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Abstract

Informative and discriminative feature descriptors play a funda-

mental role in deformable shape analysis. For example, they have been

successfully employed in correspondence, registration, and retrieval

tasks. In the recent years, significant attention has been devoted to

descriptors obtained from the spectral decomposition of the Laplace-

Beltrami operator associated with the shape. Notable examples in

this family are the heat kernel signature (HKS) and the wave kernel

signature (WKS). Laplacian-based descriptors achieve state-of-the-art

performance in numerous shape analysis tasks; they are computation-

ally efficient, isometry-invariant by construction, and can gracefully

cope with a variety of transformations. In this paper, we formulate

a generic family of parametric spectral descriptors. We argue that in

order to be optimal for a specific task, the descriptor should take into

account the statistics of the corpus of shapes to which it is applied

(the “signal”) and those of the class of transformations to which it is

made insensitive (the “noise”). While such statistics are hard to model

axiomatically, they can be learned from examples. Following the spirit

of the Wiener filter in signal processing, we show a learning scheme for

the construction of optimal spectral descriptors and relate it to Maha-

lanobis metric learning. The superiority of the proposed approach is

demonstrated on the SHREC’10 benchmark.
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1 Introduction

The notion of a feature descriptor is fundamental in shape analysis. A fea-

ture descriptor assigns each point on the shape a vector in some single-

or multi-dimensional feature space representing the point’s local and global

geometric properties relevant for a specific task. This information is subse-

quently used in higher-level tasks: for example, in shape matching descrip-

tors are used to establish an initial set of potentially corresponding points

[1, 2]; in shape retrieval a global shape descriptor is constructed as a bag of

“geometric words” expressed in terms of local feature descriptors [3, 4]; seg-

mentation algorithms rely on the similarity or dissimilarity between feature

descriptors to partition the shape into stable and meaningful parts [5].

When constructing or choosing a feature descriptor, it is imperative to

answer two fundamental questions: which shape properties the descriptor

has to capture, and to which transformations of the shape it shall remain

invariant.

1.1 Previous work

Early research on feature descriptors focused mainly on invariance under

global Euclidean transformations (rigid motion). Classical works in this

category include the shape context [6] and spin image [7] descriptors, as

well as integral volume descriptors [8, 1] and multiscale local features [9]

just to mention a few out of many.

In the past decade, significant effort has been invested in extending the

invariance properties to non-rigid deformations. Some of the classical rigid

descriptors were extended to the non-rigid case by replacing the Euclidean

metric with its geodesic counterpart [10, 11]. Also, the use of conformal fac-

tors has been proposed [12]. Being intrinsic properties of a surface, both are

independent of the way the surface is embedded into the ambient Euclidean

space and depend only on its metric structure. This makes such descriptors

invariant to inelastic bending transformations. However, geodesic distances

suffer from strong sensitivity to topological noise, while conformal factors,

being a local quantity, are influenced by geometric noise. Both types of
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noise, virtually inevitable in real applications, limit the usefulness of such

descriptors.

Recently, a family of intrinsic geometric properties broadly known as

diffusion geometry has become growingly popular. The studies of diffusion

geometry are based on the theoretical works by Berard et al. [13] and

later by Coifman and Lafon [14] who suggested to use the eigenvalues and

eigenvectors of the Laplace-Beltrami operator associated with the shape to

construct invariant metrics known as diffusion distances. These distances

as well as other diffusion geometric constructs have been show significantly

more robust compared to their geodesic counterparts [15, 16]. Diffusion

geometry offers an intuitive interpretation of many shape properties in terms

of spacial frequencies and allows to use standard harmonic analysis tools.

Also, recent advances in the discretization of the Laplace-Beltrami operator

bring forth efficient and robust numerical and computational tools.

These methods were first explored in the context of shape processing by

Lévy [17]. Several attempts have also been made to construct feature de-

scriptors based on diffusion geometric properties of the shape. Rustamov [18]

proposed to construct the global point signature (GPS) feature descriptors

by associating each point with an ℓ2 sequence based on the eigenfunctions

and the eigenvalues of the Laplacian, closely resembling a diffusion map

[14]. A major drawback of such a descriptor was its ambiguity to sign flips

of each individual eigenfunction (or, in the most general case, to rotations

and reflections in the eigenspaces corresponding to each eigenvalue).

A remedy was proposed by Sun et al. who in their influential paper

[19] introduced the heat kernel signature (HKS), based on the fundamental

solutions of the heat equation (heat kernels). In [20], another physically-

inspired descriptor, the wave kernel signature (WKS) was proposed as a

solution to the excessive sensitivity of the HKS to low-frequency information.

As of today, these descriptors achieve state-of-the-art performance in many

deformable shape analysis tasks [21, 22].
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1.2 Contribution

In this paper, we remain within the diffusion geometric framework and pro-

pose a generic family of spectral feature descriptors that generalize both

the HKS and the WKS. We analyze both descriptors within this framework

pointing to their advantages and drawbacks, and enumerate a list of desired

properties a descriptor should have.

We argue that in order to construct a good task-specific spectral de-

scriptor, one has to be in the position of defining the spectral content of

the geometric “signal” (i.e., the properties distinguishing different classes of

shapes from each other) and the “noise” (i.e., the changes of the latter prop-

erties due to the deformations the shapes undergo). Both are functions of

the corpus of data of interest, and the transformations invariance to which

is desired. While it is notoriously difficult to characterize such properties

analytically, we propose to learn them from examples in a way resembling

the construction of a Wiener filter that passes frequencies containing more

signal than noise, while attenuating those where the noise covers the signal.

This study was in part inspired by the insightful paper by Auby et al.

[20], and in part is a continuation of [23] where we attempted to construct

optimal diffusion metrics. However, since diffusion metrics are characterized

by a single frequency response, the attempt had a modest success. On the

other hand, vector-valued feature descriptors allowing for multiple frequency

response functions have, in our opinion, more potential. This paper does

not intend to exhaust this potential, but merely to explore a part of it.

The rest of the paper is organized as follows: In Section 2 we intro-

duce the mathematical notation of the Laplace-Beltrami operator and its

spectrum and briefly overview the state-of-the-art descriptors based on its

properties. In Section 3, we indicate several drawbacks of these descriptors

and analyze the properties a good descriptor should satisfy. We present

a spectral descriptor generalizing the heat and the wave kernel signatures,

and show an approach for learning its optimal task-specific parameters from

examples. Relation to metric learning is highlighted. In Section 4, the su-

periority of the proposed learnable descriptor over the fixed ones is shown

experimentally on the SHREC’10 non-rigid correspondence benchmark. Fi-
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nally, Section 5 concludes the paper.

Since the figures visualizing the experiments in Section 4 are relatively

self-explanatory, we decided to incorporate them in the flow as illustrations

to the phenomena discussed in the paper even before the exact experimental

setting are detailed.

2 Spectral descriptors

Wemodel a shape as a compact two-dimensional manifoldX, possibly with a

boundary ∂X. The manifold is endowed with a Riemannian metric defined

as a local inner product 〈·, ·〉x on the tangent plane TxX at each point

x ∈ X. Given a smooth scalar field f on the manifold, its gradient grad f

is the vector field satisfying f(x + dr) = f(x) + 〈grad f(x), dr〉x for every

infinitesimal tangent vector dr ∈ TxX. The inner product 〈grad f(x), v〉x

can be interpreted as the directional derivative of f in the direction v. A

directional derivative of f whose direction at every point is defined by a

vector field V on the manifold is called the Lie derivative of f along V . The

Lie derivative of the manifold volume (area) form along a vector field V is

called the divergence of V , div V . The negative divergence of the gradient

of a scalar field f , ∆f = −div grad f , is called the Laplacian of f . The

operator ∆ is called the Laplace-Beltrami operator, and it generalizes the

standard notion of the Laplace operator to manifolds. Note that we define

the Laplacian with the negative sign to conform to the computer graphics

and computational geometry convention.

2.1 Laplacian spectrum and Shape DNA

Being a positive self-adjoint operator, the Laplacian admits an eigendecom-

position

∆φ = νφ (1)

with non-negative eigenvalues ν and corresponding orthogonormal eigen-

functions φ. Furthermore, due to the assumption that our domain is com-

pact, the spectrum is discrete, 0 = ν1 < ν2 < · · · .
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In physics, (1) is known as the Helmohltz equation representing the spa-

tial component of the wave equation. Thinking of our domain as of a vi-

brating membrane (with appropriate boundary conditions), the φk’s can be

interpreted as natural vibration modes of the membrane, while the νk’s as-

sume the meaning of the corresponding vibration frequencies. In fact, in

this setting the eigenvalues have inverse area or squared spatial frequency

units.

This physical interpretation leads to a natural question whether the

eigenvalues of the Laplace-Beltrami operator fully determine the shape of

the domain. The essence of this question was beautifully captured by Mark

Kac as “can one hear the shape of the drum?” [24]. Unfortunately, the an-

swer to this question is negative as there exist isospectral manifolds that are

not isometric. The exact relation between the latter two classes of shapes

is unknown, but it is generally believed that most isospectral manifolds are

also isometric. Based on this belief, Reuter et al. [25] proposed to use trun-

cated sequences of the Laplacian eigenvalues as isometry-invariant shape

descriptors, dubbed by the authors as shape DNA.

2.2 Heat kernel signature

The Laplace-Beltrami operator plays a central role in the heat equation de-

scribing diffusion processes on manifolds. In our notation, the heat equation

can be written as
(

∆+
∂

∂t

)

u(x, t) = 0 (2)

where u(x, t) is the distribution of heat on the manifold at point x at time

t. The initial condition is some initial heat distribution u0(x) at time t = 0,

and boundary conditions are applied in case the manifold has a boundary.

The solution of the heat equation at time t can be expressed as the

application of the heat operator

u(x, t) =

∫

ht(x, y)u0(y)da(y) (3)

to the initial distribution. The kernel ht(x, y) of this integral operator is

called the heat kernel and it corresponds to the solution of the heat equation
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at point x at time t with the initial distribution being a delta function at

point y. From the signal processing perspective, the heat kernel can be

interpreted as a non shift-invariant “impulse response”. It also describes

the amount of heat transferred from point x to point y after time t, as well

as the transition probability density from point x to point y by a random

walk of length t.

According to the spectral decomposition theorem, the heat kernel can

be expressed as

ht(x, y) =
∑

k≥1

exp(−νkt)φk(x)φk(y), (4)

where exp(−νt) can be interpreted as its “frequency response” (note that

with a proper selection of units in (3), the eigenvalues νk assume inverse

time or frequency units). The bigger is the time parameter, the lower is

the cut-off frequency of the low-pass filter described by this response and,

consequently, the bigger is the support of ht on the manifold. The quantity

ht(x, x) =
∑

k≥1

exp(−νkt)φ
2
k(x), (5)

sometimes referred to as the autodiffusivity function [26], describes the

amount of heat remaining at point x after time t. Furthermore, for small

values of t is it related to the manifold curvature according to

ht(x, x) =
1

4πt
+
K(x)

12π
+O(t), (6)

where K(x) denotes the Gaussian (in general, sectional) curvature at point

x.

In [19], Sun et al. showed that under mild technical conditions, the

sequence {ht(x, x)}t>0 contains full information about the metric of the

manifold. The authors proposed to associate each point x on the manifold

with a vector

p(x) = (ht1(x, x), . . . , htn(x, x))
T , (7)

of the autodiffusivity functions sampled at some finite set of times t1, . . . , tn.

The authors dubbed such a feature descriptor as the heat kernel signature.
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In [4], an HKS-based bag-of-features approach was introduced under the

name of Shape Google and was shown to achieve state-of-the-art results in

deformable shape retrieval. In [27], a scale-invariant version of the HKS was

proposed, and [28] extended the descriptor to volumes.

Despite its success, the heat kernel descriptor suffers from several draw-

backs. First, being a collection of low-pass filters (Figure 1, top), the de-

scriptor is dominated by low frequencies conveying information mostly about

the global structure of the shape. While being important to discriminate

between distinct shapes (which usually differ greatly at coarse scales), this

emphasize of low frequencies damages the ability of the descriptor to pre-

cisely localize features. This phenomenon can be observed in Figure 2 (top).

In fact, the distance between HKS computed at a point x and HKS of neigh-

boring points increases slowly, while for good localization a steeper increase

is required.

2.3 Wave kernel signature

A remedy to the poor feature localization of the heat kernel descriptor was

proposed by Aubry et al. [20]. The authors proposed to replace the heat

diffusion model that gives rise to the HKS by a different physical model in

which one evaluates the probability of a quantum particle with a certain

energy distribution to be located at a point x. The behavior of a quantum

particle on a surface is governed by the Schrödinger equation

(

i∆+
∂

∂t

)

ψ(x, t) = 0 (8)

where ψ(x, t) is the complex wave function. Despite an apparent similarity

to the heat equation, the multiplication of the Laplacian by the complex

unity in the Schrödinger equation has a dramatic impact on the dynamics

of the solution. Instead of representing diffusion, ψ now has oscillatory

behavior.

Let us assume that the quantum particle has an initial energy distribu-

tion f(e). Since energy is directly related to frequency, we will use f(ν)

instead in order to stick to the previous notation. The solution of the
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Figure 1: Examples of (unnormalized) kernels used for the computation of

the heat kernel (first row), wave kernel (second row), and trained optimal

kernel (last row) descriptors.

9



Figure 2: Normalized Euclidean distance between the descriptor at a ref-

erence point on the left foot (white dot in the leftmost column) and de-

scriptors computed at rest of the points of the same shape (left column), its

approximate isometry (middle column), and a distinct shape (right column).

Twelve-dimensional descriptors based on the heat kernel (first row), wave

kernel (second row), and trained optimal kernel (last row) are shown. Dark

blue stands for small distance; red represents large distance.
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Schrödinger equation can then be expressed in the spectral domain as [20]

ψ(x, t) =
∑

k≥1

exp (iνkt)f(νk)φk(x) (9)

(note the complex unity in the exponential!). The probability to measure

the particle at a point x at time t is given by |ψ(x, t)|2. By integrating over

all times, the average probability

p(x) = lim
T→∞

1

T

∫ T

0

|ψ(x, t)|2dt =
∑

k≥1

f2(νk)φ
2
k(x). (10)

to measure the particle at a point x is obtained. Note that the probability

depends on the initial energy distribution f .

Aubry et al. considered a family of log-normal energy distributions

fe(ν) ∝ exp

(

−
(log e− log ν)2

2σ2

)

(11)

centered around some mean log energy log e with variance σ2 (again, we

allow ourselves a certain abuse of the physics and treat energy and frequency

as synonyms). This particular choice of distributions is motivated by a

perturbation analysis of the Laplacian spectrum [20].

Fixing the family of energy distributions, each point on the surface is

associated with a wave kernel signature of the form

p(x) = (pe1(x), . . . , pen(x))
T , (12)

where pe(x) is the probability to measure a quantum particle with the ini-

tial energy distribution fe(ν) at point x. The authors use logarithmically

sampled e1, . . . , en.

The WKS descriptor resembles the HKS in the sense that it can also be

thought of as an application of a set of filters with the frequency responses

f2e (ν). However, unlike the HKS that uses low-pass filters, the responses of

the WKS are band-pass (Figure 1, middle). This reduces the influence of

the low frequencies and allows better separation of frequency bands across

the descriptor dimensions. As the result, the wave kernel descriptor exhibits

superior feature localization (Figure 2, middle).
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3 Spectral descriptor learning

Despite their beautiful physical interpretation, both the heat and wave ker-

nel descriptors suffer from several drawbacks.

The fact that the WKS deemphasizes large-scale features contributes to

its higher sensitivity (i.e., the ability to identify positives). This property is

crucial in matching problems, where a small set of candidate matches on one

shape is found for a collection of reference points on the other. The ability

to produce a correct match within a small set of best matches (high true

positive rate at low false positive rate) greatly increases the performance of

correspondence algorithms.

On the other hand, by emphasizing global features HKS has higher speci-

ficity (i.e., the ability to identify negatives). This property is related to

discriminativity, that is, the ability of the descriptor to distinguish between

a shape and other classes of distinct shapes. High discriminativity is im-

portant in retrieval applications, and the performance of the descriptor at

low false negative rates has a big impact on retrieval algorithms based on it.

Both phenomena are visualized in Figure 3. While it is impossible to max-

imize both the sensitivity and the specificity, a good descriptor is expected

to have both reasonably high.

Another drawback of both the heat and wave kernel descriptors is the

fact that the frequency responses forming their elements have significant

overlaps. As the results, the descriptor has redundant dimensions. Finally,

both the heat and wave kernel signatures are only invariant to truly isometric

deformations of the shape (and can be also made scale-invariant using the

scheme proposed in [27]). Deformations that real shapes undergo frequently

deviate from this model, and it is unclear how they influence the performance

of the HKS and WKS.

We believe that many real-world deformations affect different frequencies

differently. At the same time, the geometric features that allow to localize

a point on a shape or to distinguish a shape from other shapes also depend

differently on different frequencies. Emphasizing information-carrying fre-

quencies while attenuating noise-carrying ones is a classical idea in signal
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and is the underlying principle of Wiener filtering [29].

3.1 Desired properties

This observation leads us to the main contribution of this paper: we pro-

pose to construct a collection of frequency responses forming an optimal

spectral descriptor. In order to be useful, such a descriptor should satisfy

the following properties:

1. Localization: a small displacement of a point on the manifold should

greatly affect the descriptor computed at it.

2. Sensitivity : when a point on a shape is queried against another similar

shape, a small set of best matches of the descriptor should contain a

correct match with high probability.

3. Discriminativity : the descriptor should be able to distinguish between

shapes belonging to different classes.

4. Invariance: the descriptor should be invariant or at least insensitive

to a certain class of transformations that the shape may undergo.

5. Efficiency : the descriptor should capture as much information as pos-

sible within as little number of dimensions as possible.

The localization and sensitivity properties are important for matching tasks,

while in order to be useful in shape retrieval tasks, the descriptor should have

the discriminativity property. However, discriminativity is data-dependent:

a descriptor can be discriminative on one corpus of data, while non-discriminative

on another. While it is generally impractical to model classes of shapes ax-

iomatically, machine learning offers an easy alternative of inferring them

from training data.

By construction, spectral descriptors are isometry invariant. However,

other invariance properties are usually hard to achieve and even harder

to model for realistic transformations. We will therefore stick to learning

in order to achieve invariance on examples of transformations the training

shapes undergo.
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Figure 3: ROC curves of different spectral descriptors when matching points

of a shape to itself. A positive match is considered within a geodesic ball of

1% of the shape diameter. Bilaterally symmetric matches are also considered

positives. Two regions of the ROC curve are emphasized: the performance

of the descriptors for low false negative rate (top), and low false positive rate

(bottom). The former case is important to be able to discriminate between

different shapes in shape retrieval applications, while the latter is required

for establishing an accurate correspondence.
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3.2 Parametrization

We are interested in descriptors of the form

p(x) =
∑

k≥1

f(νk)φ
2
k(x), (13)

parameterized by a vector f(ν) = (f1(ν), . . . , fn(ν))
T of frequency responses.

Both the HKS and the WKS are particular cases of this general form. Unlike

both heat and wave kernels that are strictly positive, we will allow f(ν)

assume negative values.

Since the responses f(ν) are the design variables of the descriptor, they

have to be parametrized with a finite set of parameters. The same param-

eters have to be compatible with any shape, even though different shapes

differ in the set of eigenvalues {νk}. In order to make the representation in-

dependent of a specific shape’s eigenvalues, we fix a basis {b1(ν), . . . , bm(ν)},

m > n, spanning a sufficiently wide interval [0, νmax] of frequencies. This

allows to express f(ν) as

f(ν) = Ab(ν), (14)

where A is the n×m matrix of coefficients representing the response using

the basis functions b(ν) = (b1(ν), . . . , bm(ν))T.

Since the eigenvalues νk form a growing progression, we can truncate the

series (13) at νs ≥ νmax. Substituting the representation (14), we obtain

p(x) = A(b(ν1), . . . ,b(νs))









φ21(x)
...

φ2s(x)









= Ag(x) (15)

where the m× 1 vector g(x) with the elements

gj(x) =
∑

k≥1

bj(νk)φ
2
k(x) (16)

captures all the shape-specific geometric information about the point x.

For this reason, we refer to g as to the geometry vector of a point. Note

that this representation is no more depends on a specific shape; the matrix

of parameters A describes the same vector of frequency responses on any

shape.
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3.3 Learning

Let g = g(x) be the geometry vector representing some point x; let g+ =

g(x+) be another geometry vector representing a point that is knowingly

similar to x (positive); and, finally, let g− = g(x−) represent a knowingly

dissimilar point (negative). We would like to select the matrix of parameters

that maximizes the similarity of the descriptors p = Ag and p+ = Ag+,

and at the same time minimizes the similarity between p and p− = Ag−.

Using the L2 norm as the similarity criterion, we obtain

d2± = ‖p− p±‖
2 = ‖A(g − g±)‖

2

= (g − g±)
TATA(g − g±). (17)

In other words, the Euclidean distance between the descriptors translates

into a Mahalanobis distance between the corresponding geometry vectors.

The problem of finding the best positive-definite matrix ATA defining the

Mahalanobis metric is known as metric learning and has been relatively well

explored in the literature [30, 31, 32].

Here, we describe a simple yet efficient learning scheme explicitly ad-

dressing the desired properties we required from a good spectral descriptor.

We aim at finding a matrix A minimizing the Mahalanobis distance over the

set of positive pairs, while maximizing it over the negative ones. Note that

the distance depends only on the differences between positive and negative

pairs of vectors. Taking expectation over all positive and negative pairs, we

obtain [33]

E(d2±) = E(‖p− p±‖
2) = E(eT±A

TAe±)

= tr (AE(e±e
T
±)A

T) = tr (AC±A
T), (18)

where e± = g − g±, and C± stands for the covariance matrix of the dif-

ferences of positive and negative pairs of geometry vectors. In practice, the

expectations are replaced by averages over a representative set of difference

vectors.

Our goal is to minimize E(d2−) simultaneously maximizing E(d2+). This

can be achieved by minimizing the ratio E(d2−)/E(d
2
+), which is solved by
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linear discriminant analysis (LDA). However, we unfavor this approach as

it does not allow control over the tradeoff between sensitivity and specificity.

Instead, we propose to minimize the difference

(1− α)E(d2+)− αE(d2−) =

tr (A((1− α)C+ − αC−)A
T) = tr (ADαA

T), (19)

where 0 ≤ α ≤ 1 controls the said tradeoff, and Dα denotes the difference

between the positive and the negative covariance matrices.

Note that since the scale of A is arbitrary, a trivial solution can be

obtained. Even when fixing the scale, the solution will be a rank-1 matrix

corresponding to the smallest eigenvector of Dα. While this can be avoided

by arbitrarily demanding orthonormality of A, such a remedy is completely

artificial.

Instead, we remind that one of the desired properties of a descriptor was

efficiency. In an efficient descriptor, each dimension should be statistically

independent of the others. Replacing statistical independence by the more

tractable lack of correlation, we demand

I = E(ppT) = AE(ggT)AT = ACAT (20)

where expectations are taken over all geometry vectors, and C denotes the

covariance matrix of g.

Combining (19) with (20), we obtain the following minimization problem

min
A

tr (ADαA
T) s.t ACAT = I, (21)

which we solve for an n × m matrix A. The problem has a closed-form

algebraic solution, which is easy to derive using variable substitution. Since

C is a positive-definite matrix, we can substitute B = AC1/2, obtaining an

equivalent minimization problem

min
B

tr (BC−1/2DαC
−1/2BT) s.t BBT = I, (22)

(C is symmetric and so is its root; we therefore keep writing C−1/2 in-

stead of its transpose). Let us denote by C−1/2DαC
−1/2 = UΛUT the
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eigendecomposition of the scaled covariance difference, with the eigenvalues

Λ = diag(λ1, . . . , λm) sorted in ascending order, and the corresponding or-

thonormal eigenvectors U = (u1, . . . ,um). The solution to (22) is given by

the first n smallest eigenvectors, B = UT
n = (u1, . . . ,un)

T. Note that one

must ensure that all the eigenvectors correspond to negative eigenvalues; if

this is not the case, n has to be reduced. Finally, the solution to our original

problem (21) follows straightforwardly as

A = UT
nC

−1/2. (23)

3.4 Training set

So far, we have described a learning scheme allowing to construct efficient

spectral descriptors with uncorrelated elements based on covariances of ge-

ometry vectors describing positive and negative pairs of points. Having no

practical possibility to model the statistics of these vectors, their covariance

matrices have to be computed empirically from a training set of positive and

negative examples. The construction of such a set is therefore crucial for

obtaining a good descriptor. In what follows, we describe how to construct

the training set in order to achieve each of the desired properties mentioned

before.

Localization. Let x be a point on a training shape X. We fix a pair of

radii r < R and deem all points x+ ∈ Br(x) positive, while deeming negative

all x− ∈ Bc
R(x). Here, Br(x) denotes the geodesic metric ball of radius r

centered at x. Points lying in the ring BR(x) \ Br(x) are excluded from

both sets. If the shape possesses an intrinsic symmetry ϕ : X → X, then

Br(ϕ(x)) is also included in the positive set, while BR(ϕ(x)) is excluded from

the negative set. The training set is created by sampling many reference

points and corresponding positive and negative points on a collection of

representative shapes. The selection of r and R gives explicit control over

the localization capability of the descriptor.

Discriminativity. Let X and X− be knowingly dissimilar shapes (i.e.,

belonging to different classes we would like to tell apart). A random point x

on X and a random point x− on X− are deemed negative. The training set
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is created by sampling many random pairs of points on knowingly dissimilar

pairs of shapes.

Invariance. Let X be a shape and X+ its transformation belonging to

a class of transformations invariance under which is desired. We further

assume to be given a correspondence ϕ : X → X+ between the shapes.

A random point x on X and the corresponding point x+ = ϕ(x) on X+

are deemed positive. The training set is created by sampling many random

points on a collection of null (reference) shapes, paired with corresponding

points on the transformed versions of the null shape.

The combination of the positive and negative sets constructed this way

allows to train for descriptor localization, discriminativity, and invariance

properties.

3.5 Sensitivity-Specificity tradeoff

The proposed learning scheme allows simple control over the tradeoff be-

tween the sensitivity and the specificity of the descriptor through the pa-

rameter α. The bigger is α, the bigger is the relative influence of C− com-

pared to C+. Therefore, for large values of α, the descriptor will emphasize

producing large distances on the negative set (low false positive rate), while

trying to keep small distances on the positive set (high true positive rate).

As the result, high sensitivity is obtained. For small values of α, the con-

verse is observed: the descriptor emphasizes performance on the positive

set, resulting in higher specificity.

In order to select the optimal α for a highly-sensitive descriptor, we

empirically compute the false negative rate at some small fixed false positive

rate (e.g., 1% or 0.1%) and select the α for which it is minimized. For highly-

specific descriptors, α is selected to minimize the false positive rate at some

small false negative rate. The behavior of the error rates as a function of α

is illustrated in Figure 4.
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Figure 4: Error rates as a function of the parameter α. Large values of α

result in high sensitivity, while for small values high specificity is obtained.
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4 Experimental results

The reported experiments were performed on the SHREC’10 robust corre-

spondence benchmark [21]. The benchmark contains three distinct shape

classes (human, dog, and horse), each shape undergoing ten different trans-

formations (isometry, topology, sampling, global scaling, local scaling, holes,

micro holes, Gaussian noise, and shot noise) with five strengths per trans-

formation (from mild to very strong). Shapes are represented as triangular

meshes with about 5×104 vertices (except for the sampling transformations,

where the meshes are progressively decimated down to about 2.5× 103 ver-

tices). The benchmark also contains vertex-wise correspondences between

the transformed shapes and the reference (null) shapes, including intrinsic

bilateral symmetries. In all experiments, training was performed on the

isometry, topology, and Gaussian noise transformations of the horse shape.

As the negatives, we used five distinct meshes not included in the bench-

mark. For evaluation, we used the isometry, topology, holes, Gaussian noise

and sampling transformations of the human shape, and the dog shape as

the negative. All transformation strengths were used both for training and

testing.

We used the finite elements scheme [25] to compute the first 300 eigenval-

ues and eigenvectors of the Laplace-Beltrami operator on each shape. Neu-

mann boundary conditions were used. The range of frequencies νmax was

set to the 95-percentile of ν300 over the entire set of training shapes. The

interval was evenly divided intom = 150 segments and the cubic spline basis

was used as {bj(ν)}. The training set containing 2.5× 106 150-dimensional

triplets of the form (g,g+,g−) was generated as described in Section 3.4

with 104 negative examples per reference point. The radii r and R were set

to 2% and 5% of the shape intrinsic diameter, respectively. The parame-

ter α was selected as described in Section 3.5. The values maximizing the

descriptor specificity and sensitivity were found to be α = 0.03 and 0.09,

respectively (Figure 4). Two corresponding 12-dimensional descriptors were

trained. Examples of the obtained responses are shown in Figure 1 (bottom).
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4.1 Descriptor performance

Descriptor performance was tested on a distinct set of 2.5 × 106 triplets

of points constructed in the same was as the training set but on different

shapes. For comparison, we also computed twelve-dimensional HKS and

WKS descriptors. The HKS time scales were optimized according to [4].

The WKS energy levels and the variance σ2 were set as described in [20].

For the fairness of comparison, Euclidean distance was used for all descrip-

tors. Figure 3 shows the ROC curves of the compared descriptors in the

low false positive and low false negatives work points. As argued before,

the HKS is characterized by better performance over the WKS at low false

negative rates, while the WKS outperforms the HKS in the low positive

rates range. The trained descriptors significantly outperform both the HKS

and the WKS in the low false negative rates range, with almost a 40% in-

crease in the true negative rate at FN = 0.1%. The trained high-sensitivity

descriptor outperforms WKS by about 6% true positive rate at FP = 1%.

The improvement becomes more modest at FN = 0.1%.

4.2 Localization

In order to visualize the localization capability of different descriptors, a

reference point was selected on the human shape. The distance between

the descriptor at that point was computed to the rest of the points on

that shape, to the points of an approximate isometry of the human shape,

and to the points on the dog shape. Figure 2 visualizes these normalized

distances on a common scale. We observe poor localization capabilities of

the HKS along with exceptional localization power of the WKS. The trained

high-sensitivity descriptor exhibits even better localization. Both the HKS

and the WKS confuse between the reference point on the man’s foot and

a region on his hand fingers, which have similar geometric content. On

the other hand, our descriptor does not make this confusion. We remind

that in the training set, for every reference point all points except its small

neighborhood were included as negatives. Even though a different shape

was used during the training, the descriptor still seems to be capable of
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Figure 5: Normalized Euclidean distance between the descriptor at a refer-

ence point on the right hand (white dot) and descriptors computed at rest

of the points of the same shape for a twelve-dimensional trained optimal

descriptors. Left-to-right: holes, Gaussian noise, and sampling transforma-

tions from the SHREC’10 benchmark.

generalizing these relationships.

Finally, both the HKS and the WKS find many points on the dog shape

that resemble the reference point on the man’s foot. Our descriptor does

not make this confusion as it was trained for discriminativity with numerous

negative examples from distinct shapes. Figure 5 shows additional examples

of distances computed on other transformations of the human shape using

the trained descriptor. In all cases, good localization is observed.

4.3 Correspondence

While evaluation of a particular descriptor-based correspondence algorithms

is beyond the scope of this paper, in order to test the performance of the

trained high-selectivity descriptor in shape matching tasks, we performed

an experiment similar to [20]. 1000 reference points were sampled on the

human shape using farthest point sampling in the descriptor space. Such

points coincided well with visually “interesting” features. Each reference

point was matched to all the points on the transformed versions of the
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shape. We computed the probability of finding the correct match (including

the symmetric one) within the first k best matches. The CMC curve in

Figure 6 depicts the hit rate of different descriptors for up to about first

500 matches (corresponding to 1% of the total points on the shape). The

trained descriptor significantly outperforms both the HKS and the WKS. In

fact, our descriptor returns the first correct match with over 50% probability,

compared to about 25% and 30% in the case of HKS and WKS, respectively.

While the WKS consistently outperforms the HKS on this matching

task, we did not notice the dramatic difference reported in [20]. A possible

explanation can be the fact that we used only 12 dimensions, while the au-

thors of [20] used a higher-dimensional descriptor. Another, more probable,

reason is the fact that in all our experiments Euclidean distance was used

as the dissimilarity between the descriptors, while in [20] the authors used

WKS with the normalized L1 distance. We defer to future studies the treat-

ment of distances other than L2; however, we believe that for the fairness

of comparison the same distance must be used for all descriptors.

5 Conclusion

We presented a generic framework for the construction of feature descrip-

tors for deformable shapes based on their spectral properties. The proposed

descriptor is computed by applying a bank of “filters” to the shape’s geo-

metric features at different “frequencies”, and it generalizes the heat and

wave kernel signatures. We also showed a learning approach allowing to

construct optimal filters for specific shape analysis tasks, resembling in its

spirit optimal signal filtering by means of a Wiener filter.

We formulated the learning approach in terms of the L2 distance and

related it to Mahalanobis metric learning. While the adopted algebraic solu-

tion gave good results, other Mahalanobis metric learning approaches, such

as the maximum-margin learning [31] can be readily used. Some of these

metric learning approaches were designed with a specific task in mind (e.g.,

ranking), and might be beneficial for the construction of spectral descrip-

tors in some applications. Evidence shows that distances other than the
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Figure 6: CMC curve showing the percentage of correct correspondences

found in a subset of the first best matches (up to 1% of total points) using

different spectral descriptors.

25



Euclidean one (e.g., the L1 distance) improve the performance of spectral

descriptors. Also, applications where compact and easily searchable de-

scriptors are of importance may benefit from hash learning techniques [34],

essentially based on the Hamming distance. We intend to explore alternative

learning frameworks and different distances in follow-up studies.

While the main focus of this paper was the construction of the descrip-

tor itself, in future studies we are going to explore its performance in real

shape retrieval and matching tasks. Particularly, in retrieval tasks spectral

feature descriptors are used to generate global shape descriptors by means

of vector quantization or sparse coding, a growingly popular alternative in

the computer vision community. Taking this highly non-linear process into

account when constructing the feature descriptor will also be a subject of

our future research.
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