustrations of the proposed ABC method are avail-

able in the provided supplementary material. In particular,

we illustrate the performance of: (a) Algorithm 1 (i) for

the estimation of the parameters of the critically damped

stochastic oscillator, for which the exact simulation is pos-

sible; Algorithm 1 (i) applied to the critically and weakly

damped stochastic harmonic oscillators (see Sect. 4) when

estimating a smaller number of parameters; (b) Algorithm 1

(ii) for the estimation of the parameters of a nonlinear damped

stochastic oscillator; (c) Algorithm 1 (ii) for the estimation

of the two parameters θ = (σ, μ) of the stochastic JR-NMM,

which are of specific interest; (d) Algorithm 1 (ii) for the esti-

mation of θ = (σ, μ, C, b) of the stochastic JR-NMM, based

on simulated and real EEG data. Moreover, we provide an

investigation of the influence of ǫ on the identifiability issues

discussed in Sect. 5.2.1.

Acknowledgements Open access funding provided by Austrian Sci-

ence Fund (FWF). This research was partially supported by the Austrian

Science Fund (FWF): W1214-N15, Project DK14. The authors would

like to thank the reviewers for their careful and thorough reading and

their constructive comments, which helped to improve earlier versions

of the manuscript. Their support is highly appreciated.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

Ableidinger, M., Buckwar, E.: Splitting Integrators for the stochastic

Landau–Lifshitz equation. SIAM J. Sci. Comput. 38, A1788–

A1806 (2016)

Ableidinger, M., Buckwar, E., Hinterleitner, H.: A Stochastic Version

of the Jansen and Rit neural mass model: analysis and numerics.

J. Math. Neurosci. (2017). https://doi.org/10.1186/s13408-017-

0046-4

Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger,

C.E.: Indications of nonlinear deterministic and finite-dimensional

structures in time series of brain electrical activity: dependence on

recording region and brain state. Phys. Rev. E 64, 061907 (2001)

Arnold, L.: Stochastic Differential Equations: Theory and Applications.

Wiley, New York (1974)

Barber, S., Voss, J., Webster, M.: The rate of convergence for approxi-

mate Bayesian computation. Electron. J. Stat. 9(1), 80–105 (2015)

Barnes, C., Filippi, S., Stumpf, M., Thorne, T.: Considerate approaches

to constructing summary statistics for ABC model selection. Stat.

Comput. 22(6), 1181–1197 (2012)

Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian

computation in population genetics. Genetics 162(4), 2025–2035

(2002)

Bernton, E., Jacob, P.E., Gerber, M., Robert, C.P.: Approximate

Bayesian computation with the Wasserstein distance. J. R. Stat.

Soc. B 81(2), 235–269 (2019)

Biau, G., Cérou, F., Guyader, A.: New Insights Into approximate

Bayesian computation. Ann. I. H. Poincare B 51(1), 376–403

(2015)

Blanes, S., Casas, F., Murua, A.: Splitting and composition methods in

the numerical integration of differential equations. Bol. Soc. Esp.

Mat. Apl. 45, 89–145 (2009)

Blum, M.G.B.: Approximate Bayesian computation: a nonparametric

perspective. J. Am. Stat. Assoc. 105(491), 1178–1187 (2010a)

Blum, M.G.B.: Choosing the summary statistics and the acceptance

rate in approximate Bayesian computation. In: Lechevallier, Y.,

Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp 47–56.

Physica-Verlag HD, Heidelberg (2010b)

Boys, R.J., Wilkinson, D.J., Kirkwood, T.B.L.: Bayesian inference for

a discretely observed stochastic kinetic model. Stat. Comput. 18,

125–135 (2008)

Bréhier, C.E., Goudenège, L.: Analysis of Some splitting schemes for

the stochastic Allen–Cahn equation. Discrete Cont. Dyn. B 24,

4169–4190 (2019)

Cadonna, A., Kottas, A., Prado, R.: Bayesian mixture modeling for spec-

tral density estimation. Stat. Probab. Lett. 125, 189–195 (2017)

Cornuet, J.M., Santos, F., Beaumont, M., Robert, C.P., Marin, J., Bald-

ing, D.J., Guillemaud, T., Estoup, A.: Inferring population history

with DIY ABC: a user-friendly approach to approximate Bayesian

computation. Bioinformatics 24(23), 2713–2719 (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13408-017-0046-4
https://doi.org/10.1186/s13408-017-0046-4


Statistics and Computing (2020) 30:627–648 647

Drovandi, C.C., Pettitt, A.N., McCutchan, R.: Exact and approximate

Bayesian inference for low integer-valued time series models with

intractable likelihoods. Bayesian Anal. 11, 325–352 (2016)

Eddelbuettel, D., François, R.: Rcpp: Seamless R and C++ integration.

J. Stat. Softw. 40(8), 1–18 (2011)

Fan, Y., Sisson, S.A.: ABC samplers. In: Sisson, S.A., Fan, Y., Beau-

mont, M. (eds.) Handbook of Approximate Bayesian Computation,

pp. 87–123. CRC Press, Taylor & Francis Group: chap 4 (2018)

Fearnhead, P., Prangle, D.: Constructing summary statistics for

approximate Bayesian computation: semi-automatic approximate

Bayesian computation. J. R. Stat. Soc. B 74(3), 419–474 (2012)

Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked

potential generation in a mathematical model of coupled cortical

columns. Biol. Cybern. 73(4), 357–366 (1995)

Jansen, B.H., Zouridakis, G., Brandt, M.E.: A neurophysiologically-

based mathematical model of flash visual evoked potentials. Biol.

Cybern. 68, 275–283 (1993)

Jasra, A.: Approximate Bayesian computation for a class of time series

models. Int. Stat. Rev. 83(3), 405–435 (2015)

Jiang, B., Wu, T.-Y., Zheng, C., Wong, W.H.: Learning summary

statistics for approximate Bayesian computation via deep neural

network. Stat. Sinica 27(4), 1595–1618 (2017)

Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential

Equations. Springer, Berlin (1992)

Kypraios, T., Neal, P., Prangle, D.: A tutorial introduction to Bayesian

inference for stochastic epidemic models using approximate

Bayesian computation. Math. Biosci. 287, 42–53 (2017)

Leimkuhler, B., Matthews, C.: Molecular Dynamics: With Determinis-

tic and Stochastic Numerical Methods. Springer, Cham (2015)

Leimkuhler, B., Matthews, C., Stoltz, G.: The computation of averages

from equilibrium and nonequilibrium Langevin molecular dynam-

ics. IMA J. Numer. Anal. 36(1), 16–79 (2016)

Lintusaari, J., Gutmann, M., Dutta, R., Kaski, S., Corander, J.: Fun-

damentals and recent developments in approximate Bayesian

computation. Syst. Biol. 66(1), e66–e82 (2017)

Malham, S.J., Wiese, A.: Chi-square simulation of the CIR process and

the Heston model. Int. J. Theor. Appl. Finance 16(3), 1350014

(2013)

Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.: Approximate Bayesian

computational methods. Stat. Comput. 22(6), 1167–1180 (2012)

Martin, G.M., McCabe, B.P.M., Frazier, D.T., Maneesoonthorn, W.,

Robert, C.P.: Auxiliary likelihood-based approximate Bayesian

computation in state space models. J. Comput. Graph. Stat. 28(3),

1–31 (2019)

Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and

approximations: locally Lipschitz vector fields and degenerate

noise. Stoch. Process. Appl. 101(2), 185–232 (2002)

Maybank, P., Bojak, I., Everitt, R.: Fast approximate Bayesian

inference for stable differential equation models (2017).

arXiv.org/abs/1706.00689

McKinley, T.J., Vernon, I., Andrianakis, I., McCreesh, N., Oakley, J.,

Nsubuga, R., Goldstein, M., White, R.: Approximate Bayesian

computation and simulation-based inference for complex Stochas-

tic epidemic models. Stat. Sci. 33(1), 4–18 (2017)

Mclachlan, R., Quispel, G.: Splitting methods. Acta Numer. 11, 341–

434 (2002)

Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical

Physics. Scientific Computation. Springer, Berlin (2004)

Misawa, T.: A Lie algebraic approach to numerical Integration of

Stochastic differential equations. SIAM J. Sci. Comput. 23(3),

866–890 (2001)

Moores, M.T., Drovandi, C.C., Mengersen, K., Robert, C.P.: Pre-

processing for approximate Bayesian computation in image anal-

ysis. Stat. Comput. 25, 23–33 (2015)

Mori, U., Mediburu, A., Lozano, J.A.: Distance measures for time series

in R: the TSdist package. R Journal 8, 455–463 (2016)

Moro, E., Schurz, H.: Boundary preserving semianalytic numerical

algorithms for Stochastic differential equations. SIAM J. Sci.

Comput. 29, 1525–1549 (2007)

Muskulus, M., Verduyn-Lunel, S.: Wasserstein distances in the analysis

of time series and dynamical systems. Physica D 240(1), 45–58

(2011)

Picchini, U.: Inference for SDE models via approximate Bayesian com-

putation. J. Comput. Graph. Stat. 23(4), 1080–1100 (2014)

Picchini, U., Forman, J.L.: Accelerating inference for diffusions

observed with measurement error and large sample sizes using

approximate Bayesian computation. J. Stat. Comput. Simul. 86(1),

195–213 (2016)

Picchini, U., Samson, A.: Coupling stochastic EM and approximate

Bayesian computation for parameter inference in state-space mod-

els. Comput. Stat. 33(1), 179–212 (2018)

Pons, O.: Functional Estimation for Density. Regression Models and

Processes. World Scientific Publishing, Singapore (2011)

Prangle, D.: Adapting the ABC distance function. Bayesian Anal. 12(1),

289–309 (2017)

Prangle, D.: Summary Statistics in approximate Bayesian computa-

tion. In: Sisson, S.A., Fan, Y., Beaumont, M. (eds.) Handbook of

Approximate Bayesian Computation, pp. 125–152. CRC Press,

Taylor & Francis Group: chap 5 (2018)

Prangle, D., Blum, M.G.B., Popovic, G., Sisson, S.A.: Diagnostic tools

for approximate Bayesian computation using the coverage prop-

erty. Aust. N. Z. J. Stat. 56(4), 309–329 (2014)

Quinn, B., Clarkson, I., Mckilliam, R.: On the periodogram estimators

of periods from interleaved sparse, noisy timing data. In: 2014

IEEE Workshop on Statistical Signal Processing, pp. 232–235

(2014)

R Development Core Team: R: A language and environment for statis-

tical computing. R Foundation for Statistical Computing, Vienna,

Austria (2011)

Robert, C.P.: Approximate Bayesian computation: a survey on recent

results. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-

Monte Carlo Methods, pp. 185–205. Springer, Cham (2016)

Sason, I., Verdú, S.: f -Divergence Inequalities. IEEE Trans. Inf. Theory

62(11), 5973–6006 (2016)

Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate

Bayesian Computation. Chapman & Hall/CRC Handbooks of

Modern Statistical Methods. CRC Press, Taylor & Francis Group

(2018)

Strang, G.: On the construction and comparison of Difference schemes.

SIAM J. Numer. Anal. 5(3), 506–517 (1968)

Strømmen Melbø, A.H., Higham, D.J.: Numerical simulation of a lin-

ear stochastic oscillator with additive noise. Appl. Numer. Math.

51(1), 89–99 (2004)

Sun, L., Lee, C., Hoeting, J.A.: Parameter inference and model selection

in deterministic and stochastic dynamical models via approximate

Bayesian computation: modeling a wildlife epidemic. Environ-

metrics 26(7), 451–462 (2015)

Tancredi, A.: Approximate Bayesian inference for discretely observed

continuous-time multi-state models. Biometrics (2019). https://

doi.org/10.1111/biom.13019

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approx-

imate Bayesian computation scheme for parameter inference and

model selection in dynamical systems. J. R. Soc. Interface 6(31),

187–202 (2009)

van Rotterdam, A., Lopes da Silva, F., van den Ende, J., Viergever, M.A.,

Hermans, A.: A model of the spatial-temporal characteristics of the

alpha rhythm. Bull. Math. Biol. 44, 283–305 (1982)

Vo, B.N., Drovandi, C.C., Pettitt, A.N., Simpson, M.J.: Quantifying

uncertainty in parameter estimates for stochastic models of col-

lective cell spreading using approximate Bayesian computation.

Math. Biosci. 263, 133–142 (2015)

123

http://arxiv.org/abs/org/abs/1706.00689
https://doi.org/10.1111/biom.13019
https://doi.org/10.1111/biom.13019


648 Statistics and Computing (2020) 30:627–648

Wendling, F., Bellanger, J.J., Bartolomei, F., Chauvel, P.: Relevance of

nonlinear lumped-parameter models in the analysis of depth-EEG

epileptic signals. Biol. Cybern. 83(4), 367–378 (2000)

Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P.: Epileptic fast

activity can be explained by a model of impaired GABAergic den-

dritic inhibition. Eur. J. Neurosci. 15(9), 89–99 (2002)

Wood, S.N.: Statistical inference for noisy nonlinear ecological

dynamic systems. Nature 466(7310), 1102 (2010)

Zhu, W., Marin, J.M., Leisen, F.: A bootstrap likelihood approach to

Bayesian computation. Aust. N. Z. J. Stat. 58(2), 227–244 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123


	Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs
	Abstract
	1 Introduction
	2 Spectral density-based and measure-preserving ABC for partially observed SDEs with an invariant distribution
	2.1 The ABC method
	2.2 An effective choice of summaries and distances: spectral density-based ABC
	2.3 A new proposal of synthetic data generation: measure-preserving ABC
	2.4 Notation

	3 An illustration on Hamiltonian type SDEs
	3.1 Structural model property
	3.2 Measure-preserving numerical splitting schemes
	3.3 Implementation details

	4 Validation of the proposed ABC method when exact simulation is possible
	4.1 Weakly damped stochastic harmonic oscillator: the model and its properties
	4.2 Validation of the spectral density-based ABC Algorithm 1 (i)
	4.3 Validation of the spectral density-based and measure-preserving ABC Algorithm 1 (ii)

	5 Validation of the spectral density-based and measure-preserving ABC Algorithm 1 (ii) on simulated and real data
	5.1 The stochastic Jansen and Rit neural mass model
	5.2 Parameter inference from simulated data
	5.2.1 Identifiability issues: the detection of an invariant manifold, i.e. a set of parameters yielding the same type of data
	5.2.2 Inference of θ=(σ,µ,C)

	5.3 Parameter inference from real EEG data

	6 Conclusion
	7 Supplementary material
	Acknowledgements
	References


