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Abstract 
 
We analyze the spectral distribution of localisation in a 1D diagonally disordered chain of fragments each of 
which consist of  coupled two-level systems. The calculations performed by means of developed pertur-
bation theory for joint statistics of advanced and retarded Green’s functions. We show that this distribution is 
rather inhomogeneous and reveals spectral regions of weakly localized states with sharp peaks of the local-
ization degree in the centers of these regions. 
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1. Introduction 
 
The 1D models were traditionally studied in the theory of 
solid state for obtaining qualitative data, which were then 
used to analyze more realistic 3D models. For example, 
the exactly solvable Kronig-Penny model, which demon- 
strates the most important qualitative properties of the 
translationally symmetric systems, such as the band type 
of the energy spectrum and possibility of the wave- 
vector-based classification of states, provided a basis for 
the modern theory of crystalline media. As the second 
(and far from the last) example may serve the Ising 
model in the theory of phase transitions, in which the 
exact analysis of the 1D model has shown a decisive role 
of dimentionality of the system for observation of its 
critical behavior. These examples, pertaining to the time 
when the solid state physics was at the stage of 
accumulation of knowledge show that analysis of even 
abstract 1D models (which do not correspond to any real 
physical system) may give an important qualitative 
information. 

Note that, at present, there are all grounds to believe 
that the 1D models appear to be also important in other 
respects. Up-to-date technologies of material production 
and experimental techniques make it possible to create 
and study objects (quantum superlattices, quantum wires, 
J-aggregates, optical waveguiding fibers, etc.) that can be 
described quantitatively using such models. Still, the 
heuristic significance of the 1D models can be consi- 
dered, nowadays, as the most important. 

Among models of the physics of disordered systems, 
which, at present is also at the stage of accumulation of 
information, the 1D models occupy a particularly impor- 
tant place. At this stage, a consistent mathematical 
analysis of even an abstract model, capable of giving 
reliable and non-trivial results, is of interest. As 
examples of such an analysis may serve publications 
[1-4]. 

As is known [5,6], an important property of the 
homogeneously disordered systems is the appearance of 
localized states in their single-particle spectrum. Since 
these states play a decisive role in calculations of the 
charge transfer in disordered systems, any information 
about them is considered to be valuable. For getting 
information of this kind, in [7], a consistent perturbation 
theory for joint statistics of the advanced and retarded 
Green’s functions was proposed. This theory allows one 
to calculate distribution of the degree of localization of 
states (in the sense of the Anderson criterion [5,6]) as a 
function of their energy (called, hereafter, spectral 
dependence of the degree of localization). The calcu- 
lation presented in [7] refers to the classical case of a 
disordered chain with a simplest structural unit, namely, 
a two-level system. The goal of this paper is, first, to 
generalize the method proposed in [7] to the case of a 
disordered chain with a more complicated structural unit 
—a segment comprised of coupled two-level systems, 
and, second, to calculate spectral dependence of the 
degree of localization in such a system. The main quanti- 
tative result of the paper is derivation of an analytical 
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formula for the above degree of localization. The for- 
mula thus derived shows that distribution of the degree 
of localization over the energy spectrum, for the model 
with , is essentially inhomogeneous and is charac- 
terized by appearance of  energy points in which 
the states are virtually delocalized. This result provides 
grounds for the following qualitative conclusion: Spec- 
tral distribution of the degree of localization, in the 1D 
systems, may be essentially inhomogeneous and may 
reveal strongly pronounced maxima and minima. This 
behavior of the degree of localization qualitatively 
differs from that for the case of  considered in [7]. 

> 1m
1m 

m

= 1m
The fact that such a model with  can exhibit 

unusual behaviour was described in [8] where for a 
binary disordered chain of dimers the indications of 
delocalization were founded. 

= 2m

The above model with complex structural unit can also 
be used as a simplest one describing the correlated 
disorder with parameter  playing the role of corre- 
lation length. The optical properties of similar random 
system were studied in [9] and it was shown that so 
called factor of optical amplification for such system 
display nonmonotonic dependance on correlation length. 
The important role of correlations was pointed out in [10] 
where the authors put forward arguments in favor of 
appearance of delocalized states in the case of spectral 
density of correlation function having the form  
  1S k k . 
Note that, in our opinion, the model of disordered 

chain with a complex structural unit, considered below, 
is, at any rate, not more abstract than the classical model 
with , whereas, in qualitative respect, it is, perhaps, 
even closer to real systems than the classical model. 

= 1m

 
2. Formulation of the Problem, and the Main 

Results 
 
Let us pass to quantitative formulation of the problem. 
Consider a 1D chain of two-level atoms consisted of 
fragments with the length . We assume that splittings 
of all the atoms within a fragment are the same, while the 
disorder is provided by randomness of the splittings from 
fragment to fragment. The splittings corresponding to 
different fragments will be considered as independent 
random quantities with a known distribution function . 
Such a system differs from the standard one by that the 
structural unit is a fragment of  coupled two-level 
systems, rather than a single two-level system. Thus, the 
Hamiltonian matrix 

m

P

m

H , in the studied model, will have 
a usual form  

, , , 1 , 1= , ,r r r r r r r r r = 1, ,H r r N                (1) 

where the diagonal elements r  correspond to the 

fragments described above. If, for example, , then = 2m

1 2 3 4 5 6= = =       
, ,

    and the elements 

1 3 5    
P

 are the random independent quantities with 
the distribution function  . The off-diagonal ele- 
ments equal to unity determine the energy scale. In what 
follows, we will imply the thermodynamic limit  

. N 

D
t 

0

For this model, we consider the following problem. 
Let the edge atom is excited at , and we have to 
find the probability  that this atom remains in the 
excited state at . Methematically, it means that 
the initial state of the system is described by the wave 
function (vector-column)  with the components 

= 0t


  ,0 =r r N , and we have to find   2

= ND t 

N

  

(the angle brackets indicate averaging over realizations 
of the random splitting , =r 1, ,r   ). Time depen- 
dence of the wave function is given by the formula 

     = exp 0t iHt 
D

. It follows herefrom that the 
quantity , we are interested in, can be expressed in 
terms of eigenvectors   and eigenvalues 

, = 1, ,E N  

 

 of matrix (1) as follows  

 

2

2 2

N N
 



 

4

=

= explim

=

N

t

N

D t

i E E t 







 

 









    (2) 

The quantity  is known to be crucial in the theory 
of Anderson localization [5-7], according to which the 
nonzero indicates presence of localized eigenfunctions 
(in the sense of Anderson criterion) among those of 
Hamiltonian (1). To judge about the degree of locali- 
zation of the eigenvectors of (1) in the spectral range 

D

D

 ,U U d U , we have introduced, in [7], the par- 
ticipation function  W U , defined by the relationship 

 
4

[ ,E U 


]

d = N
U dU

W U U          (3) 

Obviously,  dU U=D W . It was shown in [7] that, 

when all the states, within the interval  ,U U dU , are 

delocalized, then   = 0W U . Otherwise,  W U  is 

nonzero. One may easily check, that the function  W U  

has also the sense of average squared module of the 
frequency spectrum of oscillations of the wave function 
at the edge site1. In the presence of localization, these 

1In the vibration-related problems, when the dynamic matrix has the 
form close to (1), the function W(U) is connected with the squared mod-
ule of the frequency spectrum of vibrations of the edge oscillator. 
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oscillations do not decay, which corresponds to nonzero 
value of .  W U

As was already mentioned, the physics of disordered 
systems is, at present, at the initial stage of its evolution, 
when testing theoretical results in a real experiment 
cannot look convincing. For this reason, as an especially 
important property of the discrete models described by 
the Hamiltonian of type (1), should be considered 
possibility of their simple numerical analysis. Fantastic 
capabilities of the contemporary computers allow one to 
diagonalize matrices of type (1) for a reasonable time 
and to observe, in such a numerical experiment, the 
quantities (2) and (3) at  and more, checking, 
in this way, the appropriate theoretical predictions with a 
high degree of reliability. The main result of this paper is 
the following formulas for the participation function 

 and the quantity , which are applicable to the 
1D random chain with the complex structural unit 
described above: 

1000N 

D W U

   

 

 

2
2

2

2
32

2
32

2
=

4

4
arctg ,sin

=
2

U M
W U

m U

U
m O

U

M
D O

m

  

 
     

    


 

      (4) 

Here, the quantity  is the parameter of the site 
energy distribution function, which we take in the form 



     = ,P x p x p x  > 0,  

      2
2d = 1, d = 0, d =p x x p x x x p x x x M    

It follows from Equation (4) that, for the energies defined 
by the condition  

2
24

arctg = , = 2 1,

< 2,

n
n

n

n

E n n
E tg

E m m

E n integer

            


    (5) 

the participation function  nW E  vanishes to within 
the terms , i.e., the states in these energy points 
appear to be, in the considered approximation, 
delocalized. This result looks strange because it is 
considered proven [5] that, in a 1D homogeneous 
random system, all the states are localized. In this 
connection, we performed analysis of the next term in 
expansion of the function 

3

 W U  in powers of  . The 
analysis has shown that this term diverges at  
(5). Due to this counter-directed behavior of 
contributions of different orders, Equation (4), at small 
disorder (i.e., at small ), should work well at any 
energy except for small regions in the vicinity of . In 

these points (where the correction  (4) vanishes), 
narrow peaks of the participation function 

= nU E

n


E

2
 W U , 

corresponding to divergence of the next correction, 
should be observed. The numerical experiment described 
in the last section of the paper completely confirms this 
conclusion. 
 
3. Green’s Function Statistics 
 
It can be easily shown that the mean square of the wave 

function module at the edge site   2

N t  (which is 

connected with quantity (2) we are interested in by the 

relation   2
= ND   ) can be calculated in the 

following way:  

   

   

2

1 2 12
01,2

1 1 2 2

1
= d d explim

4N
V

t U U U t

U iV U iV 


 



  

 2i U  
 

(6) 
where     is the edge Green’s function (EGF) for 
Hamiltonian (1):  

 
2

N

E



 




 
            (7) 

To calculate the mean value of the product of fwo 
Green’s functions entering Equation (6) at different 
complex energies 1 1 1= U iV   and 2 2 2 , 
one has to know their joint distribution function (statis-  

= U iV 

tics)  1 1 2 2       1 1 2 2 1 1 2d d d d 2          is the 

probability that Re    ,i i i id       and Im 

   ,i i i d i      = 1,2i, ). We will usually write 

down the function   as a function of two complex 

variables =i iz i , = 1,2i i  :    1 2z z1 1 2 2 =     . 

We derive equation for this function using the method of 
[7,11]. 

Consider the chain described in Introduction, whose 
structural unit is a fragment consisting of  two-level 
systems. Let  be the number of the edge two-level 
system of the edge fragment and 

m
N

N —the EGF of such 
a chain. If we add to this chain one more fragment 
consisted of  sites with the splitting m  , then the EGF 
 , corresponding to the edge site of this new chain can 
be expressed through  :  

  1= R   
              (8) 

The explicit form of the function  1R  


= 1m

 entering 
this equation, for an arbitrary , will be given below, 
and now, we remind that, for the case ,  

m

   1
=1| = 1mR    

     [5,7,11]. Relationship (8) 
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allows us to express statistics of the edge Green’s 
functions of the chain with the added fragment 
(  1 1 2 2, , ,x y x y ) through the function  1 1 2 2     

 


1

2

i

i 



 



 

N 

 
of the initial chain as follows  

 1 1 2 2

1 1 2= d d d d

x y x y

x ReR

x ReR



   

 

 

 

 





   

 

 

2 1 1 2 2

1 1
1 1 1 11 1

1 1
2 2 2 22 2

d P

i y ImR

i y ImR

 

      

   

   

 
 

 

     
    

1

2










 

(9) 

It is clear that, in the thermodynamic limit , 
  should coincide with  . By calculating the integrals 
with  -functions in (9), we obtain the following 
equation for the steady-state joint distribution function of 
EGF:  

   
   

    
1 2

1 21 2

d d
d

d d

,

R R
P

R R

 

 

 
 

 

  

   

   

2 2

1 21 2
1 2, =  




 

(10) 

In this equation, symbol  denotes transformation 
inverse to (8), and the joint statistics 

R
  is written as a 

function of two complex arguments. 
The fact that the Green’s functions entering Equation 

(6) have vanishingly small imaginary parts of the energy 
arguments can be used to reduce the problem to analysis 
of the equation much simpler than (10) [7]. The average 
product of the two Green’s functions, entering Equation 
(6), can be written in the form of the sum of four terms:  

   
   

1 1 2 2

1 1 2 2 1 1 2 2 1 2 1 2 1 2 2 1

1 2 1 2 1 2 1 2

= d d d d

U iV U iV

x y x y x y x y x x y y i x y x y

x x y y i x y i y x

 



 

   
   
  

(11) 

It was shown, in [7], that it suffices to calculate the 
term 1 2x y  and to multiply the result by 4. Using 
Equation (10), we can write the quantity 1 2x y , we are 
interested in, in the form  

 

 
   

        

1 2 1 1 2 2 1 2 1 1 2 2

2 2

1 21 2

1 2

1 1 1 1 2 2 2 21 1 2 2

1 2 1 1 2 2

= d d d d

d d
= d

d d

, , ,

d d d d d

x y x y x y x y x y x y

R R
P

u x y v x y u x y v x y

x y x y x y

 

   



 
 

 





   

       





  

(12) 

where the real functions  and  ,u x y   ,v x y  and 
the Jacobians entering Equations (10) and (12) are 
determined by the relations  

    , ,u x y iv x y R x iy            (13) 

  2 2 2
d

= =
d

=

i i

i i ii i

i ii i

i i

i i i

u u

R ux y

v v x x

x y

x iy

 

 

 







   

     

   

 

    
         

 



i

i

v  



(14) 

( = 1, 2)i . In Equation (14), we used the Cauchy-Riman 
relations. In integral (12), we change the variables:  

  
  

1 1 1 1 11 1

2 2 2 22 2

= , =

= , =

x u x y y v x y 


1

2 2

,

x u x y y v x y

 

 

   

   

 

 
         (15) 

Since Jacobians of these transforms coincide with (14), 
for 1 2x y  we have:  

   
   

1 2 1 1 2 2 1 1 2 2

1 1 1 2 2 2

= d d d d dx y x y x y P x y x

x x y y x y

  


        

   

y
       (16) 

with the form of  1 1 1x x y   and 2 2 2 y x y   being deter- 

mined by the function  1R  
  (8):  

  1 1
1 1 1 2 21 2

= , = 2x Re R x iy y Im R x iy 
 
   

    
        

(17) 

As shown in [7], to calculate 1 2x y  at vanishingly 
small imaginary parts of the energy arguments (i.e., at 

), we may replace, in (16), 0iV     by its limiting 
value 0 , which corresponds to pure real energies 

i iU   , whereas in (17), one has to take into 
account imaginary parts iV  of the energy arguments 
(taking advantage, when possible, of their smallness). 
The reasoning similar to that presented in [7] shows that 
the function 

( = 1, 2)i

0  can be represented in the form:  

   

    
0 1 1 2 2 1 1 2 2 =1,2 1,2

1 2 1 21 2
=

U

U U

x y x y x y x y

x x y y

 

  




       (18) 

where the function  1 2,U U1 2
x x  controls statistics of 

the real Green’s functions and meets the equation that is 
much simpler than (10):  

       
   

1 2 1 21 2 1 2 1 2

1 21 2

1 2

, = d ,

d d

d d

U U U U U U

U U

x x P R x R x

R x R x

x x

 

 

     

 

 
 




 

(19) 
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Thus, in Equations (16) and (17), we may set 1,2 , 
since Equation (18) for 0

= 0y
  contains the relevant 

 -functions. Since transformation (8) for real   and 
 gives real result, we may write, for  1x :  

 1
1 1

= U 1x R x

              (20) 

An essentially different situation takes place for the 
quantity 2  from Equation (17), which, with allowance 
for the above remarks, has the form 

y

 1
2 = U iVy ImR x


  

1

2
R

22 2
. The imaginary part of this 

expression, in the general case, tends to zero, because the 
transform 


   is real at . The exceptions are 

peculiarities of the transform 

2 0V 
1

2
R 

  , i.e., the values of 

its argument 0x  at which 02U .2 At this 
stage of the calculation, we need the explicit form of the 
transformation 

   1R x




 1R
 x  [12]:  

 
   
   

1
sin sin 1

=
sin 1 sin

m m x a b x
R x

c g xm m x

 

 
  


 

     
   

   (21) 

where  

 
24

= arctg
 

   
  

   

The peculiarity 0 0 0=z c g i    of the 
function 

  
 1R z

  corresponds to zero denominator in 
(21), and, in the limit Im , we are interested in, 
its imaginary part tends to zero. Bearing this in mind and 
using the same reasoning as in Footnote, one may make 
sure that Equation (17), for , can be rewritten in the 
form:  

0

2y

 1
2 20 22 02

22

2

= lim

=

V
V

U U U U U

UU

y Im R x

a g b c c
x

gg

U U








  

 
 

 
 

 
 



        (22) 

From Equations (20) and (21), we obtain the following 
expression for 1x :  

1 01
= , =U U

V
U U

a b x
x U

c g x

By replacing, in (16), 

       1 1 2 2 1 2 1 21 2 1 2U U U Ux y x y x x y y     

(Equation (18)) and by substituting in to it Equations (22) 
and (23) for  and 2y 1x , we obtain  

  2
1 2 1 2

2

2 2 2 2 1 1
2

1 12

= d d ,
U

U U
U

U U U U U U

U UU

c
x y xP x

g

a g b c a b x

c gg





     

x 

   



     

 

 
 
 
 

 





   (24) 

To further simplify this expression, we introduce a 
new variable:  

 1 1 1

1
1 1

= =
U U

U
U U

a b
z R x

c g

 


 

 


 





x

x
 

Then  

 
 

1

1

d
= ,d =

d

U

U

R z
dx R z x

z





 z         (25) 

Then, Equation (24) can be transformed into the form  

 
 

 

1
1 2

2 2 2 2 2
21 2 1

2 2

d
= d d

d

,

U

U U U U U

U U U
U U

R z
x y z z P

z

c a g b c
R z

g g



   


 

 





   


 



  
 
 
 




 

(26) 
It follows from Equation (19) that  

 

      
   

2

1 2

1 2 1 2

21 2

,lim

= d ,lim

d d

d d

U U
a

U U U U
a

U U

a z a

P R z R

R z R a
a

z a

 

 



  


 


 


 a       (27) 

From (21), one can easily obtain  

   
 2

= , d d =U U U U U U
U U

U U U U

a c z b c a g
R z R z z

g z b g z b

 
 

    (28) 

1U 






         (23) and calculate the limits entering Equation (27)  

 

 

2

2
2

22 2 2 2
2

2

= ,lim

d
=lim

d

U

U
a U

U U U U

a
U

c
R a

g

R a b c a g
a

a g






2U    






 

    

 




    (29) 

2This can be clarified by the following example. Let, e.g.,  

 1 = 1 [ ]R     , where, in the general case, and= U iV 

= x iy  . For real  and    , this transformation is real 

and has a singularity at 

( = = 0)V y

0 =x U 0V  . If , then an imaginary part, 

located in this singularity (at small V), arises: Im 

    2 1 2
=R By comparing (27) and (26), we eventually have  x V x U



V 
  x U    . In our case, the trans-

formation 1R  
  is more complicated, but its imaginary part arises 

like in this simple example. 
 2

1 2 1 2
= lim U U

a
, dx y a x a


  x x        (30) 
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4. Calculating the <x1y2> Contribution  
 
Let us change variables in Equation (6): 

2 1 1, =U U U U   . Then, with allowance for the 
remark given after Equation (11) and Equation (30), we 
may write the following expression for the quantity :  D

 

 

2

1 22
0,1,2

2
,

,

=

= e d dlim

= e , d dlim

N

i t

V t

i t
U U

a t

D t

i
x y U

i
a x a x x








 

 


 

 

 






 dU

    (31) 

Note that, as was shown in [7], the participation 
function  W U  can be obtained from (31) by omitting 
in it the integration over   U

   2
,

,
= e , dlim

i t
U U

a t

i
W U a x a x x

 d 
       (32) 

Following methodology of [7], we can represent the 
distribution function of the site energies  P   in the 
form  

     

  1

1
= , 0, d

d 0n
n

P p p x p x x

p x x x M M

       
 

1,

0

    (33) 

In the case of an ordered chain,  and, as a 
result, . The perturbative approach to 
solution of the equation similar to Equation (19), 
proposed in [7], represents expantion in powers of 

0 
 = =D W U

 , 
with the first nonzero correction being of the order of 

. It was also shown in [7] that, for calculation of the 
quantities  and , it suffices to have only the 
singular in 

2
D W U 
  part of solution of the equation for joint 

statistics of the Green’s functions (Equation (19)), with 
the singularity being of the pole type. Therefore, if we 
denote this singular part by the symbol “sing,” then we 
may present it in the form  

     
2

3
1 2 1 2=U Using x x F x x O




        (34) 

Using Equation (30), we obtain the following formula 
for the sought function  W U :  

     2 2 3= , dlim U
a

W U a F x a x x O


        (35) 

In the next section, we describe the perturbation theory 
for solving Equation (19) and derive explicit expression  
for the function  1 2UF x x . 

 
5. Perturbative Approach to Equation (19) 
 
Assuming that the parameter  is small, we can 
present the sought function 



1 2
 1 2U U

   1 2 1 21 2
=0

= , n
U U n

n

x x Q x x


         (36) 

Let us expand the function 

   
   1 21 2

1 21 2 1 2
1 2

d d
,

d d

U U

U U U U

R x R x
R x R x

x x

 
   

 
 
   

under the integral sign, in the right-hand side of Equation 
(19), into power series in  . Then, Equation (19) yields:  

 

   
   

1 2
=0

1 21 2
, =0

1 21 2

1 2
=0

,

= ,
!

d d

d d

n
n

n

n l n
n

l U Un
n l

U U

Q x x

M
Q R x R x

n

R x R x

x x

 

 









 

 



   
 

 




  

(37) 
By equating the coefficients of the same powers of   

in the left- and right-hand sides of (37), we obtain the 
recurrent relation for the functions :  nQ

     
   

0
0 1 2 0 1 21 2

1 21 2

1 2

: ,

d d
= 0

d d

U U

U U

Q x x Q R x R x

R x R x

x x

    


        (38) 

Since the first moment of the function  P   is zero, 
we have  1 1 2 = 0Q x x .  

     
   

   
    

2
2 1 2 2 1 21 2

1 21 2

1 2

2 2
2 0 11 2

1 1 2 21 2 =0

: ,

d d

d d

= 2 ,

d d d d

U U

U U

U U

U U

Q x x Q R x R x

R x R x

x x

2M Q R x R x

R x x R x x

 

 


  

 

    



    



     (39) 

Now, we define the linear operator mH  that acts 
upon an arbitrary function  f x  as follows:  

   dR

d
m U
U UH f x f R x

x
             (40) 

Here,  UR x  is the transformation inverse to (21). In 
[12], there has been solved the spectral problem for the  
operator    1 = 1 2H f x f U x x ( ), and it was 

shown that, at 

= 1m

< 2U , its eigenvalues n  and 

eigenfunctions  n
U x  are given by the expressions:  

       

2

2

= ,

4
= , = 1

4

n

n nU
U U U U

U

n

n n

R x
x L x L x G x

R x

U i U

U i U



 

 
  

  
 
   

     (41) 

x x  in the form of 
a power series in   
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where  

 
2 24

= , = , =
2

U
U U U

U

R x U i U U i U
G x R R

R x


    


4

2
 

and Lorentzian  is defined as:   UL x

 
2

2

4 1 1 1 1
= =

2 21U
U U

U
L x

i x Rx Ux x R

 
      

 

(42) 
Remind [12] that an arbitrary function  f x  may be 
presented in the form of the series  

     
 =

= , where =n
n U n n

n U

f x
df x A x A

G x





  x    (43) 

One can easily make sure that the functions  n
U x

m

 

are also the eigenfunctions for the operator H  (40),  
and the eigenvalues are given by m-th power of  
eigenvalues (41):    =m n m n

U n UH x  
m

x . The func- 

tional operator H  enters Equations (38) and (39).  
Taking into account its properties described above, we 
can immediately write the expression for :   0 1 2Q x x

    0 1 2 1 21 2
= U UQ x x L x L x 





        (44) 

To solve the functional Equation (39), let us write the 
sought function  in the form of expansion 
over eigenfunctions of operator (40):  

2 1 2Q x x

    2 1 2 1 21 2
| | | | 0

= n l
nl U U

n l

Q x x C x x 
 
     (45) 

By substituting this series into the left-hand side of 
Equation (39) and expanding its right-hand side using 
(43), we obtain, for the coefficients (45), the 
following formulas:  

nlC

   
   

2
2

1 22 =0
1 2

1
=

21nl n lm m
n l

M
C J U J

U U
U


 

  


   
 

(46) 

where  nJ U  are given by  

 
    
 

 
    

1

d

= d =

U U U
n n

U

U
nn

U U

L R x R x
J U

G x

L z
z J U

G R z

 



 x



 







 


      (47) 

To expand the righ-hand side of (39), we used 
Equation (44) for the function .  0 1 2Q x x

As was said above, we are interested only in the part 
of  singular in 2 12 1 2Q x x  = U U  . To extract this 
part, we have to retain in Equation (45) only the terms 
with  [7], because only for these terms the 

denominator 

=n l

  11 m m
n lU U 

= 0
2 , in Equation (46), 

vanishes at  . The calculations identical to those 
performed in [7] lead to the following expression for the 
function  1 2UF x x  entering Equation (34):  

   

   

2
22

2 =0
0

1 2

= 4U n
n

n n
U U

F x U J U

x x

n





 








2
1 2 4

iM
x

m





    (48) 

Here are the explicit expressions for integrals (47):  

 
 

= 1,

n
n UG R      
0

1
1= = ,

n

U U

J U

J U R J U n



     > 0
  (49) 

These expressions are obtained by integrating (47) 
over residues. When calculating the derivatives entering 
(48), the quantity   can be considered so small that the 
arrangement of the poles of the integrants with respect to 
the real axis does not depend on  . 

Using properties of the function  UG x  (41) pre- 
sented in [12], we can obtain the following relationship  

    1 11

nm

z

1 1
= =

n

mn U
nn
U UU U

R z

G z R zG R
  

 
 

 
      (50) 

which shows that  ,0 = 0nJ U  at  and that, in 
the general case, the expansion of 

0n 
  1 1 R

 
U UG R U  in 

powers of   starts from the first power of   and may 
be written in the form:  

      2 3
1= , =U U U UG R J U K T O1 1

UR         (51) 

By substituting this expression into (49), we see that, 
in Equation (48), only the terms containing  1J U  
survive, for which the second derivative of their module 
squared is nonzero at = 0 . Thus, Equation (48) for the 
function  1 2UF x x

 

 may be transformed to the form:  

     

222
1 2

1 1 1 1
1 2 1 2

= 4
2

( )

U U

U U U U

iM
F x x U K

m

x x x x    




   

    (52) 

The direct algebraic calculation with the use of 
explicit expressions (41) and (21) for the function 

 UG x  and transformation , respectively, 
shows that  

 1
UR x

 
21

2

2 2

sin
= , = 4

4 4

m
m mU

U U U U

R m
K R R K

U U


       


   (53) 

Finally, using the expressions for the moments and 
limiting values of the function  n

U x , presented in [7]  

   
2

2 2 4
d = 4 , =lim

2 2
n n
U U

a

i n U
x x x U a a

n
 






  

(54) 
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with the aid of Equation (35), we obtain, for the 
participation function  and the quantity , 
formula (4). 

 W U D

 
6. Delocalization Points 
 
As was mentioned in Introduction, the appearance of the 
delocalization points (5) predicted in Equation (4) looks 
curious, taking into account the known assertion that all 
states in a 1D random system are localized [5]. The fact 
that the character of the states of Hamiltonian (1) 
(localized/delocalized), calculated in the second per- 
turbation order, appears to be, in these energy points, the 
same as in the totally ordered system, indicates that, for 
studying the states with energies (5), one has to analyze 
statistics of Green’s functions to within the terms of the 
order higher than . Complete analysis of this kind is 
rather cumbersome and lies outside the scope of this 
paper. Still, with the aid of reasoning presented below, it 
is exactly in the vicinity of the points n  (5) where the 
behavior of the participation function  can be 
predicted. 

2

E
 W U

Assume that the odd moments of the site energy 
distribution function  P   (33) are zeros ( ) 
and consider the fourth-order correction 4  in ex- 
pansion (36) of the joint statistics of Green’s functions. 
The functional equation for this correction is derived in 
the same way as Equation (39) for  and has the 
form:  

2 1 = 0nM 

Q

2Q

     
   

     

 
   

   

4
4 1 2 4 1 21 2

1 21 2

1 2

2
12 1

2 1 22 1 2
1

4
22 4

0 14 1 2
2

=0

1 21 2

1 2
=0

: ,

d d

d d

d
= ,

2 d

d
,

d 4!

d d
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(55) 

The right-hand side of this equation is a sum of 
contributions, so that, if dependence of any of them on 
energy arguments 1,2U  has a peculiarity, then such a 
peculiarity will be displayed by the function  4 1 2Q x x . 
We will now show that some terms of series (45), for 
function  2 1 2Q x x

U
, diverge at the values of their energy 

arguments  equal to  (5). 1,2 n

Using Equations (46), (49), and (51), one can make 
sure that, among the coefficients  (46), nonzero are  

E

nlC

only 11 1, 1 1, 1 1,1= , =C C C C 
   

0, 2,C

, , 1,0 1,0 0,1 0, 1= , =C C C C 
 

2,0C  . Let us present expression, e.g., for . 

Equation (46) yields:  
1,0C

 
2 1

1,0
1 1

=
1

U

m

M T
C

U
            (56) 

where 
1

 is determined by Equation (51). It can be 
easily shown that  (41) and 

UT
 1 = 1

m

nE 0En
T   (51). 

It is this fact that gives rise to the above divergence of 
 2x4 1Q x  at , which, in turn, leads to 

divergence of the correction  to the participation 
function 

1 = nU E
 4

 W U . The terms  of expansion (45) 
proportional to  and  also diverge at 

 (5), with no compensation for the divergence. 

2 1Q x

0,C
2x

11,0 0,1,C C

1,2 =U nE
Spectral behavior of other terms of the expansion at 

1,2  (5) is essentially different. For instance, the 
coefficient  defined by the relationship  

= nU E

1,1C

   
1 2

1,1 2
1 1 1 2

=
1

U U

m m

K K
C M

U U 
      (57) 

tends to zero at 1,2  (5) because the product 

1 2

= nU E

U UK K  tends to zero faster than    1 1 1 21 m mU U  . 
Appearance of divergence is also possible in the points 
other than  Equation (5), where the corresponding 
peculiarities of the function 

nE
 W U  are, however, not so 

noticeable, because the function  calculated in 
the second order in 

 W U
  is nonzero. 

The divergence described above should look as a 
strong deviation of the participation function  W U , at 

= nU E

nE

 (5), from that described by Equation (4). The 
size of the spectral regions, in the vicinity of the points 

 (5), where the correction  begins to exceed 
the correction 

4
2  (4), calculated in this paper, will 

decrease with decreasing  . Since the correction 2  
of the function  W U  turns to zero at  (5), the 
diverging corrections of higher orders should give rise to 
narrow (at small 

= nU E

 ) peaks in these spectral points. 
Quantitative description of the amplitude and shape of 
these peaks lies outside the scope of this paper. 
 
7. Numerical Experiment 
 
All the results obtained above refer to the case of an  
infinite 1D chain, and, therefore, in computer testing of 
these results, one has to employ matrices (1) of so large 
dimension that quantities (2) and (3) calculated for them, 
cease to depend on it. When choosing the matrix 
dimension for the numerical experiment, one may be 
governed by visual sense of Equation (4) which we 
consider below. 
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The qualitative picture of the excitation dynamics 
studied in this paper is that this excitation, being initially 
located at the edge site N, remains localized near this site 
at . In this case, the appropriate wave function 
proves to be essentially nonzero only at some finite 
number of sites  in the vicinity of the edge site. The 

t 

L

quantity   2
= ND t   calculated in this paper 

and the normalization condition of the wave function 
provide opportunity to evaluate the number  as L 1 D  
and to introduce the following natural definition for the  
mean localization radius L :  

2
2

1 2
=

m
L

D M



          (58) 

It is evident that, in the numerical experiments, the 
matrix dimension  should substantially exceed N L . 

The participation function  calculated in this 
paper, allows one to judge about spectral dependence of 
the localization radius. For, instance, if the function 

, for some energy U , is by a factor of k  
smaller than its mean value (equal to 

 W U

 W U

0D V , where 

0  is the width of the matrix (1) spectrum), then, we 
may say that the localization radius  of the states 
with the energy U  is by a factor of  larger than 

4V 
 l U

k
L . It means that the function , obtained 

numerically, may strongly deviate from Equation (4) 
near the points of delocalization  (5), because 
the localization radius of the states with the energies 
close to n  (5) substantially exceeds the mean one and 
may become greater than the matrix dimension  used 
in the numerical experiment. 

W U

= nE



U

E
N

The above reasoning shows the reasons why the 
smallest matrix dimension that can be used for the testing  
decreases with increasing degree of disorder . On the 
other hand, evidently, it is possible to neglect the terms 
of the order higher than second, in Equation (4), only 
when , which is the case only at small 



1D  . For 
this reason, the degree of disorder  and the matrix 
dimension , in the numerical testing, should, at least, 
meet the following condition:  


N

2
21

1
2

M

N m

              (59) 

Our numerous computer experiments with matrices (1) 
of different dimension  and with the different degree 
of diagonal disorder  support the above qualitative 
conclusions. To obtain statistics of site energies (33), in 
the numerical testing, we used the function 

N


      2= 0.5 0.5 , = 1p x x x M    12  

Figure 1 shows spectral dependences of the function 
 obtained numerically using Equation (3)   W U dU

 
(a) 

 
(b) 

 
(c) 

Figure 1. Distribution of the degree of localization of the 
states in 1D disordered chains with a complex structural 
unit. Noisy plots are obtained by computer simulation, and 
smooth curves, using Equation (4). Dimension of the 
random matrices, in all cases, is 4000. The values of other 
parameters are: (a) , (b) , (c) m = 0.5, = 2 m = 0.5, = 3

m = 0.25, = 3 . In all cases, =dU 1 50 . 

 
(noisy plots) and the results of calculations using 
Equation (4) (smooth curves). The calculations were 
performed at = 0.5 , = 1 50dU ,  (Figure 
1(a)) and  (Figure 1(b)). The matrix dimension 
was , and averaging over 100 realization was 
made. One can see from Figures 1(a) and (b) that the 
numerical and theoretical dependences well agree with 
each other, with the points of delocalization (5) distinctly 
seen in both figures. The narrow peaks of the numerical 
plot in these points correspond to qualitative predictions 
made in the previous section. 

= 2m
= 3m

4000=N

Figure 1(c) shows the results of similar calculations 
for the disordered chain with . In this case, = 3m

= 1152L , and at , condition (59) is satis- 
fied relatively weak. One can see from Figure 1(c) that, 
in the spectral regions near the points of delocalization, 
where the localization radius of the states exceeds 

= 4000N

L  
(58) and becomes comparable with , the discrepancy 
between the results of numerical experiments and theo- 

N
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retical curve is more noticeable than far away from these 
points. The calculations were performed with no fitting. 
 
8. Conclusions 
 
In this paper, we have analyzed spectral dependence of 
the degree of localization of the states in a 1D disordered 
chain with a complex structural unit in the form of a 
segment consisted of  two-level atoms. It is shown 
that distribution of the degree of localization, for such a 
model, qualitatively differs from that for the chain with a 
simple structural unit and is essentially inhomogeneous. 
This distribution is characterized by appearance of 
spectral regions in which the states are, to a considerable 
extent, delocalized, with exception of central points of 
these regions, where the degree of localization exhibits 
sharp peaks. The calculations are performed using the 
developed perturbative approach for the joint statistics of 
the advanced and retarded Green’s functions. 
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