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Abstract—The tradeoff of spectral efficiency (b/s/Hz) versus en- as a synonym of asymptotic optimality in the low-power
ergy-per-information bit is the key measure of channel capacity in  regime. Using this criterion, Golay [3] showed that (1) can

the wideband power-limited regime. This paper finds the funda- _ ; i ;
mental bandwidth—power tradeoff of a general class of channels in be approached by on—off keying (pulse position modulation)

the wideband regime characterized by low, but nonzero, spectral with vgry low duty CyCIe_’ a signaling strategy whose error
efficiency and energy per bit close to the minimum value required Probability was analyzed in [4].
for reliable communication. A new criterion for optimality of sig- Enter fading. Jacobs [5] and Pierce [6] noticed not only that

naling in the wideband regime is proposed, which, in contrast to (1) is achieved if all the energy is concentrated in one message-
the t.radi.tional criterion, is meaningful for finite-bandwidth com- dependent frequency slot, but also that the limiting rate in (1)
munication. ) s . .
is unexpectedly robust: it is achievable even if the orthogonal

signaling undergoes fading which is unknown to the receiver (a
result popularized by Kennedy [7]). Since only one frequency
(or time) slot carries energy, this type of orthogonal signaling

I. INTRODUCTION not only is extremely “peaky” but requires that the number of
HORTLY after “A Mathematical Theory of Communica_slots grows exponentially with the number of information bits.

ion,” Claude Shannon [1] pointed out that as the bandwidth Doppler spread or a limitation in the peakiness of the orthog-

tends to infinity, the channel capacity of an ideal bandlimited aa_nal signaling can be modeled by letting the signal-dependent

" . . : waveform at the receiver have a given power spectral density
ditive white Gaussian noise (AWGN) channel approaches S(f), shifted in frequency by an amount that depends on the

. r i message, with different shifts sufficiently far apart to maintain
Blog, [1+ —— ] = — log . . P . .
g, Blog < * BN0> No 52¢ (bls) (@) orthogonality. In this case, the infinite-bandwidth achievable

where P is the received power andf, is the one-sided noise rate was obtained by Viterbi [8]

spectral level. Since capacity is monotonically increasing with > 5(f) N B S(f)
bandwidthB, the right-hand side of (1) is the maximum rate df logz e log {1+ No 4
achievable with poweP. Moreover, communicating at rafe,
the received signal energy per information bit is equal to

Index Terms—Antenna arrays, channel capacity, fading chan-
nels, noisy channels, spectral efficiency, wideband regime.

As we saw in (3), determining the infinite-bandwidth capacity
is equivalent to finding the minimum energy per bit required to
B P @ transmit information reliably. To obtain this quantity, we can
choose to maximize the information per unit energy in con-
and since the maximum value @ is the right-hand side of trast to the standard Shannon setting in which the information
(1), the minimum received signal energy per information bit rer degree of freedom is maximized. Motivated by the opti-
quired for reliable communication satisfies mality of on—off signaling in the infinite-bandwidth limit, Gal-
I p lager [9] found the exact reliability function in the setting of a
T ———— =log.2=-159dB (3) binary-input channel where information is normalized, not to
No min Nozg logae blocklength, but to the number of’s” contained in the code-
word. More generally, we can pose the “capacity per unit cost”
Gaussian inputs are not mandatory to achieve (1). In 1948oplem where an arbitrary cost function is defined on the input
Shannon [2] had already noticed that for low signal-to-noisgphapet [10]. An important class of cost functions are those
ratios, binary antipodal inputs are as good as Gaussian inpyisich, like energy, assign a zero cost to one of the input sym-
in the sense that the ratio of mutual information to capacifys|s. For those cost functions, the capacity per unit cost not only
approaches unity. Since then, this criterion (which can beequal to the derivative at zero cost of the Shannon capacity but
rephrased_ as the ir_1put a?taining the _(_derivative of CapaCE)jmitsasimple formula [10]. Even in this more general setting,
at zero signal-to-noise ratio) has traditionally been adoptggpacity per unit cost is achieved by on—off signaling with van-
ishing duty cycle.
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hertz) and energy-per-bit are relatively low. The wideband The tradeoff bandwidth versus power is mirrored in the
regime is an attractive choice because of power savings, eastadeoff of the information-theoretic quantities: spectral effi-
multiaccess, ability of overlay with other systems, and diversityjency andFE, /Ny (energy per bit normalized to background
against frequency-selective fading. The information-theoretimise spectral level). Our approach for the wideband regime
analysis of those channels, in addition to leading to the mastto approximate spectral efficiency as an affine function of
efficient bandwidth utilization, reveals design insights on goaH, /N, (decibels). Thus, we are interested in obtaining not only
signaling strategies. fg i but thewideband slopeof the spectral efﬁciency%
From the existing results we could draw the following consurve in bits per second per hertz per 3 dB (b/s/Hz/(3 dB)) at
clusions about signaling and capacity in the wideband regimf%n . Spectral efficiency in the wideband regime turns out to
« On—off signaling approaches capacity as the duty cycie 6eterm|ned_ by both the first and _secon_d derivatives of the
. Rannel capacity at zero signal-to-noise ratio.
vanishes. . .
Section Il sets up the general fading channel model we con-
* The derivative at zero signal-to-noise ratio of the Shannejiyer in this work. Section IlI gives the basic relationships be-
capacity determines the wideband fundamental limits. tween £, /Ny, signal-to-noise ratio, capacity, and spectral ef-

» Capacity is not affected by fading. ficiency. Section IV is devoted to the problem of finding the
« Receiver knowledge of channel fade coefficients is usg—;;mm required for reliable communication. It establishes, in
less. considerably wider generality than was previously known, that

« An input whose mutual information achieves the deriv the receiyed energy per pit normallizeq to noise spectral level in
tive of capacity at zero signal-to-noise ratio is widebar??Gii.USSIan c.hannel subject tq fading .59 dET’ regardles_s of
optimal ide information at'the transmltte_r and/or receiver. In Sectlon AV

' we also show that if the channel is known at the receiver almost
These conclusions and design guidelines have been drawaiy input signaling achieveﬁ‘jmi . Otherwise, it is necessary
the literature in the natural belief that infinite-bandwidth limit§and sufficient) to use a genera‘]ized form of on—off signaling
are representative of the large (but finite) bandwidth regime with unbounded amplitude, which we refer to as flash signaling.
interest in practice. However, in this paper, we show that tho¥éhereas the required transnﬁfotm1 depends on the transmitter
conclusions are misguided as long as the allowed bandwidille information but not on the receiver side information, Sec-
is finite, regardless of how large it is. Indeed, operation in th®n V shows that the wideband slope depends crucially on the
regime of low spectral efficiency does not imply disregard fameceiver side information. We show in Section V that the tradi-
the bandwidth required by the system. Thus, we will see thiznal optimality criterion (attaining the first derivative) is not
design guidelines obtained by infinite-bandwidth analyses negftiong enough to withstand the test of spectrally efficient finite-
not carry over to the wideband regime. bandwidth communication. We propose a new asymptotic opti-
It follows from (1) that to achieve a given raf® bits per mality criterion whereby both the first and second derivatives at
second in the AWGN channel (or any other channel that attai#@ro signal-to-noise ratio are required to be optimal. Under this

the same limiting capacity (1)), we require power optimality criterion, the spectral efficiency is maximized in the
wideband regime. If the receiver knows the channel, quadrature
P = NyRlog, 2. (4) phase shift keying (QPSK) is shown to be wideband optimal.

Receiver knowledge of fading coefficients is shown to have a
However, this minimum power is sufficient only provided thageep impact on both the required bandwidth and the optimal
infinite bandwidth is available. Thus, in addition to transmittegignaling strategies. When the channel has an unknown compo-
receiver complexity, attaining (1) or (3) entails zero spectral gfent, approaching turns out to be very demanding both
ficiency. If we are willing to spend more power than (4), thei) bandwidth and in the peak-to-average ratio of the transmitted
the required bandwidth is finite. However, even in the widesignals. The kurtosis of the fading distribution plays a key role in
band regime neither the limits in (1), (3) nor the derivative dgfetermining the wideband capacity of the fading channel when
the Shannon capacity at zero signal-to-noise ratio determine the receiver is able to track the channel coefficients. Several new
bandwidth-versus-power tradeoff. Of course, the solution c&gsults on the spectral efficiency of multiple-access and multi-
be found from the full Shannon capacity function for arbitrarfintenna channels are also given in Sections IV and V.
signal-to-noise ratios. Unfortunately, the capacity function and
the inputs that attain it are unknown for many channels of in- Il. CHANNEL MODEL

terest, particularly in the presence of fading (cf. [11]). Even for |, this paper, we deal with additive-noise channels in a gen-

channels whose capacity is known for all signal-to-noise rg;a| setting which allows other random channel impairments

tios, no method is available to establish the bandwidth-powgich as fading. Consider the following discrete-time channel
tradeoff in the wideband regime. In this paper, we show thati, .., complex dimensions:

it is possible to obtain analytically the fundamental limits of a

general class of additive-noise channels in the wideband regime y=Hz+n ()
in which the spectral efficiency is low but nonzero. These r
sults offer engineering guidance on the fundamental bandwid
power tradeoff and on signaling strategies that attain it in th
wideband limit. E[||n]]?] = mNo. (6)

vhere the real and imaginary parts of the noise components are
efiependent and satisfy
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H is anm x n complex matrix whose random coefficients havevhere we have denoted
finite second moments, and are independent ahdn. o

Model (5) encompasses channels that incorporate features C <Fo> = spectral efficiency (b/s/Hz)
such as multielement antennas, frequency-selective fading, mul- . . . :
tiaccess, and crosstalk. In each of those caseandn take rT]é‘lmcethe required bandwidth to transmit data fateith power

different meanings. For example, they may be the number]cjn‘iS given by

£y

receive and transmit antennas, or the spreading gain and the B R 10
number of users, or they may both represent time (or frequency) - C (L P ) (10)
slots. When several of those features are present at the same R No

time, itmay be more convenient to use matrices or higher dimefe maximization of the spectral efficiency function is a central
sional objects to represent the input and output quantities. Fl;]B‘aI.

thermore, it is often sensible to decompose wideband channeél§ynereas the spectral efficiency as afunctiorﬁéﬁs defined

into para_lllel noninteracting channels. For the sgke qf simplicity, any system with giverR, P, Ny, B simply thr(;Jugh (8) and

we restrict ourselves to memoryless channels in this paper; 8¢ this paper focuses on the maximum achievable spectral effi-
extension to channels with memory should follow well-knowgiency (under various constraints of transmitter/receiver knowl-
methods (€.g., [12]), in which the number of dimensions growgqge ‘and input signaling). Since each secanidertz requires
Furthermore, in those cases whéfés random, we assume thaiyne complex dimension, the (maximum achievable) spectral ef-
its variation from symbol to symbol is ergodic, so that averagingiency is equal to the conventional channel capacity measured
capacity expressions ovéf has operational significance. in bits per channel uselUsually, to obtain channel capacity, it

We will consider a variety of special cases of (5) depending convenient to place a constraint, notBndirectly, but on the
on the transmitter/receiver knowledge Hf, its statistics, and energy transmitted per symbol vectBf|z]|2], or equivalently
the statistics of the background noise. When transmitter and{Y its normalized version

receiver do not knowH, we assume that they know its prior

2
distribution. We also evaluate the penalty incurred by not using SNR = M (12)
this prior information at the transmitter. By “knowledge of the El|n]*]
channel at the receiver” we imply that the realizationfbfat _ kN (12)
each symbol is known at the receiver. An interesting generaliza- mNp
tion, which is not treated in this paper, is to let both transmitter _E b (13)
and receiver have access to noisy observatiod$.of Ng m
The discrete-time channel (5) arises, for example, from the E,
. : ; = —C(snR) (14)
analysis of the continuous-time channel No
R whereb is equal to the number of bits encodedatnwith a
y(t) = &(t) +n(t) () capacity-achieving system and Shannon’s capacity function

h is whi . ith | densi q C(snr) (bits/dimension) of the discrete-time channel (5) gives
w e.ren(t) IS white noise with power sPectra ens@, and  the maximum number of bits per complex dimension achiev-
the information-bearing received signaft) is a channel-dis- ap16 ynder the constraint of arbitrarily reliable communication

torted versi_on of the transmitted signal_. If the effective d“ratio(r\}anishing block error probability). It follows that the spectral
and bandwidth ok(¢) arel"and B, passingy(t) through an or- gficiency Ev function can be obtained from Shannon's
thonormal transformation witlh = I'B complex dimensions is

No

. . . . capacity via
sufficient to preserve all the information (asymptotically). Thus,
if we denote the number of bits encodedt) by b, the number c <ﬂ> — C(sw) (15)
of bits per second per hertz is equal to the number of bits per di- No)
mensionb/m.

wheresnRr is the solution to

Ey
lll. SPECTRAL EFFICIENCY VERSUSE}, /N No C(SNR) = SNR. (16)

Let E;, denote the transmitted energy per information bit, igqyivalently, from (15) and (16), th&: required to achieve
the same units ad/o, which we can take to be Joules for theyhectral efficiency equal t6 is equal to

sake of concreteness. The key design quanti@slwidth B .
E, CcHO)

(Hz), transmitted power” (W), anddata rate R (b/s) satisfy (0= (17)
the relationships No C
B P whereC~! denotes the inverse function 6f(snr).
b
RF = F 8 1The spectral efficiency achieved by a nonideal practical signaling scheme in
0 0 which each complex dimension occupiesecondsx hertz is equal to capacity

divided a.
2The choice ofC and¢ avoids the abuse of notation that assigns the same
symbol to capacity functions &fNR and f]—; while at the same time it is ad-
E -C <%) (9) visable not to depart from common usage and denote both functions with the
0

and

B initial of capacity.
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The spectral efficiency function in (15) represents b/s/Hz, a 1
long as each complex dimension in (5) takesx kertz. How-
ever, this is not always the case. For example, if (5) models th OPSK
signal received at am-element antenna array (e.g., [13]), the 0.8
whole m-dimensional vector occupies 138 hertz, in which
case, the units of are b/s/Hz/(antenna element). 0.6 BPSK
Analytically, the fg versus spectral efficiency characteristic gf
is of primary importance in the study of the behavior of requirecs
power in the wideband limit (where the spectral efficiedityB
is small). As we will see, in the very noisy regime, a first-order
analysis of the capacity versus the function is good enough
to provide fg i but fails to reveal the first-order growth of the

spectral efficiency versu%.

Even though the goal, as stated above, is to find the be: s ‘ ‘ ‘
tradeoff betweertransmittedenergy per information bit and 02 04 0.6 0.8 1
spectral efficiency, it is also useful for the sake of comparing SNR (linear)
results obtained for different channels to represent the funda-

mental limits in terms Ofeceivecbnergy per information bit Fig. 1. Capacity achieved by complex Gaussian inputs, QPSK, and BPSK in
the AWGN channel.

Gaussian

0.4

C(SNR)

0.2

B B, F[|Hz|?
Mo~ Mo E[ (18) 2

Gaussian

Note that, in general, the channel gdifj| Hz||?]/ E[||=||*] de- QPSK

pends on the input distribution.

Since the explicit solution of (16) is not always feasible, ex 15
plicit expressions for the spectral efficiency vergug N, func-
tion are relatively rare. Fortunately, as we will see, in the low €
spectral-efficiency regime, itis possible to sidestep notonly tt § |
solution of the nonlinear equation (16) but even the computatic &
of C(snr). A notable exception that admits an explicit expres 3
sion for E, /Ny versus spectral efficiency is the deterministic s
Gaussian channel with either white or nonwhite noise: 205

Additive White Gaussian Noise (AWGN) Channel.

/s/Hz)

BPSK

H=AI (19)

E[nn'] = NoI (20) -1.59 0 2 4 6
E,/N, (dB)

whereA is an arbitrary deterministic complex scalar known at

the receiver ande is Gaussian. In this case, the capacity pefig.2. Spectral efficiencies achieved by complex Gaussian inputs, QPSK, and
dimension BPSK in the AWGN channel.

C(snR) = log,(1 + |A]?sNR) (21) and
1 1 1 1
has a straightforward inverse function. Thus, the transmiffed  £x = 7 0.aci/s + 7 Sacismsa + 7 Sacisrsa + 7 6 4cimess (25)

ired t hi i tral effici 17)i It . :
required to achieve a given spectral efficiency (17) is equa 0respectlvely. Observe from Fig. 1 that both BPSK and QPSK

E, oC _q satisfy the traditional wideband optimality criterion, namely,
Fo( )= m (22) they achieve the same derivativesak = 0 as the capacity.
Unfortunately, this criterion does not withstand the test of finite
which in terms of received energy per bit is bandwidth analysis, since in the complex-valued channel BPSK
c requires twice the bandwidth of QPSK for any given power and
ﬂ(C) _r-1 (23) rate, as can be seen in Fig? 2.
No C Deterministic Channel With Colored Gaussian Noise.

Fig. 1 compares the capacity (21) (achieved with Gaussifanlfthe. channel mat_n)H IS constant_overtlmg, k”OV_V” atboth
. . . . : . ransmitter and receiver, and the noise covariance is
inputs) with the mutual information achieved by binary phase

shift keying (BPSK) and by QPSK whose input distributions are Enpn'] = No2 (26)

p = 1 s 1 5 o 3Note that BPSK is as efficient for real-valued channels (arising in baseband
X = 5 at 5 —A (24) or single-sideband communication), as QPSK is for complex-valued channels.
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3 Simply using (8), we can generalize (4) to write the minimum
transmit power required (with infinite bandwidth) to sustain data
25 Appmzmﬁd . rate R as
Ey
. Poin = NoR— . 30
§ 2 0 0 min ( )
":; The bandwidth required to sustain a given rAtith trans-
§ 15 mitted powerP > P,,i,, can be approximated in the wideband
% regime by the formula
§ ] R 10log,,2
H Bro 8100 (31)
So 10log;g 5
0.5 R Puinlog, 2 (32)
- SO P— Pmin
R2 No IOg 2 Eb
) = e - = 33
-1.59 ] 0 ] 2 3 P— Rnin SO NO min ( )
E,/N, (dB)

where (31) follows from the affine approximation to spectral ef-
Fig. 3. Spectral efficiency of the AWGN channel and its widebandiciency, (32) follows from the linear approximationlieg (1 +
approximation. z), and (33) follows from (30).
Recent results on the slope b/s/Hz/(3 dB) of various fading
then the water-filling representation f6(snRr) (e.g., [14]) leads channels in the region of high spectral efficiency can be found

to the explicit expression in [13], [15], and [16].
E, 1 ~ m ~ m E
Fb(c) = — min _ 7, 9mC/m H p]l/m _ Z p; (27) IV. MINIMUM £
0 ML Lsmsm j=1 im1 A. Background
wherepy, ..., p are the ordered version of the reciprocals of SinceC(snr) is amonotonically increasing concave function,
the nonzero eigenvalues of the matrix (16) results in
_ E SNR
H'S™H. LA 34
No min SNR=0 C(sNR) (34)
To conclude this section, we formalize the performance mea- _log, 2 (35)
sures of interest in this paper. o O(O)
Our approach is to analyze the first-order behavior of theh
spectral efficiency versug: function in the wideband limit ~ W"€"¢ . . _
0 C(0) = derivative atd of C(snr) computed in nats/di-
B _ - E mensiore
10logy No (C) =10logg No win Several tools to analyz€(0) were developed in [10] in the

general context of memoryless channels. In particular, it was
shown in [10] that ifA is the input symbol alphabet, and the
+ 0(Q), C—=0 (28) costfunctiorr: A — Rt issuchthatthere is a zero-cost symbol
(denoted by 0"), i.e., ¢(0) = 0, then the capacity per unit cost

C
+ S 10log, 2

where £ . denotes the minimur: required for reliable s equal to
communication, and, denotes the slope of spectral efficiency P
in bis/Hz/(3 dB) at the poinf: D(Pyx—a|IPy x o) Epy _ log (dpj“);;)
sup = sup
C( E, ) zCA c(x) zCA c(a:)
Sodéf . hllsn 7 No jop 1010g10 2 (36)
ﬁiﬁnlin 1010g10 ]\_‘rt; — 10 loglo Nt; min

(29) whereD(P||@) denotes the divergence between distributiBns

The rationale for this first-order analysis is illustrated i@nd@, and Py |x—. denotes the conditional output distribution
Fig. 3, which compares the exact spectral efficiency witgiven |r_1putx. The foregoing optimization problem has several
its wideband approximation for the AWGN channel. Th&@Ppealing attributes.

approximation is an excellent one well beyond the wideband « |t is often easier to compute than Shannon capacity.

regime. For example, at spectral efficiency equal to 1 b/s/Hz, , Divergence is between conditional output distributions in-

/Fxg - 00 ggB,d;hereas the wideband approximation gives stead of a conditional divergence (mutual information).
ATO = — . B

5In this paper, in addition to logarithms in basgbase2, and basd 0, we
4The wideband approximation is optimistic for the AWGN channel, and pesse logarithms with arbitrary base. When no base is indicated the logarithms on
simistic for many fading channels of interest. both sides of the equation have identical bases.
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Optimization is over the input alphabet instead of over tHe. AWGN Channel

set of distributions defined on it. As an example, let us compute (42) for the AWGN channel.
* Low duty cycle on—off signaling is asymptotically (as theSince the noise components in (20) are independent and iden-
duty cycle vanishes with the allowedr) optimum with tically distributed, it suffices to take a scalar channel model

on-level at the argument that maximizes (36). m = 1. The following well-known formula for the divergence
* |t shows a connection between information theory and daetween the distributions of complex-Gaussian random vari-
timation theory. Supposd = R andc(z) = 2 ables will be useful. Letv(m, o) denote the distribution of a
complex Gaussian random variable with meaand indepen-
- D(Py|x = Py|x=0) dent real and imaginary components each with variarfge,
weg)? $2 i.e.,
. D(Py|x=||Py|x=0) 1
> lim 2 (37) () = —5 exp (=x—m|?/o?).
log ¢
== Io(Pyx) (38) Then
with Fisher’s information D (N (my, o) IV (mo, o7))
2 _ 2 2
(P E d dPy|x=x ? =10ga—g+ <M+0—12—1> log e. (44)
— A= . o o o
0( Y|X) Py x=o <ax dPY|X=O>x:0 1 0 0

Using (44) with

The_Cramer—Rao bound togetherW|th_(38)|mpI|es thatthe Pyix—x = N(Ax, No)
minimum energy necessary to transmit 0.5 ra3.721 b _

cannot exceed the minimum conditional variance of akie obtain

estimate of the input from the output given that the input Ax|?
is 0. D (Pyx=|Prix=0) = % log e. (45)
Except for the different normalization, the sought-aff§o) Therefore, for the AWGN channel the ratio on the right-hand
is given by a formula akin to (26). It is shown in [10] that side of (42) is independent afy. Evaluating the divergence in

nats we get
. C(snR) I(z; Hx +n) g
lim —~%= 1 sup —————= (39) . D (PY Ny || Py X:O)
SNR—0  SNR SNR—0 . M SNR C(0) = Ny sup | X=20 | = A2 (46)
N1 I(z; Hx +n) 40 g llzol|>
TR0 Y T B2 “49) " and (via (35))
D( Py x—z||Pyix=o|Fs .
~ Nosup 2 Y'XE”” X olFe) a1 By _los.2 47)
Py [HmH ] NOInin |'A\|2
D(Py\x—g || Pyvix=
=Ny sup ( Y|X||_”°||||2 ¥ |x=0) (42) implying the well-known result (cf. (3))
E ) Zo
Ly
wherely | x —, stands for the distribution df z-+n conditioned FOmin =-1.59dB (48)

onz, and in particulaiy | x — stands for the distribution of. i oh be obtained directly by lettifg— 0 in the explicit
Equation (41) is nontrivial and follows from the approach takef'?)rmula 22)
o .

in [10]: no loss of optimality is incurred (as far as the first deriva-
tive at0 is concerned) by restricting to have the following Fading Channels With Additive Gaussian Noise
on—off structure. Fixzq and letz be 2y with probability 6 and

0 with probability 1 — &, with § vanishing proportionally tenr rIn this subsection, we show that (48) is the required received

according to fg i pf avery wide class of fading channels with background
Gaussian noise.
5 — snR Nom 43) We saw in (18) that the received and transmitted energies per
N |lo|2” bit are related by the channel gain. The maximum channel gain
2
We note that a more careful notation would reserve G = sup Lfl|Hz=|] (49)
I(z; Hz + n) to the case where the receiver does not know r.  Elll=]?]

the channel, and would usKz; Hz + n|H) to denote the achievable over all choices of the input depends on the knowl-

mutual information when the channel is known at the receivefgge available at the transmitter. We highlight a few special
Although in (40) and the sequel we have chosen not to makgses of interest.

the distinction explicit, we should keep in mind that when )

the channel is known at the receiver, mutual informations and * The transmitter knowd. Then
divergences are obtained by averaging conditional expressions _ 9

over the channel statistics. G= oip Tinase(H) (50)
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with o,,,4; denoting the largest singular value, and the (ethe general approach outlined in Section IV-A. When the re-
sential) supremum on the right-hand side is over all reateiver knows the channel, the conditional output distribution is
izations ofH . Note that to obtain this channel gain, “poweGaussian

control” is required, whereby the instantaneous norm of

is allowed to depend on the channel realization. In effect, Py \x =z, = N (Hzo, NoI). (58)

the transmitter only puts energy in the maximal-eigen- o
value eigenspace il H and only when the maximal To compute (42) we need to use the generalization of (44) to

eigenvalue is the best possible over all realizations. No_r{réultidimensional propércomplex Gaussian distributions with
thatG = oo in the special case of the flat-fading scalal’dependent components
channel where the fading distribution has infinite support

? P D (W (1, B1)|| N (mo, To))

(such as Rayleigh).
= log det Xp — log det ¥q

The transmitter knows the maximal-eigenvalue _
g + (my —mp) 8™ (my — mg)log e

eigenspace ofH'H but not the maximal eigenvalue.
(Equivalently, the transmitter knows the channel but it is + trace ()30’121 — I) log e. (59)
not allowed to employ power control.) Then
Applying (59) to (58), we get that for aity and H
G = Elo}u(H)] (51 i

i ; e D (PYIX:wo||PY|X:o) = L{;OH log e. (60)
The transmitter does not knal# but it knows its distribu- 0
tion. Then, the input distribution is not allowed to depe”ﬁollowing (41) we get (in nats)
on H, and the channel gain is

D (Pyjx=slPyix=ol )

G = Amax (E[HTH]) (52) C(0) = Nosup 2]
with A, denoting the largest eigenvalue. = sup E[||Hz||*]
- 2
The components of the input are constrained to be inde- B GPZ Efll=?] (61)

pendent with equal power. This constraint is common in

multiantenna systems and in multiaccess channels. Th?\ns we saw before, the actual value®@Wwill depend on the avail-

able knowledge at the transmitter. Note that in the case where
the transmitter knows the channel realization and it is allowed
to do power control, we do not enforce a constant energy con-

G= % Eltrace{H'H}]. (53)

Theorem 1: Consider then-dimensional complex channel Straint in order to maximize mutual information. This requires

a slight generalization of the conventional setting whereby the
y=Hz+n (54) energy constraint is an auxiliary random variable dependent on
the channel realization.

where the complex Gaussian veatdnas independent and iden-  with receiver knowledge, the input distribution that achieves
tically distributed components and satisfies (6). Then, regardiggsth C(0) andG is a Gaussian distribution with covariance dic-
of whetherH is known at the transmitter and/or receiver, the fated by the solution of the maximal channel gain problem. In
quired received and transmitted energy per bit for reliable comgeneral, the desired input distribution can be constructed by
munication satisfy on—off signalingPx = (1 — )Py + 6Py, Where P, is ob-

tained by solving the maximal channel gain problem.

E'r
b =log, 2=-1.59dB (55) Now, we turn to the case whek is unknown to the receiver.

and No win Instead of the full generality of the theorem statement, we as-
B, log, 2 sume, for now, that the coefficients &F are jointly Gaussian.
o = é (56) In this case, the conditional output distribution is still Gaussian
respectively, wher& is the maximum channel gain. Py xeg, =N (H:r:o, cov(Hezo|zo) + NOI) (62)
Proof: Accordingto (18) and (35), our goal is to show that
. where
C0) =6 (57) _
. EH]=H
and that there is an input distribution that achieves o)
and the maximum channel gain. and we have denoted the conditional covariance

Immaterial for the result, the nature of the receiver knowl- . o
edge is crucial for the proof. First consider the case wiktis ~ cov(Hzg|2o) = F [(H - H) Tz} (H - H)
known to the receiver. Although in this case we can write the

xo} . (63)

input—output mutual information in closed form, we will follow 8in the sense of [17].
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With (62) and (59), we get Special cases of Theorem 1 dealing with the scalar channel have
EllHaol2 appeared in the literature. In addition to the references cited
D(PYIX:wOHPYlX:O):M log ¢ in Section |, the case = m = 1, with fading known at
No the receiver, (55) was explicitly stated in [15], [18]. The scalar

“log det <I+i cov(Hmo|x0)> ) real-valu_ed channel, With fad_ing unknown at both t_ransmitte_r
0 and receiver, appears in [10] in the context of capacity per unit
(64) cost. The derivative of capacity of the multiantenna channel with
. . . independent data feeding different antenna elements was shown
Note that the second term on the right-hand side of (64) is eq't’@'be given by (53) in [13, eq. (11)].
to I(H; Hzo + n). The fact that with full channel knowledge at the transmitter
Proceeding as before we get and power control, the transmitte% can be made as small
as desired in the infinite-support scalar flat-fading channel was

C(O) — sup E[||Hz|*] shown in[15]. Infact, [15] shows that property even if the fading
r, | Ell=l?] coefficients can only be tracked coarsely. This is another illus-
tration of a case where the conclusions derived from the analysis
NoE [108‘@ det (I + N cov(H -'l‘|-’l‘))} of spectral efficiency versu§® are quite different from those
- E[|z|]?] drawn from a cursory analysis 6f(snR).

The restriction in Theorem 1 to independent and identically
distributed noise components is not a critical one, of course, as
the observation basis can be changed to force that condition.
i Naturally, care should be taken interpreting the result®/gis
as we wanted to show. To write (65) we have used the fact that 4 ditional meaning of: measures the total received noise
the solution to the maximal gain problem is scale invariant. %wer (cf. (6)); but if the noise components do not have equal
we can amplifyj|z]| by a factor large enough to render the nuiggengih, theZ: s actually dictated by the lowest strength
sance term on the left-hand side of (65) as small as desired pgamponent. To fiilistrate this point, it is best to consider the spe-
cause of the logarithmic increase of its numerator. cial caseH = I, and independent noise components. The fol-

Finally, we lift the restriction that the channel coefficientsoying result is a straightforward application of the above tech-
(unknown to the receiver) are Gaussian, which was, in faCtnfhues.

worst case restriction. If the “true” conditional output distribu-

tion is denoted by’ | x—., let us denote the Gaussian distribu- Theorem 2: Consider then-dimensional complex channel
tion with identical mean and covariance #y-| x —.. In partic- y=z-+n (69)
ular, note that

E(|H=|*] _

—sup — "1 1 -G 65
] (63)

where the complex Gaussian vectohas independent compo-

Pyix=0 = Py|x=0- nents with variances
We can write the divergence of interest as Eln;)?] = 0—]2.
D( Py|X—ay || Prix—o) such that
ID(‘I’Y|X=:.:OH‘I’Y|X=0)+D(PY|X=mOH‘I’Y|X=m0) (66) 1 zm: 2N
il o2 = No
because the expectation of the log-likelihood ratio in the first di- mia

vergence of the right-hand side only involves the second-order . ) o
statistics. Since the second divergence in (66) is nonnegatiV8€ reauireds: for reliable communication is
the case of Gaussian channel coefficients unknown to the re- E,
ceiver is indeed the least favorable. But even in that worst case

we were able to achieve the same expression%g]{”1 asin
the (best) case where the receiver knows the channel perfectlyrpe tact that we no longer gkig, 2 is just an artifact of the

By _minyo) ) (70)
NO min NO o

Thus, Theorem 1 follows. = meaning ofVy. In fact, the received energy per bit divided by
The special case: = » = 1 of Theorem 1 merits particular the noise energy restricted to the dimensions used by the optimal
attention signaling, continues to be1.59 dB.
y=(h+g)x+n (67) D. Additive Non-Gaussian Noise

_ b — 1
where the deterministic component is denotedhbgnd the Theorem 1 shows tha%,o min 1.59 dB IS an egtremely_
robust feature of channels where the additive noise is Gaussian.

zero-mean random componenhas variance,?. In this case, . . . .
. 4 N fact, it can even be generalized to certain nonlinear channels.
regardless of transmitter/receiver knowledge of channel coefii-

cients and the distribution of those coefficients, we get ven though n.o_e>.<pI|C|t result§ f@(SN.R) exist if the noise 1S
not Gaussian, itis indeed possible to flﬁgmm for specific ex-
E,  log.2 (68) amples. Consider the following result that applies to Laplacian

No  |hZ++2 noise.
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Theorem 3—Laplacian Noise Channelonsider then-di- with
mensional complex channel N
— snr 22
y=z+n (71) 6 = SNk c|? (78)
where the vecton satisfies (6) and has independent comple first-order optimal for any nonzera. More generally, for
components each with distribution channel (54), we saw in the proof of Theorem 1 that the fol-
lowing n-dimensional distribution is first-order optimal:

p(x) = Nio exp <_% (15| + |%x|)) L (72

|0, with probabilityl — 6 (79)
Then | p(sNR)zo, with probability §
E 1 .
b — Zlog 2= — with
N, =gl 2=-460d8 (73)
) ) ) NoSNR
Proof: The result is obviously independent of, so we b= 55— (80)

) . . ) 2(sNR) || 20|
can takemn = 1. A straightforward computation yields (in nats) pH(sR)llzol

2 and z, a maximal-eigenvalue eigenvector &' H if H is
D (Py|x—x, || Prix=0) = =24 —= (|Rxo| 4 |Sxo|) , J J

N, known, or of the matrixZ[H' H] otherwise. An p(SNR) which
0 Vi
2|Rxo| letsé — 0 can be chosen i is perfectly known, otherwise,
+ exp <— VNo ) p(sNR) — oo assnR — 0. In the latter case, the first-order
23| optimal distribution suggests signals with extremely low duty
+ exp <_WO> (74) cycle. But note that even in the case of a known channel, the
0

peak-to-average ratio of the input distribution (79) goes to
When the result of (74) is divided bly,|?, it is clear that the infinity assnr — 0. Of course, the peak-to-average ratio of the
ratio is maximized as<| — 0. Using a Taylor series expansioncapacity-achieving Gaussian input is no better. Fortunately, if
of the exponential in (74), (42) becomes the channel is known at the receiver, unit peak-to-averagé ratio
. signaling strategies such as BPSK and QPSK are first-order
c(0) =2 (75) optimal. In fact, it does not take much for the input to be

as we wanted to show. O first-order optimal.

Incidentally, note that the bound in (37) is satisfied with Theorem 4:Assume that the receiver know. An input
equality in the Laplacian case, a property which also holds féstributionzsyr which satisfies thenr constraint (12) idirst-
the Gaussian channel as long as the channel fading is knowR"ger optimalif and only if
the receiver.

E 2
lim M =0 (81)
E. Signaling SNR—0 E [[|zsnr||?]
and
For several of the scenarios considered above, the capacity- ElH, 2
on SEVEIG G ) . : : [1Hzsnr|"]
achieving distributions are either unknown as a function of the =G. (82)

. SNR—0 B[« 2
SNR, Or they can be found only numerically. A relevant byproduct llse1*]

of the analysis in this section is the identification of simple dis-  Proof: To show sufficiency, first note that when the re-
tributions that, although do not achieg&snr), achieveC'(0), ceiver knows the channel, the mutual information does not de-
and, consequently, are good enough to ach{éovqm. Thisfact pend on the mean of the input. Then, we make use of the canon-
and the results in the next section, motivate the following foreal decomposition of mutual information as

malization of the traditional optimality criterion.

I(X;Y) = D(Py x| By x=0|FP)—D(Py|| Py x = 83
Definition 1: An input distribution parametrized bynr, (X5 Y) (B x =l By x =0l B) = DY [Py x=0) (83)

s is first-order optimalif it satisfies thesnr constraint (12) with Y = H(zswg — E[zsng]) + 0, X = zsnr — Elzsnr]-

and it achievest: _ , namely, According to the proof of Theorem 1, the first term on the
I (Zsng; ¥) ) right-hand side of (83) achieves the target in (76) provided
lim ———=4 = C(0). (76) (82) is satisfied. Therefore, it will be sufficient to show that the

SNR=0- TSR second term on the right-hand side of (83){snr) for any

Trivially, a capacity-achieving distribution is first-order opfixeéd nonzeraH. We can cast this in a more general setting in
timal. For the AWGN channel, in addition to the Gaussian digthichY = vsnr +n, Py jx—o = ®x Is a zero-mean complex

tribution, we have seen that the one-dimensional on—off distfraussian variate with covarian@él, vsyk has zero mean,
bution covariance matriXsyr, and is independent af, and
_fo, with probability 1 — 6 E[||vsnr|?] = trace (Esnr) = ashr
x= {c, with probability § (77)

80nce the discrete-time information sequences are mapped to contin-
"The real and imaginary parts are denoted by Rx + jSx. uous-time waveforms the peak-to-average ratio will no longer be unity.
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for some finite constant. The divergence of interest can be Definition 2: An input distributionzsyg is said to beflash
written as signalingif it satisfies thesnr constraint (12)

D (Py||®,) = D(Py||By) + D (0y | @n)  (84) Efllzsne|[*] = mNosng (89)

. . . . and for ally > 0
where®y is a Gaussian variate with the same mean and covari-

ance matrix a§". The first term on the right-hand side of (84) is .
the “non-Gaussianness” [19] of the vectggr + n. Using the SNhRIEO E[||2snr||?]
results in [19] it follows thafD( Py ||®y) = o(snR). The second
term on the right-hand side of (84) is equal to

Elllzswl*L{llzswell > 3] _ | (90)

The simplest form of flash signaling is the on—off signaling
we saw in (79) with the on-level(snR) — oo assnr — 0.
D (®y || ®n) =D (N (0, NoI 4 Zsnr)|| NV (0, NoI)) The first appearance of this specific form of flash signaling as
a capacity-maximizing strategy is apparently due to [25] in the
context of the flat Rayleigh channel with fading coefficients un-
known at the receiver. In general, flash signaling is the mixture

=trace (NglﬂsNR) log ¢
— 10g det (I+ NO_IESNR)

< —— trace (Eng) log ¢ (85) pf a probability dlstr|but|on_t_hat gsy_mp'FotlcaIIy co_ncentrates_ all
0 its mass af) and a probability distribution that migrates to in-
1 finity; the weight of the latter vanishes sufficiently fast to satisfy
< —— tra 2 3 ! . . .
— 2N trace” (Zsnr) log the vanishing power constraint.
= o(SNR) (86) Theorem 5: Flash signaling that satisfies
i ) . E[||Hzsnr|’]
where (85) follows from the fact that for any nonnegative ma lim -G (91)
trix A SNR—0  Ef||lzsnr|[?]
1 is first-order optimal.
log, det(I + A) > trace(A) — §trace(A2). (87) Proof: Choose an arbitrary > 0. Define
: . : v = Elzsne1{|[@snrl| > ¢}] (92)
The necessity of (81) is clear from the fact that since the mu- v~ = Elzsye] {||zsnr]| < €}] (93)
tual information is invariant to the mean of the input we can only L SNRELPESRIL = c
hope to achieve (76) if any power wasted in the mean is negli- (" = Efl|lzsnel|" 1 l|lzsnrll > €}] (94)
gible ¢~ = Efllzsnrll* 1]z < €}]- (95)
FE -F 2
R0 [HmSENFfo [ﬁf]N A= @) """
e |Eleswell® _ [[v* +o~| 1 (96)
Furthermore, the necessity of achieving the maximal channél [||zsng||?]  ¢F+(—
gain (82) is evident from the proof of Theorem 1. O < 2llvt||2+2]jv)? 97)
In the setting of the scalar AWGN channel, [20] and [21] B +CJ;+C_ s B
showed that any zero-mean input constellation asymptotically < 2”2l ¢ (98)
maximizes cutoff rate and channel capacity, respectively, in the -t - CHHC
traditional sense of meeting the first derivative. < 2|lv T2 5 ¢~ (99)
The rank-one signaling strategy whereby all the energy is = ¢t + CHH¢
transmitted along one eigenmodeHFH (or of its expecta- 2|jwt|)2
tion if the matrix is unknown) is sometimes referred tdaam- ST +o(1) (100)
forming In the special case of a single receive antenna, beam- 1 E[zsng||[2swr ]| > 12
forming was shown to be asymptotically optimal for vanishing <2P[||Zsnr| > €] £ >R 5 >R +o(1)
snR in [22] (see also [23]) using the traditional (first-order) op- [llzsrl*[[lzsnr ]| > €] 101
timality criterion. In fact, if the largest eigenvalue eigenspace (101)
has dimension one, then beamforming is optimum up to a cer- <2P[||lzsnr|| > €] +o(1) (102)
tain nonzeranr, explicitly computed in [24]. However, if the <o(1) (103)

largest eigenvalue eigenspace has dimension larger than one,

then rank-one signaling is wasteful of bandwidth as will be seevhere (99) and (102) follow from the fact that the norm squared

in Section V-D. of the mean s less than or equal to the mean of the norm squared,
Turning our attention to the case where the channel is uand both (100) and (103) follow from (90). Thus, condition (81)

known at the receiver, it is convenient to define the following satisfied. Using Theorem 4, first-order optimality is ensured

class of input signals. provided that the receiver know#.
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Now let us assume that the receiver does not kitbwirst- Theorem 6: Assume that neither the transmitter nor the re-
order optimality is equivalent to ceiver knowH, and
I(@snr; ¥) Amax(E[H'E[H]) = \uax(E[H'H]).  (112)
TMSNR N Then, any input that is first-order optimal for a deterministic
= —02 (E [D (PYIX:wSNRH PYlX:O):| channel with matrixt[H] is first-order optimal fotH..
Ellzsnrl[?] Proof: We can proceed as in the proof of Theorem 5 until
— D (Py| lex:O)) (104) we reach the point where we wish to show that the following
e (105) ratio vanishes:
. . . . FE |:10g€ det (I+ ]\% COV(H.’IZSNR|.'IZSNR)):|
where the conditional divergence (in nats) is equal to [cf. (64)] 0
B[l Haswel) 1 Bzl
X J—
%—E |:10g€ det <I+ oA COV(H$SNR|$SNR)>:| . log, (1 + o (Bl Hasnr])*] - ||H-’l?SNR||2))
0 0 < (113)

2
Using the same argument followed in the proof of Theorem 4 Elllzsns]”]
we can show that the unconditional divergence in (104) vanishaere we denote@[H] = H, and we used the Hadamard and

faster tharsnr. In view of (91), it remains to show that Jensen inequalities. The right-hand side of (113) vanishes as
sNR — 0 because the first-order optimality for the deterministic
| E [103‘6 det (I + 5 COV(H-'I"SNR|-TSNR)):| channelH implies that
im =0. _
SNR—0 El||lx 2 ElH 2 S
Ll (106) im EHEII-:SNEQ]] = Awax (H'H) (114)
Recalling the notation in (63) and using the Hadamard in- - SNR :
equality, we can write for any realization 8y = Amax (E [H HD (115)
1 1 E[|| Hasnr]|?]
~ loe — >— = 116
m 108 det <I+ NO COV(HmsNR|$SNR)> = E[HwSNRHQ] ( )

for anysnr. O

IN

Theorem 7: Assume that neither the receiver nor the trans-
mitter know H. If

Ao (E [H]'E [H]) < Ao (E [HT HD (117)

<log <1 + == )‘max IIa‘SNRII ) (109) thenzsyg is first-order optimal only if it is flash signaling and
(91) is satisfied.
where (108) follows from Jensen’s inequality and we have Proof: The upper bound (cf. (104))
used th? shorthand notation,.. for the maximal eigenvalue j(go\c: y)  E[||Hzsyr]|?]
of E[H'H]. We will upper-bound the expectation of the
right-hand side of (109) with respect g by splitting it
according to whethdfzsyg|| < v for an arbitrary > 0. Using NoE [108‘@ det (I+ N COV(H-TSNR|-TSNR))}

% z:): <1 +— E[|(HwSNR)i|2|wSNR]> (107)
sos(1+5

+ E ||H~TSNR|| |$SNR]> (108)

TMSNR - E[H“‘SNRHQ]

los, (1 +2) < @ EffosurlP] (o)
log masx 5 immediately implies the necessity of (91). The proof will be
Elog. {14 ”mSNR” L{[lzsnr]] <2} complete upon showing that the second term on the right-hand

)\max ) side of (118) is bounded away froénif the input is not flash
< N E [[lzsnrll*1{[lzsnrll < #}]  (110)  signaling. Note that ifd is anm x m nonnegative definite ma-
trix, then
which vanishes faster thal|||zsnr||?] because of (90). 1
On the other hand det(l +A) 2 1+ Anax(4) 2 1+ —traced  (119)
E [log < n Amax || SNR||2> 1l esnr]] > 1/}} which when particularized to the determinant in (118) yields
' 1
det <I + — COV(H$5NR|$SNR)>
1 1 )\max
< 5 log. < * TO> E [|lesnrl*L{llzsnr]l > 1}] Nf
‘ S tygl t
(111) > 1+ mNo TR (E |:H H:| E |:H :| E[H]) ISNR
where (111) follows becausg%;log(l + z) is monotonically >1+ mLNo (:;;SNR [HTH} ZsNR

decreasing. In view of (90), the ratio of (111) f||zsnr]|?]
converges to a constant that can be made as small as desired by ~ —Amax (E [Hq E[H]) II:ESNRII2) )
choosingr to be sufficiently large. Thus, the proof of (106) is

complete. O 21 +

||93SNR||2 (120)
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where we have denoted the positive quantity where the columns of the matri& are the spreading vectors

_ i _ § andAis aK x K diagonal matrix of the channel fading coeffi-
V= Amax (E [H HD Amax (E[H]' E[H]) (121) cients seen by each user. Note that the symbol emanating from

and (120) holds outside the set of realizations each user in this memoryless multiple-access channel is a com-
lex scalar. Naturally, itis possible to generalize (126) by havin
Bsng = {Z‘SNR: zl\wE [HTH} ZSNR P afy, 1S p g (126) by g
each user transmit a symbol vector (thereby encompassing mul-

< ()\max (E [HTHD _ 7/2) ||-TSNR||2} . (122) tiantenna arrays at the transmitters). This multiaccess setup is
different from the one considered in the single-user case in sev-

Accordingly, the expectation in the numerator of the secongy) respects. First, the encoders operate autonomously and are
term on the right-hand side of (118) is lower-bounded by o independent messages. Thus, the componeatsrafst be
v 2 statistically independent. Second, it is more natural to define
Ellog|(1 1 B . . ; .
[ 8 < + 2mNg sk ) {zsne ¢ SNR}} SNR ON a per-user basis rather than on a per-received dimension

v ) basis as we had done before. ket be the transmitted energy
2 B [lOg <1 + 2mNo 2SRl ) Hllzsnrll < »} per user per input dimensid||x|?]) divided by Ny, and let
C(snr) = b/N as before, wherkgis the total number of reliable
X 1{zsnr ¢ BSNR}:| information bits transmitted by alk users in one channel use.
Note that althougling is common for all users, the individual
1 y? oy " ;
>~ log |1+ E [H-'Z'SNRHQl{H-TSNRH <v} rates need not be equal. The resulting “system” energy per bit
2 2mNo can be seen to be equal to the harmonic mean of the individual
x1{zsnr & Bsnr}l energies per bit. Because of the different definitiorsiaf, in-
2 stead of (16) it is easy to see that we now have (cf. [27], [15
2 s tog (14 52 ) ElleswelP1 laswel < o) (0)itis easy (o (271, 19D
mNO Eb
1 o 12 No C(sNR) = (ISNR (127)
B l/_2 o8 ! + 2mN0 . . . .
) where the ratio of users to dimensions is denoted by
x B [H-TSNRH 1 {.TSNR S BSNR}] (123) K
where we have chosen an arbitrary> 0. From the definition = (128)
f Bsnr, it foll that -bound . o
Of Bsnr, ILTOTOWS hat we can upper-boun Accordingly, in this case
2
E[||Hzsng||]
; ) E, _ [3SNR 129
S )\max (E |:H H:|) F |:||mSNR|| 1 {mSNR ¢ BSNR}] Fomin - SNIRIEO C(SNR) ) ( )
i
+ ()‘max (E [H HD —/ 2) Despite those difference%min turns out to be the same as
x E [||wsnr|*1 {zsnr € Bsnr}] - (124) before.

Upon dividing both sides of (124) b&[||zsnr||?], we see that  Theorem 8: Consider thei{-user multiple-access channel
condition (91) requires that
I E [[lasnr®1 {®snr € Bsnr}] 0 125
Nrto E[|zsnr|?] - (125)  \where theV-dimensional complex Gaussian vechohnas inde-

Applying this fact to (123) we reach the conclusion that unleggndent and identically distributed components, each with vari-
) . . LT
the condition for flash signaling (90) is satisfied, the second terdi¢&Vo- The requiredg: for reliable communication is

y=Hzx+n (130)

on the right-hand side of (118) is bounded away flam [ E, Klog, 2 (131)
F. Multiaccess Channels Nowin  E [trace {HTHH
Another important scenario captured by the setting of thighich at the receiver is
paper is the analysis of the total throughput of additive-noise Er
multiple-access channels. Suppose that the receiver observes Fb =log, 2=-159dB (132)
O min

y=Hzx+n. (126) . .
) ) o . _ regardless of whethd{ is known at the transmitters and/or re-
For consistency with the standard notation in the multiuser litg¢ajyer. Furthermore, il is known at the receiver, a bank of

ature [26], we denote the dimensionality of (126) By which  gjngle-user receivers that approximate multiple-access interfer-
is the number of degrees of freedom per transmitted symbghce as independent Gaussian noise achieves (132).

The input vectote is K -dimensional wheré( is the number of Proof: We first consider the case of knowid. With an
users, and the/' x K matrix H can be used to model fading,qyerall transmitted energy in onk-vector symbol equal to
multiple-access interference, etc. For example, in a code-Gyr v, the received signal energy is

vision multiple-access (CDMA) channel subject to flat fading
[15], N is the spreading gain, or number of chips per symbol

K
SNRIV, hi 2
o ML
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whereh;, is the kth column of the matrixd. Therefore, the  The main practical lesson we can learn from this section is
overall channel gain is equal to that if the background noise is Gaussian, finding the minimum
Ef|He|?] 1 transmitted energy per bit required for reliable communica-
Eei Z lhe|]* = = trace {HTH} (133) tion is simply a matter of subtracting the channel loss from
Ell=(1%] K K —1.59 dB. The fact that channels with vastly different infor-
and (132) follows from (131) Now according to (129), in ordefation-carrying capabilities have the Sa'ﬁb points out

to prove (131), we need to show that the essential limitation of this performance measure: it is not
< intended to give any indication whatsoever about required
0) = /3% Z || ||%. (134) bandwidth. In order to assess the interplay between bandwidth

and power for a given wideband channel, we must resort to the

We first upper-bound(0) by analyzing a receiver consistinganalIySIS propounded in the next section.

of K autonomous receivers each informed of the transmitted
codewords of the other users. In such a hypothetical genie-aided V. WIDEBAND SLOPE b/s/Hz/(3 dB)
setup, the capacity is given by
K
C(snR) = 1 Z logy (1 + ||| ?sNR) (135) In this section, we study the growth of spectral efficiency with
et ifi we focus on the per-
whose derivative ainr = 0 (in nats) is equal to the sought- afte,formance measursy, defined in (29) as the increase of bits per
expression on the right-hand side of (134). second per hertz per 3 dB (b/s/Hz/(3 dB)) Bf achieved at
To lower- boundﬁ( ), we consider a suboptimal receiver conwo i . The following general result is a straightforward conse-
sisting of K autonomous receivers each of which treats mufiuénce of (16).
tiuser interference as Gaussian noise. The capacity achieved byhegrem 9: At Ez , the slope of the spectral efficiency
each of those (matched-filter) receivers is lower-bounded by togrsusE" in b/s/Hz/(3 dB) is given by
capacity of an AWGN channel

A. The Role of the Second Derivative

. 2
¥ = hixi + 7, (136) S 2 [0(0)] 140)
wheren;, has covariance matrix equal to 0 —C(0)
No(1+ apsnr)I with C andC, the first and second derivative, respectively, of

unctionC(snr) computed in nats.
Proof: By definition of C andC, the functionC/(snR) (in
bits per dimension) admits the following Taylor series for small

Z thj. SNR.

with ay, equal to the largest eigenvalue of the covariance mat|Ihe f
of the vector

ik C(sNR) = C(0)shRlog, ¢+ 3 C(0)snR? log, ¢ + o(sNR?).
The capacity lower bound is then ) ] (141)
2 Equations (16) and (141) enable us to write
|| “SNR -1
E . 1.
C'(sr) Z log; <1 + 1+ SNR> (137) Fb = <C(O) log, e+ 3 C(0)snrlog, e+ O(SNR))
0
a function whose denvatlve atr = 0 is identical to that of the (142)
upper bound (135). and from (35) and (142) we get
To deal with the more general case of unkndwe invoke £ ¢(0)

. . . g Q Hlln
the multiaccess results shown in [10]. In particular, condition 5, =1+ F() SNR + O(SNR). (143)
[10, eq. (24)] is satisfied in this setting, namely, the zero-energy No

input is the most favorable from the viewpoint of other userdhe target ratio in (29) is a function g which can be put as
In such case, the optimum capacity per unit energy is achieveg@arametric expression in terms of the valuenafthat solves
by time-sharing: at most one user is allowed to transmit at afi6)

given time, and a bank of single-user receivers is optimum. The C (&)

resulting capacity is equal to No _ C(0)snRlog, e + o(SNR)
101og, Aﬂ;/ . —10log, (1 + QCC((OO)) SNR + O(SNR))
C(sR) N Z Cr(snR) (138) C(0)snRrlog, ¢ + o(SNR)
whereCy (snRr) is the capacity of the single-user channel —10 2%((00)) sNRlogy g € 4 o(SNR)
y = hixi +np (139) 9 [O(o)} 2 .
which corresponds to the special case= 1 of the channel = = + o(SNR).

. . . . — 10log;, 2
considered in Theorem 1. Proceeding as in the proof of that ¢(0) 10logyp

theorem, it is easy to show that(0) is given by /3 times (144)

E[||h])?]- O Letting z= — &= _, or equivalentlysir — 0 we get (140).
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So far, we have assumed th&t0) is finite. If C(0) < oo and on—off signaling where the input vector hagla— §)-mass at

C(0) = —o0, then it is easy to check th& = 0, for in that the all-zero vector. The input distribution conditioned on the
case input being nonzero is denoted B, and a unit mass at the
. all-zero vector is denoted h¥,. Thus,
C(snr) = C'(0)snrlog, e 4 o(SNR) (145) .
Px =(1-68PFP +6Px (150)
while
2, . : with 6 chosen so that theur constraint is satisfied, namely,
Momin g = —%NT)) 0824 (146) 5_ _ SNRNom (151)
(O EflelPle # 0]
goes to—oco when divided by vanishingnr. O

The output distribution corresponding Ry is denoted by
Note that by definition, the wideband slogg is invariant to - .

channel gain. Thus, it is not necessary to distinguish between Py = / Py|x= dPx(x). (152)

transmitted and receives}. This property would be lost if the

slope were defined with respect% in linear scale. Although Theorem 10: Denote Pearson’&-divergence by

such a slope carries much less engineering insight, it admits a

formula similar to (140), replacing the square by a cube. Note def <dQ 1>2

o (153)

that to make a fair comparison between the wideband slopes AQIP)=Ep
achieved by different receiver/transmitter designs (and, thus, be- _ ) ) )
tween the bandwidth requirements for given rate and power)Tf#€ %2 . and S, achieved by generalized on-off signaling

is essential that the transmitté@  be the same. (150) are given by
In the analysis of wideband channels it is sometimes useful E, L E||z|]%|z # 0] log, 2
to represent the channel as a bank pérallel independent sub- =~ (Px) = NoD (Byix | P Py ) (154)
channels. If the transmitter devotes the same power to all sub- ~ ° ™" 0 YiXIEYxX=0[4x
channels and each subchannel has the same number of di - o 5
sions, then the capacity of the overall channel is — 2 (D(Pyix |Prix=0|Px ))
So(Px) == | (155)
1L m A (Py||Py|x=o)
O(sNR) = 7 Z Ci(sNR). (147)  respectively, where divergence is measured in nats in both (154)
=1 and (155).
Formula (35) implies that the transnﬁ%min (in linear scale) is Proof: In this case, the role played I6y(snr) is taken by
equal to the harmonic mean of the individual transﬁxg’tmin. the function
In most cases of interest, the receﬁé . is the same for all NG e
0 min I(A. 3 Y)

subchannels, and, thus, the same for the overall channel. From m

(35) and §E140), itis easy to verify that the product of the squargghere the input is the distribution (150). The first and second
transmit i . and the slope of the overall channel is equalerivatives of this function (in nats) with respect g will

to the harmonic mean of such products corresponding to the qenoted bﬁ(o) and C(0), respectively. From the results

subchannels. In particular, if the individual transwit . and  of 10}, already used in Section IV, we obtain (154). To obtain
the individual slope of all subchannels are equal, then the over(z_aLI155) we use
f," _and slope are identical to those of the subchannels.

‘Olﬁuﬁarallel with the definition we made in Section IV we have 9 [5(0)} 2
the following. So (Px) = . (156)
Definition 3: An input distribution parametrized bynr,

zsnr is second-order optimal it is first-order optimal and it with
achievesSy. Equivalently, it achieves both the first and second

= :NOD (Py|xHPY|X=O |FX)

derivatives of capacity C(0) (157)
o | Flllelle # 0]
TR I{zsnr; ¥)|snr=0 = C(0) (148) and .
and = . L I(X;Y) - C(0)snR
C(0) =2 lim = . (158)
1 d? I ) &(0) (149) SNR—0 SNR2
— — I(Zsnr; =0 = . . : . .
m dsng2 ~ \TSNR: YIsNR=0 Decomposing the input—output mutual information as

I(X;Y) = D (Prjxes

B. On-Off Signaling

In view of the universal first-order optimality of on—off yitn
signaling, we study its capabilities in the region of small but
nonzero spectral efficiency. We assume a generalized form of Py =(1-6)Py|x=0+ 6Py (160)

Pyx=o| B) = D (Py || Py|x=0)
(159
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and using (151), the right-hand side of (158) becomes which, in this case, is the highest slope achieved for %y
Note that although convex for the AWGN channel, in general,
=D (B [[Prix=o)

C(0) =2 lim ! the function10log; %(C) need not be convex.
SNR—0 M SNR In the case of binary quantization of both the real and imag-
— 2mNg im — D (Py ||Pyix=0) - inary components of the output of the AWGN channel, the ca-
~ (Ellle|Plz # 0)? 5-0 ” = pacity is [28], [29]
(161)
C(sNR) = 2log 2 — 2h(Q(+/sNR)) (173)
The desired expression (155) follows by applying the fol-
lowing general result to the cage= Py |x—o andQ = Py with
lim D((1—-6)P+6Q||P) _1 AP|Q)log e (162) hiz) =—zlog x — (1 — x)log(l — x)
6—0 62 2 and
To verify (162) assume natural logarithms without loss of gen- 2
erality and note that by definition of divergence @) \/ﬂ / exp(—/2) dt

D((1 = &P + 8Q||P) = E[(1 + §¢(Y)) log, (14 6q(Y))] The first and second derivatives (in nats) of (173) are

= E[r(6q(Y))] (163) (0) = 2 (174)
where the expectation is with respecttdistributed according ) 721 1
to P, and we have defined C(0) = 3 <— — 1) (175)
dq
ay) =5 ()~ 1 (164)  which result in
and Ey
— =0.37dB 176
r(z)=(1+z)log, (1+z)— x. (165) No min (176)
6
Note that in order to write (163) we used So=_——7=28 b/s/Hz/(3 dB) (a77)
Elg(Y)] = 0. (166)  Returning to the unquantized channel, as a simple exercise
Furthermore we apply the formulas obtained in Theqrem ;0 to the Gaussian
channel. Suppose we use on—off signaling with on-levelx,.
A(P(|Q) = El¢*(Y)]. (167) Using (44) and
2 2
Sincer(x) > Oforallz > —1, andr(z) = % +o(z?®). Fatou’s AN (m, aD)||IN(0, 6%)) = exp <2|mQ| ) -1 (178)
lemma leads to 7
D((1-6)P P 1 we get
- 2 %ol ‘
On the other hand, for any > 0, there exists a sufficiently Nowis < N ) = log, 2 (179)
small 6y > 0 such that
22 and
rx) <1 +v)= (169) 2 9 4
2 S <|’;3| ) - —lx°| (180)
wheneverr > —&y. Sinceg(y) > —1 0 0 eXP( 2ol ) 1
_ < 0.3238 b/s/Hz/ 3dB 181
I 20 6)6P2’+6Q||P) <Lt ElRYV). (170) < (3dB) (181)
=0 2 where the upper bound is achieved at
But v can be made arbitrarily small. Thus, (162) follows. | 2
X0
C. AWGN Channel No = 0.7968. (182)

Before we proceed to study the wideband slope of fadinthus, even though the analysis in Section IV showed that any
channels it is instructive to deal with the scalar AWGN channeh-level is equally good as far as achlevn% _ for the
Gaussian channel, the finer analysis in this section shows oth-
erwise. More importantly, unless bandwidth is infinite, on—off
Directly from (21) and (140) we obtain that the wideband slop#gnaling is decidedly inefficient for the AWGN channel.

y=zx+n. (a71)

for the AWGN channel is By comparing (172) and (181), we see that on—off signaling
requires 618% the minimum bandwidth.
So = 2 b/s/Hz/(3 dB) (172)  The simple on—off signaling strategy above can be modified

9The same technical argument can be used elsewhere in the paper regar%ﬂg}hat jnformation is e_ncoded not 0n|y at the times in which
expectations of Taylor series. energy is sent but also in the phase. To that end, let us assume
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that Py is uniformly distributed on{|x| = A} for some fixed Note that for convenience and without impacting the results we

real A > 0. Applying Theorem 10 to this input we get have choseV, = 1. From (44) and (188) we get
Eb AQ loe 2 183 D (PY|X=)( H.Ple=0| PX) = SNRlOg c. (190)
Nowin \Np ) ~ %8¢ (183) " The unconditional output distribution is now
and Pr=1N(A D+ LIN(-41) (191)
A2\ 244 1 and
()%
No) N§ g, (2]\—?) —1 D (Py ||Pyix=0) = E[h(y)log h(y)] (192)
<2 (184) where the expectation is with respecttd0, 1) and
_ 2
where the upper bound is tight fe¥® / Ny — 0. Thus, this type h(y) = exp(—A7) cosh(2ARy). (193)

of generalized on—off signaling which uses phase modulatitusing the fact thaR ARy is a real Gaussian random variable
can achieve wideband slope as close as desired to the optimigh variance2snr, it is straightforward to show that

one. 2 2
E[h(y)log h = sNR” log e + o(sNR7). 194
However, among all second-order optimal signaling strate- [h(y)log A(y)] og ¢+ of ) (194)

gies, QPSK is the best practical choice in the wideband coherdh!S; the mutual information achieved by BPSK satisfies (in
regime (when the receiver knows the channel). Before dealii§ts)

with the general case, we show the second-order optimality of I(X;Y) = SNR — SNR? + o(sNR?) (195)
QPSK in the simple setting of the AWGN. ’

Theorem 11:Consider the scalar AWGN channel or equivalently

Cepsk(0) =1 (196)
y =x+n. (185) and
The wideband slopes achieved by various first-order optimal Crpsk(0) = 2. (197)
distributions are as follows. Substituting these values into (140) we conclude that the wide-

1) BPSK achieves wideband slope equal to 1 b/s/Hz/(3 dB)and slope of BPSK is 1 b/s/Hz/(3 dB), and thus, the wideband

2) QPSK achieves wideband slope equal to 2 b/s/Hz/(3 dijoPe of QPSK is 2 b/s/Hz/(3dB).
3) A ianaling distribution that b it .~ Furthermore, note that any signaling distribution that can be
) Any signaling distribution that can be written as a MXeyritten as a mixture of (rotated and scaled) QPSK distributions

tu_rde ?Jf (r(;ta'lted and Sclatle%) SP/aK /Cé) r(ljséellanons ach'evig%lso wideband optimal because mutual information is concave
wideband slope equalto siHz/( )- in the input distribution. O

Proof: First-order optimality of the input distributions
in the statement of the result follows from the fact that thelp. Perfect Receiver Side Information
have zero mean (Theorem 4). Let us denote the mutual inforrheorem 12: Consider then-dimensional complex channel
mations achieved by BPSK and QPSK as a functiosnefby
CBPSK(SNR) and CQPSK (SNR), respectively. With QPSK at ¥y= Hz+n (198)
A(£1 £ j) the mutual information is equal to that achieved bywhere the complex Gaussian vectrhas independent and
two independent channels with BPSK inptitd. Since thesng  identically distributed components. Suppose that the receiver
of the latter channels is half of that of the original channel wenows H, and that the transmitter knows# but has no ability

have the relationship to do power control (or, equivalently, it knows the maximal
eigenvalue eigenspace ®'H but not the maximal eigen-
Cqrsk(SNR) = 2 Oppsk (SNR/2). (186) value). Then
Moreover, it follows from (186) and (16) that the spectral effi- _ 2¢
S So = (199)
ciencies are related by M K(Tmax(H))
E, E, with the kurtosig® of a random variableZ defined as
Carsk <—> = 2Cppsk <Fo> (187) 7 E[Z4] 200
K(Z) = W (200)

Thusé, QPSK achieves twice the spectrgl efficiency of BPSK %tnax(f'f) denotes the maximal singular value Hf, and/ is
any 3+, and, consequently, twice the wideband slope.

The BPSK distribution i equal to the multiplicity 0fry,..(H).
© istribution is Furthermore, the optimum wideband slope (199) can be

achieved by QPSK modulating with equal power ther-

thogonal dimensions of the maximal-eigenvalue eigenspace of
i

1 1
P = B 04+ B O—4 (188)

whereA is (without loss of generality) a real scalar that satisfieIéI

) 10The “amount of fading” defined in [30] is equal to the kurtosis mihuSee
SNR = A°. (189) [30], [15] for tables of standard fading distributions.
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Proof: In the absence of power control, the water-fillingsoever ofH and that transmit antennas are fed by independent
formula implies that iknRr is so small that the water level onlyequal-power streams. In this case, we saw in Section IV that

covers the deepest level, capacity is given by B, _ nlog, 2 (206)
NO min trace (E [HTH:| )

The corresponding wideband slope is given by the following

C(sNR) = %E [logQ (1 + % Amax(H H)SNR>:| (201)

whose derivatives in nats are equal to result.
C(0) = E [)\max (HTH)} (202) Theorem 13: Consider then-dimensional complex channel
and y=Hzr+n (207)
Goy=—"F [Ailax (HTH)} _ (203) Where the complex Gaussian vectdras independent and iden-
14 tically distributed components. Suppose that the receiver knows

Using (140) andhax (H'H) = 02__(H) we get (199). them x n matrix H, but the transmitter has no knowledge of

To achieve (201), the input must be a zero-mean Gaussfgﬁ channel matrix (or its statistics). Then

vector whose components have equal variance along the ) (trace (E [HTHD)Q

orthogonal directions of the maximal-eigenvalue eigenspace So=— RN (208)
of H'H, and zero otherwise. The fact that QPSK-modulating M ace <E [(HTH) D

each of those dimensions is also second-order optimal follows

immediately from Theorem 11, since those dimensions are Proof: In this case, the optimum input distribution is an
orthogonal. 0 n-dimensional Gaussian vector with independent and identi-

The special cases = n = 1 of Theorem 12 was given in cally distributed components achieving capacity [33], [13]

[15]. Kurtosis is a measure of the randomness of a random vari- ~ ¢(snR) = g [10g det, [I + THTHSNR” _ (209)
m n

able; its minimum value i$, achieved uniquely by a determin- - )
istic variable. The fading penalty on capacity is due to the cofR®rmula (208) follows from (140) upon taking the first and

cavity of thelog (1 4 z) function. The larger the “spread” of theSecond derivatives _of (209). To the_lt gnd, the foIIowjng formulas

fading distribution, the larger is the penalty. Theorem 12 staté@n be derived easily from the definition of determinant i

thatin the low spectral efficiency region, the required bandwid@» x » matrix, then

is proportional to the kurtosis of the maximal singular value of d loe det[T + uA —t Ao 210

the channel. If the number of rows and columnskbfgrows, 08 € [+ udllu=o = trace(4)log ¢ (210)

while keeping a constant ratio, and its coefficients are indepen- d_2 ) _ 2vq

dent and identically distributed with varian¢g, then the max- du? log detld + udll.=o = —trace(4")log e. (211)

imal singular value converges to a deterministic constant [31] O
Apropos of the expression in (208), note that (aside from the

2
2 —1/2 [n 2 factor2/m) the numerator is the square of the expected Frobe-
max(m™ " H) = <1 + m ) ¢ (204) nius (or Euclidean) norm squared Hf, whereas the denomi-

nator is equal to the expected Frobenius norm squaréﬂ*rﬁ‘
. . . 2 n n 2
sentthe numbe_r of receive and tr_ansm|t antennas, resp_egmvely, trace [ E (I—ITI-I) _ Z Z B (I—ITI-I) .
and the transmitter knows the eigenstructurddofin the limit p et ij
of many antennas at both transmitter and receiver the slope is ’ (212)
2 b/s/Hz/(3 dB), i.e., the same value obtained with one antennaf the entries ofH are independent zero-mean random vari-

but without fading. This slope is obtained at a valuegf = aples with variance?, then it can be checked that (206) and
that decreases with the number of antennas as (208) reduce to

E, log, 2 log, 2

o

and its multiplicity goes td. Accordingly, if m andn repre-

E log, 2
L — ~ . (205) v OB 213
NO min E[O—?na.x(H)] CQ (\/ m + \/7_1)2 NO min mCQ ( )

Together with the above result on the asymptotic insensitivignd

of the slope to the number of antennas, (205) implies that with _ 2n

many transmit and receive antennas, doubling the number of k(| Hy)+m+n—2

transmit and receive antennas halves the required power for b/s/Hz/(3 dB)/receive antenna (214)
fixed rate and bandwidth, provided the channel is known at t

transmnter (C.f' [,[3;]2])' ltiant literat it h transmit antennas, respectivélyFurthermore, if the channel
owev<tar, n the mutltﬁn ;anna '.t‘fra#re ! II<S mlljcd MOr% efficients are complex Gaussian random varialjigs;| fol-
common o assume that the transmitter has no knowledge qu\'}\'/s the Rayleigh distribution whose kurtosis is equalto

%erem and » play the role of the number of receive and

Licaution: “M transmit andV receive antennas” is common notation in the 12The effect of antenna correlation on the required bandwidth is explored in
contemporary literature on the capacity of multielement arrays. [34].
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Under those assumptions, in the wideband regime, the specirais input distribution attains the following mutual information:
efficiency is a multiple of the harmonic mean of the number of 1

receive and transmit antennas o I(z; Hx +n)
2 1 1
So= ™ bis/Hz/(3 dB) (215) = — D (Py|x || Pyix=0| Px) — = D (Py || Py|x=0)
m+n m m

The low=snr slope (215) is greater than or equal to the higk- 1 1 (221)
slope,min{m, n} [13], with equality if and only ifm = n. If = — E[|Hz|*)|- =D (Py HPY|X=0) . (222)
min{m, n} is held fixed andmax{m, n} — oo, then (215) m m
goes to2min{m, n}. The result in (215) should be contraste
with the misconception that in the loswr regime capacity is not E[||Hz|*] =

mSNRtrace (E [HTHD . (223)
affected by the number of transmit antennas (e.g., [16]). Whi : ) .
E, (213) does not depend on the number of transmit a':f]%erefore,fromthe result obtained in (208), the desired second-

tennas, suppose that we fix the number of receive antemnasorder optimality is equivalent to showing that

and the power and the data rate, then a system with one transmihm D (PY HPY|X=0) =™ ace <E [(HTH) 2} ) .

antenna requiregn + 1)/2 times the bandwidth of a system SNR—o MSNR? 2n?

with m transmit antennas, which in turn requires twice the band- _ _ _ _ (224)

width of a system with a very large number of transmit antenna® accomplish this, note that the divergence in (224) can be
Note that since the slope of the spectral efficiency ver§us expressed as

gurthermore, it follows from (220) that

curve is rather constant for a fairly wide range]\%j, approxoi- D (Py ||Pyix=0) = E[Z(n, H)log Z(n, H)]
mating spectral efficiency by = E[Z(n, H) — 1]
2  nm yoi 1 2
o2 S + ZE[(Z(n, H) -1
st e (101080 §E 4 150) btz (216) SE(Z(n, H) ~ 17
+ o(snr?) (225)

would be pretty accurate even for ambitious b/s/Hz values pro- o

vided the harmonic mean of the number of receive and transiifere the expectation is with respect to the complex veetor

antennas is large enough. Note that (215) obtained withdlitributed according té%-x_o = A(0, I) and with respect

knowing the eigenstructure of the channel does not contradiet; and we have defined the likelihood ratio

the limiting result we obtained above (2 b/s/Hz/(3 dB)) with dPy 2 2
——=/7(n, H) =F —||Ha — H

knowledge of the structure of the channel, because the tra@$?-x o (n, H) [exp(—||[Hz —nl|" + [|n[|")|H, n]

mitted power required to achievel.59 dB at the receiver is (226)

lower in the latter case. Indeed, taking the ratio of (205) anghere the expectation is with respecttoNote that

(213), we arrive at the conclusion that knowing the eigenstruc- B dPy B

ture of the channel at the transmitter implies an asymptoticE[Z(n’ H) - 1|H] = -1+ dPy|x —o APy |x=0 = 0.

power reduction factor of (227)
1 & 2(H) A Taylor series expansion of the exponential in (226) together
- Z ZZ il \/_m\/_ 5 (217) with the fact thatE[n] = 0 results in
n = Tmax m—++/n
i T :  Z(n H) 1= | Hz|’|H]
where the right-hand side holds in the many-antenna limit. Note 1 ; - 2\ 2
that with the same number of antennas at transmitter and re- + 3 E [(“ Hz + z'H'n — |[Hz|| ) ‘H, “}

ceiver, knowledge of the channel at the transmitter gives a gain + o(SNR) (228)
of 6 dB at zero spectral efficiency, or equivalently, a facto4 of _ ) ]
in rate (b/s) for the same power in the infinite bandwidth limitvhere all the expectations are with respect thet us consider

[35], or a factor of4 in the required number of antennas. each term on the right-hand side of (228) individually. Using
220) we get
Theorem 14:Under the conditions of Theorem 13, equalE ywe g ) MSNR :
power QPSK on each component is second-order optimal. Ll||Ha|]"|H] = — = trace (H H) (229)

Proof: For ease of notation and without loss of generalitynq
we assume in the proof thafy = 1. The input signaling is

b
= SNRm[ : ] (218)

n .
eI Pn

2
E [(nTHa: +x'H'n - ||H:1:||2> ‘ H, n}

2
— E{|Ha|"1H) + £ | (' Ho + ' B'n) | H.n) . (230

where the phases; are independent and equally likely to takel he second term on the right-hand side of (230) is equal to

the values{ %, 2%, 3% Tz} Thus, B [(nTHerxTHTn)Q H. n} _ 2mSNRnTHHTn (231)
E[||z||*] =msnr (219) "
and because
9 2
E[zz'] = MSNR ¢ (2200 E [(nTHa‘) ‘H, n} =F [(a:THTn) ‘H, n} =0 (232
n
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as can be seen using the QPSK nature of the independent conTheorem 15:Consider them = n = 1 Ricean fading
ponents ofe. Using (228)—(231) we can write channel
n’E[(Z(n, H) — 1)°|H] y=(h+g)x+n (238)
m2sNR2

whereh is deterministicg is zero-mean complex Gaussian with

variancey?, and the additive noise is Gaussian. If the receiver
2 (but not the transmitter) knows the Rayleigh channel coeffi-

=F [(nTHHTn) ‘ H} — trace? (HTH) + o(sNr?). cients, then the wideband slope is equal to

E [(trace (HTH) - nTHHTnY‘ H} + o(sNR?)

1
(233) So = —. (239)
2
In order to compute the expectation with respechidix an 1- % <1 + #)
arbitrary Hermitian matrixA4. Then, using the fact that for all

Proof: When the receiver knows the channel coefficients

components we just need to specialize Theorems 12 or 13 (in the scalar case)
E[|n;|Y] = 2 (234) 10 the casen = n = 1 in which they lead to the same result.
Formula (239) follows from the kurtosis of the Ricean distribu-
it is fairly straightforward to check that tion which is equal to
-4
2 _ h
L [(’nTMn) } = trace?(M) + trace(M?). (235) K (|h + g|) =2- | | (240)

Applying formula (235) to (233) wittM = HH', the desired
result (224) follows. O [

Note that the only property of QPSK used in the proof df. Imperfect Receiver Side Information
Theorem 14 is its proper complex (i.e., rotationally invariant) \yjje receiver side information of the channel fading does

nature. , notimprove£: it has a drastic effect on the required band-
If in contrast to Theorems 12 and 13, the transmitter kno"\%ﬁdth

+ - ! . in the wideband regime as shown in this subsection.
E[H'H], then it is easy to find the wideband slope using
the foregoing methods. Suppose thats the unique max- Theorem 16:First-order optimal flash signaling achieves
imal-eigenvalue eigenvector dE[H'H], then the wideband So = 0 even if the receiver knows the channel.

slope is Proof: According to Theorem 9, we need to show that
flash signaling achieveS(0) = —co. SinceC(0) is achieved,
So = (||2H ik (236) in order to show
mkK v . e
| | | i I(X;Y) 2C(O)SNR C (241)
More generally, if the rank of the maximal-eigenvalue SNR—0 SNR
eigenspace of[H'H] is ¢ > 1, then the wideband slope canwe will show that
be found by applying the result in Theorem 13 to a modified i D(Py ||Pyx—0) _ - (242)

channel matrixHV, where then x £ matrix V' consists of SNRS0 SNRZ

the ¢ orthonormal eigenvectors of the maximal-eigenvalughe unconditional output distribution in (242) is

eigenspace, since first-order optimality requires that the input _ _

vector restrict itself to that eigenspace. In the casé of 1, By = ((1 = 8(sNR)Es + 8(sNR)Qs (243)

contrary to the misconception obtained using the traditionaherePs and@s denote the convolution of

optimality priterion [22], rank-qne signaling., ie., begm_forming Pyjx—o = N(0, NoI)

(see Section IV-E), is not wideband optimal. This is made. ] o

evident by considering the special case of one receive antenffiih Fs; andQs,, which denote the distributions &fxsyg con-

1 transmit antennas, and independent equal-variance Gaus§iiAned onllzsng|| < » and|lzsng|| > », respectively, with

channel coefficients. Then, the bandwidth required by rank-oggitrarily smallv. Since the receiver knows the channel, it will

signaling is 2n/(1 + n) times the bandwidth required bysufﬁce to show that (241) is satisfied for all nonzero determin-

optimum ranks signaling (which transmits equal-power'Stic H- _ o _

independent streams through each antenna). First-order optimal flash signaling requires th#snr) =
Note thatifn = 1, H' H is a scalar, and Theorems 12 and 18(S\®) and

have the same assumptions. Then, (199), (208), and (236) boil 8(sNR)ET||85?]

down to oAlm R =A>0. (244)
2 To show (242), note that we can write
m([[H]) Dy |[Pyix=0)
SNRZ
As an application of (237) we have the following formula for E[(1 4 sNR(W + V) log(1 + s\R(W + V)]
the flat Ricean channel. = (245)

SNR2
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where we have introduced the zero-mean random variable Theorem 17:If neither the receiver nor the transmitter know

H and
LG < 905y — 1) (246) = 2"
svr -\ dPyix o Awax (EIH] E[H]) < Ao (EIH'H]) (256)
which satisfies the vanishing lower bound then
p s O (247) So =0.
SNR
and the zero-mean random variable Proof: According to Theorem 7 under condition (256),

flash signaling satisfying (91) is necessary for first-order opti-
mality, and hence for second-order optimality. But, according to
w! heorem 16, that kind of signaling achievés= 0, regardless
of whether the receiver knows the channel. O

w

1 — 6(snR) dPs
= —-1}. 248
(s -1) e
In order to show that (245) goes to infinity, we will sho
that E[(V + W)?] diverges asnk — 0. In order to streamline

notation, we will take without loss of generalify, = 1 inthe  Theorem 18:If neither the receiver nor the transmitter know
remainder of the proof. H and

The ratio oczgen&ues appearing in (246) can be written as A (E[H]TE[H]) — A (E[HTH]) (257)
S 2 _ _all2
m (n) = C”"” /C ln—sll dQ.W (249) then
a random variable whose second moment is equal to So = 2t (258)
dQs ? _ T
E 1Poie - n where/ is the multiplicity of the maximal singular value of
Yix=o0 , E[H].
1 olmll? e=ln=2l gy dn Proof: Inview of Theorem 6, we can restrict the search for
Tm 2 second-order optimum inputs to those inputs that are first-order
1 5112 A112_11sl12—13]|2 optimal for a deterministic channel with matdH]. Then the
_ —||ln—s—s8||°+||s+38||"—||s]|]"—|&
— am /// el IPle+slE= eIl )dQsé dQs, dn problem becomes a special case of the one solved in Theorem
fa ot 12 where the channel matrix therein is deterministic. O
=F [exp (363(5 + 3(536)} (250)

The capacity-achieving distribution for the flat Rayleigh
Ehannel in which neither transmitter nor receiver know the fading
coefficients is shown in [36] to be discrete with a finite number
E [exp (32:96 + ggséﬂ of masses, which depends swk. Furthermore, [36] shows that

T2 5 — oc. (251) thereexists > Osuchthasnr < ¢, implies that a two- mass dis-
[llss11%] tribution is optimal with one mass at zero, and the other at a point
To show (251), we quantize the unit ball of the Cartesian \yhose magnitude goes to infinityas — 0and whose phase is
product of the complex field into “phase bins” that are suffiyrelevant. Note that the latter statement is consistent with the
ciently fine so that if we fix a sufficiently smadl > 0, we can  fist-order and second-order optimality of flash signaling.

wheres; andss are independent and have identical distributio
Qs, - Using (244), we see thdf[V?] — oo is equivalent to

find » > 0 such that for all sufficiently small, a phase bifP; If the receiver does not have full knowledge Mt then con-
can be found so that dition (256) is usually satisfied. For example, for the flat Ricean
EJ|1ss||8s/|1ss]] € Ps] > €EJ||ss]|*] (252) channel (238), the left- and right-hand sides of (256)|af&
Plss/|ss]| € Ps] > (253) and|h|? + ~2, respgctlvely. .A.ccordmgly, .n‘ the recelver_does
) not know the Rayleigh coefficients, the wideband slope is zero,
and if ss/[|ss| € Ps, 85/|8s]| € Ps, then no matter how smat?, in contrast to (239). Thus, it is very de-
8185+ 8lss > nl|ss| ||35])- (254) manding in terms of bandwidth to achieﬁé . closeto—1.59

Using (252)—(254), the numerator in (251) is lower-bounded in the Ricean channel, regardless of the relative strengths of
’ the specular and Rayleigh components. To illustrate the burden

"’ E [eXp (st@(s +§3;3(5) |85/||85|| € Ps, 8s/||8s]| € 7’6} of communicating in the wideband regime through channels
> 02E [exp (1]|8s]| |85]]) 185 /1185]| € Ps, 85/|135]| € 5] Wlth zero W|debanql §Iope, numerical restiitgrdicate thgt to
achieve spectral efficiency equal to 0.01 b/s/Hz we reqﬁ%rew

6
> % E? [||8s|* |85/ |85l € Ps] 0.44 dB for a Ricean channel with| = ~. Fig. 4 shows the
77{; tremendous impact of noncoherence in the wideband regime for
> a0 E* [||35||2 |ss/||8s]| € 775] the special case of the Rayleigh channel, an impact that may not
6 be apparent from a plot of the ratio of the capacities (with and
> % EE* |1s6]1?] - (255) without channel knowledge) as a functionssk [36]. We see

in Fig. 4 that the insensitivity o%“, to lack of knowledge
of the channel at the receiver is of little relevance to practice.
Sometimes the statement that wideband capacity is not affected

Dividing (255) by E?[||85]|?], we obtain (251) in view of (244).

By analyzingE[W?] and E[V W] using similar methods it can
be shown thaE[(V + W)?] diverges and the proof of (242) is
complete. O 130Dbtained by M. Gursoy, private communication.
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0.2 u T T T

AWGN and we obtain (in nats)

o18r | D(Py|x||Py|x =0l Px)= (v*+[h|*)snr—log, (1+7sNR)
0.16 1 _ 4
= |h|2snR+ L sNR2+o(sNR2). (264)
0.14 2
ook Rayleigh rayieigr / | From the formulas fonE— andSO, both (259) and (260) will

Known Channel Unknown Channel

follow upon showing that

(PYHPYIX:O) . 1 2 1212
1 SNR—0 SNR2 T2 (" +1h%) (265)

where

Spectral Efficiency (b/s/Hz)
o
o (=]
2 2

=4

o

&
T

| p= iN(HA(l +4), a2No) + SNRA(L = §), a®No)

4
L i 1, - .
002 + ZN(hA(_l +j), OéQNo)
o . : . 1 B
-2 .. - [} .
S EN, (dB) + NV(A(=1 = ), o*No) (266)
Fig. 4. Spectral efficiency of the AWGN channel and the Rayleigh flat fadinand
channel with and without receiver knowledge of fading coefficients. 2 5 (267)
o = 1 4 sNrRy~.

by knowledge of the channel is toned down by claiming that t
insensitivity may hold for impractically large bandwidths. How
ever, the bandwidth penalty due to lack of channel knowledge is D(FPy||Py|x=0) = Ellog q(y)] (268)
equal to a factor of 1000 a% = 1.25 dB, and goes to infinity

as we move closer t@ . Fig. 4 also illustrates (199): when

h"I'c*ne desired divergence is

where the expectation is with respect to (266) and

the fading coefficients are known at the receiver, the bandwidth aly )‘lef dly y

required by Rayleigh fading is twice the bandwidth required in dPy|x=0 _

the absence of fading. _ 1 _2|h]P AP P (072 1)
Another case in which (256) is satisfied is the block-constant T2 P a?Ny P Ny @

multiantenna model of [37], which is encompassed by the model |h||A| |h||A|

in Section Il by lettingm be the number of received antennas h <2 R ) h < 2N, ) (269)

times the block duratioft” andn be the number of transmit an- ) )

agonal matrix with alll’ n x m dlagonal blocks being |dent|cal affecting the result. Taking the expectation of the logarithm of
In many practical cases in which the specular component(#69) we obtain

not negligible, QPSK is an attractive suboptimal alternative as ) 2|h|?snr
the following result shows. D(Py |[Pyix=0) = ([h[* +77)snr — 1+ ~7s\R
Theorem 19:Consider the Ricean channel (238) with# —log. (1 + v*sNR)
0 and a receiver that does not know the Rayleigh coefficients. log cosh Ih[|A]|
Then QPSK achieves +E |log, cosh { 2 «2N, Ry
By log, 2 hllA
Moo = e (259) +FE [108;6 cosh <2 % Sy>} . (270)
and The random variableRy andSy are Gaussian with medhy|A|
So= 2 (260) and variance
1+275 2
" No/2 + [A]242 = 20 (271)
Proof: With the Ricean channel 0 T T
Py |x =, = N(hxo, No +v*|x0|*) (261) Thus, the second and fourth moments of the random variables
and the QPSK input distribution in the argument of the hyperbolic cosines in (270) are equal to
1 1 1 1 |h12|A|% [ a® N 5\ |h[%snr |h|2snRr
Po= ZﬁA(1+g’) + Z‘SA(I—j) + Z5A(—1+j) + Z5A(—1—j) 4 atN2 5+ IRPIAP ) = o2 1+ o2
(262) (272)
we have and
2|A|? 16|h[*|A* 3a*NE _ 3|h|*snr?

SNR = (263) +o(snR?).  (273)

2
S =
No a8 NG 4 (sNR°) at
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Using (272) and (273), and Proof: To show this result, we need to use a more general
e R form of the decompositionin (159). For any probability measure
log, (cosh(zx)) = 5 + o(z*) (274)  for which Py < Q
each of the expectations in (270) satisfy I(X;Y) = D(Py|x=||Q| ) — D(F¥||Q). (281)
E [loge cosh <2 |h2||j©| %yﬂ In the present case
&7
1 |H(|)25NR |I'_]|25NR PY|X=X = N(§($)7 NOI+ Cov(g(:l‘)|:’l?)) (282)
— 2
=5z <1 + 202 ) + o(sNrR”).  (275) and we choose
Thus, Q = N(E[g(z)]; NoI). (283)
4 k|2
D(Py||Py|x=0) = |h|2sNR + AP [h["snR Using (59), the conditional divergence in (281) evaluated with
, 2 o’ (282) and (283) becomes (in nats)
LS + o(sNR?) 1
—_— o _ _
2at , DBy ix=IQ15) = - Elllg(=) - Elg@)1*]
=919 SNR
= (7" + Ih%)? =~ + o(swe®) - (276) — Ellog, det (I + Ny cov(g(z)|z))
thereby establishing (265). O + Eftrace (Ng * cov(g(z)|z))  (284)
1
Regarding the wideband slope when the transmitter but not < A trace(cov(g(x)))
the receiver knows the channel, first note that when the channel 0 1
is fully known at the transmitter and power control is allowed, +onz B [trace (cov’ (g(z)|x))] (285)
0

the minimum energy per bit is zero in the usual fading models,

and, thus, the wideband slope is zero (regardless of whether\tere (285) follows from (87). Since the second term on the

receiver knows the channel). If the transmitter knows the masight-hand side of (281) is nonnegative, (280) follows from

imal-eigenvalue eigenspace (but not the maximal eigenval{@gs). U

a.nd the receiver does not knqw the channel,- then f'rSt'OrderParticuIarizing Theorem 20 to the linear Ricean fading chan-

signaling requires flash signaling along the directions of t | where

maximal-eigenvalue eigenspace (for simplicity, assume that

E[H] = 0). Once that signaling is used, the wideband slope is g(x) = Hx (286)

zero because even if the receiver had side information of the _

maximal-eigenvalue eigenspace, we would be in a situati@RdH is Gaussian with meaHf, independent of, we obtain

equivalent ta = AI whereA is a zero-mean random variablethe bound

unknown to both receiver and transmitter: a channel which js_ = 2

encompassed by Theorem 17. }?a:, Hz+n)< E [”H(m — Ele] ]
To conclude this subsection, we give a new general bound

on mutual information for a given arbitrary input distribution,

which holds for all signal-to-noise ratios. We give the boundin . . . . _

a general setting that encompasses the linear model treatewri\HCh n the Rayleigh special cad# = 0 has been found re-

this paper as well as nonlinear channel models, which may %%ntly in [38], [39].

of interest in optical-fiber transmission and neurobiology. fa Qltz()i;%gr(jizgrsﬂdast f;: l;a)llfth,rr:ta;:fRn;r: daittlggtegonuor;déi\l/g

Theorem 20: Suppose thag(x) denotes a complex randomthe exact asymptotic second-order behavior for vanisking
vector, which conditioned an is complex Gaussian with meanUnder quite general conditions on the input and the channel (in-

loge
No
+ E [trace (cov®(Hz|z))] gl

N7 (287)

4(z) = E[g()|z] (277) cluding non-Gaussian channels), it is shown in [40] that
and covariance matrix I(z; Hz+n)=E [|H(z— E2))||?] 1(;\%
cov(g(@)|z) = E [(9(x) - ?(w))(y(w) - ?_(w))T lz].  (278) 4 F [trace (cov?(Hala))] loi;z
Denote the covariance matrix of the conditional mean vector by 2Ng
cov(g(@)) = El(g(x) - Elg(@)])(@(2) - Elg@))]. (279) ~trace (cov*(Hz)) LE5 4 o( Ny ?). (289)

2N2
yte that, unlike the case where the channel is known at the

eiver, mutual information is, in general, dependent on the
mean of the input.

Letn be a complex Gaussian vector whose components are §
dependent, with independent real and imaginary parts each V\[g
varianceNy/2. Then

— loge An interesting case to which we can apply (287) is the Ricean
1(=z; < tra — _
(#; g(x) +n) < trace(cov(g(z))) No block-fading channel where the specular and scattered compo-
loge nents remain constant during blocks of lengthAlthough the

+E [trace (COV2 (9(x) |-'l')) ]

(280)

2 Ng' scattered coefficient is not known at the receiver, the fact that
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it remains piecewise constant enables its estimation at the wéterex(|A|) denotes the kurtosis of the magnitude of the fading
ceiver. The channel matrix is now the x m multiple of the coefficients.
identity matrix Proof: As we saw in Section 1V, the differences between
7 the multiaccess setup and the single-user setup are the enforced
H=(h+g)l (289) independence of the input components and the different normal-

whereh is deterministic ang is zero-mean complex Gaussiar%Zatlon ofsig, which leads to (127). However, by definitias,

. X 5 . . . s invariant to any factor multiplyingnr. Therefore, we can use
with variancey-. Thg bound in (287) is the convex function 01!the same formula (140) as in the single-user case. Furthermore,
sNR (in nats/dimension)

the setting of Theorem 13 is identical to the multiaccess setting
1 ) 12 m 4. 2 of interest here and, consequently, the result (208) can be used
p” I{z; Hx 4+ n) < |h|“snR+ 5} k(||| )y sNR (290) i this case with
where«(||z]|) is the kurtosis of the norm of the input vector. H=SA. (293)
Thus, unless the input kurtosis grows without bound as
snR — 0 (and, consequently, the peak-to-average ratio), thesince the result in (208) is invariant to scaling Bf we can
isrno hope to achieve the mutual information required fetssume, for convenience, thatthe entrie$ béve unit variance.
%HunZ_ 1.59 dB, namely(|k|? + v?)s\r + o(snr). Further- Then
more, doubling the period over which the fading remains stable
has the same effect as doubling the input kurtosis.

In general, when the channel is unknown at the receivey,
the maximum rate achievable under a fixed constraint on the K K
input kurtosis is not a concave function «fr. In the absence Z ZEH(HTH)*P]
of concavity of the maximum achievable rate function, (34) *

trace( E[H'H]) = KNE[|A.[*] (294)

need not hold and® . may be achieved at a nonzew, in ==t HUE 2 HOH 2
which case, the curv%(C) is bowl-shaped and achieves its = KEJ[V( . h1l’]+ K(K — 1)E[|(H'H)12|%]
minimum at a nonzer@*. (For example, in the special case B ~ 5 5
h=0, £(C) — o0 asC — 0.) Thus, for everyge > & =K Z > EllHP | Herl)
there are two spectral efficienci€s < C, such tha J=t e=1 v

E, _E E K(K -1 E[|H1|?|H;»)?

Fb _ Fb(cl) _ Fb(c2)_ + K( ) z_: [[H;1]°[Hj2|"]

0 0 0 j=1

Any sensible design will choose to operateCat as we can = KN?E[JA[*] + KN(K — 1) E?[|A7]. (295)

maintain the same power and data rate achieve&d &t with Substituting (294) and (295) into (208 = N; n = K) we
smaller bandwidth. Therefore, under input kurtosis constrain '

the region of smalbnr (specifically,0 < sk < C~1(C*)) is

to be avoided. Provided this design principle is followed, the g _ 2K N?E?[|Ax ] (296)
requiredfg is, as usual, an increasing function of the spectral KN3E[| ALY+ N2K(K — 1)E?[|Ax)?]
efficiency. Inefficient communication as the bandwidth growghich is equal to the desired result (292). O
without bound can be averted only by letting the data rate and
the power grow at least as fast as the bandwidth. t As K — oo andN — oo with 8 = K /N, (292) converges

0
F. Multiaccess Channels 23

So (297)

T R(A)+ B

a result which was obtained in [15] using substantially different
Theorem 21: Consider thei{-user randomly spread CDMA methods. Actually, the asymptotic result holds even if the ran-
channel subject to frequency flat fading domly chosen signature waveforms remain fixed from symbol
to symbol, whereas the fixed-dimensional Theorem 21 has the

y=SAx+n (291) narrower scope of “long CDMA codes” where the signatures

where the dimensionality af is equal to the spreading factorchange from symbol to symbol. _ _

N, Ais adiagonak x K matrix whose diagonal is composed USing & bank of single-user matched filters which neglect
ofthe independent and identically distributed fading coefficienfgultiaccess interference tifg¢ s the same as with multiuser

A1 ...Ax experienced by th& usersS is theN x K spreading detection as we had seen in Theorem 8. However, the wideband
matrix with independent zero-mean coefficients, the noise cofloPe achieved by the matched filter bank turns out to be
ponents are independent, and the transmitters have no knowl- 2K

edge of eithelS or A. Then, the slope of the spectral efficiency So = Ne(JA) +2(K — 1) (298)

) | _ _
's equal to Comparing (298) to (292) we see that even in the low-power

S 2K 292 scenario, where background noise rather than multiaccess inter-

7 Ne(A)+ K — 1 (292) ference is the major source of interference, the use of optimum

We now turn attention to the multiaccess channel with an op-
timum receiver that has perfect channel side information.
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multiuser detection can save up to 50% of the bandwidth (as thelds becaus¢g(>) is a concave function, so it actually holds
ratio K/ N grows). Thus, contrary to what is sometimes claimedith equality for deterministic inputx = y/snr/2(1 + 5)). To
(e.g., [41]) multiuser detection can be quite effective for lowomplete the proof thaf’(0) = —oc, we just need to divide
signal-to-noise ratio communication with error control coding307) bysnr? and letsng — 0. O
The optimality of time division multiple access (TDMA) for
multiaccess and broadcast channels in the low-power regime is
another misconception unveiled using the wideband slope [42].
Another problem of interest is to find the best possible slope Spectral efficiency treats time and frequency on an equal
over all assignments of signature waveforms. To simplify tieoting. Thus, the “wideband regime” studied in this paper
setup, we assume that there is no fading and that all users @mgompasses more than the name implies. Low spectral effi-
received with the same power, which we can take equal to unigyency values are obtained not only when a given data rate (b/s)
Then, the matrixd H is equal to the normalized cross-correlais transmitted through a very large bandwidth, but when a given
tion matrix R [26], and (208) becomes bandwidth is used to transmit a very small data rate. The setting
encompasses even the case where the bandwidth is not large,

VI. CONCLUSION

2
So =— 2‘2{ (299) Fhe data rate is not IL_)W, but the pumb_er of receive antennas
NS |l is large. Thus, the “wideband regime” is to be understood as
j=1k=1 encompassing any scenario where the number of information
<2 (300) Dbits transmitted per receive dimension is small.

h he i lity i iselv th ch bound h The infinite-bandwidth (or, more generally and precisely,
where the inequality is precisely the Welch bound [26]. T Uero bits per dimension) analysis leads to the conclusion that as

we see directly that a set of signature waveforms that sali§q 4 the additive background noise is Gaussian, the received

fies the Welch bound with equality maximiz& (equal to the £: must be equal te-1.59 dB regardless of receiver/transmitter
0

single-user AWGN slope). In fact, meeting the Welch boung

. i ) . r
mize spectral efficiency for alf?o as shown in [43]. the most favorable dimensions that Iead%) = —159dB
G. Additive Non-Gaussian Noise with the least power expenditure. In addition to low-duty-cycle

lude b . h _ OI_on—off keying signaling, which has been the traditional focus
We conclude by returning to the non-Gaussian case studigdiformation-theoretic analyses of the infinite-bandwidth

in Section IV. We saw in Theorem 3 that for the Laplaciapy,nnels, we have seen that as long as the input distribution

. E . .
noise channelw‘; min improved by 3 dB relative to the (WorStwastes no (or negligible) power in its mean, tﬁ?& is

cgse) Gaussian noise. HOWF:‘Ve“ the wideband slope. IS QUitg-Rieved if the receiver knows the channel. We havé identified
bit worse than for the Gaussian channel as the following resglt signaling, a class of unbounded peak-to-average inputs

shows. that is necessary and sufficient to achigf,\%ée __ifthe receiver

min

Q
Theorem 22:For the Laplacian noise channel (71) and (72Jloes not have perfect channel knowledge.

even if the receiver knows the channel Transmission of nonzero bits per dimension changes the pic-
ture quite radically. Both optimal signaling and the efficiency
So =0. (301) ' with which information can be transmitted depend crucially on

Proof: We need to show that the second derivative of tnéhether the receiver knows the channel. If the receiver has per-
capacity atnr = 0 is equal to—oc. For simplicity and without fect channel knowledge, we have shown that QPSK is optimalin
loss of generality, we take: = 1 and N, = 1. Define the the wideband regime and that, when compared to QPSK, on—off

following function on the positive-real line: keying requires more than six times as much bandwidth. The

bandwidth required to send a given data rate is proportional to

f(z)=—14+2Vz—2z+exp (-2VZ). (302) the peakiness of the channel fading quantified by the kurtosis

For any input distribution whose second moment is (flc_>ur(;h moment relative to second moment squared) of its am-
plitude.

E[|x*] = snr (303) In the absence of perfect channel information at the receiver,

approaching% . is prohibitively expensive in terms of both
spectral efﬁcier?lclill and peak-to-average ratio.
I(X;Y)— O(())SNR We have shown that the asymptotic optimality criterion used
< D(Py x| Py x =0l P) — C(O)SNR (304) since [2] (namely, ratio of mutual information to capacity ap-

we can write

proaching one as signal-to-noise ratio vanishes) is too weak to

= E[f(R*x)] + E[f(3*x)] (305) gauge bandwidth requirements. The weakness of this “tradi-
<2f (%) (306) tional” optimality criterion can be gleaned from the fact that
4 2 1 according to it, BPSK is asymptotically optimum not only in

= ——— snR%? 4 2 snR? + o(sNR?) (307) the real-valued channel but in the complex-valued channel. Yet,

3v2 3 BPSK requires twice the bandwidth of QPSK to send the same

where (304) is a result of dropping the second divergence data rate at the same power. To replace this criterion, we have
the right-hand side of (159); (305) follows by using (75) andhown that a signaling format is wideband optimal if it achieves
the explicit expression for the divergence found in (74); (30@oth the first and second derivatives of the capacity function at
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zerosnr. Note that this new criterion is in no way dependent on[16]
the definition of wideband slope with respect to decibel rather
than with respect to linear scale. While the logarithmic scale i§l7]
more analytically convenient and practically insightful, the al-
ternative definition with Iinealj\% leads to the same optimality
criterion.

The impact of channel impairments and design choices (such
as input signaling and coherent versus noncoherent communicia®l
tion) is not equally apparent depending on whether we analyz
data rate for given bandwidth and power, or bandwidth for given
power and data rate. Since in the low-power regime the band-
width sensitivity is usually far greater, it is unwise to follow the [21]
traditional paradigm of the voiceband telephone channel which
maximizes data rate for given power and bapdwidth. For exr2]
ample, consider a Rayleigh channel operatingiat: 1.25dB.

In the noncoherent regime, the spectral efficiency is equal to
0.0011 b/s/Hz (Fig. 4). While coherence buys a 92% improvel23]
ment in rate for fixed bandwidth and power, it reduces band-
width by a factor of 1000 for fixed power and rate. If we let the 24

initial f‘g f‘g ___, then the improvement in rate brought about
by coherence vanishes, whereas the bandwidth reduction fact@g]
goes to infinity. Thus, in wireless channels where bandwidth is
an expensive commodity, it is inadvisable to dictate a choic26]
of bandwidth without careful analysis of information-theoretic [27]
limits.

The wideband slope has thus emerged as a new analysis
tool that leads to valuable insights and serves to reveal severgf!
long-standing misconceptions on the practical significance ofg
low-snr information-theoretic results.

[30]
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