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Abstract—The tradeoff of spectral efficiency (b/s/Hz) versus en-
ergy-per-information bit is the key measure of channel capacity in
the wideband power-limited regime. This paper finds the funda-
mental bandwidth–power tradeoff of a general class of channels in
the wideband regime characterized by low, but nonzero, spectral
efficiency and energy per bit close to the minimum value required
for reliable communication. A new criterion for optimality of sig-
naling in the wideband regime is proposed, which, in contrast to
the traditional criterion, is meaningful for finite-bandwidth com-
munication.

Index Terms—Antenna arrays, channel capacity, fading chan-
nels, noisy channels, spectral efficiency, wideband regime.

I. INTRODUCTION

SHORTLY after “A Mathematical Theory of Communica-
tion,” Claude Shannon [1] pointed out that as the bandwidth

tends to infinity, the channel capacity of an ideal bandlimited ad-
ditive white Gaussian noise (AWGN) channel approaches

(b/s) (1)

where is the received power and is the one-sided noise
spectral level. Since capacity is monotonically increasing with
bandwidth , the right-hand side of (1) is the maximum rate
achievable with power . Moreover, communicating at rate,
the received signal energy per information bit is equal to

(2)

and since the maximum value of is the right-hand side of
(1), the minimum received signal energy per information bit re-
quired for reliable communication satisfies

1.59 dB (3)

Gaussian inputs are not mandatory to achieve (1). In 1948,
Shannon [2] had already noticed that for low signal-to-noise
ratios, binary antipodal inputs are as good as Gaussian inputs
in the sense that the ratio of mutual information to capacity
approaches unity. Since then, this criterion (which can be
rephrased as the input attaining the derivative of capacity
at zero signal-to-noise ratio) has traditionally been adopted
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as a synonym of asymptotic optimality in the low-power
regime. Using this criterion, Golay [3] showed that (1) can
be approached by on–off keying (pulse position modulation)
with very low duty cycle, a signaling strategy whose error
probability was analyzed in [4].

Enter fading. Jacobs [5] and Pierce [6] noticed not only that
(1) is achieved if all the energy is concentrated in one message-
dependent frequency slot, but also that the limiting rate in (1)
is unexpectedly robust: it is achievable even if the orthogonal
signaling undergoes fading which is unknown to the receiver (a
result popularized by Kennedy [7]). Since only one frequency
(or time) slot carries energy, this type of orthogonal signaling
not only is extremely “peaky” but requires that the number of
slots grows exponentially with the number of information bits.

Doppler spread or a limitation in the peakiness of the orthog-
onal signaling can be modeled by letting the signal-dependent
waveform at the receiver have a given power spectral density

, shifted in frequency by an amount that depends on the
message, with different shifts sufficiently far apart to maintain
orthogonality. In this case, the infinite-bandwidth achievable
rate was obtained by Viterbi [8]

As we saw in (3), determining the infinite-bandwidth capacity
is equivalent to finding the minimum energy per bit required to
transmit information reliably. To obtain this quantity, we can
choose to maximize the information per unit energy in con-
trast to the standard Shannon setting in which the information
per degree of freedom is maximized. Motivated by the opti-
mality of on–off signaling in the infinite-bandwidth limit, Gal-
lager [9] found the exact reliability function in the setting of a
binary-input channel where information is normalized, not to
blocklength, but to the number of “’s” contained in the code-
word. More generally, we can pose the “capacity per unit cost”
problem where an arbitrary cost function is defined on the input
alphabet [10]. An important class of cost functions are those
which, like energy, assign a zero cost to one of the input sym-
bols. For those cost functions, the capacity per unit cost not only
is equal to the derivative at zero cost of the Shannon capacity but
admits a simple formula [10]. Even in this more general setting,
capacity per unit cost is achieved by on–off signaling with van-
ishing duty cycle.

A wide variety of digital communication systems (particu-
larly in wireless, satellite, deep-space, and sensor networks)
operate in the power-limited region where both spectral
efficiency (rate in bits per second divided by bandwidth in
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hertz) and energy-per-bit are relatively low. The wideband
regime is an attractive choice because of power savings, ease of
multiaccess, ability of overlay with other systems, and diversity
against frequency-selective fading. The information-theoretic
analysis of those channels, in addition to leading to the most
efficient bandwidth utilization, reveals design insights on good
signaling strategies.

From the existing results we could draw the following con-
clusions about signaling and capacity in the wideband regime.

• On–off signaling approaches capacity as the duty cycle
vanishes.

• The derivative at zero signal-to-noise ratio of the Shannon
capacity determines the wideband fundamental limits.

• Capacity is not affected by fading.

• Receiver knowledge of channel fade coefficients is use-
less.

• An input whose mutual information achieves the deriva-
tive of capacity at zero signal-to-noise ratio is wideband
optimal.

These conclusions and design guidelines have been drawn in
the literature in the natural belief that infinite-bandwidth limits
are representative of the large (but finite) bandwidth regime of
interest in practice. However, in this paper, we show that those
conclusions are misguided as long as the allowed bandwidth
is finite, regardless of how large it is. Indeed, operation in the
regime of low spectral efficiency does not imply disregard for
the bandwidth required by the system. Thus, we will see that
design guidelines obtained by infinite-bandwidth analyses need
not carry over to the wideband regime.

It follows from (1) that to achieve a given rate bits per
second in the AWGN channel (or any other channel that attains
the same limiting capacity (1)), we require power

(4)

However, this minimum power is sufficient only provided that
infinite bandwidth is available. Thus, in addition to transmitter/
receiver complexity, attaining (1) or (3) entails zero spectral ef-
ficiency. If we are willing to spend more power than (4), then
the required bandwidth is finite. However, even in the wide-
band regime neither the limits in (1), (3) nor the derivative of
the Shannon capacity at zero signal-to-noise ratio determine the
bandwidth-versus-power tradeoff. Of course, the solution can
be found from the full Shannon capacity function for arbitrary
signal-to-noise ratios. Unfortunately, the capacity function and
the inputs that attain it are unknown for many channels of in-
terest, particularly in the presence of fading (cf. [11]). Even for
channels whose capacity is known for all signal-to-noise ra-
tios, no method is available to establish the bandwidth–power
tradeoff in the wideband regime. In this paper, we show that
it is possible to obtain analytically the fundamental limits of a
general class of additive-noise channels in the wideband regime
in which the spectral efficiency is low but nonzero. These re-
sults offer engineering guidance on the fundamental bandwidth–
power tradeoff and on signaling strategies that attain it in the
wideband limit.

The tradeoff bandwidth versus power is mirrored in the
tradeoff of the information-theoretic quantities: spectral effi-
ciency and (energy per bit normalized to background
noise spectral level). Our approach for the wideband regime
is to approximate spectral efficiency as an affine function of

(decibels). Thus, we are interested in obtaining not only
but thewideband slopeof the spectral efficiency–

curve in bits per second per hertz per 3 dB (b/s/Hz/(3 dB)) at
. Spectral efficiency in the wideband regime turns out to

be determined by both the first and second derivatives of the
channel capacity at zero signal-to-noise ratio.

Section II sets up the general fading channel model we con-
sider in this work. Section III gives the basic relationships be-
tween , signal-to-noise ratio, capacity, and spectral ef-
ficiency. Section IV is devoted to the problem of finding the

required for reliable communication. It establishes, in
considerably wider generality than was previously known, that
the received energy per bit normalized to noise spectral level in
a Gaussian channel subject to fading is1.59 dB, regardless of
side information at the transmitter and/or receiver. In Section IV,
we also show that if the channel is known at the receiver almost
any input signaling achieves . Otherwise, it is necessary
(and sufficient) to use a generalized form of on–off signaling
with unbounded amplitude, which we refer to as flash signaling.
Whereas the required transmit depends on the transmitter
side information but not on the receiver side information, Sec-
tion V shows that the wideband slope depends crucially on the
receiver side information. We show in Section V that the tradi-
tional optimality criterion (attaining the first derivative) is not
strong enough to withstand the test of spectrally efficient finite-
bandwidth communication. We propose a new asymptotic opti-
mality criterion whereby both the first and second derivatives at
zero signal-to-noise ratio are required to be optimal. Under this
optimality criterion, the spectral efficiency is maximized in the
wideband regime. If the receiver knows the channel, quadrature
phase shift keying (QPSK) is shown to be wideband optimal.
Receiver knowledge of fading coefficients is shown to have a
deep impact on both the required bandwidth and the optimal
signaling strategies. When the channel has an unknown compo-
nent, approaching turns out to be very demanding both
in bandwidth and in the peak-to-average ratio of the transmitted
signals. The kurtosis of the fading distribution plays a key role in
determining the wideband capacity of the fading channel when
the receiver is able to track the channel coefficients. Several new
results on the spectral efficiency of multiple-access and multi-
antenna channels are also given in Sections IV and V.

II. CHANNEL MODEL

In this paper, we deal with additive-noise channels in a gen-
eral setting which allows other random channel impairments
such as fading. Consider the following discrete-time channel
with complex dimensions:

(5)

where the real and imaginary parts of the noise components are
independent and satisfy

(6)
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is an complex matrix whose random coefficients have
finite second moments, and are independent ofand .

Model (5) encompasses channels that incorporate features
such as multielement antennas, frequency-selective fading, mul-
tiaccess, and crosstalk. In each of those cases,and take
different meanings. For example, they may be the number of
receive and transmit antennas, or the spreading gain and the
number of users, or they may both represent time (or frequency)
slots. When several of those features are present at the same
time, it may be more convenient to use matrices or higher dimen-
sional objects to represent the input and output quantities. Fur-
thermore, it is often sensible to decompose wideband channels
into parallel noninteracting channels. For the sake of simplicity,
we restrict ourselves to memoryless channels in this paper; the
extension to channels with memory should follow well-known
methods (e.g., [12]), in which the number of dimensions grows.
Furthermore, in those cases whereis random, we assume that
its variation from symbol to symbol is ergodic, so that averaging
capacity expressions over has operational significance.

We will consider a variety of special cases of (5) depending
on the transmitter/receiver knowledge of, its statistics, and
the statistics of the background noise. When transmitter and/or
receiver do not know , we assume that they know its prior
distribution. We also evaluate the penalty incurred by not using
this prior information at the transmitter. By “knowledge of the
channel at the receiver” we imply that the realization ofat
each symbol is known at the receiver. An interesting generaliza-
tion, which is not treated in this paper, is to let both transmitter
and receiver have access to noisy observations of.

The discrete-time channel (5) arises, for example, from the
analysis of the continuous-time channel

(7)

where is white noise with power spectral density , and
the information-bearing received signal is a channel-dis-
torted version of the transmitted signal. If the effective duration
and bandwidth of are and , passing through an or-
thonormal transformation with complex dimensions is
sufficient to preserve all the information (asymptotically). Thus,
if we denote the number of bits encoded in by , the number
of bits per second per hertz is equal to the number of bits per di-
mension .

III. SPECTRAL EFFICIENCY VERSUS

Let denote the transmitted energy per information bit, in
the same units as , which we can take to be Joules for the
sake of concreteness. The key design quantitiesbandwidth
(Hz), transmitted power (W), anddata rate (b/s) satisfy
the relationships

(8)

and

(9)

where we have denoted

spectral efficiency (b/s/Hz)

Since the required bandwidth to transmit data ratewith power
is given by

(10)

the maximization of the spectral efficiency function is a central
goal.

Whereas the spectral efficiency as a function ofis defined
for any system with given , , , simply through (8) and
(9), this paper focuses on the maximum achievable spectral effi-
ciency (under various constraints of transmitter/receiver knowl-
edge and input signaling). Since each secondhertz requires
one complex dimension, the (maximum achievable) spectral ef-
ficiency is equal to the conventional channel capacity measured
in bits per channel use.1 Usually, to obtain channel capacity, it
is convenient to place a constraint, not ondirectly, but on the
energy transmitted per symbol vector , or equivalently
on its normalized version

(11)

(12)

(13)

(14)

where is equal to the number of bits encoded inwith a
capacity-achieving system and Shannon’s capacity function

(bits/dimension) of the discrete-time channel (5) gives
the maximum number of bits per complex dimension achiev-
able under the constraint of arbitrarily reliable communication
(vanishing block error probability). It follows that the spectral
efficiency– function can be obtained from Shannon’s
capacity via2

(15)

where is the solution to

(16)

Equivalently, from (15) and (16), the required to achieve
spectral efficiency equal to is equal to

(17)

where denotes the inverse function of .

1The spectral efficiency achieved by a nonideal practical signaling scheme in
which each complex dimension occupies� seconds� hertz is equal to capacity
divided�.

2The choice ofC and avoids the abuse of notation that assigns the same
symbol to capacity functions of and , while at the same time it is ad-
visable not to depart from common usage and denote both functions with the
initial of capacity.
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The spectral efficiency function in (15) represents b/s/Hz, as
long as each complex dimension in (5) takes 1 shertz. How-
ever, this is not always the case. For example, if (5) models the
signal received at an -element antenna array (e.g., [13]), the
whole -dimensional vector occupies 1 s hertz, in which
case, the units of are b/s/Hz/(antenna element).

Analytically, the versus spectral efficiency characteristic
is of primary importance in the study of the behavior of required
power in the wideband limit (where the spectral efficiency
is small). As we will see, in the very noisy regime, a first-order
analysis of the capacity versus the function is good enough
to provide , but fails to reveal the first-order growth of the
spectral efficiency versus .

Even though the goal, as stated above, is to find the best
tradeoff betweentransmittedenergy per information bit and
spectral efficiency, it is also useful for the sake of comparing
results obtained for different channels to represent the funda-
mental limits in terms ofreceivedenergy per information bit

(18)

Note that, in general, the channel gain de-
pends on the input distribution.

Since the explicit solution of (16) is not always feasible, ex-
plicit expressions for the spectral efficiency versus func-
tion are relatively rare. Fortunately, as we will see, in the low-
spectral-efficiency regime, it is possible to sidestep not only the
solution of the nonlinear equation (16) but even the computation
of . A notable exception that admits an explicit expres-
sion for versus spectral efficiency is the deterministic
Gaussian channel with either white or nonwhite noise:

Additive White Gaussian Noise (AWGN) Channel.

(19)

(20)

where is an arbitrary deterministic complex scalar known at
the receiver and is Gaussian. In this case, the capacity per
dimension

(21)

has a straightforward inverse function. Thus, the transmitted
required to achieve a given spectral efficiency (17) is equal to

(22)

which in terms of received energy per bit is

(23)

Fig. 1 compares the capacity (21) (achieved with Gaussian
inputs) with the mutual information achieved by binary phase
shift keying (BPSK) and by QPSK whose input distributions are

(24)

Fig. 1. Capacity achieved by complex Gaussian inputs, QPSK, and BPSK in
the AWGN channel.

Fig. 2. Spectral efficiencies achieved by complex Gaussian inputs, QPSK, and
BPSK in the AWGN channel.

and

(25)

respectively. Observe from Fig. 1 that both BPSK and QPSK
satisfy the traditional wideband optimality criterion, namely,
they achieve the same derivative at as the capacity.
Unfortunately, this criterion does not withstand the test of finite
bandwidth analysis, since in the complex-valued channel BPSK
requires twice the bandwidth of QPSK for any given power and
rate, as can be seen in Fig. 2.3

Deterministic Channel With Colored Gaussian Noise.
If the channel matrix is constant over time, known at both

transmitter and receiver, and the noise covariance is

(26)

3Note that BPSK is as efficient for real-valued channels (arising in baseband
or single-sideband communication), as QPSK is for complex-valued channels.
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Fig. 3. Spectral efficiency of the AWGN channel and its wideband
approximation.

then the water-filling representation for (e.g., [14]) leads
to the explicit expression

(27)

where are the ordered version of the reciprocals of
the nonzero eigenvalues of the matrix

To conclude this section, we formalize the performance mea-
sures of interest in this paper.

Our approach is to analyze the first-order behavior of the
spectral efficiency versus function in the wideband limit

(28)

where denotes the minimum required for reliable
communication, and denotes the slope of spectral efficiency
in b/s/Hz/(3 dB) at the point

(29)
The rationale for this first-order analysis is illustrated in

Fig. 3, which compares the exact spectral efficiency with
its wideband approximation for the AWGN channel. The
approximation is an excellent one well beyond the wideband
regime. For example, at spectral efficiency equal to 1 b/s/Hz,

0 dB, whereas the wideband approximation gives
0.09 dB.4

4The wideband approximation is optimistic for the AWGN channel, and pes-
simistic for many fading channels of interest.

Simply using (8), we can generalize (4) to write the minimum
transmit power required (with infinite bandwidth) to sustain data
rate as

(30)

The bandwidth required to sustain a given ratewith trans-
mitted power , can be approximated in the wideband
regime by the formula

(31)

(32)

(33)

where (31) follows from the affine approximation to spectral ef-
ficiency, (32) follows from the linear approximation to

, and (33) follows from (30).
Recent results on the slope b/s/Hz/(3 dB) of various fading

channels in the region of high spectral efficiency can be found
in [13], [15], and [16].

IV. M INIMUM

A. Background

Since is a monotonically increasing concave function,
(16) results in

(34)

(35)

where

derivative at of computed in nats/di-
mension.5

Several tools to analyze were developed in [10] in the
general context of memoryless channels. In particular, it was
shown in [10] that if is the input symbol alphabet, and the
cost function is such that there is a zero-cost symbol
(denoted by “”), i.e., , then the capacity per unit cost
is equal to

(36)

where denotes the divergence between distributions
and , and denotes the conditional output distribution
given input . The foregoing optimization problem has several
appealing attributes.

• It is often easier to compute than Shannon capacity.

• Divergence is between conditional output distributions in-
stead of a conditional divergence (mutual information).

5In this paper, in addition to logarithms in basee, base2, and base10, we
use logarithms with arbitrary base. When no base is indicated the logarithms on
both sides of the equation have identical bases.
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• Optimization is over the input alphabet instead of over the
set of distributions defined on it.

• Low duty cycle on–off signaling is asymptotically (as the
duty cycle vanishes with the allowed ) optimum with
on-level at the argument that maximizes (36).

• It shows a connection between information theory and es-
timation theory. Suppose and

(37)

(38)

with Fisher’s information

The Cramer–Rao bound together with (38) implies that the
minimum energy necessary to transmit 0.5 nats0.721 b
cannot exceed the minimum conditional variance of an
estimate of the input from the output given that the input
is .

Except for the different normalization, the sought-after
is given by a formula akin to (26). It is shown in [10] that

(39)

(40)

(41)

(42)

where stands for the distribution of conditioned
on , and in particular stands for the distribution of.
Equation (41) is nontrivial and follows from the approach taken
in [10]: no loss of optimality is incurred (as far as the first deriva-
tive at is concerned) by restricting to have the following
on–off structure. Fix and let be with probability and

with probability , with vanishing proportionally to
according to

(43)

We note that a more careful notation would reserve
to the case where the receiver does not know

the channel, and would use to denote the
mutual information when the channel is known at the receiver.
Although in (40) and the sequel we have chosen not to make
the distinction explicit, we should keep in mind that when
the channel is known at the receiver, mutual informations and
divergences are obtained by averaging conditional expressions
over the channel statistics.

B. AWGN Channel

As an example, let us compute (42) for the AWGN channel.
Since the noise components in (20) are independent and iden-
tically distributed, it suffices to take a scalar channel model

. The following well-known formula for the divergence
between the distributions of complex-Gaussian random vari-
ables will be useful. Let denote the distribution of a
complex Gaussian random variable with meanand indepen-
dent real and imaginary components each with variance ,
i.e.,

Then

(44)

Using (44) with

we obtain

(45)

Therefore, for the AWGN channel the ratio on the right-hand
side of (42) is independent of . Evaluating the divergence in
nats we get

(46)

and (via (35))

(47)

implying the well-known result (cf. (3))

1.59 dB (48)

which can be obtained directly by letting in the explicit
formula (22).

C. Fading Channels With Additive Gaussian Noise

In this subsection, we show that (48) is the required received
of a very wide class of fading channels with background

Gaussian noise.
We saw in (18) that the received and transmitted energies per

bit are related by the channel gain. The maximum channel gain

(49)

achievable over all choices of the input depends on the knowl-
edge available at the transmitter. We highlight a few special
cases of interest.

• The transmitter knows . Then

(50)
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with denoting the largest singular value, and the (es-
sential) supremum on the right-hand side is over all real-
izations of . Note that to obtain this channel gain, “power
control” is required, whereby the instantaneous norm of
is allowed to depend on the channel realization. In effect,
the transmitter only puts energy in the maximal-eigen-
value eigenspace of and only when the maximal
eigenvalue is the best possible over all realizations. Note
that in the special case of the flat-fading scalar
channel where the fading distribution has infinite support
(such as Rayleigh).

• The transmitter knows the maximal-eigenvalue
eigenspace of but not the maximal eigenvalue.
(Equivalently, the transmitter knows the channel but it is
not allowed to employ power control.) Then

(51)

• The transmitter does not know but it knows its distribu-
tion. Then, the input distribution is not allowed to depend
on , and the channel gain is

(52)

with denoting the largest eigenvalue.

• The components of the input are constrained to be inde-
pendent with equal power. This constraint is common in
multiantenna systems and in multiaccess channels. Then

(53)

Theorem 1: Consider the -dimensional complex channel

(54)

where the complex Gaussian vectorhas independent and iden-
tically distributed components and satisfies (6). Then, regardless
of whether is known at the transmitter and/or receiver, the re-
quired received and transmitted energy per bit for reliable com-
munication satisfy

1.59 dB (55)

and

(56)

respectively, where is the maximum channel gain.
Proof: According to (18) and (35), our goal is to show that

(57)

and that there is an input distribution that achieves both
and the maximum channel gain.

Immaterial for the result, the nature of the receiver knowl-
edge is crucial for the proof. First consider the case whereis
known to the receiver. Although in this case we can write the
input–output mutual information in closed form, we will follow

the general approach outlined in Section IV-A. When the re-
ceiver knows the channel, the conditional output distribution is
Gaussian

(58)

To compute (42) we need to use the generalization of (44) to
multidimensional proper6 complex Gaussian distributions with
independent components

(59)

Applying (59) to (58), we get that for all and

(60)

Following (41) we get (in nats)

(61)

As we saw before, the actual value ofwill depend on the avail-
able knowledge at the transmitter. Note that in the case where
the transmitter knows the channel realization and it is allowed
to do power control, we do not enforce a constant energy con-
straint in order to maximize mutual information. This requires
a slight generalization of the conventional setting whereby the
energy constraint is an auxiliary random variable dependent on
the channel realization.

With receiver knowledge, the input distribution that achieves
both and is a Gaussian distribution with covariance dic-
tated by the solution of the maximal channel gain problem. In
general, the desired input distribution can be constructed by
on–off signaling where is ob-
tained by solving the maximal channel gain problem.

Now, we turn to the case where is unknown to the receiver.
Instead of the full generality of the theorem statement, we as-
sume, for now, that the coefficients of are jointly Gaussian.
In this case, the conditional output distribution is still Gaussian

(62)

where

and we have denoted the conditional covariance

(63)

6In the sense of [17].
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With (62) and (59), we get

(64)

Note that the second term on the right-hand side of (64) is equal
to .

Proceeding as before we get

(65)

as we wanted to show. To write (65) we have used the fact that
the solution to the maximal gain problem is scale invariant. So
we can amplify by a factor large enough to render the nui-
sance term on the left-hand side of (65) as small as desired be-
cause of the logarithmic increase of its numerator.

Finally, we lift the restriction that the channel coefficients
(unknown to the receiver) are Gaussian, which was, in fact, a
worst case restriction. If the “true” conditional output distribu-
tion is denoted by , let us denote the Gaussian distribu-
tion with identical mean and covariance by . In partic-
ular, note that

We can write the divergence of interest as

(66)

because the expectation of the log-likelihood ratio in the first di-
vergence of the right-hand side only involves the second-order
statistics. Since the second divergence in (66) is nonnegative,
the case of Gaussian channel coefficients unknown to the re-
ceiver is indeed the least favorable. But even in that worst case
we were able to achieve the same expressions for as in
the (best) case where the receiver knows the channel perfectly.
Thus, Theorem 1 follows.

The special case of Theorem 1 merits particular
attention

(67)

where the deterministic component is denoted byand the
zero-mean random componenthas variance . In this case,
regardless of transmitter/receiver knowledge of channel coeffi-
cients and the distribution of those coefficients, we get

(68)

Special cases of Theorem 1 dealing with the scalar channel have
appeared in the literature. In addition to the references cited
in Section I, the case , with fading known at
the receiver, (55) was explicitly stated in [15], [18]. The scalar
real-valued channel, with fading unknown at both transmitter
and receiver, appears in [10] in the context of capacity per unit
cost. The derivative of capacity of the multiantenna channel with
independent data feeding different antenna elements was shown
to be given by (53) in [13, eq. (11)].

The fact that with full channel knowledge at the transmitter
and power control, the transmitted can be made as small
as desired in the infinite-support scalar flat-fading channel was
shown in [15]. In fact, [15] shows that property even if the fading
coefficients can only be tracked coarsely. This is another illus-
tration of a case where the conclusions derived from the analysis
of spectral efficiency versus are quite different from those
drawn from a cursory analysis of .

The restriction in Theorem 1 to independent and identically
distributed noise components is not a critical one, of course, as
the observation basis can be changed to force that condition.
Naturally, care should be taken interpreting the results, asin
the traditional meaning of measures the total received noise
power (cf. (6)); but if the noise components do not have equal
strength, the is actually dictated by the lowest strength
component. To illustrate this point, it is best to consider the spe-
cial case , and independent noise components. The fol-
lowing result is a straightforward application of the above tech-
niques.

Theorem 2: Consider the -dimensional complex channel

(69)

where the complex Gaussian vectorhas independent compo-
nents with variances

such that

The required for reliable communication is

(70)

The fact that we no longer get is just an artifact of the
meaning of . In fact, the received energy per bit divided by
the noise energy restricted to the dimensions used by the optimal
signaling, continues to be1.59 dB.

D. Additive Non-Gaussian Noise

Theorem 1 shows that 1.59 dB is an extremely
robust feature of channels where the additive noise is Gaussian.
In fact, it can even be generalized to certain nonlinear channels.
Even though no explicit results for exist if the noise is
not Gaussian, it is indeed possible to find for specific ex-
amples. Consider the following result that applies to Laplacian
noise.
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Theorem 3—Laplacian Noise Channel:Consider the -di-
mensional complex channel

(71)

where the vector satisfies (6) and has independent complex
components each with distribution7

(72)

Then

4.60 dB (73)

Proof: The result is obviously independent of, so we
can take . A straightforward computation yields (in nats)

(74)

When the result of (74) is divided by , it is clear that the
ratio is maximized as . Using a Taylor series expansion
of the exponential in (74), (42) becomes

(75)

as we wanted to show.

Incidentally, note that the bound in (37) is satisfied with
equality in the Laplacian case, a property which also holds for
the Gaussian channel as long as the channel fading is known at
the receiver.

E. Signaling

For several of the scenarios considered above, the capacity-
achieving distributions are either unknown as a function of the

, or they can be found only numerically. A relevant byproduct
of the analysis in this section is the identification of simple dis-
tributions that, although do not achieve , achieve ,
and, consequently, are good enough to achieve . This fact
and the results in the next section, motivate the following for-
malization of the traditional optimality criterion.

Definition 1: An input distribution parametrized by ,
is first-order optimalif it satisfies the constraint (12)

and it achieves , namely,

(76)

Trivially, a capacity-achieving distribution is first-order op-
timal. For the AWGN channel, in addition to the Gaussian dis-
tribution, we have seen that the one-dimensional on–off distri-
bution

with probability
with probability

(77)

7The real and imaginary parts are denoted by= < + j= .

with

(78)

is first-order optimal for any nonzero. More generally, for
channel (54), we saw in the proof of Theorem 1 that the fol-
lowing -dimensional distribution is first-order optimal:

with probability
with probability

(79)

with

(80)

and a maximal-eigenvalue eigenvector of if is
known, or of the matrix otherwise. Any which
lets can be chosen if is perfectly known, otherwise,

as . In the latter case, the first-order
optimal distribution suggests signals with extremely low duty
cycle. But note that even in the case of a known channel, the
peak-to-average ratio of the input distribution (79) goes to
infinity as . Of course, the peak-to-average ratio of the
capacity-achieving Gaussian input is no better. Fortunately, if
the channel is known at the receiver, unit peak-to-average ratio8

signaling strategies such as BPSK and QPSK are first-order
optimal. In fact, it does not take much for the input to be
first-order optimal.

Theorem 4: Assume that the receiver knows. An input
distribution which satisfies the constraint (12) isfirst-
order optimalif and only if

(81)

and

(82)

Proof: To show sufficiency, first note that when the re-
ceiver knows the channel, the mutual information does not de-
pend on the mean of the input. Then, we make use of the canon-
ical decomposition of mutual information as

(83)

with ,
According to the proof of Theorem 1, the first term on the
right-hand side of (83) achieves the target in (76) provided
(82) is satisfied. Therefore, it will be sufficient to show that the
second term on the right-hand side of (83) is for any
fixed nonzero . We can cast this in a more general setting in
which , is a zero-mean complex
Gaussian variate with covariance , has zero mean,
covariance matrix , and is independent of, and

8Once the discrete-time information sequences are mapped to contin-
uous-time waveforms the peak-to-average ratio will no longer be unity.
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for some finite constant . The divergence of interest can be
written as

(84)

where is a Gaussian variate with the same mean and covari-
ance matrix as . The first term on the right-hand side of (84) is
the “non-Gaussianness” [19] of the vector . Using the
results in [19] it follows that . The second
term on the right-hand side of (84) is equal to

(85)

(86)

where (85) follows from the fact that for any nonnegative ma-
trix

(87)

The necessity of (81) is clear from the fact that since the mu-
tual information is invariant to the mean of the input we can only
hope to achieve (76) if any power wasted in the mean is negli-
gible

(88)

Furthermore, the necessity of achieving the maximal channel
gain (82) is evident from the proof of Theorem 1.

In the setting of the scalar AWGN channel, [20] and [21]
showed that any zero-mean input constellation asymptotically
maximizes cutoff rate and channel capacity, respectively, in the
traditional sense of meeting the first derivative.

The rank-one signaling strategy whereby all the energy is
transmitted along one eigenmode of (or of its expecta-
tion if the matrix is unknown) is sometimes referred to asbeam-
forming. In the special case of a single receive antenna, beam-
forming was shown to be asymptotically optimal for vanishing

in [22] (see also [23]) using the traditional (first-order) op-
timality criterion. In fact, if the largest eigenvalue eigenspace
has dimension one, then beamforming is optimum up to a cer-
tain nonzero , explicitly computed in [24]. However, if the
largest eigenvalue eigenspace has dimension larger than one,
then rank-one signaling is wasteful of bandwidth as will be seen
in Section V-D.

Turning our attention to the case where the channel is un-
known at the receiver, it is convenient to define the following
class of input signals.

Definition 2: An input distribution is said to beflash
signalingif it satisfies the constraint (12)

(89)

and for all

(90)

The simplest form of flash signaling is the on–off signaling
we saw in (79) with the on-level as .
The first appearance of this specific form of flash signaling as
a capacity-maximizing strategy is apparently due to [25] in the
context of the flat Rayleigh channel with fading coefficients un-
known at the receiver. In general, flash signaling is the mixture
of a probability distribution that asymptotically concentrates all
its mass at and a probability distribution that migrates to in-
finity; the weight of the latter vanishes sufficiently fast to satisfy
the vanishing power constraint.

Theorem 5: Flash signaling that satisfies

(91)

is first-order optimal.
Proof: Choose an arbitrary . Define

(92)

(93)

(94)

(95)

Then

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

where (99) and (102) follow from the fact that the norm squared
of the mean is less than or equal to the mean of the norm squared,
and both (100) and (103) follow from (90). Thus, condition (81)
is satisfied. Using Theorem 4, first-order optimality is ensured
provided that the receiver knows.
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Now let us assume that the receiver does not know. First-
order optimality is equivalent to

(104)

(105)

where the conditional divergence (in nats) is equal to [cf. (64)]

Using the same argument followed in the proof of Theorem 4
we can show that the unconditional divergence in (104) vanishes
faster than . In view of (91), it remains to show that

(106)
Recalling the notation in (63) and using the Hadamard in-

equality, we can write for any realization of

(107)

(108)

(109)

where (108) follows from Jensen’s inequality and we have
used the shorthand notation for the maximal eigenvalue
of . We will upper-bound the expectation of the
right-hand side of (109) with respect to by splitting it
according to whether for an arbitrary . Using

(110)

which vanishes faster than because of (90).
On the other hand

(111)

where (111) follows because is monotonically
decreasing. In view of (90), the ratio of (111) to
converges to a constant that can be made as small as desired by
choosing to be sufficiently large. Thus, the proof of (106) is
complete.

Theorem 6: Assume that neither the transmitter nor the re-
ceiver know , and

(112)

Then, any input that is first-order optimal for a deterministic
channel with matrix is first-order optimal for .

Proof: We can proceed as in the proof of Theorem 5 until
we reach the point where we wish to show that the following
ratio vanishes:

(113)

where we denoted , and we used the Hadamard and
Jensen inequalities. The right-hand side of (113) vanishes as

because the first-order optimality for the deterministic
channel implies that

(114)

(115)

(116)

for any .

Theorem 7: Assume that neither the receiver nor the trans-
mitter know . If

(117)

then is first-order optimal only if it is flash signaling and
(91) is satisfied.

Proof: The upper bound (cf. (104))

(118)

immediately implies the necessity of (91). The proof will be
complete upon showing that the second term on the right-hand
side of (118) is bounded away fromif the input is not flash
signaling. Note that if is an nonnegative definite ma-
trix, then

(119)

which when particularized to the determinant in (118) yields

(120)
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where we have denoted the positive quantity

(121)

and (120) holds outside the set of realizations

(122)

Accordingly, the expectation in the numerator of the second
term on the right-hand side of (118) is lower-bounded by

(123)

where we have chosen an arbitrary . From the definition
of , it follows that we can upper-bound

(124)

Upon dividing both sides of (124) by , we see that
condition (91) requires that

(125)

Applying this fact to (123) we reach the conclusion that unless
the condition for flash signaling (90) is satisfied, the second term
on the right-hand side of (118) is bounded away from.

F. Multiaccess Channels

Another important scenario captured by the setting of this
paper is the analysis of the total throughput of additive-noise
multiple-access channels. Suppose that the receiver observes

(126)

For consistency with the standard notation in the multiuser liter-
ature [26], we denote the dimensionality of (126) by, which
is the number of degrees of freedom per transmitted symbol.
The input vector is -dimensional where is the number of
users, and the matrix can be used to model fading,
multiple-access interference, etc. For example, in a code-di-
vision multiple-access (CDMA) channel subject to flat fading
[15], is the spreading gain, or number of chips per symbol

where the columns of the matrix are the spreading vectors
and is a diagonal matrix of the channel fading coeffi-
cients seen by each user. Note that the symbol emanating from
each user in this memoryless multiple-access channel is a com-
plex scalar. Naturally, it is possible to generalize (126) by having
each user transmit a symbol vector (thereby encompassing mul-
tiantenna arrays at the transmitters). This multiaccess setup is
different from the one considered in the single-user case in sev-
eral respects. First, the encoders operate autonomously and are
fed independent messages. Thus, the components ofmust be
statistically independent. Second, it is more natural to define

on a per-user basis rather than on a per-received dimension
basis as we had done before. Let be the transmitted energy
per user per input dimension divided by , and let

as before, whereis the total number of reliable
information bits transmitted by all users in one channel use.
Note that although is common for all users, the individual
rates need not be equal. The resulting “system” energy per bit
can be seen to be equal to the harmonic mean of the individual
energies per bit. Because of the different definition of, in-
stead of (16) it is easy to see that we now have (cf. [27], [15])

(127)

where the ratio of users to dimensions is denoted by

(128)

Accordingly, in this case

(129)

Despite those differences, turns out to be the same as
before.

Theorem 8: Consider the -user multiple-access channel

(130)

where the -dimensional complex Gaussian vectorhas inde-
pendent and identically distributed components, each with vari-
ance . The required for reliable communication is

(131)

which at the receiver is

1.59 dB (132)

regardless of whether is known at the transmitters and/or re-
ceiver. Furthermore, if is known at the receiver, a bank of
single-user receivers that approximate multiple-access interfer-
ence as independent Gaussian noise achieves (132).

Proof: We first consider the case of known. With an
overall transmitted energy in one -vector symbol equal to

, the received signal energy is
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where is the th column of the matrix . Therefore, the
overall channel gain is equal to

(133)

and (132) follows from (131). Now according to (129), in order
to prove (131), we need to show that

(134)

We first upper-bound by analyzing a receiver consisting
of autonomous receivers each informed of the transmitted
codewords of the other users. In such a hypothetical genie-aided
setup, the capacity is given by

(135)

whose derivative at (in nats) is equal to the sought-after
expression on the right-hand side of (134).

To lower-bound , we consider a suboptimal receiver con-
sisting of autonomous receivers each of which treats mul-
tiuser interference as Gaussian noise. The capacity achieved by
each of those (matched-filter) receivers is lower-bounded by the
capacity of an AWGN channel

(136)

where has covariance matrix equal to

with equal to the largest eigenvalue of the covariance matrix
of the vector

The capacity lower bound is then

(137)

a function whose derivative at is identical to that of the
upper bound (135).

To deal with the more general case of unknown, we invoke
the multiaccess results shown in [10]. In particular, condition
[10, eq. (24)] is satisfied in this setting, namely, the zero-energy
input is the most favorable from the viewpoint of other users.
In such case, the optimum capacity per unit energy is achieved
by time-sharing: at most one user is allowed to transmit at any
given time, and a bank of single-user receivers is optimum. The
resulting capacity is equal to

(138)

where is the capacity of the single-user channel

(139)

which corresponds to the special case of the channel
considered in Theorem 1. Proceeding as in the proof of that
theorem, it is easy to show that is given by times

.

The main practical lesson we can learn from this section is
that if the background noise is Gaussian, finding the minimum
transmitted energy per bit required for reliable communica-
tion is simply a matter of subtracting the channel loss from

1.59 dB. The fact that channels with vastly different infor-
mation-carrying capabilities have the same points out
the essential limitation of this performance measure: it is not
intended to give any indication whatsoever about required
bandwidth. In order to assess the interplay between bandwidth
and power for a given wideband channel, we must resort to the
analysis propounded in the next section.

V. WIDEBAND SLOPE b/s/Hz/(3 dB)

A. The Role of the Second Derivative

In this section, we study the growth of spectral efficiency with
in the wideband regime. Specifically, we focus on the per-

formance measure , defined in (29) as the increase of bits per
second per hertz per 3 dB (b/s/Hz/(3 dB)) of achieved at

. The following general result is a straightforward conse-
quence of (16).

Theorem 9: At , the slope of the spectral efficiency
versus in b/s/Hz/(3 dB) is given by

(140)

with and , the first and second derivative, respectively, of
the function computed in nats.

Proof: By definition of and , the function (in
bits per dimension) admits the following Taylor series for small

:

(141)
Equations (16) and (141) enable us to write

(142)
and from (35) and (142) we get

(143)

The target ratio in (29) is a function of which can be put as
a parametric expression in terms of the value ofthat solves
(16)

(144)

Letting , or equivalently, we get (140).
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So far, we have assumed that is finite. If and
, then it is easy to check that , for in that

case

(145)

while

(146)

goes to when divided by vanishing .

Note that by definition, the wideband slope is invariant to
channel gain. Thus, it is not necessary to distinguish between
transmitted and received . This property would be lost if the
slope were defined with respect to in linear scale. Although
such a slope carries much less engineering insight, it admits a
formula similar to (140), replacing the square by a cube. Note
that to make a fair comparison between the wideband slopes
achieved by different receiver/transmitter designs (and, thus, be-
tween the bandwidth requirements for given rate and power), it
is essential that the transmitted be the same.

In the analysis of wideband channels it is sometimes useful
to represent the channel as a bank ofparallel independent sub-
channels. If the transmitter devotes the same power to all sub-
channels and each subchannel has the same number of dimen-
sions, then the capacity of the overall channel is

(147)

Formula (35) implies that the transmit (in linear scale) is
equal to the harmonic mean of the individual transmit .

In most cases of interest, the receive is the same for all
subchannels, and, thus, the same for the overall channel. From
(35) and (140), it is easy to verify that the product of the squared
transmit and the slope of the overall channel is equal
to the harmonic mean of such products corresponding to the
subchannels. In particular, if the individual transmit and
the individual slope of all subchannels are equal, then the overall

and slope are identical to those of the subchannels.
In parallel with the definition we made in Section IV we have

the following.

Definition 3: An input distribution parametrized by ,
is second-order optimalif it is first-order optimal and it

achieves . Equivalently, it achieves both the first and second
derivatives of capacity

(148)

and

(149)

B. On–Off Signaling

In view of the universal first-order optimality of on–off
signaling, we study its capabilities in the region of small but
nonzero spectral efficiency. We assume a generalized form of

on–off signaling where the input vector has a -mass at
the all-zero vector. The input distribution conditioned on the
input being nonzero is denoted by , and a unit mass at the
all-zero vector is denoted by . Thus,

(150)

with chosen so that the constraint is satisfied, namely,

(151)

The output distribution corresponding to is denoted by

(152)

Theorem 10:Denote Pearson’s -divergence by

(153)

The and achieved by generalized on–off signaling
(150) are given by

(154)

and

(155)

respectively, where divergence is measured in nats in both (154)
and (155).

Proof: In this case, the role played by is taken by
the function

where the input is the distribution (150). The first and second
derivatives of this function (in nats) with respect to will
be denoted by and , respectively. From the results
of [10], already used in Section IV, we obtain (154). To obtain
(155), we use

(156)

with

(157)

and

(158)

Decomposing the input–output mutual information as

(159)
with

(160)
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and using (151), the right-hand side of (158) becomes

(161)

The desired expression (155) follows by applying the fol-
lowing general result to the case and :

(162)

To verify (162) assume natural logarithms without loss of gen-
erality and note that by definition of divergence

(163)

where the expectation is with respect todistributed according
to , and we have defined

(164)

and

(165)

Note that in order to write (163) we used

(166)

Furthermore

(167)

Since for all , and . Fatou’s
lemma leads to

(168)

On the other hand, for any , there exists a sufficiently
small such that

(169)

whenever . Since

(170)

But can be made arbitrarily small. Thus, (162) follows.9

C. AWGN Channel

Before we proceed to study the wideband slope of fading
channels it is instructive to deal with the scalar AWGN channel

(171)

Directly from (21) and (140) we obtain that the wideband slope
for the AWGN channel is

2 b/s/Hz/(3 dB) (172)

9The same technical argument can be used elsewhere in the paper regarding
expectations of Taylor series.

which, in this case, is the highest slope achieved for any.
Note that although convex for the AWGN channel, in general,
the function need not be convex.

In the case of binary quantization of both the real and imag-
inary components of the output of the AWGN channel, the ca-
pacity is [28], [29]

(173)

with

and

The first and second derivatives (in nats) of (173) are

(174)

(175)

which result in

0.37 dB (176)

2.8 b/s/Hz/(3 dB) (177)

Returning to the unquantized channel, as a simple exercise
we apply the formulas obtained in Theorem 10 to the Gaussian
channel. Suppose we use on–off signaling with on-level .
Using (44) and

(178)

we get

(179)

and

(180)

0.3238 b/s/Hz/(3 dB) (181)

where the upper bound is achieved at

(182)

Thus, even though the analysis in Section IV showed that any
on-level is equally good as far as achieving for the
Gaussian channel, the finer analysis in this section shows oth-
erwise. More importantly, unless bandwidth is infinite, on–off
signaling is decidedly inefficient for the AWGN channel.
By comparing (172) and (181), we see that on–off signaling
requires 618% the minimum bandwidth.

The simple on–off signaling strategy above can be modified
so that information is encoded not only at the times in which
energy is sent but also in the phase. To that end, let us assume
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that is uniformly distributed on for some fixed
real . Applying Theorem 10 to this input we get

(183)

and

(184)

where the upper bound is tight for . Thus, this type
of generalized on–off signaling which uses phase modulation
can achieve wideband slope as close as desired to the optimal
one.

However, among all second-order optimal signaling strate-
gies, QPSK is the best practical choice in the wideband coherent
regime (when the receiver knows the channel). Before dealing
with the general case, we show the second-order optimality of
QPSK in the simple setting of the AWGN.

Theorem 11:Consider the scalar AWGN channel

(185)

The wideband slopes achieved by various first-order optimal
distributions are as follows.

1) BPSK achieves wideband slope equal to 1 b/s/Hz/(3 dB).

2) QPSK achieves wideband slope equal to 2 b/s/Hz/(3 dB).

3) Any signaling distribution that can be written as a mix-
ture of (rotated and scaled) QPSK constellations achieves
wideband slope equal to 2 b/s/Hz/(3 dB).

Proof: First-order optimality of the input distributions
in the statement of the result follows from the fact that they
have zero mean (Theorem 4). Let us denote the mutual infor-
mations achieved by BPSK and QPSK as a function ofby

and , respectively. With QPSK at
the mutual information is equal to that achieved by

two independent channels with BPSK inputs . Since the
of the latter channels is half of that of the original channel we
have the relationship

(186)

Moreover, it follows from (186) and (16) that the spectral effi-
ciencies are related by

(187)

Thus, QPSK achieves twice the spectral efficiency of BPSK at
any , and, consequently, twice the wideband slope.

The BPSK distribution is

(188)

where is (without loss of generality) a real scalar that satisfies

(189)

Note that for convenience and without impacting the results we
have chosen . From (44) and (188) we get

(190)

The unconditional output distribution is now

(191)

and

(192)

where the expectation is with respect to and

(193)

Using the fact that is a real Gaussian random variable
with variance , it is straightforward to show that

(194)

Thus, the mutual information achieved by BPSK satisfies (in
nats)

(195)

or equivalently

(196)

and

(197)

Substituting these values into (140) we conclude that the wide-
band slope of BPSK is 1 b/s/Hz/(3 dB), and thus, the wideband
slope of QPSK is 2 b/s/Hz/(3 dB).

Furthermore, note that any signaling distribution that can be
written as a mixture of (rotated and scaled) QPSK distributions
is also wideband optimal because mutual information is concave
in the input distribution.

D. Perfect Receiver Side Information

Theorem 12:Consider the -dimensional complex channel

(198)

where the complex Gaussian vectorhas independent and
identically distributed components. Suppose that the receiver
knows , and that the transmitter knows but has no ability
to do power control (or, equivalently, it knows the maximal
eigenvalue eigenspace of but not the maximal eigen-
value). Then

(199)

with thekurtosis10 of a random variable defined as

(200)

denotes the maximal singular value of, and is
equal to the multiplicity of .

Furthermore, the optimum wideband slope (199) can be
achieved by QPSK modulating with equal power theor-
thogonal dimensions of the maximal-eigenvalue eigenspace of

.

10The “amount of fading” defined in [30] is equal to the kurtosis minus1. See
[30], [15] for tables of standard fading distributions.
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Proof: In the absence of power control, the water-filling
formula implies that if is so small that the water level only
covers the deepest level, capacity is given by

(201)

whose derivatives in nats are equal to

(202)

and

(203)

Using (140) and we get (199).
To achieve (201), the input must be a zero-mean Gaussian

vector whose components have equal variance along the
orthogonal directions of the maximal-eigenvalue eigenspace
of , and zero otherwise. The fact that QPSK-modulating
each of those dimensions is also second-order optimal follows
immediately from Theorem 11, since those dimensions are
orthogonal.

The special case of Theorem 12 was given in
[15]. Kurtosis is a measure of the randomness of a random vari-
able; its minimum value is, achieved uniquely by a determin-
istic variable. The fading penalty on capacity is due to the con-
cavity of the function. The larger the “spread” of the
fading distribution, the larger is the penalty. Theorem 12 states
that in the low spectral efficiency region, the required bandwidth
is proportional to the kurtosis of the maximal singular value of
the channel. If the number of rows and columns ofgrows,
while keeping a constant ratio, and its coefficients are indepen-
dent and identically distributed with variance, then the max-
imal singular value converges to a deterministic constant [31]

(204)

and its multiplicity goes to . Accordingly, if and repre-
sent the number of receive and transmit antennas, respectively,11

and the transmitter knows the eigenstructure of, in the limit
of many antennas at both transmitter and receiver the slope is
2 b/s/Hz/(3 dB), i.e., the same value obtained with one antenna
but without fading. This slope is obtained at a value of
that decreases with the number of antennas as

(205)

Together with the above result on the asymptotic insensitivity
of the slope to the number of antennas, (205) implies that with
many transmit and receive antennas, doubling the number of
transmit and receive antennas halves the required power for
fixed rate and bandwidth, provided the channel is known at the
transmitter (cf. [32]).

However, in the multiantenna literature it is much more
common to assume that the transmitter has no knowledge what-

11Caution: “M transmit andN receive antennas” is common notation in the
contemporary literature on the capacity of multielement arrays.

soever of and that transmit antennas are fed by independent
equal-power streams. In this case, we saw in Section IV that

(206)

The corresponding wideband slope is given by the following
result.

Theorem 13:Consider the -dimensional complex channel

(207)

where the complex Gaussian vectorhas independent and iden-
tically distributed components. Suppose that the receiver knows
the matrix , but the transmitter has no knowledge of
the channel matrix (or its statistics). Then

(208)

Proof: In this case, the optimum input distribution is an
-dimensional Gaussian vector with independent and identi-

cally distributed components achieving capacity [33], [13]

(209)

Formula (208) follows from (140) upon taking the first and
second derivatives of (209). To that end, the following formulas
can be derived easily from the definition of determinant. Ifis
an matrix, then

(210)

(211)

Apropos of the expression in (208), note that (aside from the
factor ) the numerator is the square of the expected Frobe-
nius (or Euclidean) norm squared of, whereas the denomi-
nator is equal to the expected Frobenius norm squared of

(212)
If the entries of are independent zero-mean random vari-

ables with variance , then it can be checked that (206) and
(208) reduce to

(213)

and

b/s/Hz/(3 dB)/receive antenna (214)

where and play the role of the number of receive and
transmit antennas, respectively.12 Furthermore, if the channel
coefficients are complex Gaussian random variables, fol-
lows the Rayleigh distribution whose kurtosis is equal to.

12The effect of antenna correlation on the required bandwidth is explored in
[34].
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Under those assumptions, in the wideband regime, the spectral
efficiency is a multiple of the harmonic mean of the number of
receive and transmit antennas

b/s/Hz/(3 dB) (215)

The low- slope (215) is greater than or equal to the high-
slope, [13], with equality if and only if . If

is held fixed and , then (215)
goes to . The result in (215) should be contrasted
with the misconception that in the low- regime capacity is not
affected by the number of transmit antennas (e.g., [16]). While

(213) does not depend on the number of transmit an-
tennas, suppose that we fix the number of receive antennas
and the power and the data rate, then a system with one transmit
antenna requires times the bandwidth of a system
with transmit antennas, which in turn requires twice the band-
width of a system with a very large number of transmit antennas.

Note that since the slope of the spectral efficiency versus
curve is rather constant for a fairly wide range of, approxi-
mating spectral efficiency by

b/s/Hz (216)

would be pretty accurate even for ambitious b/s/Hz values pro-
vided the harmonic mean of the number of receive and transmit
antennas is large enough. Note that (215) obtained without
knowing the eigenstructure of the channel does not contradict
the limiting result we obtained above (2 b/s/Hz/(3 dB)) with
knowledge of the structure of the channel, because the trans-
mitted power required to achieve1.59 dB at the receiver is
lower in the latter case. Indeed, taking the ratio of (205) and
(213), we arrive at the conclusion that knowing the eigenstruc-
ture of the channel at the transmitter implies an asymptotic
power reduction factor of

(217)

where the right-hand side holds in the many-antenna limit. Note
that with the same number of antennas at transmitter and re-
ceiver, knowledge of the channel at the transmitter gives a gain
of 6 dB at zero spectral efficiency, or equivalently, a factor of
in rate (b/s) for the same power in the infinite bandwidth limit
[35], or a factor of in the required number of antennas.

Theorem 14:Under the conditions of Theorem 13, equal-
power QPSK on each component is second-order optimal.

Proof: For ease of notation and without loss of generality,
we assume in the proof that . The input signaling is

... (218)

where the phases are independent and equally likely to take
the values . Thus,

(219)

and

(220)

This input distribution attains the following mutual information:

(221)

(222)

Furthermore, it follows from (220) that

(223)

Therefore, from the result obtained in (208), the desired second-
order optimality is equivalent to showing that

(224)
To accomplish this, note that the divergence in (224) can be
expressed as

(225)

where the expectation is with respect to the complex vector
distributed according to and with respect
to ; and we have defined the likelihood ratio

(226)
where the expectation is with respect to. Note that

(227)
A Taylor series expansion of the exponential in (226) together
with the fact that results in

(228)

where all the expectations are with respect to. Let us consider
each term on the right-hand side of (228) individually. Using
(220) we get

(229)

and

(230)

The second term on the right-hand side of (230) is equal to

(231)

because

(232)
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as can be seen using the QPSK nature of the independent com-
ponents of . Using (228)–(231) we can write

(233)

In order to compute the expectation with respect to, fix an
arbitrary Hermitian matrix . Then, using the fact that for all
components

(234)

it is fairly straightforward to check that

(235)

Applying formula (235) to (233) with , the desired
result (224) follows.

Note that the only property of QPSK used in the proof of
Theorem 14 is its proper complex (i.e., rotationally invariant)
nature.

If in contrast to Theorems 12 and 13, the transmitter knows
, then it is easy to find the wideband slope using

the foregoing methods. Suppose thatis the unique max-
imal-eigenvalue eigenvector of , then the wideband
slope is

(236)

More generally, if the rank of the maximal-eigenvalue
eigenspace of is , then the wideband slope can
be found by applying the result in Theorem 13 to a modified
channel matrix , where the matrix consists of
the orthonormal eigenvectors of the maximal-eigenvalue
eigenspace, since first-order optimality requires that the input
vector restrict itself to that eigenspace. In the case of ,
contrary to the misconception obtained using the traditional
optimality criterion [22], rank-one signaling, i.e., beamforming
(see Section IV-E), is not wideband optimal. This is made
evident by considering the special case of one receive antenna,

transmit antennas, and independent equal-variance Gaussian
channel coefficients. Then, the bandwidth required by rank-one
signaling is times the bandwidth required by
optimum rank- signaling (which transmits equal-power
independent streams through each antenna).

Note that if , is a scalar, and Theorems 12 and 13
have the same assumptions. Then, (199), (208), and (236) boil
down to

(237)

As an application of (237) we have the following formula for
the flat Ricean channel.

Theorem 15:Consider the Ricean fading
channel

(238)

where is deterministic, is zero-mean complex Gaussian with
variance , and the additive noise is Gaussian. If the receiver
(but not the transmitter) knows the Rayleigh channel coeffi-
cients, then the wideband slope is equal to

(239)

Proof: When the receiver knows the channel coefficients
we just need to specialize Theorems 12 or 13 (in the scalar case)
to the case in which they lead to the same result.
Formula (239) follows from the kurtosis of the Ricean distribu-
tion which is equal to

(240)

E. Imperfect Receiver Side Information

While receiver side information of the channel fading does
not improve , it has a drastic effect on the required band-
width in the wideband regime as shown in this subsection.

Theorem 16:First-order optimal flash signaling achieves
even if the receiver knows the channel.

Proof: According to Theorem 9, we need to show that
flash signaling achieves . Since is achieved,
in order to show

(241)

we will show that

(242)

The unconditional output distribution in (242) is

(243)

where and denote the convolution of

with and , which denote the distributions of con-
ditioned on and , respectively, with
arbitrarily small . Since the receiver knows the channel, it will
suffice to show that (241) is satisfied for all nonzero determin-
istic .

First-order optimal flash signaling requires that
and

(244)

To show (242), note that we can write

(245)
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where we have introduced the zero-mean random variable

(246)

which satisfies the vanishing lower bound

(247)

and the zero-mean random variable

(248)

In order to show that (245) goes to infinity, we will show
that diverges as . In order to streamline
notation, we will take without loss of generality in the
remainder of the proof.

The ratio of densities appearing in (246) can be written as

(249)

a random variable whose second moment is equal to

(250)

where and are independent and have identical distribution
. Using (244), we see that is equivalent to

(251)

To show (251), we quantize the unit ball of the Cartesian
product of the complex field into “phase bins” that are suffi-
ciently fine so that if we fix a sufficiently small , we can
find such that for all sufficiently small, a phase bin
can be found so that

(252)

(253)

and if , , then

(254)

Using (252)–(254), the numerator in (251) is lower-bounded by

(255)

Dividing (255) by , we obtain (251) in view of (244).
By analyzing and using similar methods it can
be shown that diverges and the proof of (242) is
complete.

Theorem 17: If neither the receiver nor the transmitter know
and

(256)

then

Proof: According to Theorem 7 under condition (256),
flash signaling satisfying (91) is necessary for first-order opti-
mality, and hence for second-order optimality. But, according to
Theorem 16, that kind of signaling achieves , regardless
of whether the receiver knows the channel.

Theorem 18: If neither the receiver nor the transmitter know
and

(257)

then

(258)

where is the multiplicity of the maximal singular value of
.
Proof: In view of Theorem 6, we can restrict the search for

second-order optimum inputs to those inputs that are first-order
optimal for a deterministic channel with matrix . Then the
problem becomes a special case of the one solved in Theorem
12 where the channel matrix therein is deterministic.

The capacity-achieving distribution for the flat Rayleigh
channel in which neither transmitter nor receiver know the fading
coefficients is shown in [36] to be discrete with a finite number
of masses, which depends on . Furthermore, [36] shows that
there exists such that , implies that a two- mass dis-
tribution is optimal with one mass at zero, and the other at a point
whose magnitude goes to infinity as and whose phase is
irrelevant. Note that the latter statement is consistent with the
first-order and second-order optimality of flash signaling.

If the receiver does not have full knowledge of, then con-
dition (256) is usually satisfied. For example, for the flat Ricean
channel (238), the left- and right-hand sides of (256) are
and , respectively. Accordingly, if the receiver does
not know the Rayleigh coefficients, the wideband slope is zero,
no matter how small , in contrast to (239). Thus, it is very de-
manding in terms of bandwidth to achieve close to 1.59
dB in the Ricean channel, regardless of the relative strengths of
the specular and Rayleigh components. To illustrate the burden
of communicating in the wideband regime through channels
with zero wideband slope, numerical results13 indicate that to
achieve spectral efficiency equal to 0.01 b/s/Hz we require
0.44 dB for a Ricean channel with . Fig. 4 shows the
tremendous impact of noncoherence in the wideband regime for
the special case of the Rayleigh channel, an impact that may not
be apparent from a plot of the ratio of the capacities (with and
without channel knowledge) as a function of [36]. We see
in Fig. 4 that the insensitivity of to lack of knowledge
of the channel at the receiver is of little relevance to practice.
Sometimes the statement that wideband capacity is not affected

13Obtained by M. Gursoy, private communication.
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Fig. 4. Spectral efficiency of the AWGN channel and the Rayleigh flat fading
channel with and without receiver knowledge of fading coefficients.

by knowledge of the channel is toned down by claiming that this
insensitivity may hold for impractically large bandwidths. How-
ever, the bandwidth penalty due to lack of channel knowledge is
equal to a factor of 1000 at 1.25 dB, and goes to infinity

as we move closer to . Fig. 4 also illustrates (199): when
the fading coefficients are known at the receiver, the bandwidth
required by Rayleigh fading is twice the bandwidth required in
the absence of fading.

Another case in which (256) is satisfied is the block-constant
multiantenna model of [37], which is encompassed by the model
in Section II by letting be the number of received antennas
times the block duration and be the number of transmit an-
tennas times the block duration. Then,becomes a block-di-
agonal matrix with all diagonal blocks being identical.

In many practical cases in which the specular component is
not negligible, QPSK is an attractive suboptimal alternative as
the following result shows.

Theorem 19:Consider the Ricean channel (238) with
and a receiver that does not know the Rayleigh coefficients.

Then QPSK achieves

(259)

and

(260)

Proof: With the Ricean channel

(261)

and the QPSK input distribution

(262)

we have

(263)

and we obtain (in nats)

(264)

From the formulas for and , both (259) and (260) will
follow upon showing that

(265)

where

(266)

and

(267)

The desired divergence is

(268)

where the expectation is with respect to (266) and

(269)

where for convenience we have assumedto be real without
affecting the result. Taking the expectation of the logarithm of
(269) we obtain

(270)

The random variables and are Gaussian with mean
and variance

(271)

Thus, the second and fourth moments of the random variables
in the argument of the hyperbolic cosines in (270) are equal to

(272)

and

(273)
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Using (272) and (273), and

(274)

each of the expectations in (270) satisfy

(275)

Thus,

(276)

thereby establishing (265).

Regarding the wideband slope when the transmitter but not
the receiver knows the channel, first note that when the channel
is fully known at the transmitter and power control is allowed,
the minimum energy per bit is zero in the usual fading models,
and, thus, the wideband slope is zero (regardless of whether the
receiver knows the channel). If the transmitter knows the max-
imal-eigenvalue eigenspace (but not the maximal eigenvalue)
and the receiver does not know the channel, then first-order
signaling requires flash signaling along the directions of the
maximal-eigenvalue eigenspace (for simplicity, assume that

). Once that signaling is used, the wideband slope is
zero because even if the receiver had side information of the
maximal-eigenvalue eigenspace, we would be in a situation
equivalent to where is a zero-mean random variable
unknown to both receiver and transmitter: a channel which is
encompassed by Theorem 17.

To conclude this subsection, we give a new general bound
on mutual information for a given arbitrary input distribution,
which holds for all signal-to-noise ratios. We give the bound in
a general setting that encompasses the linear model treated in
this paper as well as nonlinear channel models, which may be
of interest in optical-fiber transmission and neurobiology.

Theorem 20:Suppose that denotes a complex random
vector, which conditioned on is complex Gaussian with mean

(277)

and covariance matrix

(278)

Denote the covariance matrix of the conditional mean vector by

(279)

Let be a complex Gaussian vector whose components are in-
dependent, with independent real and imaginary parts each with
variance . Then

(280)

Proof: To show this result, we need to use a more general
form of the decomposition in (159). For any probability measure
for which

(281)

In the present case

(282)

and we choose

(283)

Using (59), the conditional divergence in (281) evaluated with
(282) and (283) becomes (in nats)

(284)

(285)

where (285) follows from (87). Since the second term on the
right-hand side of (281) is nonnegative, (280) follows from
(285).

Particularizing Theorem 20 to the linear Ricean fading chan-
nel where

(286)

and is Gaussian with mean , independent of , we obtain
the bound

(287)

which in the Rayleigh special case has been found re-
cently in [38], [39].

Although (287) holds for all , it is not a tight bound. In
fact, it is very coarse at all but small and it does not give
the exact asymptotic second-order behavior for vanishing.
Under quite general conditions on the input and the channel (in-
cluding non-Gaussian channels), it is shown in [40] that

(288)

Note that, unlike the case where the channel is known at the
receiver, mutual information is, in general, dependent on the
mean of the input.

An interesting case to which we can apply (287) is the Ricean
block-fading channel where the specular and scattered compo-
nents remain constant during blocks of length. Although the
scattered coefficient is not known at the receiver, the fact that
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it remains piecewise constant enables its estimation at the re-
ceiver. The channel matrix is now the multiple of the
identity matrix

(289)

where is deterministic and is zero-mean complex Gaussian
with variance . The bound in (287) is the convex function of

(in nats/dimension)

(290)

where is the kurtosis of the norm of the input vector.
Thus, unless the input kurtosis grows without bound as

(and, consequently, the peak-to-average ratio), there
is no hope to achieve the mutual information required for

1.59 dB, namely, . Further-
more, doubling the period over which the fading remains stable
has the same effect as doubling the input kurtosis.

In general, when the channel is unknown at the receiver,
the maximum rate achievable under a fixed constraint on the
input kurtosis is not a concave function of . In the absence
of concavity of the maximum achievable rate function, (34)
need not hold and may be achieved at a nonzero , in
which case, the curve is bowl-shaped and achieves its
minimum at a nonzero . (For example, in the special case

, as .) Thus, for every
there are two spectral efficiencies such that

Any sensible design will choose to operate at, as we can
maintain the same power and data rate achieved atbut with
smaller bandwidth. Therefore, under input kurtosis constraints,
the region of small (specifically, ) is
to be avoided. Provided this design principle is followed, the
required is, as usual, an increasing function of the spectral
efficiency. Inefficient communication as the bandwidth grows
without bound can be averted only by letting the data rate and
the power grow at least as fast as the bandwidth.

F. Multiaccess Channels

We now turn attention to the multiaccess channel with an op-
timum receiver that has perfect channel side information.

Theorem 21:Consider the -user randomly spread CDMA
channel subject to frequency flat fading

(291)

where the dimensionality of is equal to the spreading factor
, is a diagonal matrix whose diagonal is composed

of the independent and identically distributed fading coefficients
experienced by the users, is the spreading

matrix with independent zero-mean coefficients, the noise com-
ponents are independent, and the transmitters have no knowl-
edge of either or . Then, the slope of the spectral efficiency
is equal to

(292)

where denotes the kurtosis of the magnitude of the fading
coefficients.

Proof: As we saw in Section IV, the differences between
the multiaccess setup and the single-user setup are the enforced
independence of the input components and the different normal-
ization of , which leads to (127). However, by definition,
is invariant to any factor multiplying . Therefore, we can use
the same formula (140) as in the single-user case. Furthermore,
the setting of Theorem 13 is identical to the multiaccess setting
of interest here and, consequently, the result (208) can be used
in this case with

(293)

Since the result in (208) is invariant to scaling of, we can
assume, for convenience, that the entries ofhave unit variance.
Then

(294)

and

(295)

Substituting (294) and (295) into (208) ; we
get

(296)

which is equal to the desired result (292).

As and with , (292) converges
to

(297)

a result which was obtained in [15] using substantially different
methods. Actually, the asymptotic result holds even if the ran-
domly chosen signature waveforms remain fixed from symbol
to symbol, whereas the fixed-dimensional Theorem 21 has the
narrower scope of “long CDMA codes” where the signatures
change from symbol to symbol.

Using a bank of single-user matched filters which neglect
multiaccess interference the is the same as with multiuser
detection as we had seen in Theorem 8. However, the wideband
slope achieved by the matched filter bank turns out to be

(298)

Comparing (298) to (292) we see that even in the low-power
scenario, where background noise rather than multiaccess inter-
ference is the major source of interference, the use of optimum
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multiuser detection can save up to 50% of the bandwidth (as the
ratio grows). Thus, contrary to what is sometimes claimed
(e.g., [41]) multiuser detection can be quite effective for low
signal-to-noise ratio communication with error control coding.
The optimality of time division multiple access (TDMA) for
multiaccess and broadcast channels in the low-power regime is
another misconception unveiled using the wideband slope [42].

Another problem of interest is to find the best possible slope
over all assignments of signature waveforms. To simplify the
setup, we assume that there is no fading and that all users are
received with the same power, which we can take equal to unity.
Then, the matrix is equal to the normalized cross-correla-
tion matrix [26], and (208) becomes

(299)

(300)

where the inequality is precisely the Welch bound [26]. Thus,
we see directly that a set of signature waveforms that satis-
fies the Welch bound with equality maximizes (equal to the
single-user AWGN slope). In fact, meeting the Welch bound
with equality is a necessary and sufficient condition to maxi-
mize spectral efficiency for all as shown in [43].

G. Additive Non-Gaussian Noise

We conclude by returning to the non-Gaussian case studied
in Section IV. We saw in Theorem 3 that for the Laplacian
noise channel, improved by 3 dB relative to the (worst
case) Gaussian noise. However, the wideband slope is quite a
bit worse than for the Gaussian channel as the following result
shows.

Theorem 22:For the Laplacian noise channel (71) and (72),
even if the receiver knows the channel

(301)

Proof: We need to show that the second derivative of the
capacity at is equal to . For simplicity and without
loss of generality, we take and . Define the
following function on the positive-real line:

(302)

For any input distribution whose second moment is

(303)

we can write

(304)

(305)

(306)

(307)

where (304) is a result of dropping the second divergence on
the right-hand side of (159); (305) follows by using (75) and
the explicit expression for the divergence found in (74); (306)

holds because is a concave function, so it actually holds
with equality for deterministic input . To
complete the proof that , we just need to divide
(307) by and let .

VI. CONCLUSION

Spectral efficiency treats time and frequency on an equal
footing. Thus, the “wideband regime” studied in this paper
encompasses more than the name implies. Low spectral effi-
ciency values are obtained not only when a given data rate (b/s)
is transmitted through a very large bandwidth, but when a given
bandwidth is used to transmit a very small data rate. The setting
encompasses even the case where the bandwidth is not large,
the data rate is not low, but the number of receive antennas
is large. Thus, the “wideband regime” is to be understood as
encompassing any scenario where the number of information
bits transmitted per receive dimension is small.

The infinite-bandwidth (or, more generally and precisely,
zero bits per dimension) analysis leads to the conclusion that as
long as the additive background noise is Gaussian, the received

must be equal to 1.59 dB regardless of receiver/transmitter
side information. Channel knowledge at the transmitter may be
useful in the infinite bandwidth regime in order to signal along
the most favorable dimensions that lead to 1.59 dB
with the least power expenditure. In addition to low-duty-cycle
on–off keying signaling, which has been the traditional focus
of information-theoretic analyses of the infinite-bandwidth
channels, we have seen that as long as the input distribution
wastes no (or negligible) power in its mean, the is
achieved if the receiver knows the channel. We have identified
flash signaling, a class of unbounded peak-to-average inputs
that is necessary and sufficient to achieve if the receiver
does not have perfect channel knowledge.

Transmission of nonzero bits per dimension changes the pic-
ture quite radically. Both optimal signaling and the efficiency
with which information can be transmitted depend crucially on
whether the receiver knows the channel. If the receiver has per-
fect channel knowledge, we have shown that QPSK is optimal in
the wideband regime and that, when compared to QPSK, on–off
keying requires more than six times as much bandwidth. The
bandwidth required to send a given data rate is proportional to
the peakiness of the channel fading quantified by the kurtosis
(fourth moment relative to second moment squared) of its am-
plitude.

In the absence of perfect channel information at the receiver,
approaching is prohibitively expensive in terms of both
spectral efficiency and peak-to-average ratio.

We have shown that the asymptotic optimality criterion used
since [2] (namely, ratio of mutual information to capacity ap-
proaching one as signal-to-noise ratio vanishes) is too weak to
gauge bandwidth requirements. The weakness of this “tradi-
tional” optimality criterion can be gleaned from the fact that
according to it, BPSK is asymptotically optimum not only in
the real-valued channel but in the complex-valued channel. Yet,
BPSK requires twice the bandwidth of QPSK to send the same
data rate at the same power. To replace this criterion, we have
shown that a signaling format is wideband optimal if it achieves
both the first and second derivatives of the capacity function at
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zero . Note that this new criterion is in no way dependent on
the definition of wideband slope with respect to decibel rather
than with respect to linear scale. While the logarithmic scale is
more analytically convenient and practically insightful, the al-
ternative definition with linear leads to the same optimality
criterion.

The impact of channel impairments and design choices (such
as input signaling and coherent versus noncoherent communica-
tion) is not equally apparent depending on whether we analyze
data rate for given bandwidth and power, or bandwidth for given
power and data rate. Since in the low-power regime the band-
width sensitivity is usually far greater, it is unwise to follow the
traditional paradigm of the voiceband telephone channel which
maximizes data rate for given power and bandwidth. For ex-
ample, consider a Rayleigh channel operating at 1.25 dB.
In the noncoherent regime, the spectral efficiency is equal to
0.0011 b/s/Hz (Fig. 4). While coherence buys a 92% improve-
ment in rate for fixed bandwidth and power, it reduces band-
width by a factor of 1000 for fixed power and rate. If we let the
initial , then the improvement in rate brought about
by coherence vanishes, whereas the bandwidth reduction factor
goes to infinity. Thus, in wireless channels where bandwidth is
an expensive commodity, it is inadvisable to dictate a choice
of bandwidth without careful analysis of information-theoretic
limits.

The wideband slope has thus emerged as a new analysis
tool that leads to valuable insights and serves to reveal several
long-standing misconceptions on the practical significance of
low- information-theoretic results.
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