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Abstract: For a bounded open domain ~2 with connected complement in R 2 and 
piecewise smooth boundary, we consider the Dirichlet Laplacian - A o  on ~2 and 
the S-matrix on the complement O c. We show that the on-shell S-matrices Sk have 
eigenvalues converging to 1 as k T ko exactly when - A ~  has an eigenvatue at 
energy ko 2. This includes multiplicities, and proves a weak form of "transparency" 

at k = ko. We also show that stronger forms of transparency, such as Sko having 
an eigenvalue 1 are not expected to hold in general. 

1. Introduction 

In this paper, we consider a simply connected bounded domain ~2 in R 2, with 
piecewise smooth boundary F = 0~2. We establish a correspondence between the 
eigenvalues of the Dirichlet Laplacian in (2, and the S-matrix (also with Dirichlet 
condition) for the exterior domain (2 c. In its crudest form, this relation says that 
k 2 = E is an eigenvalue of  the "inside problem" i f  and only i f  the on-shell S-matrix 
has an eigenvalue 1 a t  that energy. This relation has been conjectured in [DS] and 
subsequently studied numerically in [DS1], [DS2], with an excellent agreement. Fur- 
thermore, in the semi-classical limit, this relation leads to a new derivation [DS] of 
the Gutzwiller trace formula [Gu]. For an exposition of this and related problems 
in quantum billiards, we refer the reader to [S]. One can reformulate the conjecture 
to say that the obstacle is transparent for a carefully selected wave, whenever one 
scatters at an energy which is equal to an eigenenergy of the Dirichlet Laplacian. 
The basic idea of the conjecture is that the scattering wave function and the inside 
eigenfunction are simply one and the same function which happens to vanish on 
the boundary F. It is an easy exercise to check that this conjecture holds for a 
one-dimensional billiard, i.e., for a Laplacian on an interval with zero boundary 
conditions and on its complement IF]. 

However, in 2 or more dimensions, this "inside-outside duality" (or "spectral 
duality") does not hold in the exact form given above, but only in a slightly weaker 
sense. In order to formulate our result, we will need some machinery which is 
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developed below, but we can already describe the main flavor of the statement in 
an informal way: 

1. If the S-matrix has an eigenvalue 1 at some energy E, then this energy is an 
eigenenergy of the inside problem. In this case, the interior eigenfunction can 
be continued to a bounded solution of the Helmholtz equation in the full plane. 

2. If E is an eigenvalue of the inside problem, then for E'  close to, but below, E, 

the S-matrix has an eigenvalue e -2i~(E'), with 0 < O(E') < :r. As E' T E, the 
angle O(E') reaches rc from below. Conversely, if  O(E') Y rt as E' T E, then E 
is an eigenvalue of  the inside problem. 

The formulation given above may seem overly cautious, but the statement covers 
the (probably generic) case when the eigenfunction of the S-matrix does not exist 
for E' = E. Still, for all nearby E' < E there will be eigenfunctions, and the cor- 
responding eigenvalues converge to 1. We will give examples where the S-matrix 
does not have an eigenfunction for energies corresponding to the inside problem, 
because the inside eigenfunction can simply not be extended to the full plane R 2. In 
[B], an example of a domain f2 is given for which the extension of the eigenfunc- 
tion is unbounded. This provides another class of domains for which the S-matrix 
does not have an eigenvalue 1 on the energy shell E. 

This basic idea underlying the analysis is the application of potential theory to 
this problem, combined with some functional analysis. The potential theory aspects 
are exposed for example in [R] or in [KR], but for the convenience of the reader, 
the relevant features of this theory will be explained here. We will connect the 
scattering theory and the eigenvalue problem by expressing both the resolvent of 
the inner Laplacian and the scattering matrix of the outer problem in terms of 
the single layer potential on the common boundary F. We then characterize the 
spectrum of the S-matrix by a variational formula. 

The paper is organized as follows. In Sect.2 we define the S-matrix and we 
formulate the results (Main Theorem). We also give examples for which the S- 
matrix does not have a eigenvalue 1 at E. In Sect.3 we present the potential theory 
aspects of the problem. They involve in particular the Green's function, restricted to 
the boundary of the billiard. We also define a modified S-matrix, which acts on the 
boundary, and which has the same spectrum as the conventional S-matrix. This is 
useful for applications [DS 1 ], [DS2]. In Sect.4 we prove that the boundary restriction 
operator is Fredholm. It is here that the restrictions on the shape of the domain are 
crucial. In Sect.5 we establish a resolvent formula, and express the S-matrix in terms 
of the boundary restriction operator. Equipped with this information, we characterize 
in Sect.6 the eigenvalues of the S-matrix as the solution of a variational problem, 
establishing the spectral duality. 

In a subsequent paper with B. Dietz, U. Smilansky, and I. Ussishkin [DEPSU], 
we plan to give numerical examples of the precise meaning of the Main Theorem. 

2. Definition of the S-Matrix and Statement of the Results 

In this paper, we shall give proofs of the spectral duality for piecewise smooth 
bounded domains ~: 

Definition. A standard domain ~ is a simply connected bounded domain in R 2 

whose boundary F = ~2 is piecewise C 2. By this we mean that F has a finite 
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number of differentiable pieces. Furthermore, we require the angles at the corners 
to be bounded away from 0 and 2re. Finally, we always assume f2 is non-empty. 

Remarks. 

1. We do not assume that (2 is convex, and the difficulties with the spectral duality 
are not related to convexity. 

2. We note the slightly astonishing fact that the proofs given in this paper gener- 
alize with only notational differences to the case of a finite union o f  standard 
domains, replacing F by uN=I/'j. But we really need that R2\~'2 is connected. 

Notation. We denote by Ao the Laplacian in g2 with Dirichlet boundary conditions 
on F, and by o-(Aa) its spectrum. We let f2 c denote the exterior of the billiard and 
Aoc the con'esponding Dirichlet Laplacian. 

We next define the quantum-mechanical S-matrix. For a "free" Hamiltonian H0 
and an interacting Hamiltonian H, it is given by the formula 

S = s-lim e fd t  e -~ ~e iH~ -2iHtei HOt , (2.1) 
el0 0 

where s-lim denotes the strong limit. In our case, -H0 = A and - H  = A~ | A~c. 
By energy conservation S can be decomposed as a sum over the on-shell S-matrices 

Sk which act o n  L 2 of the energy shell Fk = {p E R21p 2 = k2}. A detailed formula 
will be given in the next section. The following lemma describes the eigenvalues 
of the on-shell S-matrix: 

Lemma 2.1. Let (2 be a standard domain, and let k > O. Then the operator 
Sk is unitary with spectrum on the unit circle. It consists o f  eigenvalues o f  finite 
multiplicity, accumulating only at 1. Furthermore, they accumulate there only from 
below. 

Remark. Similar statements can be found in [Y1, Y2, JK]. 

This will be shown in Sect.5. The spectrum is illustrated qualitatively in Fig. 1. 
We next fix k > 0. By the lemma, we can write the eigenvalues of Sk as e-2i~J (k), 
and we order these scattering phases ~gy,j = 0, 1 . . . . .  by 

7l: > ~9 0 ~ 01 ~ ~9 2 ~ - - -  ~ 0 .  (2.2) 

While 0 is always an accumulation point of  the Oj, it might not correspond to an 
eigenvalue. We can now formulate the spectral duality result: 

Main Theorem. Let 12 be a standard domain. Then the following two statements 
are equivalent: 
1. The Laplacian - A o  has an M-fold degenerate eigenvalue k 2. 
2. As k T ko, exactly M eigenphases Oj(k) o f  the S-matrix Sk converge to ~ from 

below. 

If Sk has an eigenvalue 1, then we can state the simpler 

Theorem 2.2. Let Q be a standard domain. I f  the operator Sk,k > O, has an 
eigenvalue 1 o f  multiplicity M with eigenvectors in L2(Fk), then - A ~  has an 
eigenvalue k 2 o f  muttiplieity at least M. Furthermore, the corresponding Dirichlet 
eigenfunctions can be extended to bounded solutions of  the Helmholtz equation in 
all o f  R 2. 
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Reo- 

Fig. 1. The qualitative aspect of the spectrum of the S-matrix. Note that eigenvalue accumulate at 
1 only from below. 

Remarks. 

1. The proofs will be given in Sect.6, by using a variational principle. Our results 
deal with the behavior of  the eigenvalues of  Sk for k </co. Although these 
eigenvalues simply cross 1 for scattering from a circle, numerical studies [EPSU] 
seem to indicate that for a general domain, non-analytic behavior at k = k0 is 

to be expected. 
2. We present the theory only for the case of  Dirichlet boundary conditions. The 

extension to other conditions should be rather straightforward. Also, the study of  
this paper is restricted to 2 dimensional domains. We conjecture that the results 
extend to higher dimensions, but this needs a definition of  standard domains in 
higher dimensions for which the methods of  Sect.4 are applicable. 

3. For a discussion of  some numerical aspects, see the end of  Sect.3. 

As mentioned in the introduction, one could think that spectral duality holds 
in one of the following stronger forms: The inside eigenvalues are in one-to-one 
correspondence with those energies where the on-shell S-matrix has an eigenvalue 
1, or, a specific scattering wave extends to an eigenfunction of  Ao. It has been 
noticed earlier that such stronger forms hold when Q is a disc, an ellipse, or a 
rectangle [DS1, DS2]. We now show that there are domains where for some (or 
all) k 2 E ~r(-A~),  the operator Sk does not have an eigenvalue 1, so that neither 
of  the stronger forms of  spectral duality hold. 

Example 1. The cake. Consider the domain 

Q = {(r, tp) : 0 < r < 1,1~ol < 7c/3}, (2.3) 
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written in polar coordinates. For this domain, a(-Aga) = {k~, n, l,n = 1,2 . . . .  }, where 

kt, n is the n th nontrivial zero o f  the Bessel function j31/2(x) and the corresponding 

eigenfunctions are 

I/ll, n(~" , (+9) ~-- J3 l /2 (k l ,  n r )  �9 cos(3lcp/2). 

When l is odd, these functions do not extend to R 2 because they are not 2To-periodic 
in ~p, and hence Sk+,,, cannot have an eigenvalue 1 by Theorem 2.2. Note that the 

eigenfunctions have their branch points on the boundary of  the domain. In Examples 

2 and 3 below the singularity lies outside the domain. 

Example la. The irrational cake. Consider the domain 

= {(r,  ~o) : o < ~ < 1, I~ol < ~ ) ,  (2.4) 

where v is irrational. Then none of  the inside eigenfunctions (which are still 
explicitly known), can be continued outside. 

Example 2. Smooth boundary. We define 

C(p, 0) = Jv(Icvp). c o s ( v ~ ) ,  

where kv is the first nontrivial zero of  J~. In the sequel, we take v = 3/2, but any 
other non-integer v would be just as good. Note  that p = 0 is a branch point of  the 

cake function C(p,O). We construct a new function, fixing p E ~+:  

p-1  
R(r, qg) = ~ C(p/, O/) . (2.5) 

j=0 

Here, we fix t > 0 and define ~0j = ~o + 2n j /p ,  

xj = t + r cos(q)j),  

yj = r sin(qoj) . 

Finally, 

p/cos(~,/) = x / ,  

p~ sin(~/) = y / .  

Note that pj = 0 if r = t and qoj = ztzn, i.e., if q0 = ( 2 j / p -  1)n. We define the 
curve F as the zero level set of  R near the origin, see Fig. 2. 
Then, R is the Dirichlet eigenfunction with eigenvalue k 2 for the corresponding I2, 
which is smooth and convex, but R has branch points strictly outside O. 

Example 3. Smooth boundary and a dense set o f  singularities. One can construct 
an example with a convex boundary and a set of  singularities which are dense on 
a circle. Let R(r, q)) be the function defined in Example 2 and let F be the zero 
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/ 

/ / ,  

Fig.2. The level curves for the function R defined in Eq.(2.5), for p = 3. We have chosen t = 0.6. 
Solid lines correspond to positive values of R, dashed lines to negative ones, with a level spacing 
of 0.06. The three branch points, with their cuts, are marked by circles. The outermost solid line 
is the boundary of a domain/2 with an interior eigenfunction which cannot be continued into the 
complement /2 c. 

level  curve  o f  this function. F ix  a large radius r0, and enumerate  the rational points  

on this circle, with angles en, n = 1 . . . . .  Def ine  

C(pn, g'n) 
F(r ,  cp ) = n!n! , 

n=0 

where  

and 

x~ = r0 - r cos(q~ - e~) , 

Yn = r sin(q~ - an) , 

p .  c o s ( O . )  = x . ,  

Pn sin(On) = y n �9 

Note  that we  have  Pn = 0 i f  r = ro and ~o = an. Thus, F(r ,  ~ )  has branch points 

at all points  (r0, an), since the sum converges  by the choice  o f  our  very  large 

denominator .  In fact, on every  compac t  set, IFI is un i formly  bounded,  and it is 

analytic for r < ro. For  all e, the funct ion 

K(r ,  ~o) = R(r, qo) + aF(r, q~) 

has singularit ies at the three points determined by R and  on the rational points  o f  

the cirle o f  radius r0. Fur thermore ,  when  e is ve ry  small  the level  zero curve F~ 

o f  K is ve ry  close to F ,  and since F is analytic near  F ,  the curve  remains  str ict ly 

convex  i f  e > 0 is sufficiently small.  Let  s'-2~ be  the domain  whose  boundary  is F~. 

Then K is an e igenfunct ion  o f  - A o ,  with e igenva lue  k2/2 . It cannot  be cont inued 

beyond  the circle o f  radius r 0. 
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3. Potential Theory 

In this section we present notions from potential theory which will be used through- 
out. This allows us to formulate the strategy of the proof, as well as some results 

connected to numerical calculations. After introducing some function spaces, we 
will define the restriction 7 of a function to F, and the "single layer potentials" G~ 
and their very important "boundary restriction" operators Ak. 

The natural spaces on which we consider the problem are L 2 spaces, and Sobolev 
spaces. In order to define these spaces, we introduce a new system of coordinates, 
the arclength along F. We call the corresponding variables s,s I. Thus s varies in 

IL = [-L/2,L/2],  and there is a periodic map x : IL--+ R 2 which maps IL onto 

the curve F C R 2. The space ~ r  is the space of L 2 functions on the boundary 

F, with the measure ds. The Sobolev spaces Jf~r are defined in the usual way: 
Denoting by C3s, the derivative with periodic boundary conditions on IL and setting 
A = (1 + (iOs)2) 1/2, we define, for fi __> 0, 

~Pr = {u ~ ~ r  �9 A~u ~ ~ r }  . 

To simplify notations, we write 

f d s  O(x(s)) = fda( z )O(z )  . 
IL r 

Notation. When no confusion is possible, we write k instead of [k l, for k E ]12, 
and similarly for other coordinates. I f  k2=# 0, then we always tacitly assume that 
k > 0 .  

Notation. The letters u, v,. . .  denote functions on the boundary F, the letters ~p,q),... 
denote functions in R 2 (or in f2, ~2 c), and )~ denotes a function (of p )  on the energy 
shell Fk. 

Definition and properties o f  7 and 7*. The restriction to F & given by 

(7O)(z) = ~(z), when z E F ,  

*U 
(7 , ~')L2(R2~ = fda(z )~(z )O(z)  

F 

For the boundary F of a standard domain ~2 one has the following classical results 
[Ne] for 7: 

and, 

fl 2 1 
? ' H l o o ( R ) ~ Y f r ,  for a l l f l >  g ,  

--fl 2 1 
7"  " ~ '~F ---+ H c o m p ( R  ), f o r  a l l  fi > g , 

i 2 Nol /2  
7 "HIo~(R )--+ ~ r , 

7"  " ~:~71/2 --1 2 --+ Hcomp(R ) ,  

(3.1) 

ker(?*) = {0}. (3.2) 

Here, Hcomp is the subspace of functions with compact support in H,  and Hloc are 
the functions which are locally in H,  see [HI. 
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Definition and properties o f  G~ and Ak. Here, we introduce the central objects, 
the "single layer potential" G and the "boundary restriction" A. We denote by G 
the free space Green's function in R2: 

G(~) = ( -A  - ~)-1 ,  (3.3) 

and, for fixed energy E = k 2, k > 0, 

G~ = G(k 2 4- iO) . (3.4) 

For this operator, one has [H] 

Gff" Hc~m~p(R 2) --~ H, of+2(R2), for all ft .  (3.5) 

Then we define the single layer potentials b y  

(G~u)(x) = f da ( z )G~(x  - z)u(z)  . (3.6) 
F 

In other words, 
G~ i �9 (3.7) = G k 7 �9 

Combining (3.1), (3.5), and (3.7), we see that 

/~ 2 3 (3.8) G~ �9 3/fr Hloc(R ) ,  for all fl < g . 

This means in particular, that G maps to continuous functions. Furthermore, from 
( - A -  ke)G~u = 7*u, we  see that G~u solves the Helmholtz equation in Re\F.  
By Eq.(3.2) it follows that 

ker(G~) = {0}. (3.9) 

Coming back to Eq.(3.8), we can define the "boundary restriction" operator 

(Aku)(z) = (G+u)(z) ,  (3.10) 

for z E F. In other words, Ak = 7G~-7". It follows that 

Ak : ~ r  --+ ~r . (3.11) 

It follows at once from the definition that 

A~ = Ak = 7ak-7*, (3.12) 

where A* is the adjoint and A is the complex conjugate. In Sect.4 we will show 
that for standard domains, one has the stronger result: Ak : Jtfr ~ ~'~. 

It will be important to consider the decomposition of Ak into its real and imag- 
inary parts: 

Ak = Yk + iJk,  (3.13) 

where Yk and Jk are real, self-adjoint operators. This notation reflects the decom- 
position of G into Hankel and Bessel functions: 

G~(x)  = ( i /4)H~(kfx l )  = (i/4)Jo(k[xl) q: (1/4)Yo(klxl) . 

Note that J0 is entire analytic, and Y0 has a logarithmic singularity at 0. 
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Strategy of  proof  and numerical aspects. Our proof  of  the Main Theorem will be 
based on a number of  identities which we now list without specifying domains of  
applicability. Starting with the operator Jk, one can write it as 

Jk = Im Ak = 7 z ~ t ,  (3.14) 

where ~ t  maps functions on the boundary F to functions on the energy shell Fk. 
With these notations we have two important identities: 

1. The on-shell S-matrix St is given by 

St = 1 - 27ziACtA~ -1 5a~ . (3.15) 

2. The eigenvalues of  - A ~  are exactly those k 2 for which Aku = 0 has non-trivial 
solutions. (This is a well-known result from potential theory:) 

Using the intimate relations between L~k and Ak one can define a modified 
S-matrix which acts on functions on the boundary alone, which is given by 

St  = A~Ak -1 �9 (3.16) 

This operator has the same specmma as Sk and seems to be useful for doing 
numerics [DS1, DS2]. 

4. The Fredholm Property of the Boundary Restriction Operator Ak 

In this section we study the operator Ak on the Sobolev spaces "~ r .  We shall use 

mostly the coordinates s E IL, and the map x " IL --~ F C R 2 defined in Sect.3. The 
operator At  has then an integral kernel Ak(s,s ~) (as a map from L2(/L) to itself), 
given by 

A k ( s , s ' )  = C+(x(s),x(s')) 

Recall the decomposition Ak = Yk + iJ~. The main result o f  this section is: 

Theorem 4.1. Let f2 be a standard domain and k > O. Let A = (1 + (i~s)2) U2. 
Then, for all [3 E [0, 1], the operator 

AI-~AkA/~ (4.1) 

is bounded and Fredholm on ~ r  and has index O. Furthermore, one has, for  
fl = 1/2, the representations 

1 
A1/2ykA1/Z = ~1 + B + ,~Uk,1 , (4.2) 

A1/2JkA1 /2  = ~/'k,2 >= 0 . (4.3) 

1 The operator B is independent o f  k, self-adjoint, and bounded, [IBII = r <  ~ 

Finally, J~{'k,1 and s('k,z are Hilbert-Schmidt and they are analytic in {klk c C\0}.  

Corollary 4.2. Let (2 be a standard domain and let k > O. Then Yk = ReAk has 
a finite number o f  negative eigenvalues. 
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Corollary 4.3. Let Q be a standard domain and let k > O. Then 

ker(Aklwr ~) = ker(Ak]jer) , (4.4) 

for all fi E [0, 1]. 

Remarks. 
1. One can express Eq.(4.1) in terms of the spaces JuF r "Ak is a map 

A ~ l x 7 .  ~ - ,  ---+ ~ 1 - ~ .  (4.5) 

Similarly, Eq.(4.4) says that every function in the kernel of A k l ~ y  is in the 

more regular space 9 f t .  

2. If A~l~r~ is Fredholm, this means that A~ -1 is bounded from ~ - / ~  to ~r /~ ,  

whenever ker(Ak) = {0}. It is this property which is used throughout the paper. 
In fact, the proof of Theorem 4.1 will give a rather detailed description of the 
essential spectrum of AA. 

3. The proof of Theorem 4.1 is straightforward, but a little long, and this is due 
to the class of domains we want to handle. For example, if (2 has a smooth 
boundary, then the corresponding result is known, and is spelled out in [R]. On 
the other hand, even in the case we consider, there is a large body of results 
describing the boundary behaviour of eigenfunctions of -Aa .  In particular, the 
lectures of Agmon [A], as well as a lot of subsequent literature (see e.g., [GT, 
Ne]), deal with domains which have the "uniform exterior cone property" and 
our definition of standard domain is a slightly stronger version of this property, 
adapted to the case of 2 dimensions. (The strengthening is that we allow only for 
a finite number of comers). Although the literature contains detailed information 
about the boundary behaviour, we have not been able to extract Theorem 4.1 
from it. Therefore we give here a self-contained proof of Theorem 4.1. 

4. It will follow from the proof that all the bounds are also valid upon replacing 
k 2 + i0 by an arbitrary complex number z # 0. 

Proof o f  Theorem 4.1. The proof will take up most of this section, and its details 
are independent of the other developments of this paper. We omit the index k in 
the sequel. We begin by showing that A �9 9 f r  ---+ g/g) is Fredholm, and we will 
extend this later to arbitrary ft. More precisely, we differentiate and show that 

]i~,[A - L2(ID --+ L2(/D (4.6) 

is Fredholm. 
Since we are interested only in the essential spectrum of li3slA, it is useful 

to introduce the notation ~ for equivalence up to Hilbert-Schmidt operators. Note 
that any piece P of A for which i~sP(s,s') is Hilbert-Schmidt can be eliminated 
[K]. Indeed, if i~sP(s,s') is Hilbert-Schmidt, then ]iOs[P(s,s') is Hilbert-Schmidt 
as well, since Ii0~I = sign(i3s), i~  and sign(i3s) is a bounded operator. 

We start the proof by noting that the Green's function for the Helmholtz operator 
is the Hankel function [AS]: 

A k < s , s ' )  = = 4H <klx(s) - 
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A(s,s ')  = - Z l o g l x ( s )  -x ( s ' ) ]  + V(s,s') ~ A(~ ') + A(1)(s ,s ' ) .  

The function A O) is the sum of  terms of  the form ( x ( s ) -  x ( s ' ) )  2n-2 and log Ix(s) 

-x(s! ) ]  �9 ( x ( s ) -  x(s!)) 2", n > 1, [AS, 9.1.12-13]. Since F is bounded, i8~AO)(s,s ~) 
is bounded as well, and hence A ~ A (~ It suffices therefore to analyze A (~ We 
write it as 

A(~ s') = - Z log lx ( s )  - x(s')l 

~ ~ X(S)--X(S') = A(2) + A(3) " 
- log s in(z(s  - s ' ))  - log sin(~(s - s')/L) 

We want to consider first the term A (2) which will be identified below as the main 
term. We start with some useful identities: 

Lemma 4.4. One has the followin9 identities for the integral kernels: 

1 

lia l-l(s,s !) = - ~ l o g  (4s in2(~(s  - s ' ) / L ) )  , (4.7) 

i 
sign(iOs)(S,S') = ~cot(~(s - s')/L). (4.8) 

Proof We consider on L2(IL) the generator of  translations i8~ with periodic bound- 
ary conditions. An orthonormal eigenbasis is given by the functions (pe(s ) -  
L- 1/2ei27r{s/L, for which iS~q~f ----- - [ .  2~L- 1~o~. Thus, the operator ]i8~] is invertible 
on the orthogonal complement Lz(IL) C L2(IL) of the constant functions. The inte- 
gral kernel of  the inverse is then 

L 
m S - ! [iS, l-l(s,s ') = ~ 0 2 = l f l  ~oE( )cpAs ) = ~-" 1 i 2 [ r c ( s _ s t ) / L  

= ~ ~ t z l  ~-, 1~ ,f + S )  i2~(s-s')/L 
z=e 

The sum is readily evaluated by first considering [z] < 1 and then taking the limit 
and one obtains 

1 ~ l z l  1 1 
~ { _ ~ 1 7 ( ~ - f [ )  = - ~  (log(1 - z) + log(1 - Y ) )  = - log(1 + Izl 2 - 2Rez) .  

When z = e io, this leads to 

l_~+,o~el i~c-- 27r l o g l  (2(1 - cos O)) = - ~ l l o g  (4sin2(O/2)) . (4.9) 

From this, we find Eq.(4.7). Upon differentiating Eq.(4.9) w.r.t, t9 we obtain in 
addition (4.8). The proof of  Lemma 4.4 is complete. 
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We continue the proof  of  Theorem 4.1. By Lemma 4.4, we find 

A(Z)(s,s ' )  = -(2rc)- l loglsin(rc(s  - s')/L)l ~ �89 ') + (2 rc ) - l log4 .  

Therefore, 

Ii~?=IA = 1( 1 -- Pconst) "Jr-Ii~s[ A(3) ~ �89 + liOsl A(3)  , (4.10) 

where  econst is the projection onto constant functions. 

Remark. Although the study of  liO=l is more complicated than that of  los, we have 
preferred it because it leads to the appearance of  the operator �89 in Eq.(4.10). 

We next study A (3). Not all of  its contributions are negligible, and in fact 
the comers play an important role. In order to isolate their contribution, we need a 
variety of  cutoffs. We use a cutoff function h E cg~, which is symmetric, of  compact 
support and equal to 1 near the origin. We start by isolating the irrelevant parts of  

A (3). We have the 

L e m m a  4.5. I f  h has sufficiently small support, then 

i O s ( 1 - h ( s i n ( T z ( S L S ' ) ) ) ) A ( 3 ) ( s , s ' ) ~ O .  

Proof By the chain rule, we find, with f(s - s ' )  = sin(~(s - s')/L), 

7"C 
~3s(1 -- h)A (3) = - ~cos(rc(s - s')/L)ht(~)A (3) q- (1 - h(~))OsA(3)(s, J ) .  

Note that both h ' ( f )  and 1 -  h(f)  vanish near the diagonal s = s ' ,  and that A (3) 

and 0=A (3) are bounded outside any open neighborhood of  the diagonal. Therefore, 

the differentiability of  x(s) away from the comers implies that los(1 - h ( f ) ) A  (3) is 
Hilbert-Schmidt.  The proof  of  Lemma 4.5 is complete. 

Thus, we are led to study A(4)(s,s t) -= h(~(s-s'))A(3)(s, st). We let s j , j  = 

1 . . . . .  N, be the position of  the jth comer. We assume that the support o f  h is 

so small that the h ( f ( s -  sj)) have disjoint supports. We next consider A (4) away 
from the comers, which leads to another irrelevant piece. 

L e m m a  4.6. I f  h has sufficiently small support, then 

iO= 1 --  h ( ~ ( s  t - s j ) )  A ( 4 ) ( s , s  t )  ~,  O .  

Proof By the chain rule, we have 

rC 
0s (1 - ~ h ) A  (4) = (1 - ~ h ) .  ( s  - s')/L)h'(~)A (3) + h(f)O=A (3)) . 

We have already seen above that the first term leads to a Hilbert-Schmidt  operator. 
The second term has support near the diagonal, but away from the comers. We are 
now using that x(s) is cg2 away from the corners. This implies that 

1 1 17r x ( s ) - x ( s ' )  
•sA(3)(s ,  s ' )  = - -~Os og ~ "  sin0r( s _ s')/L) 
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t -~ - - 8  t 

Fig. 3. The coordinate system near a comer of the boundary Y. 

is bounded  away from the comers, and for bounded s, sq (One derivative is used 

to bound the difference quotient, and the second is used by the differentiation w.r.t. 
s.) Thus, the assertion o f  Lemma 4.6 follows. 

Thus, the only relevant term coming from A (3) is A (4) near a comer (and also 

near the diagonal). These "comer terms" are 

B j ( s , s ' )  = h(~(s - s ' )  )" h(~(s'  - s j ) )A(3 ) ( s , s ' )  . 

Since the supports of  the localizers are disjoint for different j ,  and the expressions 
are translation invariant, we may assume without loss o f  generality that sj = 0 and 

we omit henceforth the index j .  We now straighten the edges near the comers as 
follows. We let x• denote the two unit tangent vectors along Y, pointing away 
from s = 0. We set y ( s ) - - s . x + ,  when s > 0 and y ( s ) =  - s . x _ ,  when s < 0. 
Then we define 

~ y ( s )  - y ( s ' )  
B(~ ' )  = - h(~(s - s t ) ) .  h(~(st))log ~ .  s i n - - ~ s -  s ~ )  ' 

which is just like B, but with y ( s )  replacing x ( s )  in the quotient. We can now go 
to the straight coordinates, by virtue of  

Lemma 4.7. One has 

iOs(B(s,s  t) - B(~ ~ 0 .  

P r o o f  The difference o f  the logarithms leads to a term proportional to 

( x(s)- x(,') 
i3sh(r  - s ' ) ) .  h ( ~ ( s ' ) ) l o g  \ y ( s )  - y ( s ' )  J 

The chain rule of  differentiation creates 2 terms, T1 + T2, o f  which the first is 
Hilbert-Schmidt, because it is localized away from the diagonal. 

The second term is more complicated to bound, and makes use o f  the geometry 
o f  a comer, cf. Fig. 3. We study first the second term when ss t < 0. Without loss 
of  generality we consider only the case s > 0, t = - s  t > 0. Denoting ~ the angle 
between the two tangents, we have 

lY(s) - y(t)] 2 = s 2 + t 2 - 2stcos(c 0 . (4.11) 
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Remark. Since we assume the comers have angles for which Icos(e)l < 1-by the 
definition of standard domain-it follows that l y ( s ) -  y(t)l  2 > d(cc)(s2 + t2), with 

d (e )  > O. 
Since x is a ~2 function, we find 

x(s)  - x( t )  2 
y(s )  ~ y ~ - )  = 1 + 0((1=1 + Itl)a)/d(cr 

where the last term is cgl. Therefore, we see that 

( x (=)  - x ( t )  ) 2  
i0slog \y(s)  y( t ) /  -- (9(1). (4.12) 

Therefore, the contribution to T2 from the region s .  t > 0 is Hilbert-Schmidt.  We 
finally estimate the contribution from s .  t < 0 to T2. In this case, the two points are 
on the same side of  the corner, and hence ly(s)-  y(t)l is proportional to I s -  t I 

This leads to a bound 

x ( s )  - x ( t )  = 1 + (9(= - t )  

y(s)  - y ( t )  

and after differentiation, we obtain again Eq.(4.12). The proof  of  Lemma 4.7 is 

complete. 
The upshot of  these calculations is that the only relevant terms modulo Hilber t-  

Schmidt operators coming from A (3) are 

N 
iOsA(3)(s,s ') ~ i~s~B~~ st) . (4.13) 

j=l  

Assuming again that the comer is at s = 0 and omitting the index j', we analyze 

�9 

iOsB(~ ') ~ --~h(~(s - s')). h(~(s')). ~=log " sin(~(s - s')/L)J ' 

since again the term involving the derivative of  h is supported away from the 
diagonal. Finally, to simplify our task, we replace the cutoff function by a simple 
one, modulo Hilbert-Schmidt operators, and redefining h, i f  necessary. Thus, we 

study 

i~sB(~ ~ -~h(s)h(s') 'Osl~ (L"  sin(~(sY(S)---Y(S')- s~)/L) J~ 2 

As a last step, we replace the sinus by a linear function, and thus, we study 

, ,  (4.14) 
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Note now that if  s and s ~ have the same sign, then the argument of the logarithm is 

a constant. Therefore, it suffices to consider the operator B (~ restricted to ss ~ < O. 
A straightforward calculation using Eq.(4.11) shows that in this case 

---~3~log y ( s ) -  y ( s ' )  _ 
S - -  S t 2~i s - s '  2s+s'ei~ } s + ~ e  -i~ (4.15) 27z 

-= C~(s,s'). 

Thus, the reductions done so far show that 

N 

I/asiA ~ 11 + ~ s i g n ( i O s ) h ( s  - s j )h(s '  - s j )C=j(s  - s j , s '  - s j )  , 
j = l  

(4.16) 

where ctj is the angle at the jth comer. We continue by analyzing the opera- 
tor sign(iOs)h(s)h(s~)C~.9 . Before we can do so, we want to simplify the operator 
sign(i~?~), defined in Eq.(4.8). This is achieved by 

Lemma 4.8. The operator  with kerne l  

i 
K ( s , J )  = ~co t ( rc ( s -  s Z ) / L ) h ( s ' ) -  i h(s) 1 

S - -  S I 
(4.17) 

is H i lber t  Schmid t  f r o m  L2(R) to L2(I~). 

P r o o f  Recall that s E IL = [ - L / 2 , L / 2 ] .  Then, we can write 

LCOt(rc(s - s ' ) / L ) h ( s ' )  - i 1 s h(S, ) § h(s')" C(s  - s ' ) .  
7 C S - -  

The second term is clearly the kernel of a Hilbert-Schmidt operator from L2(R) to 
L2(IL ). Therefore, 

i h ( s ) - h ( s ' )  
K ( s , J )  ~ - -  = Kl(S,S') . (4.18) 

7C S - -  S t 

We bound the r.h.s, of (4.18) by considering three regions: 
1. The region where s , s  ~ E supph: There, K1 is bounded, since the h are cgoo. 
2. The region where s ~ E supph, s ~ supph: Again, K1 is bounded. 
3. The region where s E supph, s ~ ~ supph: This is a non-compact piece, because 

s ~ varies in R. But then [Ki(s, st)l <= C ( l y ) ,  and hence the kernel is in L 2. 

Thus, f ~ L d s f ~ _ d s ' ] K ( s , s ' ) 1 2 <  oc, and K is Hilbert-Schmidt. The proof of 

Lemma 4.8 is complete. 
Using Eq.(4.8) and this last lemma, we see that near any comer, 

]i~3s]B (~ = sign(i~s), i0sB (~ ~ sign(iOs)hC~h 

,,~ hPC~(s , s ' ) h  + (KC~)h. 
(4.19) 
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Here h, denotes the operator of multiplication by h, and P is sign(ia,), but 
viewed on L2(R), i.e., the operator whose integral kernel is 

i 1 
P ( s ,  s ' )  - ~ s - s '  

We shall show below that C~ is a bounded operator on L2(R) and therefore (4.19) 
implies that 

Ii0~IB (~ ~ hPC~h*, (4.20) 

where h* is the multiplication by h (viewed as a map from L e ( I L )  to L2(R)) and h 
maps Le(R) ~ L2(1L).  

To study C~ on LZ(R) it is advantageous to identify L2(R) with L2(R +) | 
L2(R+), using the map u ( s )  ~ ( u §  with 

S u + ( s ) ,  when s > 0,  
U(S) 

u _ ( s ) ,  whens  < 0.  

Having gone to unbounded coordinates, we can now use them for an explicit cal- 
culation. We define the self-adjoint generator, D, of the dilatations on R +, 

(eiDt f ) ( s )  = et/2 f ( e t s )  . 

This operator is diagonalized by the Mellin transformation Jd', defined by 

• ~o d S si)~ - 1/2f(  ( ~ f ) ( , ~ )  = s ) .  

Note that Jr L2(R +) + L2(R) is unitary and ~ e  iDt = e i2tJ / l .  With the above no- 

tation, we see that J / C ~ u  is given by 

( ~ C = u ) ~ ( x )  

l l 1 1 ) 
V/-~30"SS JO ~ i  S-t-S ~ -- :s_stei~ -- ~S_ste_i~ u-a(St), 

where a E { + , - } .  Replacing the integration variable s by ss '  and noting that the 
integrand is homogeneous of degree i2 + 1/2 in s', we get 

( ~ r  

aTdssi2-l /2 ( 1 1. 1 1 1 ) ( , / / / ' u _ a ) ( ~ )  

- - ~ r c ~ ( , ~ ) ( ~ u _ ~ ) ( , ~ ) .  

Thus, C~ becomes matrix multiplication under the Mellin transform. We next eval- 
uate the integral c~(2). Note that the integrand is (9(s -3/2) at infinity and (9(s -1/2) 
near 0. Therefore, for large R, we find 

R ( , 1 )  C~(};) = f d S s i ) ~  1 1 _ _  1 _ -1- (~(R - I /2 )  (4.21) 
R_ 1 2rti s + ~  - 7 s - e ia 7 s - e -i= " 
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I m 8  

/ ,  

"~-~ < t%.e~ 

Fig, 4. The contour used in evaluating the integral C~()~) of Eq.(4.21 ). 

The integrand is meromorphic in the annular sector {s : 1/R < Is] < R, arg(s) E 
(0, 2g)}. To evaluate the integral, we consider the contour given in Fig. 4. 
The integral over the circles which are concentric around the origin contributes 
(9(R -1/2) and the integral over the segment 1/R < s < R, a r g ( s ) =  2re equals 
(e2rCi)i2--1/2cc~(,~). Letting R ~ cx~, we obtain 

0 = - c~ (2 )  + ~r 2~iai;'-l/2cj att,OJ 

{s 
i2 - -  1 /2  si)~ - 1/2 

+ ~ Res _ 1 _ _ _ _  
z={e'%e*",e*(2 . . . .  )~ ,=~  \ S 7  ~ ~ ~ -- e*~ 

si;~-l/2 

- - -  � 8 9  �9 

This leads to 

i + sinh((~z - c~)2 - i~/2) 
c~(2)  = 

2cosh(~2) 

Note that c ~ ( 2 ) =  0 when e = ~. We next compute the operator P in the Mellin 
representation [Gr, D]. We find 

( ~ P u ) ~ ( , ~ )  = ~M~,~,(~u)~,( ,~) ,  
O-! 

where the matrix M has elements 

M . . . .  M++ = - tanh(~z2),  

i 
M_+ = - M + _  cosh(~2) 
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Altogether,  we find 

dgPC~ Jr = 

- 1  + is inh(0z - ~)2 - i~/2) 

2coshZ(rc2) 

tanh0z2)  i + s inh((~ - c02 - ic~/2) 
2cosh(~2)  

t anh(~2) t  + sinh(0z - c02 - ic(2) 
2cosh(~2)  

- 1  + is inh((~ - c~)2 - ic~/2) 

2cosh2(7c2) 

The eigenvalues b (~ ,2 )  o f  .MPC~JC{* are then 

b• 2) = - 1  + i s inh((~ - ~)2 - ic~/2) + tanh(~2)  i + s inh((~ - c~)2 - ic~/2) 
2cosh 2(7~2) 2cosh(~2)  

(4.22) 

Us ing  the definit ion of  b• we see that b• 2 ) = / ~ •  Furthermore,  

V/1 § 
Ib• = sinh2(~2) Isinh(( z - c02 - ic~/2)l 2 

2coshZ(rc2) 

cosh((Tr - e )2 )  - cos((~ - c0/2 ) cosh((rc - ~)2)  
= < 

2cosh(Tr2) 2cosh(~2)  
<2'-. 

(4.23) 

We  can now complete  the proof  of  Theorem 4.1. Consider  first Eqs.(4.10),  

(4.16),  (4.19),  and finally (4.20). By Eq.(4.23),  we see that every comer  contributes 

a bounded  piece to li•,lA. Combin ing  all these estimates, we see that Ii0~[A is 

bounded  on 9 f r ,  which means  that A is bounded  from ~ r  to ~ 1 .  

Im O'es s 

/ \ 
/ /  \ 

/ N 

'11 ~ \ " \ \\11 

~\k i//I 

\ I I I  
\ 

Re O'ess 

Fig. 5. The essential spectrum of the operator �89 + B (~ for the case of one corner with c~ = 0.9-2~. 
Note that it lies strictly in the right half plane. In fact we show that for c~ with ]cos(c01 < 1, it 
lies strictly inside the dashed circle. 
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We next determine a bound on the essential spectrum of  ]i0slA. In Fig. 5 

we show the essential spectrum of  �89 + B (~ for one corner, i.e., the set 1/2 + 
b+(e, 2), 2 E R. The curve of  Fig. 5 encloses the essential spectrum of  Ii~}A. 
Note that d g P C ~ *  is normal so we have the estimate 

](f, Pe~f)]  < P(a)I 2 IfklL2(R , 

1 Therefore, denoting by h f  the cutoff of  f near with p(~) = max;~R[b:L(~,2)] < ~. 
a corner, we find 

I(f, hPC~hf)l < p(~)I]hfII2L2(R) ~ p(~)i]fl]  2 = L2(lz) " 

Since the supports of  the distinct B~ ~ are disjoint, we have 

(f '( l iOsl~BJ ~  <= ~j ( f ,h /PC~jhj f )  

= < ~p(c~j)llhjfll 2 = < maxp(~j ) l l f l l  2 L2(1L) ' j : 

where Y is the Hilbert-Schmidt error term. By Weyl 's  theorem [K], it follows that 

(3)-~ = 
ae~s(li0~]A j aess(liOs]A (4)) 

(4.24) 
= aess(li0sl~B5 ~ C {z "lzl < m.axp(~j) < �89 

J 

This implies that 0 ~ aess(li~s]A). 
We can now prove the Fredholm property. By the decomposition Eq.(4.10) and 

by Eqs.(4.13),(4.24) we have 

[i0~IA = �89 + B (~ + 3f/" , (4.25) 

where [[B(~ ~ r < 1/2, and sU is Hilbert-Schmidt. Since A = (1 + (i~s)2) 1/2 and 
li~[ have the same asymptotic distribution of  eigenvalues, their difference is com- 
pact, and therefore Eq.(4.25) implies 

AA = �89 + B (~ + 5U~. (4.26) 

Here, and in the sequel, S 1  . . . .  denote compact operators. The Eq.(4.26) clearly 
implies that AA is Fredholm on W r .  

To see that its index is 0, we note that AA is a compact perturbation of  1 l + B ~~ 
and hence has the same index. But the latter operator has index 0 because its kernel 
and that of  its adjoint are trivial. The proof of  Theorem 4.1 for fl = 0 is complete. 

Note that because the logarithmic term is real, it can only contribute to the real 
part of  A and therefore the proof of  Theorem 4.1 really implies 

AY = 11 + B  (~ + ~ 2 ,  
(4.27) 

AJ  = f 3  - 

We now extend these results to fl ~ [0, 1]. We need some machinery to compare 
AA with AI-BAA]~I 



302 J-P Eckmann, C-A Pillet 

Definition. Let Z be a bounded operator. Then we define its Fredholm radius by 

pF(Z)  = inf IIZ + a~((l[. 
Of :of-compact 

Lemma 4.9. Let  Z be a bounded, selfadjoint operator and let A >= 1 be a positive, 

selfadjoint, possibly unbounded operator. Assume that Z maps into the domain o f  

A, i.e., 

Ran(Z) C D ( A ) .  

Then, f o r  all fl E [0, 1], the operator A I - # Z  A ~ is bounded, and 

pF(AI -#Z  A ~) <= pF(AZ) . (4.28) 

Postponing the proof of this lemma, we continue the proof of Theorem 4.1. Con- 

sider Z = A-1B (~ Then p F ( A Z ) = r  < �89 by Eq. (4.24). The lemma implies 

1 Similarly, choosing Z = A-lff{'2,3 we pF(A-PB(~ ~) = pF(A1-13Z AB) = r < ~. 

obtain p F ( A - ~ f 2 , 3 A  ~) = 0. Acting with A - # . A  ~ on Eq. (4.27), we get imme- 
diately 

A I - ~ Y A  ~ = 11 + B# + J[:4  , 

(4.29) 

A~-BJA  ~ = J{'5 , 

where B~ = A-~B(~ ~ has norm bounded by r < 1/2, and 2U4, •5 are compact, 

and analytic in k. Thus, A l - ~ A A  ~ has the same properties as those shown for 
fl = 0. The proof of Theorem 4.1 is complete. 

Proo f  o f  L e m m a  4.9. The proof is an application of analytic interpolation methods. 
Let F = A Z. This is a bounded operator, and thus Z A extends to the bounded 
operator F*, which we write again as F* = Z A, by a slight abuse of notation. By 
interpolation, the operator 

F(f i )  = A I - ~ Z  A 1~ , fl C [0, 1], 

also extends to a bounded operator, and IIF(/~)[I _-< I[FII. Since A it is unitary, for 
real t, we have the same bound for F(w) ,  where w E S = {0 < Re(w) < 1}. For 
u, v E D(A), the matrix elements 

(U, F ( w ) v )  = (A 1- r u, Z AWv) 

are analytic in w in the interior of the strip S and by density, this is also true for 
arbitrary u, v. Hence, F ( w )  is weakly analytic, and therefore norm-analytic in the 
interior of S. 

Consider next the resolvent 

G(w, z)  = (z - F(w))  -1 . 

For [z I > IIF[I, this is an analytic function of z which satisfies the identities 

G(w, z ) A  -w = A-wG(O, z)  = A-W(z  - F )  -1 , 

A-(1-W) G( w, z) = G(1, z )A -O-w)  = (z - F * ) - a A  -O-w)  . 
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Thus, the arguments above allow us to conclude that, G(w, z) is analytic in 

W0 -= {Rew E (0, 1)} • {Izt > IIF]I} �9 

Furthermore, the matrix elements f (w,  z) = (u, G(w, z)v) are continuous in 

W -= {Rew C [0, 1]} x {Izl > IIFI[} �9 

Choose now a p > pF(F). Then the functions f(it, z) and f (1  + it, z) are mero- 
morphic in {Izl > p}, with poles of order vj at points zj,j = 1 .... ,N. Define next 

N 
g(w, z) = I-[(1 - zj/z), e(W-1/2)2f(w, z ) .  

j=l 

Then g is analytic in W0, continuous in W, and analytic in {Izl > p} when w = it 
or w = 1 + it. Furthermore, as w ~ cc inside the strip S, we have the bound 

g(w, z ) :  (9(e-/Imw[2). Therefore, the Cauchy integral yields 

g(w,z )= 1 ~ d t ( 9 ( l + i t ' z )  g(it, z)~ 
2Jz_~ \ I - - w S r ~  + w - i t  J" 

Thus, this analytic completion argument shows that g is analytic in the envelope 
S • {Izl > p}. Thus, f is meromorphic in the same domain and thus aess(F(w)) N 
{Izl > p} = 0. Since p > PF was arbitrary, the assertion of Lemma 4.9 is proved. 

Proof of Corollary 4.2. By Eq. (4.2), we know that 

A1/2yA1/2 = �89 + B + ~1 , 

1 where � 8 9  > ~ - r  > 0. Therefore, the subspace on which the form 

(u, A1/2yA~/2u) is negative definite has finite dimension. The subspace on which 
(v, Yv) = (v,A-V2A1/2yAV2A-1/Zv) is negative has the same dimension, and hence 
Corollary 4.2 follows from the minimax principle. 

Proof of Corollary 4.3. It clearly suffices to show that ker(A[wrl)  C ker(Alwr),  

since ~(r D ~f r .  Since A* = k, by Eq. (3.12), we have 

(Alxr) *=  XI .F, �9 

By Theorem 4.1, we also have index(AI~r) = 0, and since it is preserved by con- 

jugation, index(AIgr)  = 0. From ker(A) = ke~(A), we have 

dim ker (Al~ r , ) = dim ker (( Alter )*) = dim ker ("~]~r) 

= dim ke~ (A]xe r)  = dim ker (AI.m r ) .  

The proof is complete. 

5. The Relation Between Ak and the Dirichlet Boundary Value Problems 

In this section, we establish the relations between the boundary restriction Ak, the 
spectrum of Ao, and the on-shell S-matrix. 
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Definition and properties of  the restriction to the energy shell. We recall that the 
energy shell is Fk = (p  C R21p 2 = k2}. We define the restriction Zk to the energy 
shell Fk : 

(Sk~)(p)  = f d2ye- ipy~(y) ,  when p E Fk , 
R 2 

(Z~Z)(x) = fdtt(p)eipXz(p),  when x E R 2 . 
Fk 

Here, d/~ = (4zc)-ld~o, where (p is the angle on the circle Fk. We will use the 
following facts about these operators, which follow easily from the definition: 

* fl 2 S k �9 L2(Fk) ~ H1oc(R ), forall fl > 0 ,  
(5.1) 

~k : Hcomfip(R 2) --+ L2(Fk), for all fl > 0.  

Furthermore, S~ has trivial kernel, 

ker (S;)  = {0}. (5.2) 

We can now combine the actions of 7 (defined in Sect. 3.) and Z into the 
operator 5~: 

Definition and properties of  ~ k  and ~gg~. We define 

S k  = SkT* �9 

The properties of 7 and ~k then imply 

~ek : ~ r  ~ L2 (Fk )  , 
(5.3) 

L;~ : L2(Fk) --+ J f r  . 

Since Fk is bounded, it follows from the definitions that one has the stronger pro- 
perties 

5e~ : LZ(Fk) --+ ~ ,  
(5.4) 

5r : ~ r  ] --+ L2(Fk) �9 

The next lemma relates L.cek to the imaginary part Jk of Ak. 

Lemma 5.1. Let f2 be a standard domain. For all k > 0 one has the identity 

Jk = ~ S e k .  (5.5) 

Proof Let u E H r .  By definition, J = Im(A) = (2i)-l(A - A*). Therefore, 

(u, Ju) -- Im f da(z) da(z') fi(z) G;(z - z') u(z') . 
F 

Since Im ( ( - A -  (k2+ i0)) ' )  - -7z&(-A-  k 2) - -C,  this implies 

(u, Ju) = f da(z ) da(z') fi(z) C(z - z') u(z') . (5.6) 
/- 
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Going to Fourier transforms, we see that this implies 

(u, Ju )  f d 2 p f d ~ ( z )  ' " ' = da(z  ) e  -tpz fi(z')O(p 2 - k2)eipZu(z) (5.7) 
F 

Going back to the definitions of  7 and S, one sees that (u, Ju )  = zc(7*u, S*S7*u),  
so that (5.5) follows. The proof  is complete. 

L e m m a  5.2. Let  k > O. The following kernels coincide: 

ker(Ak) = ker(A~) = ker(Jel~rL/2 ) = ker(Skla%q/2 ) . (5.8) 

Proo f  The properties of  ker(Ag)  are described in Corollary 4.3, and Eq. (3.12) 

says that (A[aer)* = A [ x r l .  Therefore ker(A) = ker (A*) .  

By definition, we have J = Im (A). We first show that Au = 0 implies Ju  = 0. 
Indeed, Au = 0 implies u E J f r  and Ira(u,  A u ) =  0, that is, (u, J u ) =  0. Since 
a = n=f*LP this means [[~u][ = 0. Thus, ~?u = 0 and therefore Ju  = 0, as asserted. 

Assume next Ju  = 0 and u E J f r  1/2. Then, by Eq. (3.1), one has 7*u E Hcolp(R2). 

1 U On the other hand, ~( , Ju )  = (u, ~ * 5 ~ u )  = [[5r 2 = 0, and therefore 5~u = 0. 

Denoting the Fourier transform of  ~ by ~, we consider 

( 7 * u ) ( p )  = f d~(z)e- ipZu(z)  . 
F 

Since (7*u) is the Fourier transform of  a distribution with compact support, it is 

entire and bounded on R 2. Since ~~ = 0, we find ( 7 * u ) ( p )  = 0 when p is on the 
energy shell Fk. Thus, we can divide by p2 _ k 2 and we see that 

1 �9 A 

( G ~ - u ; ( p ) -  p 2  k 2(~ u) ( p )  

--I 2 is defined and is in L2(R2), since 7*u E Hcomp(R ). Note now that + G k u is a solution 

of  the Helmholtz equation and is in L2(R2). Therefore, it must vanish at infinity and 
hence on all of  (2 c. (Here, we make  use o f  the assumption that (2 ~ is connected.) 
But this means Aku = 0. The proof  is complete. 

Remark.  It follows from the proof  that Aku  = 0 implies that 

4, + = G k u = G~-u (5.9) 

vanishes on the complement of  f2. 

We can now establish a resolvent formula for the Dirichlet problem. We use 
the notation G = ( - A  - z) - i  and G~ = ( - A o  - z) -1. 

Theorem 5.3. Let  (2 be a standard domain, and let z = k 2 + iO. Then 

Go �9 Goc = G -  GT*Akl7 G . (5.10) 

Proo f  We take z = k 2 + i t l ,  1/ > 0. Let ~ E L Z ( R  2) and define q ) = ( G -  

G y*(TGT*) - lGy )~ .  The operator gGT* is Fredholm from JC~r 1/2 to ~ r  , by the 
Remark 4 following Corollary 4.3. Note further that 

ImTG7* = 7 t/ 
( - A  - k2) 2 -}- 1'/2~* 
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7/~I/2 so that it is strictly positive by Eq. (3.2). Therefore, (7G7") -1 exists and maps ~o r 

to ~/fr 1/2. Combining this with Eqs. (3.1) and (3.5) we see that qJ E Hi(R2). By 

construction, ( -A  z)q~ = ~ on R2\F  and 7~o = 0. Thus, the r.h.s, of Eq. (5.10) 
is equal to Go | Ga~. The proof is completed by noting that 

limTGT* = Ak �9 

Lemma 5.4. Let P denote the orthogonal projection onto ker(Ak) C ~f  r. Then 
the operator 

OkPAkPlk=ko (5.1 1 ) 

is positive (on ker(Ak0)). The residue of A[  1 at ko > 0 is given by 

res Ak -1 = P(~3kPAkPIk=k0)-IP- (5.12) 

Proof. Let u E ker(Ako), u ~ 0. We denote f = 7*u. We have already argued above 

that PAkP is analytic. Using scalar products in J f r  and in L2(R2), as adequate, 
we have 

G(k 2 + iO) - G(k 2 + iO) 
Ok(u'Aku)lk=k~ = k--+kolim u, ~ k - - k o  ?*u J 

= k~kolim ~,~o+olim (u, 7 G(k2 +ie)'G(k2k~koo +ie~ 

= lim lim ( k - k o  ie))G(k2+ie~ 

= lim lim G(k 2 + i e ) f , ( k + k o ~ - t - ) G ( k g + i e o ) f  - X  
k-~ko e,eo+ O k - ko " 

By the remark after Lemma 5.2 we know that G~ou vanishes in f2 c. Therefore, 

G(kg + ieo)f ~ G+ou, weakly in L2(R2), and it follows that 

X =  k~k01im l i m ( G ( k Z + i e ) f , ( k + k o + i k  e_-@oo)G~u) o ] 

Noting again that Gk+u vanishes in f2 c, and furthermore that G(k 2 - ie)f  ---+ G[u 

in LZoc(R 2), we can get rid of the limit z ~ 0. Thus, X is equal to 

lim (G[u,(k + ko)G+o u) = 2ko(G~ou, G+ou) . 
k--+ k 0 

(5.13) 

Gk0 . Therefore, (5.13) is equal Since Ak0 u = 0, we know by Eq. (5.9) that G~0u = +u 
to 

+ + + 2 2ko(Gkou, Gkou ) = 2koHGkoUll > 0 .  

The last inequality follows from Eq. (3.9). The proof of the first statement of 
Lemma 5.4 is complete. 
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To prove the second part, we define Q = 1 - P. Then, 

Ak = (PAkP | QAkQ) + (PAkO + QAkP) �9 

A *  = By Lemma 5.2, we have k e r ( k o )  -- ker(Ako) and therefore, AkoP ---- 0, and PAko 

(AkoP) = 0. Furthermore, PAkQ and QAkP  are analytic in k, so that 

IlPAkO + QAkPI[ = (9(k - k0). 

Letting e = k - ko, we find, in matrix notation, 

A k = ( ( k - k o ) P A 2 o P  0 ) + ( (0(,8 2) (0(s 
0 QAko Q , (9(s) (9@)} �9 

A simple calculation leads to 

k ~ A  t ~ - 1  
( A k ) - l = ( ( ( k -  ~ k0 r )  ~ ) + ( 9 ( 1 ) .  

The proof of Lemma 5.4 is complete. 

Lemma 5.5. I f  u E ker(Ak0) then ~ = G k4-u is an eigenfunction o f  - A o  with eigen- 

value kg. This correspondence is bijective, i.e., 

d imker ( -Ao  - kg) = dim ker(Ako) . 

Proof  Let Rko denote the residue of A~ l at k = k0. By lemma 5.4, we have 

Ran(Rk0) = ker(Ak0). The spectral projection onto the eigenspace - A a  correspond- 

ing to k0 2 is given by the residue of the resolvent. By the resolvent formula, this is 
equal to 

G4-7" RkoYG~ k 0 

4- , 
Since G~0 7 is injective by Eq. (3.9), the assertion follows because Rko is positive. 

Proposition 5.6. Le t  k > O. 

is given by 
Then the S-matrix, restricted to the energy shell Fk, 

S~ = 1 - 2~i~('kA~15~ . (5.14) 

Remark. By Eq. (5.4), S *  maps to ~,o~. Therefore, by Theorem 4.1 and Lemma 5.5, 

A-1L~ * is a bounded operator when k 2 r a(--AQ). Furthermore, this extends to all 
k > 0 by Lemma 5.2. Thus, Sk is defined on LZ(Fk) for all k > 0. 

Proo f  We apply the resolvent formula (5.10). As is well known, see e.g., [N], 
taking limits in Eq. (2.1), leads, for k, k t E R 2, to 

(klglk') = b(k - k ' )  - 2~zib(k 2 - k '2 )<klTik I Ik'), (5.15) 

where T is the T-matrix. It is defined as the solution of 

G~ | Goc = G - Gy*Tk7G, (5.16) 
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when z = k 2 § i0. By the resolvent formula, one obtains 

Tk = (?G(k 2 + i0)7") -1 = Ak -1 �9 (5.17) 

Since the restriction Xk to the energy shell satisfies A~ = ~k7*, substitution of 
(5.17) into (5.15) leads to the desired result. The proof of Proposition 5.6 is com- 
plete. 

Proof of Lemma 2.1. We use the representation Eq. (5.14) for the S-matrix. The 
unitarity follows from Lemma 5.1 by a simple calculation. We next show that the 

spectrum of Sk can only accumulate at 1. To see this, consider s162 *. By 

the remark following Proposition 5.6, A-~SP * is bounded, and by Eq. (5.4), ~ is 
compact as a map from H e  to LZ(Fk). Hence Sk - 1 is compact. We finally show 
that the eigenvalues accumulate at 1 only from below. By Eq. (5.14), we have 

Im Sk = - 2 ~  5~ Re (A-  1 )Ao. = _27r 5~(A*)- 1YA-15~* . 

We denote by Y+ the positive part of Y and we let Y_ = Y - Y+. Then, 

- I m  (Sk) = 2 ~ A O ( A * ) - I y + A - 1 y  * + 2 ~ 5 ~ ( A * ) - 1 Y - A - 1 5  ~ = Ip + I/ '  . 

The operator Ip is positive by construction and I f  is finite rank, by Corollary 4.2. 
Note that the sum of two such operators can have at most as many negative eigen- 
values as the rank of the second one, as follows by writing the eigenvalues as the 
solutions of a minimax principle: 

2n+ 1 = inf sup (lit, (Ip + I f ) 0 ) .  
E,dim E=n 6EE, llgql_ l 

Indeed, if  d is the rank of I f ,  we can find a ~ orthogonal to the range of I f  as soon 
as d imE > (,  and then the supremum above is non-negative. Hence there can be 
at most d negative eigenvalues, as asserted. Thus, we have shown that the number 
of scattering phases in the upper half plane is bounded by the rank of I f ,  and is 
finite. The proof of Lemma 2.1 is complete. 

6. Proof of  the Main Theorem by a Variational Formula 

In this section, we prove the Main Theorem and Theorem 2.2. 

Proof of Theorem 2.2. This proof is relatively easy, because in this case the exis- 
tence of the eigenfunction of Sk is part of the assumption. Assume Sk)~ = )~, Z # 0, 
for some )~ C LZ(Fk). Let P be the orthogonal projection in Yfr  onto ker(Ak) and 
set Q = 1 - P. Then, by Proposition 5.6 and the remark following it, we have 

~ k Q ( Q A k Q ) - I Q ~ ; z  = O. (6.1) 

We next show that ~ Z  = 0. Indeed, ke r (~k )  = ker(Ak), by Lemma 5.2, and, by 

the construction of Q, Eq. (6.1) implies (QAkQ)-IQ~s z = 0. A similar reasoning 
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then implies QSP~Z = 0, and finally 5e~)~ = 0. But this means that 7S~Z = 0, by 
the definition of 5r We now claim that 

O(x) = (S~z)(x) = f d#(p)eipXZ(p) (6.2) 
F~ 

is the desired eigenfunction. First ~ ~ 0 because S~ is one-to-one by Eq. (5.2). 

Clearly, ~ solves the Helmholtz equation in all of R 2 by construction. Since 
7Z;Z = 0, it also satisfies the Dirichlet boundary condition. Furthermore, it can- 
not vanish on an open set, because of unique continuation. Applying the Schwarz 
inequality to the integral in Eq. (6.2), we see that ~ is uniformly bounded. This 
completes the proof of Theorem 2.2 for the case of a simple eigenvalue. In the case 
of an eigenvalue with multiplicity M, one repeats the above calculation for M lin- 
early independent vectors Zj. Using again Eq. (5.2), we see that Eq. (6.2) produces 
M independent eigenvectors. The proof of Theorem 2.2 is complete. 

Remark. It follows from this proof that k 2 r tr(-Aa) implies ker(oC, C~) = {0). 

Proof of  the first half of  the Main Theorem. Here, we show that existence of 
eigenvectors implies convergence of eigenphases. We are going to use a minimax 
principle on the cotangents of the scattering phases. We use the definition of the 
Oj from Eq. (2.2). Let E, C ~ r  denote an n dimensional subspace of -~r.  

Theorem 6.1. Let g2 be a standard domain and let k 2 (~ a(-Aa). For j > 0, the 
cotangent of the scattering phase Oj(k) of Sk is given by 

(u, Yku) 
cotOj(k) = inf sup . (6.3) 

E/+l u~ej+l (u, Jku) 

Proof It is useful to consider the Cayley transform Xk of Sk, given by 

Xk = i(1 + Sk)(1 - Sk) -a . (6.4) 

For k 2 ~ a(-Ao),  Theorem 2.2 says that 1 ~ a(Sk). Therefore Xk has dense domain 
D(Xk) = Ran(1 -Sk ) .  Since Sk is unitary, it follows that Xk is self-adjoint [Ru, 
Theorem 13.19]. Using the spectral mapping theorem we obtain: 

Lemma 6.2. Let s be a standard domain, and let k 2 r tx(-Ao). Let O E (0, n) 
be given. Then e -zig is an eigenvalue of Sk of multiplicity M if and only if cot 0 
is an eigenvalue of multiplieity M of Xk. 

We introduce the polar decomposition of L~: 

Lemma 6.3. For k 2 r a(-Aa)  there is a unitary operator Uk : • r  ~ L2(Fk, d#) 
for which 

~ G  = u~I~GI ,  j~/2 = ~/~I~GI �9 (6.5) 

Proof The existence of a polar decomposition is well known [K, 6.2.7]. We have 
already shown that k 2 r a(-A~)  implies ker(5~ = ker(Sr = {0}, and therefore 
Uk is not only a partial isometry but in fact unitary. The proof is complete. 

We continue the proof of Theorem 6.1. The two lemmas above allow us to give 
another characterization of cot v~j(k), which we will use to derive Eq. (6.3). Having 
established that only a finite number of scattering phases are in (7r/2, ~), we first 
observe that the spectral mapping theorem implies that Xk is bounded below, and 
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has a finite number of negative eigenvalues. Since Xk is self-adjoint and bounded 
below, the usual minimax principle [RS, Vol. IV Theorem 13.1] says that 

( f ,  X k f )  
cot zgj(k) = inf sup - -  , (6.6) 

E}+I CD(Xk) J'CE~+ 1 ( f ,  f )  

where the infimum is taken over the j + 1 dimensional subspaces E~+ I of D(Xk) C 

L2(Fk) (and the supremum only over non-zero f ) .  We now show, through a straight- 
forward calculation, that Eq. (6.6) implies (6.3). If f is in D(X~), then, by the 
definition of Xk and the representation (5.14) of Sk, we have 

f = 2~iS~kA~ 1 54'~Z, 

where Z E L2(Fk). Therefore, 

X~f  = 2i(1 - iTz &~ l 5r )Z �9 (6.7) 

We omit the index k in the following calculations, and we consider only j = 0, to 
simplify the notation. Combining Eq. (6.6) with (6.7), we see that 

cotO0(k) = inf (2rriA~ 2i(1 - i~zSfA-lge*)Z) 
z~LZ(F~) (2~riAVA -1 5~*Z, 27zi:~aA-1&o*Z) 

Using the polar decomposition Eq. (6.5), 5 r  UlLf I 7r-1/2Uj1/2, we can rewrite 
this as 

cotO0(k) = inf (J1/ZA-1j1/Zu" (1 - iJ1/ZA-1j1/Z)u) 
uCe~r (J1/ZA-1j1/2u, J1/ZA-1j1/Zu) 

We next set v = A-~jI/2u. Then, 

cot ~0(k) --- inf 
uE)f  F 

(J1/2v, u - ij1/av) 

(Jt/2v, J1/Zv) 

= inf (v, J1/2u-iJv)  
~ x >  (v, Jr) 

= inf (v, A v - i J v )  inf (v, Yv) 
:+/+r (v, J r )  u ~ r  (v, Jv) " 

Since Ak is bounded, we have ker((A; l )  *) -- {0). For k 2 ~ a ( -Aa) ,  Lemma 5.5 

and Lemma 5.2 imply ker(Jk) = {0}, and we find that ker(j~/2(A-1) *) = {0}. 

Therefore, A-Ij1/2yt~r is dense in gt~r and 

inf (v, Y v ) _  inf (v, Yv) 
uC~fr (v, Jv) ~C~r (v, Jv) 

The proof of Theorem 6.1 is complete. 
We continue the proof of the first half of the Main Theorem. We consider 

a k0 > 0, for which ko 2 c a ( -Ao)  is an M-fold eigenvalue and we denote by P 
the orthogonal projection onto ker(Ak0) C gt~r. This kernel is M-dimensional by 
Lemma 5.5. 
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Let next u E ker(Ak0). We will show that there is a C > 0 for which 

(u, Vku) < ___c_c  (6.8) 
(u, Jku) = k 0 - k '  

when k < k0. Letting k T k0 and observing that (6.8) holds for every u E ker(Ak0), 
the first half of the Main Theorem follows. In order to show Eq. (6.8), we note that 
since PAkP is in fact analytic in k, because the integral kernel of Ak is analytic 
and P is finite dimensional by Theorem 4.1, we have 

k ' (u, A~u) = (u, PAkeu)  = (u,P((k - o)Ako + [9(@ - ko)2))pu) 

= ( k  - k o ) ( u ,  PA~oPU) + C((k - ko)2)llufl 2 

By Lemma 5.4, and since the kernel of Ako is finite dimensional, there is a CI > 0 
for which 

/4: / PAkoPu ) > clt lul l  2 

Therefore, when k < ko, we have 

' p  
(u, Yku) = Re(u, Aku) = (k - ko)(u, PAko u) + (9(@ - ko)2)llull 2 

< q ( k  - k o ) l l u l l  ~ + O ( ( k  - k o ) = ) l l u l l  2 , 

(u, Jku) = Im (u, Aku) <= C2(k - k 0 )  2 . 

Therefore, using (u, Jku) > 0, and k < k0, we see that the quotient satisfies 

(u, Yku) < CI(N - -  ko)llull z .  (1 + (9(k - ko)) < C 1  1 (1 + C(k - No)) 

(u, Jku) = (u, Jku) = C2 k - / c0  ' 

from which the assertion Eq. (6.8) follows at once. 

The second half o f  the proof  o f  the Main Theorem. Here, we assume that, as 
k T k0, there are exactly M eigenvalues e-2izgJ (k) of Sk which converge to 1 from 
the upper half plane and show that k0 2 is an M-fold eigenvalue of - A o .  

By the variational principle, there is, for each k, an M-dimensional subspace 
E~ C fit'r, such that 

(u, Y~u) 
sup < - 2 k ,  (6.9) 
.~Ek (u, & u )  = 

and 2k-+ cc as k ~ oo. Let now Pk denote the orthogonal projection on the 

M-dimensional subspace A-~/2Ek, where A = (1 + (iSs) 2) 1/2. It follows from (6.9) 
that 

PkA1/2ykAI/2pk < O, (6.10) 

lim pkA1/2JkAU2p k = 0.  (6.11) 
k tko 

Let Q~,k denote the spectral projection of A1/2ykAU2 corresponding to ( - ~ , ~ ] .  
By Eq. (4.2) one can choose s > 0 in such a way that this projection is finite 
dimensional and analytic in k for k near/co. From Eq. (6.10), we obtain Ran(Pk) C 
Ran (Q~,k) and hence 

Qs, kPkQ~,k = Pk �9 (6.12) 

Taking a weakly converging subsequence, w-lim~--.~Pk~ = P ~ ,  Eq. (6.12) implies 
that lim~o~Pk, = Po~ holds in fact in the norm topology. Therefore, Por is an 
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orthogonal projection on an M-dimensional subspace o f  ~ r .  It follows further 
from Eq. (6.11) that this subspace is in the kernel o f  A1/2JkoA1/2. Therefore, 

dim ker (Jko [j{~l/2 ) ~_ M .  

We complete the proof by using Lemma 5.2, which implies 

dimker(Ak0) > M .  

Thus, by Lemma 5.5, there are at least M eigenvectors of  - A o  with eigenvalue k 2. 

The proof o f  the second half of  the Main Theorem is complete. 

Sketch o f  the connection between Eq. (3.15) and (3.16). We have shown 
Eq. (3.15) in (5.14). Since we assume that k 2 r  o-(-Ao) ,  we can write 5r = 

Uk[~k[, with Uk unitary, by Lemma 6.3. Therefore, for any u E ~((r, we have, 
omitting the subscript k, and with scalar products in Jt~r, 

(U u, S~U u) = (U u, U u) - 2~zi(U u, 5 r  u) 

= (u, u) -27z i (5 (*Uu,  A - 1 S * U u )  

= (u, u) - 2~zi([~[u, A -1 [~L~[u) 

= (U, u) -- 2i(J1/2u, A-1j1/2u) 

= ( v , J - l v )  - 2i(v, A - a v )  

= (Aw, J - 1 A w )  - 2i(Aw, w) 

= (Aw, J - l ( A w  - 2iJw)) 

: (Aw, S-1 (Yw - iSw)) 

= (Aw, J -1A*w)  = (v , J -1A*w)  

= (U, J-1/ZA*A-1j1/Zu) 

= (u, J-1/2Sj! /2u) ,  

where v = j1/2u, and w = A - i v .  
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