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ABSTRACT 

The spectral dissipation of finite-depth random gravity waves is evaluated for a given 

empirical relationship between the local bottom stress and the wave field. The dissipation is 

quasilinear. Computations for a quadratic friction law yield satisfactory agreement with 

wave measurements at two stations in the Gulf of Mexico. 

1. Introduction. The traditional parametrical approach to wave prediction 

is being widely subseded by more fundamental methods based on the numerical 

integration of the radiative transfer equation (cf. Gelci and Cazale 1962, 
Fons 1966, Pierson et al. 1966, Barnett 1966 ). The central prediction prob

lem has thereby become the determination of the source functions in the 

transfer equation. Although many transfer processes are now understood 

theoretically, many gaps remain, particularly in our knowledge of the dissi-
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pative processes, which at present are bridged by partly empirical, largely in

tuitive, assumptions. 

As a particular case, we consider here the dissipation due to turbulent bottom 

friction, which is known to be an important factor in wave prediction at coasts 

bounding extensive shallow-water areas, such as a continental shelf. 

A rigorous treatment of the full problem, involving a nonstationary tur

bulent boundary layer at the ocean bottom, appears to be impossible at present. 

As a starting point, we assume therefore that a 'friction law' expressing the 

bottom wall stress, ., as a function of the wave field has been established 

empirically. The problem then is to evaluate the spectral distribution of the 

associated wave-energy dissipation. Clearly this will not contribute to our 

understanding of the basic wave-turbulence interaction process; we are con

cerned, rather, with the practical question of determining a spectral source 

(sink) function for a random wave field from a given deterministic force-field 

relationship. 

As an application, we compute the local dissipation and decay of the wave 

spectrum for the quadratic friction law 

( l. l) 

where e is the density of water, ub is the bottom velocity in the absence of a 

boundary layer (including a mean current component), and Cf is a friction 

coefficient; Cf is in general a slowly varying function of the characteristic fl.ow 

parameters, but it is regarded as constant for a given wave field. 

The computed cases for shallow water over a gently sloping beach agree 

well with wave observations at two stations in the Gulf of Mexico. Further 

examples illustrate the significance of bottom friction effects in larger and 

somewhat deeper areas typical of a continental shelf. 

2. The Dissipation Function. To a first approximation, a homogeneous ran

dom gravity-wave field in water of constant depth, H, is given by the linear 

irrotational solution 

where I; is the wave height, 

l;k = tk + Ck*, 

Ck= Zkei (k·x-at), 

zk = const, 

a= (gk tanh kH) 1f2
, 

(2. r) 

(2.2) 

and x, k are horizontal coordinate and wave-number vectors, respectively. 
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The first and second moments of the random amplitudes, zk, are given by 

( Zk) = o, 

<zkzk,> = o, 

<zkzk,*> = .: okk'F(k)LJ k, 
2 

where ( .... ) denotes the ensemble mean, ,1 k is the wave-number incre

ment of the Fourier sum ( 2. I), used here as a notational convenience in place 

of a Fourier-Stieltjes integral, and F(k) is the wave spectrum, normalized so 

that 

( CZ ) = f F(k)dk. 

The velocity field of the wave motion may be similarly written 

U = 2 uk, 

where uk =Uk + uk *, and uk is proportional to Ck- In particular, 

- gk -
Uk= h kHCk at the bottom, z = -H, 

a cos 

(2.5) 

(2.6) 

where z is the vertical coordinate, measured positive upward from the equilib

rium free surface. 

In the linear approximation, the wave field is Gaussian (cf. Hasselmann 

I 967 ). It is therefore completely specified statistically by the spectrum F(k). 
Consider now the modification of the free-wave solution due to the turbu

lent boundary layer at the ocean bottom. Interactions with a nonuniform 

current, c = (c, (z), c2 (z), o), and with the atmosphere also affect the wave 

field, but we restrict our investigation here to the boundary-layer interactions. 

The mean current enters the problem only in so far as it affects the boundary 

layer. In this case, the wave motion outside the boundary layer remains a 

potential flow, u, which is uniquely determined by the surface displacement. 

The total velocity field is then w = u + c + v, where v is a turbulent velocity 

field that is nonzero only in the bottom boundary layer, - H z < - H + o. 
We assume o(< H. 

Since the wave field remains homogeneous, the representation ( 2. I) and the 

definition (2.4) of the spectrum remain valid. However, the amplitudes Zk, 

and therefore the spectrum F(k), become slowly varying functions of time. 

The rate of change of the spectrum may be determined from energy con

siderations. If we multiply the equations of motion, 

f) wi f) p f) ( ) , 
(! -- = - - -(! - WiWJ + V(!\J"Wi 

f)t fJxi 8x1 

(v = kinematic viscosity), 
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by uik, integrate from - H to i;, and take expectation values, we obtain, on 

allowing for the usual free-surface boundary conditions at z = i; and the or

thogonality relationship ( 2.4), 

where 

and -ri = T3i-
For {J « H, the last two terms on the right side can be neglected, so that 

Hence, the energy loss, 0(k)L1 k, of the wave component, i;k, is given by 

the work done by the total bottom stress, -r, against the bottom velocity 

of the component uk(z = -H), as may have been anticipated. 

We assume now that -r is given empirically as a function of the wave 

field and the mean current, -r = -r(i;,c). If the dissipation is weak, i.e., if 

8F/8t ( ( wcF, where We is a characteristic frequency of the spectrum, 0 (k) 
can be evaluated to the first order by substituting the free-wave solution in 

the right side of ( 2. 7 ). 

To express the dissipation in terms of the free-wave spectrum, we expand 

the functional T about the wave field 

which differs from the wave field i; by an infinitesimal component. According 

to ( 2.4), all Fourier components of i;' are statistically orthogonal to i;k (since 

the only-correlated k'th Fourier component is missing in i;'). Furthermore, 

since the fields i;' and i;k are jointly Gaussian, it follows that i;' and i;k are 

in fact statistically independent. 

Hence 

0 (k)Ll k = - (-ri Utk>, 

= - ( (-ri(i;') + (i;')i;k + · · .)ulk) , (2.8) 

= - ( ~~i (i;')) ( i;kuil,) + .... ' 

where /J,:-tf /Ji; is the functional derivative. (Velocities here and in the following 

refer to bottom velocities). 
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Explicitly, 

+co 

5 

ri (C+ dC; x,t) = ri(C; x,t) + f Ki(C; x,x',t,t')bC(x',t')dx'dt' + .. . , (2.9) 
-co 

where 

and (2.8) should be read 

0(k)LJ k = - J ( K i (C' ; x,x',t,t'))(Ck(x',t' )utk(x,t)) dx'dt' (2.10) 

(cf. Collatz 1967: 473). 

For a homogeneous time-independent physical system, the functional r is 

independent of space and time translations. It follows that the kernel, Kt, 

depends only on the difference variables, e = x - x' and il = t - t'. Allowing 

for (2.4) and (2.6), eq. (2.10) then becomes 

(2.11) 

where the field C' in Ki has been replaced again by C. 
Alternatively, (2.9) may be written in the equivalent Fourier form 

+co • 

ri (C+ d C; x,t) = rt (C; x,t) + 2Re{I J Ktk(C; t-t')bCk(x,t')dt'}, (2.12) 
k - CO 

where 

This yields 

( 2. I 3) 

We note that the dissipation, 0(k), is quasilinear; it is proportional to the 

spectrum at k, as in the case of laminar friction, but the proportionality 

factor depends now on the entire wave field. 

3. Application to Specific Friction Laws. We apply ( 2. 1 3) first to the quad

ratic friction law (I.I), which is known to be an acceptable though rather 

crude approximation for a wide variety of turbulent flows, including periodic 

boundary layers (cf. Savage 1953, Iwagaki et al. 1965, Jonsson 1965, Put

nam and Johnson 1949, Bretschneider and Reid 1954, Kajiura 1964). 
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Since 

{ 

b b } - - (!gC f b . Ut Uj - La cosh kH u ki + ub kt o( k, 
k 

we have 

Kik (J.) = - o(J.) egi kH(ubkt + uf ut k1) 
2 a cos u 

and 

with the anisotropic "viscosity" tensor 

_ gc1 . b ui u1 
{ 

b b } 

"'tf - a 2 cosh 2 kH Oif ( u ) + < ub ) · (3.3) 

The mean quantities ( ub) and ( uf uf /ub) can be readily evaluated, since 

the joint distribution of the variables is Gaussian. The mean of the distribu

tion is ( uf) = ci and the covariance matrix is given by the spectrum 

In the zero-current case, ub = u, we obtain the closed expressions 

where 

and 

( u) = rx.E, 

u
2 {E K } ( -2) = rx. - - - (1 - x 2) 

u "' "' ' 

(X. = (2 ~,:)r· 
x = (1 - ( u~)/(u~) ) 112 

K = K(x), E = E(x) 

(3.4) 

are complete elliptic integrals of the first and second kind, respectively. The 

coordinate system is chosen such that 
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The damping is a maximum in the mean propagation direction Xr. In 
the extreme case of a unidirectional wave beam parallel to xr, Vrr = 2v22 . 

Generally, V22 < Vrr < 2V22. 

The friction law (1.r) can be modified in several ways. Boundary-layer 

measurements in stationary flows indicate that c1 is in general a slowly varying 

function of the boundary-layer parameters, which depend on the history of 

the boundary layer. Experiments in sinusoidal oscillating flows show a varia

tion of c1 with the period and amplitude of the external flow; they also show 

a small phase shift in the relation (1.r) (cf. Jonsson 1965). 

The experimental data for periodic flows could be generalized to random 

wave fields by defining a mean period and amplitude in terms of the wave 

spectrum and then regarding c1 in (3 .3) as a function of these variables. Per

haps a more satisfactory approach is to modify the basic force-field relation

ship (I.I) to include a dependence on the past history of the flow. For example, 

a simple generalization of ( r. r) that allows for memory and phase-shift 

effects is 
t . 

-r(t) = -eub{cJ°lub+,Bcj') f ef3<t-t'lu(t')dt', 
-co 

(3.5) 

where c}0 l, c/l, and ,8 are empirical constants that depend on the average flow 

parameters. 

In this case, 

so that 

( K- (A)) = ( K (o)(A)) - egc</S(A) {ki ( ub) e-f3A+o(A)k ·(uiuf>} 
ik 

th 
2 a cosh kH J ub ' 

where 

S(A) = { o for A < o 
I for A~ o, 

Ui(t) = 1 ui(t-A)e-fJA,BdA = I 2Re (-,s .s--,-- uik)· 
k -t(J 

0 

The superscript (o) refers to the c}°l term. 

Applying ( 2. I 3), the dissipation function is again found to be of the form 

(3.2), with a modified viscosity tensor 

. - (o) gc, .ll •• ( b)_,-,_ _ ( uiui 
( 1) { RZ A b 

Vif - vii + h kH uiJ u Rz z + b ) • 
a2 cos 2 

,-, + a u 
(3.6) 
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Figure I. Decay of a wave spect rum due to bottom frict ion for near-normal incidence on a constant

slope beach. (Hu rricane H ilda, 1964). 

The mean quanti ties ( ub) and ( ui uJ/ ub) can be evaluated as before by noting 

that the joint dis tribution of the variables i1t, uJ is Gaussian with a covariance 

matrix that is determined by the spectrum. 

4. Computations. T he spectral decay was computed for some typical cases 

by numerical integration of the radiative transfer equation 

where 

oa 
xt = Okt (x, k), 

oa 
kt= - - (x k ) 

OXt ' 
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Figure 2 . Decay of a wave spectrum due to bottom friction for near-glancing incidence on a con

stant-slope beach. The observed spectra for f > 0.2 cps are probably locally generated by 

offshore winds. A comparison with theory is meaningful only for f < 0.2 cps. (Hurricane 

Hilda , 1964). 

represent the equations of a wave-group path in x - k phase space. The 

second term on the left side represents the convection of energy, the third 

term the effect of refraction. The source function was assumed to consist of 

only the bottom-friction dissipation, S = - 0. In all cases a quadratic 

friction law (1.1) was assumed. 

The spectra are presented as energy densities with respect to frequency, 

f, and direction, <p, 

F(k)dk = F(f,<p)dfd<p = E(f)S(f,<p)dfd<p, 

where E(f) is the one-dimensional frequency spectrum and S(f, <p) is the 

spreading factor, with 
+n 

f S(J, <p)d<p = 1. 

-n 

Fig. 1 shows the computed decay of a wave spectrum incident almost 

normally on a beach of constant slope, 6.5 x 10-4. The topography and the 

positions of Sts. I and II correspond to wave-measuring installations in the 

Gulf of Mexico near Panama City, Florida. St. III is a hypothetical extra

polation; the beach actually shallowed more rapidly shoreward of St. II, 

the shore lying between Sts. II and III; see Kirst and Gaul (1964). 

The initial frequency distribution at St. I corresponds to the observed 
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region. The initial distribution at x = o corresponds to a 40-knot Pierson-Moskowitz 

(1 964) spectrum with a spreading factor proportional to cos4 <p, The wa ter depth is room. 

spectrum_ The associated spreading factor was estimated from the known 

position and extent of the wave source. The wave records were obtained during 

Hurricane Hilda in 1964. The three hourly N orth American weather maps 

were used to estimate the initial spreading factors by observing the subtended 

angle of the wave-generating area. The predicted spectrum at St. II agrees 

well with the observed spectrum for a value of c1 = 0 .015, which is consis

tent with laboratory measurements ( cf. J onsson 196 5) and previous fi eld 

estimates (Bretschneider and Reid 1954). 

The frictional dissipation exceeds the increase in the frequency spectrum 

that would have resulted from refraction alone. H owever, the peaking of the 

spreading factor is almost entirely refractional. Some broadening may have 

been expected from the anisotropy of the viscosity tensor, but this is prac

tically cancelled by the longer travel path of waves at larger angles of inci

dence ; this applies also to the spreading factor in Fig. 3-
The variations in travel path result in a strong dependence of the normal

to-shore decay rate on the angle of incidence, particularly at la rge angles. 

Fig. 2 shows the decay of a spectrum for the same topography as in Fig. 1 , 

but with a more tangential initial angular distribution, 

S(f, cp) = { const fo r 50° < cp < 90° 

o for - 90° < cp < 50°. 
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Figure 4. The same as in Fig. 3 with a superimposed current of 0.7 m/s at 45° to the initial mean 

wavepropagation direction, <p = o . 

The initial frequency spectrum is again the observed distribution. The 

predicted spectrum at St. II agrees reasonably well with the observed spec

trum. The fit could clearly have been improved by choosing a slightly more 

tangential angular distribution initially ( or by increasing c 1 ). However, the 

agreement has only qualitative significance in this case. The weather maps 

indicated approximately tangential angles of incidence, but the beam width 

could not be estimated accurately. Computations of the bottom-friction 

dissipation on a continental-shelf scale are shown in Figs. 3 and 4. The 

dimensions are characteristic of the North Sea. In Fig. 4, a constant mean 

current of o. 7 m/s is superimposed on the wave field at an angle of 45° to 

the mean wave propagation direction. 

The value of Cf used in the previous examples was retained for the sake of 

comparison. In the case of Fig. 4, this is probably too high; the increase in 

dissipation due to the mean current may be offset by a smaller friction coef

ficient. However, the angular asymmetry induced by the current is not 

strongly affected by the value of c1 . 
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