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ABSTRACT: The theory of the spectrum of the light scattered from rodlike 
macromolecules presented earlier (H. Maeda and N. Saito, J. Phys. Soc. Japan, 27, 984 
(1969).) is extended to optically anisotropic rodlike molecules. The spectrum is shown 
to be the sum of an infinite number of Lorentzians. The forward scattering is shown 
to be free from the effect of translational diffusion. The numerical calculations for 
TMV solution are presented. 
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The Brownian motions of macromolecules in 
solution can be investigated through the spec
trum of the scattered light. Thus many theore
tical1-5 as well as experimental6- 10 studies on 
polymer solutions have been carried out. The 
previous paper4 presented a theory for optically 
isotropic rodlike macromolecules and showed 
that the coupling between rotatory and trans
lational Brownian motions in rodlike macro
molecules is important especially for large scat
tering angles when the length of the macromole
,cules is large compared with the wave length of 
the incident light. This fact was confirmed 
experimentally by Fujime. 10 In this paper a 
further calculation for rodlike macromolecules is 
provided taking into account optical anisotropy. 

tered and incident light respectively, µ is the 
induced electric dipole moment of the scatterer 
and R0 indicates the position of the observer. 

COORDINATE SYSTMS 

The amplitude of the electromagnetic wave 
scattered from a scatterer at the origin is pro
portional to 

Es= - exp1~~Ro][K1X[K1Xµ]] 
1r oc (2.1) 

K=K1-K0 

where K1 , K0 are the wave vectors of the scat-

Now if one takes a coordinate system (x,y, z) 
fixed in space having the origin O in the solution. 
The z-axis is taken parallel to the electric vector 
E0 of the incident light, and the angles between 
x-axis and the direction K0 and between z-axis 
and K1 are denoted as lffo and /90 respectively. 
The scattered light is observed in the xz-plane 
in the direction K1 with an analyser which 
makes an angle (/)0 between its polarizing direc
tion and the .xz-plane, as shown in Figure 1. 
Then the component X of the electricvector Es 
parallel to the direction of the analyser is given 
by 

z 
Scattered lght 

Figure 1. Coordinate systems. 
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X=-[k/ exp (-iKR0)/4rrR0c] 

@{cos <P0 [µx cos B0 - µz sin Bo]+ µy sin <P0 ) 

(2.2) 

where µx, µy, µz are respectively the components 
of µ in xyz-coordinate system. The polari
zability tensor a of the scatterer in the coordi
nate system (~, r;, () fixed on the scatterer is 
written as 

C' 
0 

D a= 0 

0 0 

-(a0 -a,/3)1+a, (l 0 

0 

0 

where it is assumed 

and put 
a1;1;=a~~ 

a 0=¼(a«+a~~+a1;1;) 

a2=(a1;1;-a1;1;) 

;; (2.3) 

(2.4) 

Let T be the transformation matrix between the 
xyz-system and the coordinate system (~, r;, () 
fixed on the scatterer, then one has 

(
µy) ( 0 \ 
;: = Tar-

1 
;) 

(2.5) 

Here in order to use the distribution function 
for the position and orientation of the molecule 
obtained in the previous paper, one introduces 
another coordinate system (x', y', z') with the 
z' -axis parallel to K and x' -axis in the plane 
containing the direction of Kand the z-axis with 
the origin 0. The orientation of the molecule 
is described by the polar angle (}, <p (or simply 
Q) in the coordinate system (x',y', z'). Hence 
the transformation matrix is rewritten as, 

T=T1T2 

(

1cos '. cos <ft 

T1= sm <ft 

sin r cos <P 

(
cos 0_cos <p 

T2= -Slll<p 

sin(} cos <p 
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-cos r sin <P -sin r\ 

cos <ft O ) 
-sin r sin <P cos r 

sin <p cos(} -soin (}) 
cos <p 

sin (} sin <p cos (} 

(2.6) 

where T1 and T2 are transformation matrices 
between (x,y, z) and (x',y', z') and between (x', 
y', z') and (~, r;, () systems respectively, and r 
and <ft are the angles between the direction of 
K and the z-axis, and between the x-axis and 
the z' x'-plane respectively. Substituting eq 2.5 
and 2.6 into eq 2.2, one has 

X=KX (2.7) 

K=-k/ exp (-iKR0)/4rrR0c (2.8) 

X=-a 2E0{A sin(} cos (}cos cp+Bcos2 (} 

+ C sin2 (} cos2 cp+ H sin2 (} sin <p cos <p 

+M sin(} cos(} sin <p) 

(2.9) 

where the coefficients A, B, C, H, M, and D are 
given in Appendix A. They are functions of 
Bo, 7ff0 , and <P0 and the polarizabilities a0 and 
lt:2-

The rodlike molecule considered here is re
presented by an array of N identical beads (or 
scatterers) connected in a straight line. The 
beads are anisotropic scatterers with the aniso
tropic axis in the direction of the molecule. 
The position of the i th bead and the center of 
gravity at time t are designated as R;(t) and 
r(t) respectively in the x' y' z'-system. Put 

r;(t) =R;(t)-r(t) (2.10) 

and let the orientation of the molecule be Q in 
polar coordinates as mentioned above. The 
distribution function f(r, Q, t) has already been 
obtained,4 especially the function/(r, Q, t1Q0) of 
the molecule at time t under the initial condi
tion that its center of gravity lies at the origin 
with its orientation Q0(00 , <p0). In the following, 
use will be made of the functions g and g 
defined as 

g=e"2Dttg(K, Q, tllJo) 

=e"2Dtt ~dreirKJ(r, Q, t1Q0) (2.11) 

where Dt is the average translational diffusion 
constant kT(B1 +2B2)/3 as given in ref 4. 

SPECTRAL INTENSITY OF SCATTRED 
LIGHT 

The spectral intensity I of the light scattered 
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from the rod-like macromolecule as described 
in ref 2 is given by2 

l(Llw, <Po, Bo, 1ff 0)K-2 

= [: </~. X(t, m)X*(0, l) 

xexp [iK(Rl(0)-Rm)]) exp (-iLlwt)dt 

c+= = J-= dt exp [-(iLlw-K 2D 1)t] l~m 

X \ d.Qd.Q0- 1- X(t, l)X*(0, m) 
J 4irV 

xexp [-iK(rl(0)-rm)]g(t, K, .QJ.Q0) 

c+= = J-= dt exp [(-iLlw-D 1K 2)t] l~ 

X d.Qd.Q0~ g(t, K, .QJ.Q0)X(t, l)X (0, m) 1 - -* 
4irV 

X I: i" v+- _!!__ Jv+112(krl)P.(cos 80) ( l )( 2 ) 1
/

2 

V 2 krl 

( 1 )( 2 ) 1
/

2 
X f (-it u+2 k;m Ju+1J2(krm) 

xPu(cos 8) (3.3) 

The function g can be written as4 

q(P)= I: i(a<,.",;,,(P) cos m<p 

+b<,.",;,,(P) sin mrp)Pnm(cos (} 

e=3(B3-B1)/(2B1 +B3) (3.5) 

where B1 and B3 are the mobilities along the 
and I; directions of the molecule, and the coef
ficients a<,.",;,,(p) and b~',;.(p) are given in Appendix 
B. Substitution eq 3.4 and 3.5 into eq 3.3 
gives finally: 

l(Llw, <Po, Bo, ?ff 0)K-2 

=ir2E/ I; (cK2D)" I; Lf~-1[a/(A 2 

k n,even 

+M2)Xn[Xnh+¼a2\C2+H2)Yn[Y,,,]k 

+{A[Jn]-B[Kn]}{AJn-BKn}] (3.6) 

Lf is the operator defined by 

Lfu(t)= [:u(ltl) exp -[iLlwt+k2D1ltl]dt (3. 7) 

The functions Xn, Yn, [X,,,]k, [Y,,,h, Jn, kn and 
[Jn], [Kn] are listed in Appendix C. Further 
the following definitions are introduced 
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Lf.2"-1[Wn]l=[[Wn]h (3.8) 

where Wn=Xn, Y,,,, J,,,, and K,,,. Using these 
quantities one can rewrite eq 3.6 as 

l(Llw, <Po, Bo, ?ff 0)K-2 

=irE/ I; (sK 2D1/ I; [a/(A2 +M2)X,,,[[X,,,]]1 
l n,even 

+¼a22(C2+H2)Y,,,[[Ynlll 

+{A[[Jn]]i-B[[Knlld{AJn-BKn)] (3.9) 

Explicit expressions of [[W,,,]]l are given in 
Appendix C. Equation 3.9 gives the spectral 
intensity of the scattered light in any arbitrary 
direction (Bo, ?ffo, <Po), 

RESULTS AND DISCUSSION 

(i) The spectral intensity of the scattered light 
consists of terms proportional to a 0 

2 and a 2 
2 as 

well as a 0a 2 • The last term does not exist in 
the anisotropic flexible chain, and further in 
rodlike molecules of the length less than the 
wave length of the incident light as treated by 
Pecora. This fact was already pointed out by 
Tagami. 11 

(ii) Pecora2 showed that the isotropic part is 
a single Lorentzian and the anisotrpic part con
sists of five Lorentzian terms in the case of rods 
whose length is short compared with the wave 
length of the light. In larger rodlike molecules, 
however, both the isotropic and the anisotropic 
parts consist of infinite numbers of Lorentzians. 

(iii) The coupling between translational and 
rotational Brownian motions gives rise to an 
effect similar to the spectral intensity for both 
the optically anisotropic and isotropic rodlike 
molecules. 

For numerical calculations one uses the values 
of tabacco mesaic virus, i.e., 3000 A in length, 
150 A in diameter, 390 sec-1 in the rotational 
diffusion constant and 0.3 x 10-7 cm2/sec in the 
translational diffusion constant. The results are 
given in Figures 2-6, where the ordinate scales 
are arbitrary. In Figure 2, one takes B0 =160.4°, 
<fJ0 =0 and a 2/a0 =0 and 0.4, and D1= 1 X 10-7 

cm2/sec. The full and dotted lines show the 
spectra with and without the coupling between 
the translational and the rotational Brownian 
motions respectively. It is clear that, in the case 
of Figure 2, the effect of the coupling is by no 
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®· =160.4° 
D,=390 
IX,=1.0 

23456789 
/Jw 

Figure 2. Spectra of the scattered lights from 
anisotropic rodlike macromolecules compared with 
those from isotropic ones. Full lines: Results 
taking into account the coupling of the rotatory 
and translational Browniam motions, Broken lines: 
Results without taking the coupling into accout. 

2 3 4 

!ID, =118.4' 
l = 0 

5 6 7 
/Jul 

Figure 3. Contribution of the relaxation modes 
l=O and n=O, 2 at Bo= 118.4° to the total spectral 
intensity. 

means negligible and also the optical anisotropy 
gives aise to an increase in the spectral intensity. 
One sees further that the higher the value of 
the diffusion constant D1, the smaller the in
tensity. 

In Figure 3, one takes scattering angle <90= 
118.4° and l=O. The term l=O corresponds to 
the case free from coupling between the trans
lational and rotatory diffusions. The number 
refers to the relaxation mode number, which is 
related to the relaxation time as [D1k 2+D8n(n+ 
l)]-1 • The term for n~4 is negligibly small. 
Figure 4 is the similar one for <90 =160.4° and 
l=O. One sees that the larger the scattering 
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®· =100.4° 
l = 0 

Figure 4. Contribution of the relaxation modes 
l=O and n=O, 2, 4 at Bo= 160.4° to the total 
spectral intensity. 

IID,=O' 
c<,=0.4 
c(,s1.0 

2 3 4 5 6 7 
/1,:, 

Figure 5. Spectral intesity of the molecules with 
different rotational diffusion constants in the 
forward scattering. 

n=2 

!ID, =160.4' 

l = 1 

Figure 6. Contribution of the relaxation modes 
l=l and n=O, 2 to the total spectral intensity. 
The curve for n=2 is drawn ten times larger in 
ordinate than the one for n=O. 
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angle the larger the contribution of the rotational 
relaxation to the total intensity. In Figure 5 
one takes /90 =0°, 11)0 =90° (forward scattering 
with crossed polarizer and analyser), a2/a0=0.40 
and D8 =390/sec or 450/sec. In this case the 
rotational Brownian motion only is observed 
in the spectrum. 9 In general the spectral in
tensity is composed of terms of various sets of 
n and /. In Figure 6, terms for I= 1 and n=O, 
2, are given. Figure 2 is the sum of all (n, I) 
terms. 

APPENDIX A 

A=2B-C 

. l {(3-sin2 190) cos W0 cos 11)0 
2(1-sm /90) cos 1[1"0 

+3 cos /90 sin 11)0 sin 1[1"0 - 2 sin 8 0 cos 11)0} 

B=-2D(a0 +a2/3)-Ca 2 

={2(a0 +a2/3) sin 190 cos a>0} 

a 2 {2 sin 190 cos 11)0 
2(1-sin 11)0 sin W0)2 

-(1 +sin2 /90) cos 11)0 cos l/f0 

-cos /90 sin l/f0 sin a>0} 

M2+A2 

_ ( sinq) 0cosl/f O - sinll) 0sin(9 0 - sin 1/f 0cosq) 0cos(9 0)2 
2(1-sin/90cosl/f 0)2(1 +sin2a>0-2sin80cosl/f 0) 

X {sin3 /90 cos lff0 +sin2 <90(2 sin2 l/f0-l) 

-sin <90 cos lff0 + 1} 

C 2 = 1 {2 sin 190 cos a>o 
4(1-sin 8 0 cos lff0)2 
-(1 +sin2 190) cos 11)0 cos lff0 

- cos (90 sin l/f0 sin 11)0}2 

H 2 = 1 { sin 1/f O cos 11)0 cos <90 
2(1-sin <90 cos l/f0) 

+sin2 8 0 sin a>0 -sin 11)0 cos l/f0}2 

APPENDIX B 

The explicit expressions of the coefficients a;m(P) 
and b;m(P) are given in ref 4, and are written in 
the following way, 

and bnm's are given by replacing cos mrp0 by sin 

Polymer J., Vol. 4, No. 3, 1973 

mrp0 with same coefficients. Also the coefficients 
A~t are defined as follows. For l=O and l=l, 
in particular, 

Ao,o _ 2n+ 1 
m,o-•n~ 

Ao,01 =• ~ll±}_ . _(n=-1-)J_ 
n, n 2ir (n+ l)! 

Ao,o2=• 2n--t_l_ (n-Jl!_ 
n, n 2ir (n+2)! 

A1,1 __ 0 • (n+ l)(n+ 1) 
n+2,o- n n+2 4ir(2n+3) 

A1,0 __ 0 2_!_{ n2 (n+1)2 
n,O- n 4ir (2n-1) + (2n+3) ½(2n+ 1)} 

A~!2,1 = -•n•n+2 2;(2i+3) · 

A~o1=-•n2 f,i::-1)!_{ (n2-l) + n(n+2) 
' 2ir(n+l)! (2n-1) 2n+3 

-+ (2n+l)} 

All 1 ' --e e 
n+ 2 • 2 - n n+ 2 2ir(n+ l)(n+2)(n+3) 

A~o2=-•n2~ (n-2)! { n2-4 + (n-l)(n+3) 
' 2ir(n+2)! 2n-1 2n+3 

-+ (2n+l)} 

where 

1 
Cn==-----

P+Don(n+l) 

APPENDIX C 

Jn= I: i"(s+½)(2ir/krj)112Js+ 1; 2 (krj) 
s,j 

x ~cos2 8P.(cos 8)Pn(cos 8) sin 8d8 

=" r(21r/kr-)112{- (n+l)(n+2) J (kr-) 7' 3 (2n+ 1)(2n+3) n+s/2 3 

+-- --+---1 ( n2 (n+1) 2
) 

2n+l 2n-l 2n+3 

n(n-1) } 
X Jn+ 112(krJ)- (2n-l)(2n+ I/n-s/2(krJ) 

Kn= I: i"(s+½)(2ir/krJ)112Js+1/ 2(kr1) 
s,j 

X ~P.(cos 8)Pn(cos 8) sin 8d8 
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= I; in(2rr/kri)112 J 8+1/2(krj) 
j 

Xn= I; i'(s+½)(2rr/krj)112Js+1/2(krj) 
s,j 

X sin 0 cos 0P,(cos 0)P n\cos 0) sin 0d0 

= I; in(21r/kr/f2 ___ !_. (n+l)! 
i 3 2n+l (n-1)! 

{ 2n+3 
X ---Jn+5/2(krj) 

n+2 

2n+l J (k ) 
+ (2n-1) (2n+ 3) n+l/2 r; 

n-1 · · } 
- 2n~Jn-3/2(krj) 

Yn= I; i8(s+½)(2rr/krj)112J,+1;2(kr;) 
s,j 

x sin2 0Ps(cos 0)Pn2(cos 0) sin 0d0 

= I: r(2rr/kr /12 ___ 1__ (n+2)! 
i 3 2n+ 1 (n-2)! 

X {- ~ 1 JnH!ikrj) 
2n+3 

- - 21211-±J) ···-- J +112(kr-) 
(2n-1)(2n+3) n 3 

- 2n~ 1 Jn-3/2(kr;) } 

where OJ,o is Kronecker's delta function and the 
suffix r in A~i2i,r is defined as, 

for Wn=Jn=Kn 

for Wn=Xn 

for Wn=Yn 

Inparticular for l=O, 

[[J ]] = 2n+ 1 . _ [D0n(n+ I)-I-Dik2] J 
n ° 4rr [D0n(n+l)+Dik2]2+Llw2 n 

[[K]] = 2n+ 1 . 2[D0n(n+ l)-I-Dik2
] K 

n ° 4rr [D0n(n+l)+D/,2]2+Llw2 n 

[[X ]] =~~±_l_. (n-1)! 
n ° 2rr (n+l)! 

2[D0n(n+l)+Dik2] X 
X [D0n(n+l)+Dik2]2+Llw2 n 
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[[Yn]]o = 2n2~ 1 . (n-2)! 
,. (n+2)! 

2[D0n(n+l)-I-Dik2] Y 
X [D0n(n+l)+Dtk2]2+Llw2 n 

For l = 1, the coefficients U/ ( w) are given as 
follows, 

U 1(J)= _ 2(n+l)(n+2) w 
1 4rr(2n+3) 3 

u. \J) = _ _!_{~ + (n+ 1)2 
0 4rr 2n-1 2n+3 

-+(2n+ 1) }w2 

1 2 
U1 (X) = - -2rr(2n+ 3) W2 

U.\X)= _ _!_ (n-1)! { (n-l)(n+l) 
0 2rr(n+l)! 2n-1 

+ n(n+2) - _!_ (2n+ 1) }w2 
2n+3 3 

1 2 
Ui (Y) = - 2rr(n+ l)(n+2)(n+3) w 3 

U. 1(Y) = _ _!_. (n-2)! { (n-2)(n+2) 
0 2rr (n+2)! (2n-1) 

+ (1t_(i~r; 31 - + (2n+ 1) }wa 

where 

2[D0n(n+ l)+Dtk2] 
Ct! - ---"--'--'---'---'-:;-=,'~,---.-

1 - [D0n(n+l)+Dtk2]2+Llw2 

2{[D0n(n+ l)+Dtk2]2-Llw2) 
w2 {[D0n(n+l)+Dtk2]2+Llw2)2 

1 { D 0n(n+l)+Dtk2 
(2n+3)D 0 [D0n(n+l)+Dtk2]2+Llw2 

D 0(n+2)(n+3)+Dik2 } 

[D0(n+2)(n+3)+Dik2J2+Llw 2 
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