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Abstract

The derivation of MMSE estimators for the DFT coefficients ofspeech signals, given an observed

noisy signal and super-Gaussian prior distributions, has received a lot of interest recently. In this letter,

we look at the distribution of the periodogram coefficients of different phonemes, and show that they

have a gamma distribution with shape parameters less than one. This verifies that the DFT coefficients

for not only the whole speech signal but also for individual phonemes have super-Gaussian distributions.

We develop a spectral domain speech enhancement algorithm,and derive hidden Markov model (HMM)

based MMSE estimators for speech periodogram coefficients under this gamma assumption in both a high

uniform resolution and a reduced-resolution Mel domain. The simulations show that the performance is

improved using a gamma distribution compared to the exponential case. Moreover, we show that, even

though beneficial in some aspects, the Mel-domain processing does not lead to better results than the

algorithms in the high-resolution domain.

Index Terms

HMM, super-Gaussian pdf, speech enhancement.

I. INTRODUCTION

Time-frequency domain single-channel noise reduction approaches using super-Gaussian priors have

received a lot of attention during recent years. The real andimaginary parts of the speech (and noise)
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DFT coefficients, for instance, are better modeled with super-Gaussian distributions, e.g. Laplacian and

two-sided gamma distributions, than with a Gaussian distribution [1]. Several approaches have been

proposed to derive MMSE estimators for the DFT coefficients of speech, given the noisy signal, using

these super-Gaussian prior distributions [1]–[3]. In these works the super-Gaussianity is considered for

the long-term statistics of a speech signal and not conditioned on the phoneme type. Hence, an interesting

question is whether this phenomenon depends on the phoneme type.

Moreover, it is important for signal processing algorithmsto investigate the distribution of the speech

and noise DFT coefficients given the so called “hidden state”, which can be considered as the phoneme

type. This can be very beneficial in deriving better estimators in the HMM-based speech enhancement

approaches [4]–[7]. Traditionally, HMM-based noise reduction schemes have been derived by assuming

auto-regressive (AR) models for the speech and noise signals, and then the AR parameters are assumed

to be Gaussian [4]–[6]. Recently, an HMM-based speech enhancement approach was proposed in [8] in

which the DFT coefficients of the speech and noise signals were assumed to be complex Gaussian.

This letter proposes two main contributions:

1) We explore the distribution of the state-conditional speech DFT coefficients. Our experiments show

that phoneme-dependent periodogram coefficients have a gamma (with shape parameters less than one)

rather than an exponential distribution.

2) We extend the HMM-based speech enhancement algorithm from [8] and derive new MMSE esti-

mators for the speech power spectral coefficients using super-Gaussian prior distributions, given the noisy

signal. We assume that the speech power spectral coefficients are gamma-distributed while noise power

spectral coefficients are Erlang-distributed. Our simulations show that the performance of the proposed

denoising algorithm is superior to algorithms using the exponential distribution. Hence, the results support

the super-Gaussianity hypothesis. Furthermore, we compare the performance of the derived estimators in

the high-resolution DFT domain and in the reduced-resolution Mel frequency domain.

II. CONDITIONAL DISTRIBUTION OF THESPEECHPOWER SPECTRAL COEFFICIENTS

In this section, we look at the distribution of the speech power spectral coefficients – estimated using

periodogram or magnitude-squared DFT coefficients – conditioned on the hidden state that can be seen as

the phoneme type. We denote the random variables associatedwith the speech DFT coefficients and their

realizations byŌmt and ōmt , respectively, wherem is the frequency bin andt is the time-frame index.

Moreover, let|·|2 represent the element-wise magnitude-square operator. Let us define the conditional
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Fig. 1. Experimental distribution of the speech power spectral coefficients for two speech sounds “ah” and “sh”. The top panel

shows the estimated shape parameters of the fitted gamma distributions at different frequencies. The bottom panel showsthe

histogram and estimated distributions of spectral coefficients of ”ah” at 2500 Hz (left), and of ”sh” at 6000 Hz (right).

gamma distribution as:

f
(

|ōmt|
2 | S̄t = i

)

=

(

|ōmt|
2
)αmi−1

(bmi)
αmi Γ (αmi)

e−|ōmt|
2/bmi , (1)

where S̄t = s̄t ∈ [1, N̄ ] is the hidden state,αmi and bmi are the state-dependent shape and scale

parameters, andΓ(·) is the complete Gamma function. If̄N =50∼ 60, each state is identified roughly

by one phoneme. For (1), we have:E(|Ōmt|
2 | S̄t = i)=αmibmi and var(|Ōmt|

2 | S̄t = i)=αmib
2
mi.

For αmi = 1, (1) reduces to an exponential distribution. This corresponds to assuming that real and

imaginary parts of the DFT coefficients (Re{Ōmt} and Im{Ōmt}) have a Gaussian distribution. For

αmi < 1, however, the resulting distribution for DFT coefficients will be super-Gaussian, as shown next.

Assuming that Re{Ōmt} and Im{Ōmt} are independent and identically distributed, Eq. (1) leadsto a

gamma distribution for|Re{Ōmt}|
2 and |Im{Ōmt}|

2 with shape parameters equal toαmi/2. This is

because the sum of two independent gamma random variables (RV) with equal scales is a gamma RV.

Then, it can be easily shown that|Re{Ōmt}| and |Im{Ōmt}| have generalized gamma distribution with

ν = αmi/2, γ = 2, β = 1/bmi (see [2] for definition of these parameters), or equivalently, Re{Ōmt} and

Im{Ōmt} have two-sided generalized gamma distributions.

A. Experimental Data

To obtain the experimental phoneme-conditioned distribution of the speech power spectral coefficients,

we used 2000 realizations for each phoneme from the TIMIT database at a sampling rate of 16 kHz. The

waveform of each realization was normalized to have unit variance. To obtain the spectral coefficients,

first, each waveform was windowed into short-time frames using a Hann window with a frame length
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of 20 ms and 50% overlap, and second, the DFT was applied to these short-time frames to obtain the

periodogram.

The top panel of Fig. 1 shows the shape parameters of the estimated gamma distributions for two

phonemes, “ah” and “sh”. The estimation of the shape and scale parameters of the gamma distributions

was done using a standard maximum-likelihood approach independently for each frequency bin. As Fig. 1

shows, the shape parameters for these two phonemes are less than one at all frequencies. In the bottom

panel of Fig. 1, the histogram of the power spectral coefficients of “ah” at frequency 2500 Hz (left) and

of “sh” at frequency 6000 Hz (right) are shown. Also, the estimated gamma and exponential distributions

are shown in Fig. 1 for comparison. As a result, we find that thepower spectral coefficients will have

gamma rather than exponential distributions even if we limit the speech data to come from a specific

phoneme and normalize each realization. Therefore, real and imaginary parts of the phoneme-conditioned

speech DFT coefficients have super-Gaussian distributions. As the top-left panel of Fig. 1 shows, there

are distinct differences between phones: the shape parameters of gamma distributions corresponding to

“ah” are higher at frequencies close to the main formants dueto less variation in the signal energy in

these frequencies. This can be generalized to other vowels as well.

III. HMM- BASED SPEECHENHANCEMENT

A. Speech Model

Besides DFT coefficients, we also consider a more coarse resolution frequency as it reduces the number

of model parameters and smoothes out the signals’ random variations before processing. In this case,

the power at adjacent speech DFT bins is summed to obtainX = [Xkt], with elements representing the

frame band power in analysis bandk, as

Xkt =

mh(k)
∑

m=ml(k)

wm(k)
∣

∣Ōmt
∣

∣

2
, (2)

wherew denotes a set of overlapped triangular filters that approximate the Mel-scale filter bank,ml

andmh represent the band-dependent lowest and highest DFT indices to be summed, respectively. If

ml = mh andwm = 1, we recover the original spectra as:Xkt =
∣

∣Ōkt

∣

∣

2
. The state dependent conditional

distribution ofXkt is now obtained by a slight modification of (1):

f
(

xkt | S̄t = i,Gt=gt
)

=
(xkt)

αki−1

(gtbki)
αki Γ (αki)

e−xkt/(gtbki), (3)

whereGt is a short-term stochastic gain parameter, which is assumedto have a gamma distribution as:

f (gt) =
gφ−1
t

θφt Γ (φ)
e−gt/θt . (4)
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Here,φ is the shape parameter andθt is a time-varying scale parameter, which models the long-term

speech level. Assuming conditional independence of the elements ofXt [1], [2], the HMM output density

functions for a given state can be expressed as:

f
(

xt | S̄t = i, Gt = gt
)

=

K
∏

k=1

f
(

xkt | S̄t = i, Gt = gt
)

. (5)

The sequence of the speech hidden states are characterized by a fully connected first-order Markov model

with transition probability matrix̄a, with elements̄ai′i = f
[

S̄t = i | S̄t−1 = i′
]

, and a time-invariant state

probability mass vector̄p, with elements̄pi = f
[

S̄t = i
]

. The parameters of the speech model denoted

by λ = {ā,b,α, φ, θ} are obtained from training data using the EM algorithm [8]1.

B. Noise Model

Let Ö=[Ömt] denote the noise DFT coefficients. The noise band power spectral vectors,V=[Vkt], are

obtained similarly to (2). The noise signal is modeled usingan N̈ -state HMM with hidden states denoted

as S̈t. The noise power spectral coefficients are assumed to have anErlang distribution which includes

the exponential distribution as a special case and providesa sufficiently accurate fit to the data:

f
(

vkt | S̈t = j,Ht = ht

)

=
(vkt)

βk−1 e−vkt/(htckj)

(htckj)
βk (βk − 1)!

, (6)

whereβk is the state-independent integer shape parameter,ckj is the scale parameter, and ”!” represents

the factorial function. The short-term stochastic gain parameter of the noise is also assumed to have a

gamma distribution as:

f (ht) =
hψ−1
t

γψt Γ (ψ)
e−ht/γt . (7)

The noise Markov chain construction and parameter estimation is done similarly to speech model

(Subsection III-A). The only difference is that after each iteration of the EM algorithm, the shape

parameters are rounded to the closest integer numbers.

C. Speech Estimation: Complex Gaussian Case

This subsection presents a speech enhancement algorithm inthe DFT domain, i.e., a special case of

(2) whereXmt = |Ōmt|
2 andVmt = |Ömt|

2. Assuming that the DFT coefficients of the clean speech

and noise signals are complex Gaussian (αki = βk = 1 in (3), (6)), DFT coefficients of the mixed signal

O, Ot = Ōt+ Öt, will also have complex Gaussian distributions. Let us represent the composite hidden

1The update equation of the speech shape parameters has to be modified slightly to exclude the summation over the states

sinceα are state-dependent.
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state of the mixed signal bySt with realizationsst that can take one of thēNN̈ possible outcomes. Let

σ2Omt
=E(Xmt | s̄t, gt)+E(Vmt | s̈t, ht), which is calculated considering (3) and (6). We have:

f (omt | gt, ht, st) =
1

πσ2
Omt

e
−

|omt|
2

σ2

Omt , (8)

f (ot | gt, ht, st) =
∏

m

f (omt | gt, ht, st) . (9)

To prevent the numerical problems, (9) is computed in the logarithmic domain. We approximate the

state-conditional distribution of the mixed signal by taking a point estimate for the gain parameters (see

[6], [8]), as:

f (ot |st)=

∫∫

f (ot, gt, ht |st)dgtdht≈f (ot |g
′

t, h
′

t, st). (10)

In this letter, we use the mean values of the gain distributions as the point estimates,g′t = φθt, and

h′t = ψγt. θt andγt represent the long-term speech and noise levels, respectively. As it is shown in [8],

the MMSE estimator of the speech DFT coefficients is given by

E
(

Ōt | o
t
1

)

=

∑

st
ζt(st,ot)E

(

Ōt | ot, g
′
t, h

′
t, st

)

∑

st
ζt (st,ot)

. (11)

whereot1={o1, ...ot}, andζt(st,ot)=f(st|o
t−1
1 )f(ot|g

′
t, h

′
t, st). Also,

f
(

st | o
t−1
1

)

=
∑

st−1

ast−1,stf
(

st−1 | o
t−1
1

)

, (12)

with ast−1,st = ās̄t−1,s̄t äs̈t−1,s̈t , and f(st−1 |o
t−1
1 ) is the scaled forward variable. Due to the Gaussian

assumptions, the state-conditional estimates of the speech DFT coefficients are obtained using a Wiener

filter as:

E
(

Ōmt |ot, g
′
t, h

′
t, st

)

=
E (Xmt | g

′
t, s̄t) omt

E(Xmt |g′t, s̄t)+E(Vmt |h′t, s̈t)
, (13)

in which (3) and (6) are used to compute the expected values. Although different functions of the speech

DFT coefficients can also be estimated within the HMM framework [4], we used (13) here since it is a

widely used reference method.

D. Speech Estimation: Erlang-Gamma Case

This subsection presents one of the main contributions of this letter where we derive new MMSE

estimators using super-Gaussian prior distributions. We assume that the speech and noise band powers

are additive, i.e.Yt = Xt +Vt, where the band powers are obtained similarly to (2), andXt, Vt are

assumed to be independent. The additivity assumption is widely used in the literature to circumvent the

difficulty of phase modeling. Here, we derive an MMSE estimator for Xt given that bothX andV are

modeled using an HMM with gamma and Erlang output distributions, respectively. Again, denote the
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composite hidden state of the mixed signalY by S with St = st ∈ [1, N̄ N̈ ]. Although the conditional

distributionf (ykt | gt, ht, st) is not exactly gamma, still a gamma distribution would be flexible enough

to describeYkt practically, and we continue with this approximation for simplicity. Therefore, we follow

a standard moment matching algorithm – up to second order, and considering thatE(Ykt | gt, ht, st) =

E(Xkt | gt, s̄t)+E(Vkt | ht, s̈t), and var(Ykt | gt, ht, st) = var(Xkt | gt, s̄t)+ var(Vkt | ht, s̈t) – to obtain

a gamma distribution to describef (ykt | gt, ht, st). Then, the state-conditional distribution of the mixed

signal is obtained using similar assumptions exploited in (9) and (10).

The MMSE estimate of the speech band powers can now be obtained similarly to (11). Since different

speech band-powers are assumed to be conditionally independent, we now focus on obtainingE(Xkt |

ykt, g
′
t, h

′
t, st). First, note that

f(ykt |xkt,ht,st)=















f(Vkt=ykt−xkt |ht, s̈t) ykt≥xkt,

0 ykt<xkt.

(14)

Using Bayes rule, the MMSE estimate ofXkt is given as:

x̂kt = E(Xkt | ykt, g
′
t, h

′
t, st) =

∫ ykt

0 xktf (ykt | xkt, h
′
t, st) f (xkt | s̄t, g

′
t) dxkt

∫ ykt

0 f (ykt | xkt, h
′
t, st) f (xkt | s̄t, g

′
t) dxkt

. (15)

Exploiting (3),(6), and (14) in (15) yields:

x̂kt=

∫ ykt

0 xαki

kt (ykt−xkt)
βk−1e

−

(

ykt−xkt
h′
t
ckj

+
xkt

g′
t
bki

)

dxkt

∫ ykt

0 xαki−1
kt (ykt−xkt)

βk−1e
−

(

ykt−xkt
h′
t
ckj

+
xkt

g′
t
bki

)

dxkt

, (16)

where we have set̄st = i and s̈t = j to keep notations uncluttered. SinceVkt is assumed to have an

Erlang distribution,βk is integer. Using the binomial theorem, we can write:

(ykt − xkt)
βk−1 =

βk−1
∑

l=0

(

βk − 1

l

)

yβk−1−l
kt (−xkt)

l
, (17)

in which
(βk−1

l

)

is the binomial coefficient. Definezk,ij = 1/(g′tbki)−1/(h′tckj) andakl = (−1)l
(βk−1

l

)

y
βk−1−l

kt .

Since the integration and summation are interchangeable, inserting (17) into (16) yields:

x̂kt =

∑βk−1
l=0 akl

∫ ykt

0 xαki+l
kt e−zk,ijxktdxkt

∑βk−1
l=0 akl

∫ ykt

0 xαki+l−1
kt e−zk,ijxktdxkt

. (18)

In the following, we discuss two special cases for which the integrals in (18) can be solved analytically.

First, for positivezk,ij, we obtain the subsequent closed-form expression:
∫ ykt

0
xαki+l
kt e−zk,ijxktdxkt=z

−(αki+l+1)
k,ij

∫ zk,ijykt

0
uαki+le−udu

= z
−(αki+l+1)
k,ij γ (αki + l + 1, zk,ijykt) , (19)
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where we have definedu = zk,ijxkt andγ(a, y) is the incomplete gamma function [9, eq. 8.350].

Second, when the speech shape parametersαki are integer-valued, we use [9, eq. 2.323] to get the

following closed-form solution for the required integrations in (18):
∫ ykt

0
xαki+l
kt e−zk,ijxktdxkt =

e−zk,ijykt

−zk,ij

αki+l
∑

q=0

(−1)q
P (q) (ykt)

(−zk,ij)
q

+
1

zk,ij
(zk,ij)

−l−αki P (αki+l) (0) , (20)

whereP q(ykt) is theqth derivative ofxαki+l
kt with respect toxkt, evaluated atykt.

If neither (19) nor (20) can be used to calculate (18), the integrals can be tabulated, or they can be

computed online using the stochastic integrations.

The derived algorithm in this subsection provides an MMSE estimator for the speech band powers,

x̂kt. To obtain an estimate of the speech spectral vectors in the original DFT resolution, we first obtain

the gain function at the central frequencies of the bands asκkt = x̂kt/ykt, and then interpolate this gain

values to obtain the high resolution gain vectorκ̄mt, and then speech DFT coefficients are estimated as

κ̄mtomt.

IV. EXPERIMENTS AND RESULTS

The proposed speech enhancement strategies are evaluated and compared at different input signal to

noise ratios (SNR) for different interfering noise types including babble, factory and highway traffic

noises. The speech models are trained using the training data from the TIMIT database while babble

and factory noises were taken from NOISEX-92, and highway traffic noise was taken from Sound-Ideas

database. All of the signals were down-sampled to 16-kHz. The core test set of the TIMIT database (192

sentences) was exploited for the noise reduction evaluation, and the train and test segments of noises

were disjoint. The signal synthesis was performed using theoverlap-and-add procedure using a frame

length of 320 samples with50% overlapped windows and a Hann window. For the speech modelN̄ = 55

states and for each noise typëN = 10 states were trained.

Two objective measures including source to distortion ratio (SDR) and perceptual evaluation of speech

quality (PESQ) were considered for the evaluation. TheSDR andPESQ improvements are averaged over

all of the three noise types and the final scores are shown in Fig. 2. Three algorithms are considered for

comparison. Two algorithms are implemented directly in thehigh-resolution spectral domain, which are

referred as: complex Gaussian (13) and exp-gamma (18 withβk = 1). To evaluate (18), we used either

(19) or (20) whenever possible, and if none of them were applicable, we calculated the integrals using
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Fig. 2. Performance of the proposed noise reduction algorithms averaged over different noise types.

the stochastic integrations. The other algorithm, referred as Erlang-gamma, is implemented in reduced

resolution domain, for which (18) is used.

The presented results in Fig. 2 show that the exp-gamma algorithm is clearly better than the complex

Gaussian, in terms of bothSDR and PESQ. Thus, the simulation results verify the observation from

Section II, and imply that the real and imaginary parts of thespeech DFT coefficients are modeled better

with super-Gaussian than with Gaussian distributions.

The results of the Mel-domain Erlang-gamma algorithm and the DFT domain exp-gamma algorithm are

very close in the sense ofPESQ, but exp-gamma is superior consideringSDR. The benefit of Mel-domain

algorithms is that the random speech and noise fluctuations at different frequency bins are reduced and

smoother signals are fed into the models. Also, the assumption of additive speech and noise band powers

is more justified in this case. On the other hand, due to the reduced resolution, the filter estimation is

less accurate. Informal listening test results were consistent with these objective results.

V. CONCLUSION

In this letter, we aim to investigate the distribution of thephoneme-conditioned speech power spec-

tral coefficients. We looked at the empirical distribution of the periodogram coefficients for different

phonemes, and also we derived new HMM-based speech spectralenhancement algorithms. The empirical

distributions together with the simulation results of the denoising algorithms support our hypothesis that

the power spectral coefficients will rather have gamma distributions with shape parameters less than one

even at the scale of individual phones. For example, using a gamma assumption the source to distortion

ratio was increased up to 0.8 dB compared to the exponential assumption. We also showed that this finding

can be equivalently expressed as the super-Gaussianity of the DFT coefficients for different phonemes.
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