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Summary

We introduce methods for estimating the spectral density of a random field on a d-dimensional
lattice from incomplete gridded data. Data are iteratively imputed onto an expanded lattice
according to a model with a periodic covariance function. The imputations are convenient com-
putationally, in that circulant embedding and preconditioned conjugate gradient methods can
produce imputations in O(n log n) time and O(n) memory. However, these so-called periodic
imputations are motivated mainly by their ability to produce accurate spectral density estimates.
In addition, we introduce a parametric filtering method that is designed to reduce periodogram
smoothing bias. The paper contains theoretical results on properties of the imputed-data peri-
odogram and numerical and simulation studies comparing the performance of the proposed
methods to existing approaches in a number of scenarios. We present an application to a gridded
satellite surface temperature dataset with missing values.

Some key words: Circulant embedding; Conjugate gradient; Covariance function; Gaussian process; Nonparametric
estimation; Semiparametric estimation; Spatial statistics.

1. Introduction

Random fields defined on the integer lattice have wide applications in modelling gridded spa-
tial and spatial-temporal datasets. They also form the basis for some models for non-gridded
data (Nychka et al., 2015). The large sizes of modern spatial and spatial-temporal datasets entail
an enormous computational burden when using traditional methods for estimating random field
models. Modelling data on a grid provides a potential solution to the computational issue, since
there exist some methods based on the discrete Fourier transform which can be computed effi-
ciently with fast Fourier transform algorithms. However, there are some pitfalls associated with
discrete Fourier transform-based methods related to edge effects and the handling of missing
data. This paper provides an accurate and computationally efficient estimation framework for
addressing those issues.

Let Y (x) ∈ R, x ∈ Zd , be a zero-mean stationary process on the d-dimensional integer lattice,
that is, E{Y (x)} = 0 and cov{Y (x), Y (x+h)} = K(h) for every x and h in Zd . Herglotz’s theorem
states that the covariance function has a Fourier transform representation,

K(h) =
∫

[0,1]d
exp(2π iω · h) dF(ω), (1)

where i = √−1 and · is the dot product. The function F is a spectral measure, and we assume
throughout that it has a continuous derivative f , called a spectral density. We focus on estimation
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of f , which encodes the covariance function and thus is crucial for prediction of missing values
and for regressions when Y is used as a model for residuals. We restrict our attention to stationary
models and note that stationary models often form the basis for more flexible nonstationary
models that are needed to accurately model many physical processes (Fuentes, 2002).

Suppose that we observe vector U = {Y (x1), . . . , Y (xn)} at a distinct set of n locations S1 =
{x1, . . . , xn}. If f or K has a known parametric form and we assume that Y (x) is a Gaussian process,
then we can use likelihood-based methods for estimating the parameters, which generally requires
O(n2) memory and O(n3) floating point operations. If the locations form a complete rectangular
subset of the integer lattice, we can use Whittle’s likelihood approximation (Whittle, 1954), which
leverages fast Fourier transform algorithms in order to approximate the likelihood in O(n log n)

FLOPs and O(n) memory. Guyon (1982) showed that, due to edge effects, the Whittle likelihood
parameter estimates are not root-n consistent when the dimension d of the field is greater than 1.
Dahlhaus & Künsch (1987) suggested the use of data tapers to reduce edge effects and proved
that the tapered version of the likelihood approximation is asymptotically efficient when d � 3.
Stroud et al. (2017) and Guinness & Fuentes (2017) suggested the use of periodic embeddings and
demonstrated their accuracy in numerical studies. Sykulski et al. (2019) introduced a debiased
Whittle likelihood.

If one is not willing to assume that f or K has a known parametric form, and if the data are
observed on a complete rectangular grid, nonparametric methods can be used to estimate f . The
standard approach uses the discrete Fourier transform,

J (ω) = 1√
n

n∑
j=1

Y (xj) exp(−2π iω · xj),

and estimates the spectrum with a smoothed version of the periodogram |J (ω)|2,

f̂ (ω) =
∑
ν

|J (ν)|2α(ω − ν),

where α is a smoothing kernel. Selection of the kernel bandwidth has been studied by Lee (1997),
Ombao et al. (2001) and Lee (2001). Alternatively, one can smooth using penalized likelihoods
(Wahba, 1980; Chow & Grenander, 1985; Pawitan & O’Sullivan, 1994) or smooth priors in a
Bayesian setting (Zheng et al., 2009). Politis & Romano (1995) provided a method for reducing
bias in the smoothed periodogram. Heyde & Gay (1993) studied asymptotic properties of the
periodogram in an increasing domain setting, while Stein (1995) studied them in an increasing
resolution setting, noting the importance of data filtering. Lim & Stein (2008) considered the
multivariate case.

The nonparametric methods discussed above apply when a complete dataset is available on
a rectangular grid. However, even when available on a grid, spatial datasets often have many
missing values; for example, it is common to encounter gridded satellite datasets with some values
obscured by clouds. Missing values complicate two aspects of periodogram-based estimators.
The first is that a surrogate for the missing values must be substituted. Fuentes (2007, § 3)
suggested replacing missing values with zeros and scaling the periodogram by the number of
observed grid cells. Also of relevance is the extensive theoretical literature on spectral domain
analysis for irregularly sampled spatial data (Matsuda &Yajima, 2009; Bandyopadhyay & Lahiri,
2009; Bandyopadhyay et al., 2015; Deb et al., 2017; Subba Rao, 2018), which can be applied to
incomplete gridded data as well. All of these approaches use a discrete Fourier transform of the
sampled data, which for gridded datasets is equivalent to the zero-infill approach in Fuentes (2007,
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§ 3). Numerical comparisons between a zero-infill approach and our new approach are given in
§ 4. A second problem for spatial data is that scattered missing values seriously disrupt the use
of differencing filters. For example, two-dimensional differencing at an observed location (j, k)

can be applied only if observations at (j +1, k), (j, k +1), and (j +1, k +1) are observed as well.
To address these issues, this paper introduces computationally efficient methodology for

estimating the spectrum based on imputing missing values with conditional simulations and iter-
atively updating the spectrum estimate, in a similar vein to the method proposed by Lee & Zhu
(2009) for time series data. The novelty of our approach is that the missing values are imputed
onto an expanded lattice under a covariance function that is periodic on the expanded lattice.
These periodic imputations or periodic conditional simulations are convenient computationally,
since circulant embedding and preconditioned conjugate gradient methods can be employed for
efficient imputations, but their main appeal is their ability to produce accurate estimates via
the amelioration of edge effects. We provide thorough numerical studies and theoretical results
describing when the imputed-data spectrum is expected to give an estimate with a smaller bias
than the spectrum used for imputation, which suggests that existing spectral density estimates
can be improved through periodic embedding.

The theoretical results provide a sound basis for the nonparametric estimation methods and
give some insight into why the parametric methods in Guinness & Fuentes (2017) perform
so well in simulations. Additionally, this paper introduces a parametric filtering method based
on fitting simple parametric models within the iterative method. The fitted parametric models
can be used to filter the data, which is effective for reducing bias due to periodogram smoothing.
Taken together, this work develops accurate and computationally efficient methods for estimating
spectral densities when the gridded data have arbitrary missingness patterns. We present thorough
numerical and simulation studies for the methods and demonstrate that even a small amount of
lattice expansion provides substantial bias and correlation reduction. We apply the methods to a
gridded but incomplete land surface temperature dataset.

2. Methodology

2.1. Notation and background

Let y = (y1, . . . , yd) with yi ∈ N, and define the hyper-rectangle Jy ⊂ Zd , where

Jy = {(a1, . . . , ad) | aj ∈ {1, . . . , yj} for all j}.
If d = 2, this is simply a rectangular lattice of size (y1, y2). We assume that the observation
locations S1 form a subset of Jy, and so we call Jy the observation lattice. Define V to be the
vector containing the process at the remaining locations Jy\S1. Throughout, we asssume that Y (x)
is missing at random, meaning that the missingness is potentially related to x but not related to
the value of Y (x) (Little & Rubin, 2014). This section describes several existing and new iterative
methods for estimating a spectral density f .All of these methods proceed by updating the spectrum
estimate at the kth iteration, fk , to the next estimate, fk+1. Although the specific updating formulas
vary, we use the notation fk+1 for all of them to keep the number of symbols manageable.

For time series data, Lee & Zhu (2009) proposed an iterative method for obtaining nonpara-
metric estimates of the spectrum. Let Ek denote expectation in the zero-mean multivariate normal
distribution for (U , V ) under fk with covariance given by (1). Their method can be extended from
one dimension to general dimensions with the updating formula

fk+1(ω) =
∑
ν∈Fy

Ek

{
|J (ν)|2 ∣∣ U

}
α(ω − ν), (2)
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where Fy is the set of Fourier frequencies associated with a grid of size y. The procedure is then
iterated over k until convergence. Here, we use a smoothing kernel, but Lee & Zhu (2009) noted
that any smoothing method can be applied. The conditional expectation of the periodogram under
fk is computationally expensive, so Lee & Zhu (2009) proposed replacing the expected value with
an average over L independent realizations of V given U , as in

fk+1(ω) =
∑
ν∈Fy

1

L

L∑
�=1

|J (�)(ν)|2α(ω − ν), (3)

where J (�) is the discrete Fourier transform derived from (U , V (�)), with V (1), . . . , V (L) being
independent Gaussian conditional simulations of V given U under fk . Replacing the conditional
expectation with a sample average is analogous to the approach taken in the iterative method
in Tanner & Wong (1987) for Bayesian estimation of parametric statistical models. In this case,
using a sample average creates a convergence issue, in that the Monte Carlo error causes the
spectra in (3) to fluctuate indefinitely. In § 2.2, we propose an alternative averaging scheme, as
well as imputation under a periodic model.

2.2. Periodic imputation

When d > 1, edge effects become a prominent issue (Guyon, 1982); in particular, the Whittle
likelihood can be interpreted as the exact likelihood for a model in which the field is periodic on
the observation lattice (Guinness & Fuentes, 2017). Data tapers have been proposed to alleviate
the issue, but tapering can lead to loss of information from data near the boundaries or near
missing values. In this paper, we propose extending the hyper-rectangle in each dimension and
performing the imputations under a periodic approximation to the covariance function. Surpris-
ingly, using the periodic approximation to the covariance function for the imputations, rather than
the true covariance function, leads to improved spectral density estimates. This is demonstrated
numerically in § 4. Periodic models also facilitate straightforward implementation of circulant
embedding techniques to simulate from the conditional distributions efficiently.

Let τ � 1, and define zj = �τyj� so that zj � yj for j = 1, . . . , d. Define m = z1 · · · zd to be
the total number of locations in Jz, which we refer to as the embedding lattice. Let W denote
the vector of missing values on Jz \ S1 and Ẽk denote expectation in the zero-mean multivariate
normal distribution for (U , W ) with covariance function Rk(·), defined as

Rk(h) = 1

m

∑
ω∈Fz

fk(ω) exp(2π iω · h), h = (h1, . . . , hd), (4)

where Fz are the Fourier frequencies associated with Jz. For every ω ∈ Fz, the function exp(2π iω·
h) is periodic in hj with period zj. This ensures that Rk(·) is periodic on Jz in each dimension and
is not the integral Fourier transform of fk that appears in (1). We refer to a draw of W under Rk(·)
as a periodic conditional simulation or a periodic imputation. Figure 1 contains an example with
τ = 1.15.

Using conditional expectations, the update in the periodic model is

fk+1(ω) =
∑
ν∈Fz

Ẽk

{
|J (ν)|2 | U

}
α(ω − ν). (5)

The conditional expectation in the Lee & Zhu (2009) estimator in (2) is calculated on the observa-
tion lattice and using the correct model, whereas in (5) we use the conditional expectation under
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Data on observation lattice

Data on embedding lattice Periodic conditional simulation

Fig. 1. Data on the observation lattice Jy, data on the embedding lattice Jz , and a periodic conditional simulation.

a model that is periodic on the embedding lattice. As before, the conditional expectation can be
replaced by the average over one or several conditional simulations. To address the convergence
issue mentioned in § 2.1, we propose an alternative updating formula consisting of a burn-in
period of B iterations and convergence monitoring based on the asymptotic standard deviation
of the complete-data smoothed periodogram,

Sk(ω) =
{ ∑

ν∈Fz

fk(ν)2α(ω − ν)2
}1/2

.

Our full proposed estimation algorithm is as follows. Initialize f1(ω) as a constant flat spectrum,
and given spectrum fk , update as follows.

Step 1. For � = 1, . . . , L, conditionally simulate W (�) given U under fk .
Step 2. For � = 1, . . . , L, compute J (�)(ω) from (U , W (�)).
Step 3. Update spectrum as

fk+1(ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

L

L∑
�=1

∑
ν∈Fz

|J (�)(ν)|2α(ω − ν), k � B,

k−B
k−B+1 fk(ω) + 1

k−B+1
1

L

L∑
�=1

∑
ν∈Fz

|J (�)(ν)|2α(ω − ν), k > B.

The algorithm is stopped when

max
ω∈Fz

|fk+1(ω) − fk(ω)|
Sk(ω)

< ε.

To summarize, during the B burn-in iterations, we use the sample average version of (5). After
burn-in, the updating formula uses a weighted average of the previous spectrum and the current
smoothed periodogram. Using a burn-in period avoids averaging over spectra from the first few
iterations. Convergence is relative to the asymptotic standard deviation of the complete-data
smoothed spectrum and a tolerance criterion ε, which we take to be 0.05 or 0.01 in practice. We
typically take L = 1 in practice. The Appendix contains details on how circulant embedding and
preconditioned conjugate gradient methods can be employed to efficiently compute the periodic
conditional simulations.
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2.3. Variant with parametric filter

Even if |J (ω)|2 is unbiased for f (ω), the smoothing step can introduce some bias in the spectral
density estimate. For spectral densities with large dynamic range, data filters have been proposed
to pre-whiten the data prior to smoothing (Stein, 1995). Missing data pose a challenge for data
filters, but filters can easily be applied to the imputed data at each iteration. In this subsection,
we propose a parametric filtering method that we show in simulations is successful in reducing
smoothing bias.

Let fθ be a parametric spectral density. The imputed-data Whittle likelihood approximation is

�(θ) = −m

2
log 2π − 1

2

∑
ω∈Fz

[
log fθ (ω) + Ẽk{|J (ω)|2 | U }

fθ (ω)

]
.

Let θk be the maximizer of �(θ). Then update as

fk+1(ω) = fθk (ω)
∑
ν∈Fz

Ẽk{|J (ν)|2 | U }
fθk (ν)

α(ω − ν).

As before, in practice we replace Ẽk{|J (ν)|2 | U } with a sample average that can be computed
efficiently. The completely nonparametric variant is a special case with fθ (ω) constant. Using the
parametric step in the smoothing serves to flatten the periodogram, which we show in simulation
studies is helpful for reducing smoothing bias. This allows for the use of wider smoothing kernels,
which reduces variance as well.

The parametric Matérn covariance is a popular choice for modelling spatial data, and so we
recommend using some form of the Matérn covariance for the parametric model. Guinness &
Fuentes (2017) described a quasi-Matérn covariance, whose spectral density can be evaluated
quickly without aliasing calculations. Based on their results, we recommend using the quasi-
Matérn covariance in practice. A special case of it is explored in § 4.

3. Theory

This section studies bias in the imputed-data periodogram and correlation in the imputed-data
discrete Fourier transform vector. We use the notation that f is the true spectrum and f1 is a
spectrum to be used for imputation. The theorem should be interpreted as a statement about
how the discrete Fourier transform vector behaves given a particular imputation spectrum, not
about the iterative procedure itself. Section 4 contains a numerical exploration of the iterative
procedure, and § 6 discusses issues related to the theoretical study of the iterative procedure.

Let R, without parentheses, be the covariance matrix for (U , W ) under the periodic covariance
function R(·) in (4) with spectrum f . Partition R as [A B; BT C], so that A and C are the covariance
matrices for U and W , respectively. Let K denote the covariance matrix for U under the true
nonperiodic covariance function K(·) in (1). Note that R is m×m, while K is n×n. Define R1 to be
the covariance matrix for (U , W ) under periodic covariance function R1(·) with spectrum f1, and
define A1, B1, and C1 accordingly. Throughout, we assume that both f and f1 are bounded above
and below by positive constants. If W1 is a periodic conditional simulation given observations U
under f1, then the true covariance matrix for (U , W1) is

S = cov
{ (

U
W1

) }
=

(
K KA−1

1 B1

BT
1 A−1

1 K C1 − BT
1 A−1

1 B1 + BT
1 A−1

1 KA−1
1 B1

)
. (6)
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The matrix S is a key object of study, and it is of interest to understand its Fourier spectrum. To
this end, define the m × 1 vector g(ν) to have entries m−1/2 exp(−2π iν · x), where ν ∈ Fz is a
Fourier frequency and x ∈ Jz, with the entries of g(ν) ordered as they are in (U , W ). Define

f̃1(ν, ω) = E[Ẽ1{J (ν)J (ω)∗ | U }] = g(ν)†Sg(ω),

where ∗ is complex conjugate and † is conjugate transpose, so that f̃1(ω, ω) is the Fourier spectrum
of S from which we construct our estimates of the spectrum. Likewise, we define f (ν, ω) = f (ν)

if ω = ν and 0 if ω |= ν. This notation is useful for succinct theorem statements and reflects
the fact that the true bispectrum is zero off the diagonal for stationary models. It is of interest to
study f̃1(ν, ω) − f (ν, ω), which for ω = ν corresponds to the bias of the periodogram and for
ω |= ν measures dependence in the periodogram, both of which should ideally be near zero.

The difference f̃1(ν, ω) − f (ν, ω) will be exactly zero for every ν and ω if and only if S = R
due to the uniqueness of the Fourier transform. Inspection of (6) suggests that S approaches R if
both K and A1 approach A. The entries of K come from the true covariance function K(h), and
the entries of A come from the periodic covariance function R(h). To see when K approaches A,
consider the multi-dimensional Poisson summation formula,

R(h) =
∑
j∈Zd

K(h + j ◦ z) = K(h) +
∑
j |=0

K(h + j ◦ z),

where j ◦ z is the elementwise product (j1z1, . . . , jdzd). This says that R(h) − K(h), and thus
K − A, approaches zero whenever K(h + j ◦ z) decays quickly enough, which can be ensured by
placing smoothness conditions on the spectrum. We now state the main result.

Theorem 1. Let f have p continuous partial derivatives, yj = O(n1/d), and zj = O(τyj) for
τ > 1. Define 
 = maxω∈[0,1]d |f (ω) − f1(ω)|. Then for every ν, ω ∈ Fz,

f̃1(ν, ω) − f (ν, ω) = O(n−p/d+1) + O
{



(m − n

m

)1/2}
,

meaning that the difference contains two terms with the respective rates.

The first term in the rate derives from the decay of the covariances K(h). This term decays
quickly with n when the spectrum is smooth and the dimension of the domain is small. The second
term concerns the proportion of missing values relative to the number of observed values, which,
when small, overwhelms the fact that A1 |= A. The assumptions about how the observation grid
grows with n are standard assumptions that ensure that each dimension grows at the same rate
with n. When the spectrum is smooth enough, the first decay rate is better than the usual n−1/d

(Guyon, 1982) or even n−1 rate for the bias of the non-imputed periodograms. The proof is given
in the Appendix along with intermediate results that assume a correct imputation spectrum.

The implication of the theorem is that when n is large enough and (m − n)/m is small enough,
we can initialize the iterative algorithm with any estimate of the spectrum (e.g., Fuentes, 2007;
Matsuda &Yajima, 2009), and one step in the iterative algorithm will decrease the bias relative to
the initialized estimate. The theorem does not make any claims about convergence of the iterative
algorithm; these issues are explored numerically in § 4.



274 J. Guinness

Setting 1

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

Setting 2 Setting 3

Fig. 2. Example realizations from the three missingness settings, with missing values in white.

4. Numerical studies and simulations

To provide more insight into the behaviour of the proposed estimation methods, we present
a numerical study analysing the bispectrum of the imputed data and simulation results compar-
ing the proposed estimators to other spectral density estimators. The numerical study involves
calculations of the bispectrum from covariance matrices and thus involves no simulated data. In
the simulation study, we estimate the spectral densities on simulated datasets, which allows us
to study sampling variability and the effect of smoothing on the estimated spectral densities. In
both the numerical study and the simulation study, we consider data on square grids under three
missingness settings as shown in Fig. 2. The first setting has 30% scattered missing values. The
second setting has a missing block in the centre of the grid, with roughly 30% of the total missing.
The third setting has no missing values.

In the numerical study, we assume that the true covariance function is K(h) = 2 exp(−‖h‖/8),
with data on a (32, 32) grid. Let f0 be the bispectrum of K , that is,

f0(ν, ω) = m

n
g(ν)†

(
K 0
0 0

)
g(ω).

Then for k � 0, let fk+1(ν, ω) = g(ν)†Skg(ω), where

Sk =
(

K KA−1
k Bk

BT
k A−1

k K Ck + BT
k A−1

k (K − Ak)A
−1
k Bk

)
.

This numerical study mirrors a setting where we initialize the iterative procedure with the
periodogram of the non-imputed data. This is repeated for four values of expansion factor
τ ∈ {32/32, 34/32, 36/32, 38/32} = {1, 1.0625, 1.125, 1.1875}. We quantify the error in the
bispectrum with an integrated normalized squared bias

1

m

∑
ν∈Fz

∑
ω∈Fz

{
fk(ν, ω) − f (ν, ω)

}2

f (ν, ν)f (ω, ω)
.

The results for the integrated normalized squared bias are shown in Table 1. The column for
iteration 0 corresponds to bias in the non-imputed-data periodogram and has values that are
quite large compared to the imputed-data periodograms, especially in Setting 1. Rows 1 and 5
correspond to imputation of missing values on the original data domain; row 9 has no missing
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Table 1. Integrated normalized squared bias under exponential covariance model, for three
missingness settings, four expansion factors, including no expansion τ = 1, and zero to

six iterations
Iteration

Setting Expansion τ 0 1 2 3 4 5 6

1 32/32 757.6 9.584 5.946 5.457 5.457 5.516 5.562
1 34/32 866.4 5.077 1.181 0.406 0.230 0.185 0.173
1 36/32 971.6 5.663 1.466 0.432 0.152 0.069 0.043
1 38/32 1083.3 6.332 1.933 0.638 0.228 0.090 0.040

2 32/32 27.20 8.622 8.305 8.201 8.161 8.144 8.136
2 34/32 24.87 0.613 0.279 0.222 0.210 0.206 0.206
2 36/32 27.99 0.494 0.133 0.059 0.040 0.035 0.033
2 38/32 31.40 0.531 0.146 0.052 0.024 0.015 0.011

3 32/32 7.990 7.990 7.990 7.990 7.990 7.990 7.990
3 34/32 5.489 0.231 0.201 0.200 0.200 0.200 0.200
3 36/32 6.297 0.083 0.035 0.031 0.031 0.031 0.031
3 38/32 7.180 0.079 0.016 0.010 0.009 0.009 0.009

values. We see that imputing missing values on the original domain offers some improvement.
However, imputing on an expanded domain gives biases that orders of magnitude smaller in many
cases, and the biases decrease substantially in just a few iterations. It is also apparent that even
a small amount of expansion lowers the bias; for example, expanding the domain by four pixels
(τ = 36/32) gives biases near zero even though the spatial range parameter is twice as large as
the domain expansion.

In the simulation study, we use an (80, 80) grid in Settings 1 and 2, and a (50, 50) grid in
Setting 3. Data are generated from a zero-mean Gaussian process model with Matérn covariance
function

K(h) = 2

�(ν)2ν−1

(√
2ν‖h‖

8

)νKν

(√
2ν‖h‖

8

)
,

with three different choices of smoothness parameter ν ∈ {1/2, 1, 3/2}, range parameter 8, and
variance parameter 2.

We consider several methods for estimating the spectral densities. The first method uses a
smoothed periodogram computed from the discrete Fourier transform of the sampled data, scaled
by the number of observations n. This method is described in § 1 and is the approach suggested
by Fuentes (2007), Matsuda &Yajima (2009), Bandyopadhyay & Lahiri (2009), Bandyopadhyay
et al. (2015), Deb et al. (2017), and Subba Rao (2018). The second method uses a periodogram
computed from tapered data. We define one-dimensional cosine tapers T1 and T2 applied to
5% of the observations on each of the two edges, and the taper function is the outer product
T {(j, k)} = T1(j)T2(k). In Setting 1, the taper function is set to zero whenever there is a missing
value. In Setting 2, which includes a square of missing values in the centre, we also taper the
interior observations. The periodograms of tapered data are normalized by the sum of the squares
of the taper function. Additionally, we consider the Lee & Zhu (2009) estimator described in
§ 2, i.e., nonperiodic imputation, and variants of their method that use lattice expansion and/or
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parametric filters. Using a nonperiodic embedding method allows us to separate the effect of
using a larger lattice from the effect of imputing periodically.

For the imputation-based methods proposed in this paper, we consider lattice expansion factors
τ ∈ {1.0, 1.1, 1.2}. We also consider two settings for the use of a parametric filter, the first being
no filter, and the second with a filter of the form

fθ (ω) = 1

1 − θ
2 {cos(2πω1) + cos(2πω2)}

,

where 0 � θ < 1. This choice for the parametric model is a member of the quasi-Matérn family
(Guinness & Fuentes, 2017) and is deliberately misspecified for the two cases ν = 1/2 and
ν = 3/2. Lindgren et al. (2011) showed that this model can approximate the Matérn covariance
with smoothness parameter equal to 1.

All of the imputation-based estimation methods use L = 1 conditional simulations, B = 100
burn-in iterations, and convergence criterion ε = 0.01. The estimate from the jth dataset is denoted
by f̂ j. All methods use a Gaussian smoothing kernel proportional to exp(−‖ω − ν‖2/δ2), where
the distance ‖ω − ν‖ is defined periodically on the domain [0, 1]2. We consider two metrics for
evaluating the estimation methods. The first is a relative bias

bias(ω) = 1

100

100∑
j=1

f̂ j(ω) − f (ω)

f (ω)
,

where 100 is the total number of simulated datasets and f is the true spectrum. The second metric
is a mean relative squared error

mse(ω) = 1

100

100∑
j=1

{
f̂ j(ω) − f (ω)

f (ω)

}2

.

To evaluate relative bias on an equal footing, we compare all methods using a small value of
δ = 0.02. Figure 3 contains plots of the relative bias for the nontapered and tapered methods,
and for the nonfiltered and filtered periodic and nonperiodic embedding methods with τ = 1.2.
Results for ν = 1/2 are shown and results for larger values of ν are similar. In Setting 1, the
nontapered and tapered methods have a very large relative bias at almost every frequency. They
estimate far too much power at higher frequencies, due to the fact that imputing with zeros
produces fields that are rougher than the underlying process. In contrast, the periodic embedding
methods have small bias. In Setting 2, the nontapered and tapered biases improve, but are still
larger than the periodic embedding biases, especially for low frequencies. The relative biases
for nontapered and tapered methods are similar in Setting 3 and are still larger than the periodic
embedding relative biases. Though not shown here, the biases for τ = 1.1 and 1.3 are similar.
The parametric filters serve to reduce the bias compared to not filtering. The periodic embedding
methods have a small bias near ω = (0, 0); based on the accuracies shown in the numerical
studies, this bias is likely due to smoothing bias because of the sharply peaked spectra near the
origin. Imputing nonperiodically does not substantially improve the bias in Settings 2 and 3. It
does improve bias in Setting 1, but it is not as effective as periodic embedding.
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Fig. 3. Relative bias as a function of frequency for the three missingness settings under ν = 1/2 and six estimation
settings: (a) not tapered; (b) tapered; (c) τ = 1.2, no filter, not periodic; (d) τ = 1.2, parametric filter, not periodic;

(e) τ = 1.2, no filter, periodic; (f) τ = 1.2, parametric filter, periodic.

To evaluate mean relative squared error on an equal footing, all methods were computed with
a range of choices for δ; the reported results are for the value of δ that minimized

{ 1

m

∑
ω∈Fz

mse(ω)
}1/2

,

the root integrated mean relative squared error over all Fourier frequencies. Table 2 contains root
integrated mean relative squared error results for the various methods. The periodic embedding
methods with τ > 1 are more accurate than both the nontapered and the tapered periodogram
estimates in every case. In Setting 1, the nontapered and tapered estimates are quite poor, likely
due to the large biases seen in Fig. 3. For periodic embedding, we see that the values improve
when τ > 1 but do not improve beyond τ = 1.1. This is consistent with the numerical studies
that showed a small amount of periodic embedding was sufficient. Filtering provides a further
improvement, reducing the values by 30–40%. In Setting 2, the nontapered and tapered estimates
improve substantially, and the periodic embedding methods offer further improvement. Imputing
missing values is an improvement, but imputing periodically always gives better results than
imputing nonperiodically. This can be seen by comparing the τ = 1.0 results to the τ > 1 results
and by comparing the periodic to the nonperiodic imputation results. In Setting 3, the parametric
filter performs similarly to tapering, but periodic embedding with parametric filtering is by far
the most accurate method when τ > 1.

5. Application to satellite data

To illustrate the practical usefulness of the proposed methods, we analyse a gridded land surface
temperature dataset. These data were used recently in Heaton et al. (2018), a study comparing
various Gaussian process approximations. The data were originally collected by the Moderate
Resolution Imaging Spectrometer on board the NASA Terra Satellite. The region is a grid of 500
by 300 locations in the latitudinal range of 34.295 to 37.068 and longitudinal range of −95.912
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Table 2. Root integrated mean relative squared error results
Missingness setting

1 2 3 1 2 3 1 2 3

impute - filter - periodic ν = 1/2 ν = 1 ν = 3/2
no - no - no 3.495 0.560 0.478 32.11 3.145 2.299 257.3 17.03 15.36
no - taper - no 3.498 0.291 0.342 31.83 0.472 0.900 255.8 0.920 3.735
τ = 1.0 - no - no 0.389 0.423 0.462 1.913 2.093 2.294 9.107 12.49 15.36
τ = 1.1 - no - no 0.362 0.379 0.412 1.734 1.930 2.097 8.691 11.05 12.28
τ = 1.2 - no - no 0.397 0.402 0.439 1.858 2.098 2.313 9.669 11.88 13.35
τ = 1.0 - yes - no 0.313 0.320 0.323 1.168 1.197 1.559 6.138 8.280 8.803
τ = 1.1 - yes - no 0.284 0.296 0.296 1.001 1.041 1.260 5.775 6.469 7.511
τ = 1.2 - yes - no 0.296 0.312 0.309 1.022 1.062 1.266 5.689 7.443 7.587
τ = 1.0 - no - yes 0.367 0.423 0.462 1.684 2.092 2.294 8.418 12.48 15.36
τ = 1.1 - no - yes 0.208 0.219 0.259 0.238 0.268 0.326 0.288 0.297 0.382
τ = 1.2 - no - yes 0.205 0.223 0.262 0.247 0.256 0.309 0.281 0.280 0.353
τ = 1.0 - yes - yes 0.253 0.319 0.323 0.908 1.195 1.559 5.348 8.266 8.803
τ = 1.1 - yes - yes 0.136 0.145 0.153 0.096 0.088 0.108 0.141 0.141 0.166
τ = 1.2 - yes - yes 0.133 0.143 0.153 0.097 0.091 0.109 0.142 0.137 0.156

to −91.284, roughly 450 km by 300 km with grid spacing 1100 m in the north/south direction
and 900 m in the east/west direction. The values in the dataset represent land surface temperature
in degrees Celsius. The dataset has 105 569 nonmissing values, which are plotted in the top left
panel of Fig. 4. We can see that there is a distinct trend from the southeast to the northwest corner,
so we include a linear trend in the mean function, estimated by generalized least squares.

We have found that ε = 0.05 is a reasonable convergence tolerance criterion, and we choose
B = 30 burn-in iterations. We use a crossvalidation procedure to choose the smoothing parameter.
A random subset of 30% of the data is held out; the iterative methods are run with a range of
smoothing parameters, and the parameter that minimizes sum of squared prediction errors was
chosen.

In Fig. 4, we plot the original data, the conditional expectation, an estimate of the conditional
standard deviations, and three conditional simulation plots. The conditional standard deviations
are estimated by computing 30 conditional simulations and finding the root mean squared differ-
ence between the conditional expectation and each of the conditional simulations at each pixel.
On average, each conditional simulation took just 2.76 seconds and converged in 25 iterations
with the Vecchia preconditioner, and took 15.48 seconds and converged in 159 iterations with the
inverse spectrum preconditioner. The iterative spectrum estimation method took 4.86 minutes to
converge. While these timings indicate that the analysis is feasible on a large dataset, a zero-infill
method is much faster, taking just 0.06 seconds. All timings were carried out on a 2016 Macbook
Pro with 3.3 GHz Intel Core i7 dual-core processer and 16 GB memory, running R 3.4.2 linked
to Apple’s Accelerate BLAS libraries.

Visually, the data appear to have a longer correlation length scale in the northeast-southwest
direction than in the southeast-northwest direction. The estimate of the spectrum returned by the
iterative method confirms our visual suspicions, as can be seen in Fig. 5 where the logarithm of
the estimated spectrum is plotted. The estimated spectrum shows clear signs of anisotropy in that
the spectrum has contours that are not circular. Maximum likelihood estimation of anisotropic
models is generally difficult due to optimization over additional parameters. In contrast, the
nonparametric spectral density estimation methods automatically estimated the anisotropies with
no extra computational effort.

The spectral methods described in this paper were included in the Heaton et al. (2018) compari-
son project and compared favourably to all of the other methods on all of the prediction and timing
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Fig. 5. Log base 10 of the spectral density estimate.

metrics, and it was the best performing method for the interval score metric (Gneiting & Raftery,
2007), which rewards forecasts that come with small prediction intervals that often contain the
predictand. To gain some intuition for this result, we report some results for (1 −α)% prediction
intervals based on a Gaussian assumption. In particular, we sort the predictions (Ŷ1, . . . , Ŷp) to be
increasing in the prediction standard deviation, and then report average prediction standard devia-
tions for (Ŷi, . . . , Ŷj) for various ranges of the indices i and j. The results from the periodic spectral
methods are compared in Table 3 to predictions that use an isotropic Matérn covariance model,
with parameters estimated via Vecchia’s approximation (Vecchia, 1988), as implemented in the
R package GpGp (Guinness, 2018; Guinness & Katzfuss, 2018; R Development Core Team,
2019). Vecchia’s approximation applies to parametric models and to both gridded and nongrid-
ded data. We can see that while the two methods do not differ substantially for predictions that
the model expects to be uncertain, the periodic spectral methods produce smaller prediction inter-
vals and smaller root mean squared prediction errors when the model expects small prediction
errors. This is achieved with coverage rates that are larger than those produced by Vecchia’s
approximation with an isotropic model.

6. Discussion

The methods involve choosing the factor by which the lattice should be expanded. We have
found that even very small factors that expand the lattice by a few pixels are effective at improving
the spectral density estimates. We recommend expanding each dimension by an amount roughly
equal to the correlation range in the data. The fact that we expand the lattice in the positive
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Table 3. Average prediction standard deviation and coverages for the specified range of pre-
dicted values, with the predicted values sorted according to the fitted models’prediction stan-
dard deviations. In other words, the first column corresponds to prediction results for the 500
predictions that the model expects to be most certain, and the last column corresponds to the

predictions expected to be most uncertain
Index Range 1 501 1001 2001 10001 20000

500 1000 2000 10000 20000 44431
Periodic Avg Pred SD 0.365 0.427 0.482 0.694 1.164 1.88
Spectral Std. Dev. 0.414 0.477 0.554 0.686 1.078 2.209

80% Coverage 81.14 82.06 83.15 84.96 85.34 73.53
90% Coverage 86.56 89.23 89.29 91.35 92.61 84.59
95% Coverage 91.47 92.82 93.08 94.72 95.99 91.19

Vecchia Avg Pred SD 0.501 0.548 0.585 0.749 1.198 1.876
Std. Dev. 0.503 0.58 0.538 0.718 1.094 2.201

80% Coverage 74.88 78.55 77.23 80.71 82.05 61.12
90% Coverage 84.88 87.65 87.15 88.58 90.66 74.85
95% Coverage 89.02 91.84 90.87 92.39 94.47 83.87

direction, rather than in the negative direction or both positive and negative directions, is not
important since we assume a periodic model on the expanded lattice. As with most nonparametric
spectral density estimates, the methods involve the choice of a smoothing parameter. We have
not attempted to provide any new methods for selecting smoothing parameters, as this issue has
been well-studied in the literature. However, the parametric filtering methods serve to flatten the
periodogram, which makes the estimates less sensitive to the choice of smoothing parameter. In
our application to land surface temperature data, we used a crossvalidation procedure to select the
smoothing parameter. Though we have chosen L = 1 imputation per iteration in every example,
the methods allow for L > 1. We suspect that choosing L > 1 would drive the iterative methods
to converge in fewer iterations but incur a higher computational cost per iteration. Examining the
details of this trade-off would be an interesting study. It may be advantageous to use L > 1 if the
conditional simulations can be computed in parallel.

While many large datasets involve spatially gridded observations, we acknowledge that there
is also a need for methods for analysing nongridded data. The nonparametric methods described
in this paper may prove useful for analysing nongridded data as well; in fact Nychka et al.
(2015) have a framework for analysing nongridded data that includes a lattice process as a model
component. Here we have considered stationary models which can also be used as components
in nonstationary models (Fuentes, 2002), and so the methods developed here could potentially
be extended to be used for local nonparametric estimation of nonstationary models. The paper
contains some theoretical results about the iterative procedure, but proving that the iterative
algorithm converges remains elusive, partly due to pathological cases in the observed vector U ,
but this is an important area of future work.
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Supplementary material

The methods are implemented in an R package titled npspec available at https://
github.com/joeguinness/npspec.
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Appendix

Circulant embedding and inverse spectrum preconditioner

To see how the conditional simulations of W given U can be computed efficiently, define R to be the
covariance matrix for (U , W ) under covariance function R(·), and partition R as

R =
(

A B
BT C

)
,

where A and C are the covariance matrices for the observations U and missing values W , respectively. The
conditional expectation for W given U is Ẽ(W | U ) = BTA−1U . The most demanding computational step
for obtaining Ẽ(W | U ) is solving the linear system Ax = U . Preconditioned conjugate gradient methods
for solving linear systems (Greenbaum, 1997) are efficient when the forward multiplication Ax can be
computed efficiently and when we can find a matrix M , called the preconditioner, for which MA ≈ I and
for which Mx can be computed efficiently. Below, we describe how circulant embedding can be used to
compute the forward multiplication Ax efficiently. In practice, we have found that a preconditioner based
on Vecchia’s Gaussian process approximation (Vecchia, 1988) is effective and fast for the problems we
have studied. This preconditioner was proposed in Stroud et al. (2017). At the end of this section, we give
details about another preconditioner based on a submatrix of the inverse of R−1.

Suppose that Q is an m × m nested block circulant matrix. Nested block circulant includes the special
cases of circulant, arising from a periodic and stationary covariance in one dimension, and block circulant
with circulant blocks, arising from a periodic and stationary covariance in two dimensions. The matrix
Q can be written as Q = FDF†, where F is the discrete Fourier transform matrix and D is a diagonal
matrix with the eigenvalues on the diagonal. Because of the discrete Fourier matrix representation, one
can multiply Qv in O(m log m) time and O(m) memory by taking the discrete Fourier transform of v, i.e.,
fft(v) in R, then multiplying the entries of the resultant vector pointwise by the eigenvalues in D, and
then taking an inverse discrete Fourier transform of the result.

The multiplication Ax can be computed efficiently by embedding the multiplication inside of

R

(
x
0

)
=

(
A B
BT C

) (
x
0

)
=

(
Ax

BT x

)
.

Then the appropriate entries Ax can be extracted, and the unnecessary entries BT x can be discarded. Note
that R is not nested block circulant, but there exists a row-column permutation of R that is nested block
circulant. Let P denote the permutation matrix such that Q = PRPT is nested block circulant. Then the
multiplication can be performed as

R

(
x
0

)
= PT QP

(
x
0

)
.

Thus, the multiplication can be carried out by an appropriate reordering of [x 0] in O(m) time, then an
O(m log m)-time multiplication by nested block circulant Q, and then an O(m)-time reordering of the
result.

The preconditioner M = (A−BC−1BT )−1 is a submatrix of R−1. Here, we describe how the multiplication
Mx can be performed efficiently without computing the entries of M . The inverse of R is a permutation of
a nested block circulant matrix and can be written as

R−1 =
{

(A − BC−1BT )−1 −(A − BC−1BT )−1BC−1

−C−1BT (A − BC−1BT )−1 (C − BT A−1B)−1

}
= PT FD−1F†P.

This means that the multiplication Mx can be embedded in the larger multiplication

R−1

(
x
0

)
=

{
(A − BC−1BT )−1x

−C−1BT (A − BC−1BT )−1x

}
= PT FD−1F†P

(
x
0

)
,
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and the multiplication can be carried out in O(m log m) time and O(m) memory by a sequence of reorderings,
discrete Fourier transforms, and pointwise multiplications.

Proofs of theoretical results

Lemma A1. If f1 = f , K(h) = 0 for all ‖h‖ > h0, and |zj − yj| > h0 for all j ∈ {1, . . . , d}, then for all
ν, ω ∈ Fz, f̃1(ν, ω) − f (ν, ω) = 0.

Proof. We have f (ν, ω) = g(ν)†Rg(ω), and so f̃1(ν, ω) − f (ν, ω) = g(ν)†(S − R)g(ω). The matrix
S − R can be written as

S − R =
{

K − A (K − A)A−1B
BT A−1(K − A) BT A−1(K − A)A−1B

}
.

It suffices to show that K = A in order to establish the result. According to the multi-dimensional Poisson
summation formula, we can relate K(·) and R(·) by (Guinness & Fuentes, 2017, Lemma 1)

R(x1 − x2) =
∑
k∈Zd

K{x1 − x2 + (z ◦ k)} = K(x1 − x2) +
∑

k∈Zd \0

K{x1 − x2 + (z ◦ k)}, (A1)

where z ◦ k := (z1k1, . . . , zdkd). For any x1, x2 ∈ Jy, the observation lattice, we have |x1j − x2j| < yj for
every j = 1, . . . , d. Thus if kj ∈ Z \ 0, |x1j − x2j + zjkj| > |zj − yj| > h0. Thus at least one element of
x1 − x2 + (z ◦ k) has absolute value greater than h0 when k ∈ Zd \ 0, and so ‖x1 − x2 + (z ◦ k)‖ > h0 for all
k ∈ Zd \ 0, implying that all terms in the sum in (A1) must be zero. This gives us R(x1 − x2) = K(x1 − x2)

for any x1, x2 ∈ Jy, and so K = A. �

Lemma A2. If f has p continuous partial derivatives, f1 = f , yj = O(n1/d), and zj = O(τyj) for τ > 1,
then for all ν, ω ∈ Fz,

f̃1(ν, ω) − f (ν, ω) = O(n−p/d+1).

Proof. As in the proof of Lemma A1, f̃1(ν, ω) − f (ν, ω) = g(ν)†(S − R)g(ω). Partitioning the vector
g(ν) as {g1(ν), g2(ν)} according to the same partition as (U , W ), we have

f̃1(ν, ω) − f (ν, ω) = (
g1(ν)† g2(ν)†

) {
K − A (K − A)A−1B

BT A−1(K − A) BT A−1(K − A)A−1B

} {
g1(ω)

g2(ω)†

}

= {g1(ν)† + g2(ν)†BT A−1}(K − A){g1(ω) + A−1Bg2(ω)},
and so the difference can be bounded as

|f̃1(ν, ω) − f (ν, ω)| = |{g1(ν)† + g2(ν)†BT A−1}(K − A){g1(ω) + A−1Bg2(ω)}|
� ‖g1(ν) + A−1Bg2(ν)‖2 ‖K − A‖2 ‖g1(ω) + A−1Bg2(ω)‖2.

We will consider each term in turn. Let ρ(M ) denote the spectral radius of symmetric matrix M . Then

‖g1(ν) + A−1Bg2(ν)‖2 � ‖g1(ν)‖2 + ‖A−1Bg2(ν)‖2

� (n/m)1/2 + ‖A−1/2‖2 ‖A−1/2B‖2 ‖g2(ν)‖2

= (n/m)1/2 + ρ(A−1)1/2ρ(BT A−1B)1/2‖g2(ν)‖2

� (n/m)1/2 + f −1/2
min ρ(C)1/2

(
m − n

m

)1/2

� (n/m)1/2 +
(

fmax

fmin

)1/2 (
m − n

m

)1/2

,
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where in the second to last inequality, we used ρ(A−1) < ρ(R−1) = f −1
min and C − BT A−1B is positive

definite, so the largest eigenvalue of BT A−1B is smaller than the largest eigenvalue of C, which is smaller
than the largest eigenvalue of R, fmax.

The previous inequality did not depend on ν, so it holds for ‖g1(ω) + A−1Bg2(ω)‖2 as well. To bound
‖K − A‖2, we use the fact that for symmetric matrices ‖K − A‖2 = ρ(K − A) < ‖K − A‖1, where

‖K − A‖1 = max
i

n∑
j=1

|Kij − Aij|

= max
x1∈Jy

∑
x2∈Jy

∣∣∣K(x1 − x2) − R(x1 − x2)

∣∣∣
= max

x1∈Jy

∑
x2∈Jy

∣∣∣K(x1 − x2) −
∑
k∈Zd

K{x1 − x2 + (k ◦ z)}
∣∣∣

= max
x1∈Jy

∑
x2∈Jy

∣∣∣ ∑
k |=0

K{x1 − x2 + (k ◦ z)}
∣∣∣

� max
x1∈Jy

∑
x2∈Jy

∑
k |=0

∣∣∣K{x1 − x2 + (k ◦ z)}
∣∣∣.

The third equality uses the multi-dimensional Poisson summation formula referenced in (A1). By
assumption, for k = (k1, . . . , kd) |= 0 and any x1, x2 ∈ Jy,

max
1�j�d

|x1j − x2j + zjkj| � min
1�j�d

|zj − yj|.

This is because kj |= 0 for at least one j. Define �min = min1�j�d |zj − yj|, which is the embedding distance
in the dimension with the smallest amount of embedding. By assumption, we have

�min > min
1�j�d

�(τ − 1)yj� > min
1�j�d

�(τ − 1)ajn
1/d�.

This means that the sum does not contain any terms K(h) for which maxj |hj| < �min. Define the set
G� = {h : maxj |hj| = �}, which is a hollowed-out cube on Zd and has size |G�| = (2�+1)d − (2�−1)d =
O(�d−1). Using this notation, the sum can be bounded as

‖K − A‖1 �
∞∑

�=�min

∑
h∈G�

|K(h)|.

Lemma 9.5 in Körner (1989) states that if f has p continuous partial derivatives on T
d , with maximum

pth partial derivative Qp(f ), then

|K(h)| � Qp(f )|hj|−p

for every 1 � j � d, and so we can use the bound |K(h)| � Qp(f )(max1�j�d |hj|)−p. This gives us an
explicit bound

‖K − A‖1 �
∞∑

�=�min

∑
h∈G�

Qp(f )

�p
=

∞∑
�=�min

{
(2� + 1)d − (2� − 1)d

}Qp(f )

�p

=
∞∑

�=�min

Qp(f )
ad−1(�)

�p
,
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where ad−1(�) is a polynomial of degree d − 1 in �. Then we have

‖K − A‖1 = O(�
−p+d
min ) = O(n−p/d+1)

since the largest exponent in ad−1(�)/�
p is −p + d − 1. Combining this with ‖g1(ν)+ A−1Bg2(ν)‖ = O(1)

gives the desired result. �

Theorem A1. Let f have p continuous partial derivatives, and assume the same conditions on the
observation and embedding lattice as in Lemma A2. Define 
1 = maxω∈[0,1]d |f (ω) − f1(ω)|. Then for all

ν, ω ∈ Fz, f̃1(ν, ω) − f (ν, ω) = O(n−p/d+1) + O
{

1(m − n/m)1/2

}
, meaning that the difference contains

two terms with the respective rates.

Proof. Define the matrix S1 as

S1 =
(

A AA−1
1 B1

BT
1 A−1

1 A C1 − BT
1 A−1

1 B1 + BT
1 A−1

1 AA−1
1 B1

)
,

which differs from S in that K in S is replaced by A in S1. The difference f̃1(ν, ω) − f (ν, ω) can be
written as

g(ν)†(S − R)g(ω) = g(ν)†(S − S1)g(ω) + g(ν)†(S1 − R1 + R1 − R)g(ω). (A2)

The first term in (A2) is

δ1 = (
g1(ν)† g2(ν)†

) {
K − A (K − A)A−1

1 B1

BT
1 A−1

1 (K − A) BT
1 A−1

1 (K − A)A−1
1 B1

} {
g1(ω)

g2(ω)†

}

= {g1(ν)† + g2(ν)†BT
1 A−1

1 }(K − A){g1(ω) + A−1
1 B1g2(ω)}.

This expression has a similar form to that which appears in the proof of Lemma A2. As before, we need
bounds for ‖g1(ω)+A−1

1 B1g2(ω)‖2 and ‖K −A‖2 in order to bound δ1. The proof for the bound on ‖K −A‖2

is identical to that in Lemma A2, and the proof for the bound on ‖g1(ω)+A−1
1 B1g2(ω)‖2 is similar, although

f is replaced by f1, which does not change the overall result that the first term in (A2) is O(n−p/d+1).
To shorten the equations to follow, write M1 = A−1

1 B1. The second term in (A2) is

δ2 = (
g1(ν)† g2(ν)†

) {
A − A1 (A − A1)M1

M T
1 (A − A1) M T

1 (A − A1)M1

} {
g1(ω)

g2(ω)†

}
+ f1(ν, ω) − f (ν, ω)

= {g1(ν)† + g2(ν)†M T
1 }(A − A1){g1(ω) + M1g2(ω)} + f1(ν, ω) − f (ν, ω).

Define the discrete Fourier transform matrix F to have (j, k) entry m−1/2 exp(iωk ·xj), where ωk is a Fourier
frequency in Fz and xj is a location in Jz. Partition the discrete Fourier transform matrix F into rows for the
observations and missing values as F† = [G† H †]. We have R = FDF†, where D is diagonal with entries
f (ν, ω). This gives A = GDG†, and likewise A1 = GD1G†, where D1 is diagonal with entries f1(ν, ω).
Then δ2 can be written as

δ2 = {g1(ν)†G + g2(ν)†M T
1 G}(D − D1){G†g1(ω) + G†Mg2(ω)} + f1(ν, ω) − f (ν, ω).

Note that I = G†G + H †H . Since g1(ν)† is a row of G† and g2(ν)† is the same row of H †, we have

g1(ν)†G + g2(ν)†H = e(ν),
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where e(ν) = 1 for the entry corresponding to ν and 0 otherwise. This gives

δ2 = {e(ν)T + g2(ν)†(M T
1 G − H )}(D − D1){e(ω) + (G†M1 − H †)g2(ω)} + f1(ν, ω) − f (ν, ω).

We can see now that since e(ν)T (D − D1)e(ω) = f (ν, ω) − f1(ν, ω), there is a cancellation, giving

δ2 = g2(ν)†(M T
1 G − H )(D − D1)e(ω) + e(ν)T (D − D1)(G

†
1M1 − H †)g2(ω)

+ g2(ν)†(M T
1 G − H )(D − D1)(G

†
1M1 − H †)g2(ω).

This cancellation is the key step. Using matrix norm inequalities, we have

|δ2| � ‖g2(ν)‖2‖M T
1 G − H‖2‖D − D1‖2‖e(ω)‖2

+ ‖g2(ω)‖2‖M T
1 G − H‖2‖D − D1‖2‖e(ν)‖2

+ ‖g2(ω)‖2‖g2(ν)‖‖M T
1 G − H‖2

2‖D − D1‖2‖e(ν)‖2.

Since g2(ω) is of length n2 and has entries n−1/2 exp(2π iω · x), ‖g2(ω)‖2 = √
n2/n. Clearly, ‖e(ω)‖ = 1

because of its definition, and ‖D − D1‖2 = 
1 because both D and D1 are diagonal with diagonal entries
holding f (ν, ν) and f1(ν, ν), respectively. This leaves

‖M T
1 G − H‖2

2 = ρ
{
(M T

1 G − H )(G†M1 − H †)
} = ρ

(
M T

1 M1 + I
)

,

because GG† = I , HH † = I , HG† = 0, and GH † = 0. Thus, the squared 2-norm is 1 plus the largest
eigenvalue of M T

1 M , which is

‖M T
1 M1‖2 = ‖M1‖2

2 = ‖A−1
1 B1‖2

2 � f1,max

f1,min
,

with the last inequality following from the proof of Lemma A2. Bringing this all together gives

|δ2| � 2
√m − n

m

√
1 + f1,max

f1,min

1 + m − n

m

(
1 + f1,max

f1,min

)

1

= O
(√m − n

m

1

)
,

establishing the second term of the theorem. �
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