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Spectral Efficiency of CDMA
with Random Spreading

Sergio Verd, Fellow, IEEE and Shlomo Shamai (Shitzfellow, IEEE

Abstract—The CDMA channel with randomly and indepen- transmitted arbitrarily reliably. Since the bandwidth of the
dently chosen spreading sequences accurately models the sitCDMA system is (roughly) equal to the reciprocal of the
uation where pseudonoise sequences span many symbol perivpig quration, the spectral efficiency can be viewed as the
ods. Furthermore, its analysis provides a comparison baseline | . ' .
for CDMA channels with deterministic signature waveforms bits per se(_:ond per hertz (bltS/S_/HZ) supported by the system.
spanning one symbol period. We analyze the spectral efficiency Note that if the code rates (bits per symbol) employed by
(total capacity per chip) as a function of the number of users, each individual user are identical and denotediyythen the

spreading gain, and signal-to-noise ratio, and we quantify the gpectral efficiency is equal to the product
loss in efficiency relative to an optimally chosen set of signature

sequences and relative to multiaccess with no spreading. White K

Gaussian background noise and equal-power synchronous users C= NR' (1)

are assumed. The following receivers are analyzed: a) optimal

joint processing, b) single-user matched filtering, c) decorrelation, In a system where no spreading is imposed, the encoders

and d) MMSE linear processing. are able to control the symbols modulating each chip inde-

Index Terms—Channel capacity, code-division multiple access, pendently. Therefore, assuming chip-synchronism, the Cover-
Gaussian channels, multiuser detection, multiuser information Wyner capacity region of the conventional Gaussian multiac-
theory, spread spectrum. cess channel [1] applies to this case and the spectral efficiency

in the absence of spreading is given by

. INTRODUCTION AND SUMMARY OF RESULTS 1 K
. C*=-log| 14+ ==SNR ). 2
A. Spectral Efficiency 2 Og( N ) @

DIRECT—Sequence Spread-Spectrum code-division mLII@)i/_*nere, for consistency with the results belo8NR denotes
ple access (CDMA) has well-known desirable featuregie energy per transmitted¥ chips divided by the Gaussian

dynamic channel sharing, robustness to channel impairmepg;se spectral leveb?. This means that the energy per bit
graceful degradation, ease of cellular planning, etc. Theggided by Ny = 202 is

advantages result from the assignment of “signature wave-
forms” with large time—bandwidth products to every potential Ly, _ SNR 3)
user of the system. Each signature can be viewed as a unit- No 2R’
norm vector in an/N-dimensional signal space, wheré is - . . L .
. . . ' nce the spectral efficiency is determined, it is possible
the spreading gain or number of chips per symbol. In t% . L ; ' .
b 99 PSP y 0 obtain the minimum bandwidth necessary to transmit a

model considered in this papé€t, users linearly modulate their determined inf " i th ) inf i
signatures with the outputs of respective autonomous encodgrrg etermined information rate or the maximum nformation
that can be supported by a given bandwidth. In order to

The central question we address is the capacity loss incurred %}ﬁ . . . : :
the imposition of such a structure on the transmitted signa? pare different systems (with possibly different spreading

S,. e X
and by the imposition of several suboptimal, but practical dins and_ data g?tes)’ the_ spectral efﬁuency must be given
appealing, receiver structures based on single-user decod a function of. According to (1) and_ (3), |f6t}?fz_spectral
Our analysis considers a white Gaussian channel with usﬁ] C'Zr;lcg of thE systsr?_treiaghss the optimum levelin (2),
constrained to have identical average received powers. en can be substituted by

The fundamental figure of merit is the&pectral efficiency 2N E, _,
C, defined as the total number of bits per chip that can be SNR = ?ﬁoc
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or equivalently CDMA requires joint processing and decoding of users. As
. By advocated in a number of recent works [6]-[24], it is sensible
450w _ B in terms of complexity—performance tradeoff to adopt as a

2C*(f,g ) Ny’ front-end a (soft-outputinultiuser detectof25] followed by

_ ) _ autonomous single-user error-control decoders. In our analysis
Since (4) does not depend @0, when the transmitted signalsof spectral efficiency we consider, in addition to optimal

are not constrained to the spread-spectrum format, the specii@loding, some popular linear multiuser detector front-ends
efficiency is the same as in a single-user system with power

equal to the sum of the powers. * single-user matched filter,
The solution to (4) is well known [2] to be positive if and * d_ecorrelqtqr,
only if * Linear Minimum Mean-Square-Error (MMSE).

, In those three cases we study suboptimal single-user decod-
No > log, 2= —1.6 dB. ing of individual linear transformation outputs. Suboptimality
results from two different simplifications: a) the output of only
one linear transformation is used, and b) no attempt to exploit
_ c* (L) log 10 _ knowledge of the codebooks of interferers is made at each
Ellln 0L 0& =y = 0.166 bits/dB. (5) individual single-user decoder.

o % 510 N, Unlike the aforementioned references [3], [4], our purpose

Assuming maximum-likelihood decoding, the capacitg to evaluate the spectral efficiency of CDMA systems where

of synchronous and asynchronous CDMA white Gaussi ignature waveforms are assigned at random. Denote the unit-

multiple-access channels was found in [3], [4] as a function 8
the assigned signature waveforms and signal-to-noise ratios.
CDMA channel capacity depends on the signature waveforms
through their crosscorrelations. For example, the specteald assume that,; € {-1/v/N,+1/+/N} are chosen equally
efficiency of a synchronous CDMA system where identicdikely and independent for al(k,j). (Nonbinary random
signature waveforms are assigned to all users is given by signature sequence models are also analyzed in the paper.)
The rationale for averaging capacity with respect to random

Furthermore, the asymptotic growth satisfies

prm signature of théth user by

[Ck17 T Ck]\"]

1
cse — N log(1 + KSNR) (6) signature waveforms is twofold.
whereas in the case of orthogonal sequences the spectrdl It accurately models CDMA systems (such as 1S-95, [26],
efficiency is equal to [27]) where pseudonoise sequences span many symbol
K periods.
com = oN log(1 + SNR), if K <N. @) » The spectral efficiency averaged with respect to the choice
o of signatures provides a lower bound to the optimum
Substituting spectral efficiency achievable with a deterministic choice
2N E, of signature waveforms.
SNR = Corth__ -
K Ny Most analyses of multiuser detectors have focused on the
we obtain that ifK < N, then bit-error rate of uncoded communication [25]. The results
- found in this paper for the decorrelator and MMSE receivers
cortn <57 E) = EC* <@> (8) 9ive the best achievable performance with error-control coding
N Ny N No assuming random signature waveforms. As we mentioned, this

serves as a lower bound to the performance achievable through

The equality ofc™™ andC* for K = V' is a consequence of design of signatures with favorable crosscorrelation properties
the well-known fact [1] that orthogonal multiple access incur; g 9 prop '

no loss in capacity relative to unconstrained multiple acceﬁgrthermore, this analysis is directly applicable to multiuser

for equal-rate equal-power users in an additive Gaussian no'seetectors operating with spreading codes whose periodicity is

channel. It is also known [5] that even & > N, there much larger than the spreading gain (e.g., [28]-[30]).
exist spreading codes that incur no loss in capacity relative ,
to multiaccess with no spreading. B. Previous Results

Despite their overlap in time and frequency, tdaisers can ~ We now summarize the main results available in the lit-
be completely separated at the receiver by means of a matcher@ture relevant to the problem considered here. Other than
filter front-end provided the signature waveforms are mutual[], [31], most existing capacity results pertain to the symbol-
orthogonal. In that case, single-user error-control coding asgnchronous case.
decoding is sufficient. Nonorthogonal CDMA arises whenever 1) Optimal Decoding: Optimal decoding can be performed
K > N or the users are asynchronous. Moreover, chanrisl a bank of matched filters (which converts the received
distortion (such as multipath) and out-of-cell interference apFocess to a discrete-time vector process) followed by joint
common impairments that destroy the orthogonality of signezaximum-likelihood decoding of the error control code (e.g.,
ture waveforms. Optimal spectral efficiency in nonorthogongs?2], [33]). The formula in [4] for capacity as a function
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of the signature waveforms was used in [5] to show th&ir K < N. This bound is shown to be tight & — oo in [25]

with Welch-bound-equalitfWBE) signature waveforms the(see also [17]). An analogous problem in the asynchronous
spectral efficiency of the CDMA system is equal to the casetting is considered in [46] (see also [12]). Bounds and Monte
of no-spreading (2). A necessary condition for the existen@arlo simulation of capacity using the decorrelator were given
of WBE signature waveforms iK' > N. When the number of in [21] and [22]. Random sequences with complex-valued
users is an integer multiple of the spreading g&in= m/, chips where sequences are uniformly distributed on the surface
then an optimum signature sequence assignment is obtainé&the unit-radiusV-dimensional sphere are considered in [20]
by selecting a set ofV orthogonal sequences and assigningnd [23]. Those references find an expression for the density
each of them tan users. It is straightforward to check thafunction of the maximum near—far resistance as a function of
the spectral efficiency of such a CDMA system is given b and N, and an asymptotitK' — oc) expression fotz, /N

(2) if optimal decoding is used. as a function of the desired spectral efficiency.

More generally, WBE signature waveforms with binary 4) MMSE: The linear MMSE receiver [47], [48] offers a
antipodal spreading are known to exist for many other choicesmpromise between the multiaccess interference suppression
of (K, N). For example, given a Hadamard matrix of sizeapabilities of the decorrelator and the optimal background-
K one can take anW < K rows of the matrix to form an noise-combating capabilities of the single-user matched filter.
N x K matrix of WBE signature vectors with binary antipodalUnlike the decorrelator, the MMSE filter is well-defined
spreading. Hadamard matrices of siz°*, m = 1,2,3---, regardless of whetheK is smaller or larger thanV. As
s = k(m),k(m) + 1,---, with k(m) = [2log,(m — 3)] are in the case of the decorrelator, we are interested in the
known to exist [34]. Thus for any > 1, sequences of WBE spectral efficiency of the bank of MMSE linear transformations
signature waveforms whos& /N ratio converges to3 are followed by single-user decoders. When the channel symbols
guaranteed to exigt. are binary and binary decisions are made at the output of the

It had been conjectured in [38] that &/N — oo and linear transformation, [49] shows that the spectral efficiency
SNR — oo the loss incurred by a random choice of signaturésf both the matched filter and of the MMSE transformation)
vanishes. This was verified independently by Monte Cartends to 0.46 bits/chip a&’/N — oo in the synchronous
simulation in [21] and with an asymptoti€ > N — oo case and to 0.69 bits/chip in the asynchronous case. Monte
lower bound on the average capacity for random signatu@arlo simulation of the expected MMSE capacity with binary
waveforms in [39], [40]. sequences and (nonbinary) power-constrained codewords was

2) Single-User Matched Filter-The capacity of the single- given in [21]. Monte Carlo simulations with spherical random
user matched filter followed by single-user decoding ha®des are also undertaken in [20]. Up to now, no analytical
been previously analyzed approximating the multiaccess iesults existed on the asymptotic spectral efficiency of MMSE
terference at the output of the matched filter by Gaussignocessing or on the optimal spreading gain as a function of
noise. When the signatures are random and are antipodalig number users. Simultaneously to a conference version [50]
modulated, then [41] (see also [42], [43]) found that thef the present paper, [51] gives an equation satisfied by the
spectral efficiency a&(/N — oo goes to 0.5 nat/chig- 0.72 larged{ output signal-to-noise ratio of the MMSE receiver
bit/chip. without assuming equal received powers.

3) Decorrelator: If the signature waveforms are linearly
independent, a front-end consisting of a bank of decorrelat%s
[44] incurs no loss of information since it is a one-to-one trans-’
formation of the sufficient statistics and eliminates multiaccessNext we summarize the main conclusions found in this
interference from each of its outputs. Optimal decoding stilaper on the capacity of spread-spectrum systems with random
requires joint processing of alt outputs due to the correlationspreading. Since the spectral efficiency depends on the spread-
among the noise Components_ The point of Studying Capadm sequences, it is a random variable itself. In our asymptotic
with a decorrelating front-end is that it lends itself naturally t§n K) analysis we do not just average spectral efficiency with
a suboptimal approach in which single-user decoding is bag€gpect to the spreading sequences, but we show convergence
on each individual decorrelator (unquantized) output. Sin€éthe (random) spectral efficiencies to deterministic quantities.
the output of each single-user decorrelator is uncontaminafdch asymptotic determinism holds regardless of whether the
by multiaccess interference, the analysis of the single-ugtgtiod of the spreading sequence is equal or longer than the
decorrelator capacity requires the single-user capacity form§gmnbol interval. Fig. 1 shows the spectral efficiencies of the
evaluated at the decorrelator output signal-to-noise ratio, whieatimal receiver, the MMSE receiver, the decorrelator, and
is equal to the maximum near—far resistangg25]. The the single-user matched filter with random spreading and a
expected maximum near—far resistance with random bindiyed 4. For comparison purposes, we show the spectral

sequences is shown in [45] to be lower-bounded by efficiencies achievable by an optimum joint decoder with no
spreading and an orthogonal CDMA system for< .

_ K—1 Throughout the paper, the key ratio of number of users to
En>1-—— ) : .
number of dimensions is denoted by

Summary of Results

2Relaxing the condition that the signature waveforms are binary-valued, the K
construction of WBE signatures has been studied in [35] with equal powers B==.
and [36], [37] with arbitrary powers. N
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Fig. 1. Large# spectral efficiencies foE;,/No = 10 dB. No spreading (4); orthogonal (8). Random signatures: optimal (9), matched filter (10),
decorrelator (11), MMSE (12).

1) Asymptotic Optimum Spectral Efficiencyhe optimum 4) Decorrelator Spectral Efficiencylf 8 < 1, the spectral
spectral efficiency for0 < g converges almost surely asefficiency of the decorrelator converges in mean-square sense

K — oo to as K — x to
. I 1
opt _ /7 . _ =
Khirclwc =5 log| 1+ SNR 4F(SNR76) Ilhn cleco _ /2—3103‘(1 + SNR(1 — 3))
L — 00
1 1
+ 5 log <1 + SNRj — ZJ’E(SNR,/J)> which yields
loge
— 8¢ F(sNR, ) ©)
where No No
F(z.2) < (\/a:(l +vz)2+1— \/a:(l —V2)2 4+ 1)% 5) MMSE Spectral Efficiencylf 3 > 0, the spectral ef-

. . . ficiency of the linear MMSE transformation converges in
2) Loss in Spectral EfficiencyWhen K = N = 2, binary mean-square sense & — oo 10

random sequences achieve 75% of the spectral efficiency of
orthogonal sequences. Whé is large, the loss in spectral _ 3 1
efficiency as a function of,/No due to a random choice of ~ lim C™™* = 5 10g<1 + SNR — ZF(SNR7/3)>~ (12)
sequences (as opposed to optimal) vanisheés, A%, — oo or
as/ — co. The maximum loss is 50% and occursiat= N,
LEy,/Ny | log, 2.

3) Matched-Filter Spectral EfficiencyThe spectral effi-

The difference between the optimum spectral efficiency and
the MMSE spectral efficiency is equal to

ciency of the single-user matched filter converges almost b G i o A F(SNR, B) 13
surely asK — oo to Jim Jim = 1SNR
B SNR
A =5 108<1 TSV A (10) " \where
The maximum (ovetX /N) spectral efficiency of the single- dof 1 1 x
user matched filter receiver is Az) = 5 10g<m> -3 loge, 0<z<l1
. E, log,e 1Ng
sumf =) = 2~ -4'0
,ﬁh—{roloc <[37 N()) 2 2 Eb and
for f‘; > log, 2. Unless f‘; is relatively low andg is high, F(SNR, ) ,
the use of random signatures as opposed to optimally chosen SNR = min{/3, 1}.

sequences brings about substantial losses in spectral efficiency

for the single-user matched filter. For example /iif = N SinceA(z) — oo asz T 1, the loss of spectral efficiency due
random signatures achieve at mast3 of the capacity of to linear processing (followed by single-user decoding) grows
orthogonal signatures. without bound withSNR when 3 > 1.
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Fig. 2. Large# spectral efficiencies with optimuni’/N.

6) Optimum Coding—Spreading Tradedffthen the spread- Optimum KN
ing gainN is a free design parameter, it is of course interesting 2
to solve for the value that optimizes the spectral efficiency
with random spreading. The answer, as we can see in Fig. 1, ;5
depends heavily on the type of receiver. For either optimum
processing or matched filtering followed by single-user decod-
ing, spectral efficiency is maximized by lettifg/N — oc. MMSE

Thus for those receivers, the coding—spreading tradeoff favors
coding: it is best to use error-correcting codes with very low -5 Decorrelater
rates (cf. (1)) and a negligible spreading gain with respect to

the number of users. This conclusion was known to hold for_16/
the single-user matched filter [41] (although it may not extend

to noncoherent demodulation models [52]). Note, however,

that the behavior of optimum processing and the conventiornsy. 3. OptimumKk /N for large K.
single-user matched filter &t'/N — oo are quite different:
the optimal spectral efficiency grows without bound @h
whereas the matched-filter efficiency approaches 0.72 b|t/c}9
E;, — 0.

For large K, theoopnmum choice of{/N for the decor-
relator ranges fron for £ £ o
(cf. Fig. 3). The optimum codlng spreading tradeoff of the !l CROSSCORRELATIONS OFRANDOM SEQUENCES
decorrelator dictates using codes whose rates (bits/symbol) li&The kth user sends the codeword
(E—J’ — o0). With an
optimum ch0|ce of spreadlng gain, the decorrelator spectral [bw[1], -+ bi[n]
efficiency with random signature waveforms is better than thg)t, transmitting
of the single-user matched filter qu— > 5.2 dB (Fig. 2).

Unlike the single-user matched filter, the spectral efficiency of
the decorrelator grows without bound %s — 00.

As far as the optimum codlng—spreadlng tradeoff for the
MMSE receiver, for low £ Ev it favors making K/N very The signature waveform,, has duratiorif, unit energy, and
large in which case the MMSE receiver achieves essentialfyes in an N-dimensional space.
the same spectral efficiency as the single-user matched filter
(Fig. 2). The optimumi /N reachesl at F =4 dB, and si(t) :chﬂ/;j(t)
reaches a minimum of 0.75 # =10 dB (cf Fig. 3). j=

7) Dynamic Power Allocation :Assuming maximum-like-
lihood decoding and long spreading sequences, the gain in
spectral efficiency achievable by allocating instantaneous cr = [cr1, s Cun]

2.5 5 7.5 10 12.5 15
Ey/N, (dB)

wer as a function of the instantaneous crosscorrelations
small enough not to warrant the required increase in
complexny.

A0S byfilsat — i),

=1
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is the spreading codeassigned to theith user. The chip whereé(z) is a unit point mass ab,

waveforms are orthonorntal

(1, 1by) = biy.

The crosscorrelations between the signature waveforms are

denoted by

PRl = <3k7 Sz)
N
= Z ClkinCln
n=1

A. Binary Sequences

In the binary sequence model, té-chip signatures as-

[2]" = max{0, 2},
and

a(B) = (1 - /B
o) = (1+ VB

Furthermore, the distribution of the eigenvalues of

K
2> et
- CLC;,
K k

k=1

converges to the cumulative distribution function faf 5.
It follows from either Proposition I1.1 or [54] that if < 1,

signed to thek users are independently equiprobably chosgRen the probability thaR is nonsingular goes tbask — oc.
from the vertices of anV-dimensional hypercube, i.e., forObviously, if 3 > 1, then R is singular.

alk=1,---,K andn = 1,---, N, {c,} are independent

equally likely to be-1/v/N or 1/v/N. The K x K matrix R of

crosscorrelations has unit diagonal elements and off-diagonal

elements equal to

N
pri = Z ChnCln (14)
n=1
1 &
== do (15)
N n=1

where{d;,---,dx} are independent equally likely to bel
or —1. Thus—1 < px; < 1 is binomially distributed

B. Spherical Sequences

In the spherical random sequence model, Mehip sig-
natures are drawn uniformly from the surface of the unit
N-sphere. Accordingly, the sequence assigned td:thaiser
admits the representation

1
[Ck17 Tty CkN] = [gkb Tt 7gkN]
N 2
2im1 Yii
where [gx1,- -+, gxn] are independent zero-mean Gaussian

random variables with identical variance. By symmetry, the
distribution of the crosscorrelation

24 N\._~n ) N
P<pkl_1_ﬁ>_<i>2 ’ =01, N (16) pklIZCknCzn
n=1
with the following moments: .
does not depend oOfgx1, - - -, cxn]. Thus f,, ., the density of
Elpr] =0 (A7)  pwn, is the same as the density of
1
E 2 = — 1 .
[pkl] N (18) N )
4 3 2 gi1 Zgli
. - which is [25, p. 72
By the DeMoivre—Laplace central limit theorem, we have [ P 1
N 5 A(0.1). 20) Joo@) = G- =a?) 8792 a1 (22)
The crosscorrelationgy; are pairwise independent but nof"’ith .
jointly independent [25, p. 70]. V=9 N even
. . Cn = (N—2)1
When the ratioK/N = 3 is kept constant (or converges N = AN 3! N odd
to a constant), then the distribution of the eigenvaluesRof (V=2
converges according to the following result. and
Proposition I1.1 [53]: For random binary sequences the L, N=-1,0,1
proportion of the K eigenvalues ofR that lie below z NI=JdNN-2)---1, N=2k+1
converges (a& — oo) to the cumulative distribution function N(N-2)---2, N =2k,

of the probability density function

Ve —a@)IB(B) — 2]
27 Pz

fole) =[1 -7 6(2) + (21)

86, =1ifl=j;6,;,=0if I #j.

4Convergence in distribution is denoted %iﬁt.

The second moment of the crosscorrelation in the spherical

model satisfies
. .7‘7 2 _

and using the weak law of large numbers [55, p. 285] it can
be concluded that (20) also holds in the spherical model.
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Regarding the behavior of the eigenvalues of the crosscdihe average with respect & is denoted by
relation matrix in the spherical sequence model, we note that
Proposition 1.1 remains true for any matrix whose coefficients (;‘;pt(SNRK’ N)=E B log (det [ + SNRR])|.  (27)
are given by (14) wheréc,;} are independent and identically 2N

distributed (i.i.d.) with finite variance [53]. This means thaAveraging with respect t@ yields the capacity of long-code

Proposition 1.1 holds for a matrix defined as CDMA systems where the periodicity of the spreading code
1 X is much larger than the symbol duration. The reason is that
Pri = N ngngln (24) as the blocklength goes to infinity, all realizations®foccur
n=1 (many times) and the encoding/decoding system can treat the
llgx ! gl symbols corresponding to each realization as an independent
- N M (25) subcodeword. Although this reasoning strictly applies to the
whereg, = [gu1,- > gen], and|lg, | is its Euclidean norm. case whereR takes a finite number of values (e.g., binary

guence model), it can also be extended to encompass the

herical random sequence model.

Interestingly, in the setting of long spreading codes, we can

o do better than (27) by means of dynamic power allocation,
- N N{g,9,) gl g\ namely, subcodewords corresponding to different realizations
|R—R| = K2 Z Z 95112 ]19:12 <1 - N ) of R can be allocated different powers, as long as their average
k=1i=1 power remains intact. For example, we would expect that the

vanishes almost surely. optimal strategy will assign more power to the propitious times
In general, analytical results are easier if unnormalizeat which the signatures are orthogonal, than to the times at

Gaussian sequences are considered. For example, lnich all users are assigned the same signature. With dynamic

nonasymptotic eigenvalue distribution is known. If a modglower allocation, the average capacity becomes

of long spreading sequences is considered, then the ergodigiggt

of the Gaussian sequence implies that the average transmifted(SNR, K, N)

power is asymptotically deterministic even if the e_ncoder — max E ilog (det [ + o 2A(R)RAR)])| (28)

does not take into account power fluctuations in the signature 2N

waveforms. AsN — oo, the same spectral efficiency obtains here the maximum is over all mappings frois x K
as in the normalized spherical sequence model. w laximum 1S -ov " bping X
crosscorrelation matrices to positive diagonal matrices, such

that

In order to show that the asymptotic eigenvalue distributions
of R and R coincide, it is enough to show [56] that the weakP
norm of their difference

I1l. OPTIMUM DECODING
E[AR)] = AT
A. Preliminaries

Throughout this paper we assume that codewords are powRr-1Wo-User Channel

constrained As usual, it is illustrative to consider the two-user case first.
n In this case
LS <
n — k - R—= |:1 p:|
=1 =
p 1

Then, the total capacity (sum-rate) of the synchronous CDMA ] ] o
channel and the average static (27) and dynamic (28) spectral efficien-

K n cies particularize to
u(t) =YY Agby[ilsi(t — iT) + (1) CP(SNR, 2, N)
k=1 1¢=1

_ 1 . 2 2
was found in [4] to be equal to = E[ﬁbg(l +2SNR + (1 — p%)SNR )} (29)

1
3 log (det [I + o 2ARA]|) and
—opt
where A = diag {A;,---, Ak}, ando? is the spectral level Cq (SNR,2,N) .
of the white Gaussian noise(t). _ Ime[— log (1 _ 2 2 }
= ma g (14 2SNR(p) + (1 — p?)SNR?*(p
If the users have equal power, thelp, = A 2N ( (P)+ ) )
A2 (30)
SNR = — . . .
o2 respectively, where the expectations are with respeptdnd
and the optimum spectral efficiency is equal to the maximum in (30) is with respect to the functiSNR(-)

that satisfies

C®(SNR, R, K,N) = % log (det [I + SNRR]).  (26) E[SNR()] = SNR. (31)
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The solution to this optimization problem is difference between dynamic-power and static-power spectral
efficiency. The following result (proved in Appendix Il) lets

the power-allocation strategy depend on the instantaneous
(11—t <1(1 -1+ \/i(l — ) g crosscorrelation matrix but not on the user index. In the more

SNR(p)

A2 general case, we conjecture that the asymptotically optimal
(32) strategy is to let
C
where0 < \ < 2 is the associated Lagrange multiplier chosen SNRi(R) = S Hpnl =1}
so that (31) is satisfied. It can be verified from (32) that / !

where the indicator function is denoted
SNR(0) = 2SNR(1).

1, if Ais true
. _ A} = e
Let us now evaluate (29) and (30) in the case of binary {07 if Ais false.
sequences in which is binomially distributed (16). IfV = 2, - ) )
then Proposition Ill.1: Consider the class of dynamic power
1 allocation strategies where all users are constrained to use the
Plp*=1=Plp=0]= 3 same powesSNRy(R) = SNR(R). Then
and (29), (30) become JimCF'(SNR, K, N) — C(SNR, K, N)
CP(SNR, 2,2) = ~ log(1 + 2SNR) + ~ log(1 + SNR) (33) =L pli®os B | (35
s e 8 4 2N E[r(R)]
and wherer(R) denotes the rank aoR.
_opt 3 4 The quantity in the right-hand side of (34) is very small.
Ca (SNR,2,2) = glOg <1 + gSNR) (34)  As we saw, it is equal to 0.03 bit/chip {fX, N) = (2,2), it
. equals 0.02 bit/chip if K, N) = (3,3). As K — oo the gain
Comparing (34) and (2) ak’ = V = 2 we see that vanishe® because the probability that is not full-rank goes
—opt{ B 3 .(E to zero [54]. In view of these results we conclude that the
Ca <F0’2’2> =3¢ <F0> very small gain in optimal spectral efficiency brought about
by dynamic power allocation does not warrant the increase
whereas orthogonal sequences achieve in complexity in encoding/decoding. Henceforth, we restrict
—otn [ E [ E attention to encoding with power allocation that does not
Cy <—07272> =C <Fo> depend on the instantaneous signature waveforms.

Interestingly, we can check that the gain due to dynamig g _, ~
power assignment is minute in this case. The maximum

difference occurs for asymptotically higﬁg and is equal to The complexity of analytical results on spectral efficiency

quickly grows with the number of users. Fortunately, as
lim {Cflpt(SNR, 2,2) — C‘;pt(SNR, 2, 2)} = 0.03 bit/chip & — oc, not only do analytical results become feasible but, as
SNR— 00 the following result demonstrates, the randomness of spectral

For all but very low f‘ the maximum relative gain is also€fficiency due to the random choice of signatures vanishes.
YO

very small. Its maximum value is attained fg | log, 2 Proposition 111.2: Suppose that the eigenvalue distribution
E E 9 of R converges td"(x) almost surely for all: > 0. Then, the
Irgax{czpt<ﬁb, 2, 2) /CE‘”(FI’, 2, 2) } =3 optimum spectral efficiency converges almost surely to
,v—" 0 0

i

lim C®™(SNR,R,K,K/f3) = = FE[log (1 + SNRX)] (36)

For a counterpart of the results in this subsection with thex—oo 2
spherical random sequence model see Appendix . _B /°° 1-F(z) & (37)
2 0 SNLR + z

C. K-User Channel where the expectation of is with respect to the distribution
Returning now to the generd-user channel, we will see F'. Thus for binary random sequences

that the very small gain realized by dynamic power assignment opt

in the two-user case is even smaller for larger number &,réoc (SNR, B, K, K/[3)

users. The reason is that the likelihood of atypically bad/good 1 3 dx
crosscorrelation matrices decreases Witlfand also withV). =i log (14 SNRz)/(b(8) — z)(z — a(8)) .
Moreover, the maximum difference between dynamic-power o(#) (38)

and static-power capacity occurs 8NR — oo, the reason

being that constant power allocation is best to combat thterea(3) = (v/5 — 1)%, andb(3) = (VB + 1)2.
background q0|se. .Accordlngly, it .makes Sense_ to focus I"BThis conclusion does not require asymptotically laBR as we indicate
the asymptotic regimeSNR — oo in our analysis of the in the next subsection.
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Proof: Fix a K x K crosscorrelation matrixR. The Spectral Efficiencies
eigenvalues of thek x K matrix R will be denoted by (bits per chip) Orthogonal
MR < - < AR, and 2}

() def (
Y (O (R)) L sl
Random

where

o

h(z) < Zlog(1+ SNRz).

0.
Let us also define the cumulative distribution functions /
K

DO =

. def 1 K -16 2 4 6
PO () < 2 10 (R) < x} (39) E /N, (@B)
1 K Fig. 4. Optimum spectral efficiencies with orthogonal and random sequences
(K, N del (K) K =N — .
F(2) = EZ;{Y; <z} (40) % >
Note that by monotonicity of the functioh Using (46) several interesting analytical properties can be
Fy")(x) _ F(K)(h—l(x))_ (41) shown for the solution to (47).
According to (26), ’ e ( By _ geon 1 E (48)
1 1 K - " No B No
GOTSNR R K.N) = 1 PRG (42) 1 E, E,
o lim =C° </3, —) =Cc’ <—) (49)
/oo (K)( )) ( ) 8—0 /3 NO NO
= (1-F(2)) da 43 o B, L,
: g Zb ) _oxf 20
. | Jim </3, NO) c ( NO) (50)
_ / (1— FUO(h(2)) de (44)
0

’ where (50) follows from (48) and (49).

- 1/oo 1— FUIO(z) " (45) It is straightforward to show that a§t — oo the slope of

2/ ﬁ + 2 i the spectral efficiency achievable with random sequences as a
. E;,

where (43) follows from (40), and (45) is a result of a simpl&nction of 5 (dB) goes to

change of integration variable.

Upon taking limits in (45) and using the bounded conver- _C(B ) . .
gence theorem (e.g. [57]) to interchange limit and integration ﬂlfoo 10log,, % = 0.166 min{1, 5} bits/dB (51)
we obtain o N
Ilim C®™(SNR,R, K,N) which coincides with the optimum behavior (5) for> 1.
00

_ : In Fig. 4 we have showrc®(1, £2)and C°™(1, £+) =
B 1 —limg_co F(I‘)(z) w/ B 0. 20
== - dz. C*(#F). The slopes of both curves with the Iogarlthmﬁr
2 Jo SR T 7 are asymptotically equal. However, there is a nonnegligible
Finally, Proposition 1.1 and integration per parts can be usg@p between both curves:

to verify (38).

. . . Copt 1 E _ C* &
The closed-form expression for the optimal spectral effi- " No No
ciency as a function off and SNR given in (9) is obtained 1 1 +2&C0pt(1 E;,)x 1
by means of the identity (100) found in Section VI. This = 4_/ 10g< No " No ) [4—x & (52)
T Jo X

circumvents having to deal with the cumbersome definite 1+250C (%)
integral in (38). Rapajic [58] solves the definite integral iR}vhich can be as large as

(38) dealing with the case§ < 1 and g > 1 separately.

Unlike (9), the expression found in [58] is not directly related lim  CoPt <1 ﬂ) _c* <ﬂ>
to the MMSE spectral efficiency. Po oo " Ny Ny

From (9) it is straightforward to show that e

1o [4—x
(CoPt |:[—13,SNR/3:| _ %COpt[ﬁ, SNR] (46) = E A (10ga:) - dz (53)

1 . .
where C°'[3, SNR] denotes the right-hand side of (9). The =—5loge=—-0.72 bit/chip  (54)
optimal spectral efficiency in terms (ﬁ‘— is the solution to
0 where (53) follows from the fact that®" and C* have the
cont </37 ﬂ) — Oont [/37 gﬂcom </37 @)} (47) same slope with Iarg% (cf. (5) and (51)). A limiting result
No B No No similar to (54) can be found in [40].




VERDU AND SHAMAI: SPECTRAL EFFICIENCY OF CDMA WITH RANDOM SPREADING 631

Ratio of Spectral Efficiencies where {n[¢{]} is an independent Gaussian sequence with
Iy Ne3Kor KeiN unit variance and{by[1],---,bx[n]} is the input codeword

///’—‘ of user k. The receiver under consideration in this section
/Or&/’/m is suboptimal because its scalar observations are not sufficient
— KN statistics and because it treats the multiuser interference as

/0-6' noise without attempting to exploit possible knowledge of the
codebooks of the interfering users. A rigorous analysis of the
041 capacity of this important channel has not been undertaken

previously. It is customary (e.g. [59]) to simply approximate

02y the interference
K
2 0 2 4 6 8 A pribylil + ona fi]

E,/N, (dB) =

Fig. 5. Optimal processing. Spectral efficiency with random signatures ds an independent Gaussian sequence. However, the problem

vided by spectral efficiency with optimally chosen signatures. is more subtle than may appear at first glance. The crosscorre-
E lations are known at the receiver and the input distribution of

If 5% is close to its lower limit oflog, 2 = —1.6 dB, then ;] need not be Gaussian. Thus the single-user channel (55)

randorn sequences achieve only 50% of the spectral efﬁuer,ugy,n general, non-Gaussian, and its capacity depends on the
of orthogonal sequences. Fig. 5 displays the proportion of thgysscorrelations. Achieving the capacity of (55) requires that
spectral efficiency of optimum sequences which is achievgigk receiver of user 1 knows the crosscorrelations and input

by random sequences, i.e.,4f< 1, then distributions of all the interferers. However, the following re-
' aer C(B, %) com(p, &) sult shows that that information becomes useless as the number
7% </ ; —) Con (3. B 30 of users grows without bound. Furthermore, the dependence of
(/ ’ No) : (No) the capacity on the actual realization of signature waveforms
and if 3 > 1, then vanishes asymptotically.
onf g Ev\ der Co (3, &) /300'“(% =) Proposition IV.1: Let C(p12, -, p1ic:Puas- - Py ) de-
TS - C*(,\—r) - ( ) note the capacity of the single-user channel (55) subject to
YO

o the following constraints:
Therefore, we get the following identity:

bii] < 1.

1 E . %
() -~(:2)
0 0 . For j = 2,---K, the random variableqb;[i]} are

11

Note that random sequences are asymptotically optimal (i.e., independent with distributiop, ..

as good as orthogonal fg# < 1 and as good as WBE for Eb,li]] = 0
£ > 1) under the following conditions (see Fig. 5). . bJQ . 1.
* Fixed # and £& — oc. [j[t]] =1 | | |
* Fixed £ and /3 — oo, * {nu[il} is a memoryless Gaussian process with unit
* Fixed £ and 3 — 0. variance.

Adhering to the suboptimal approach where all the users dféhe sequences are drawn according to either the binary or
constrained to have the same power as in Proposition 111.1, # spherical random models, then/@¥ = K — oo

notice that (38) still holds wittBNR(R) replacingSNR. Then, as 1 2
maximizing with respect tSNR(R), satisfyingE[SNR(R)] = Clpr2s s PLK Dby =1 Doy ) = 2 10g<1 Ry /3A2>'
SNR vyields by the concavity of the logarithm that the optimum (56)
choice iSSNR(R) = SNR. For asymptotically largSNR, the
result conforms with (35). Proof: It follows from well-known results on the capac-
Another byproduct of the proof of Proposition 1I1.2 is thety of non-Gaussian channels [60], [61] that
practically relevant fact that without loss of optimality users 42
can choose codebooks without regard to the assigned signaturéog <1 + . 5 )
waveforms or to their evolution in a CDMA system with long o?+ A EJ =2 P1y
codes. < C(ﬂl?f"7le7pb27"'7pb;<) (57)
1 A?
IV. SINGLE-USER MATCHED FILTER < 510g 1+
- 2
The output of the matched filter of user 1 is the following of+4 EJ =2 plf
discrete-time process: K K
K +D rfnl—i—AZpljbj N 0,02+A22p%j
uilil = Aby[i]+ A pubilil +omli] - (85) i= i=2

j=2 (58)
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where Since N grows without bound and the second momentpf
K K exists, the first term in (63) vanishes for &, £). Regarding
D| on, +A2p1jbj N 0,02+ A2 Zp% the second term in (63) we multiply it by the constant factor
= = N/K and note that by the independence of the crosscorre-

. ) _lations py;, we can apply the law of large numbers again to
denotes the non-Gaussianness of the Gaussian plus interfgfzin

ence noise quantified by its divergence from the Gaussian
distribution with identical variance. 2 2 h ) as .. 2 2
According to (57) and (58), it is enough to show that ZNplil{pli - N} - AlgréoE[Nplil{Nplf > hj]
=2

K

1 1 (64)
log|l+ ——— | = lo~<1+—> 59

g( fy+2j‘=2 p§j> 5 v+ (59) =E[Y?1{Y? > h}] (65)
for all v > 0, and whereY is a standard Gaussian random variable; (65) follows
K K from (20) and (18) (binary model) and (23) (spherical model).

D|oni + AZpljbj N|0,0% + A? prj 25 0. Since the choice ok is arbitrary we can make the right-hand

=2 =2 side of (65) as small as desired, thereby concluding the proof.

(60) =

By focusing on asymptotics i we have been able
To show (59), we recall the behavior of the second momet circumvent the open problem of finding the capacity-
of the crosscorrelations in either the binary model (18) or thghieving distribution when the input distributions of &l
spherical model (23) and we use a strong law of large numbegsers are constrained to be identical. Furthermore, the result
for independent and identically distributed random variableg Proposition IV.1 suggests that unlgssis small the solution
whose distribution may depend on the number of terms in the that open problem cannot be very far from Gaussian.

sum [57, Theorem 5.4.1] to show We see from (56) that a CDMA system with random
K 1K sequences]N chips per symbol, a single-user matched-filter
prj =fp— Zprj =B front-end whose output signal-to-noise ratio in the absence of
—2 K j=2 interfering users iSNR, and a target output signal-to-noise

i sumf
and (59) follows. ratio of p>*™ can accommodate up to

To show (60), we invoke the recent version of the central 1 1
limit theorem with convergence in the sense of divergence K= <W - SN_R> (66)
under the Lindeberg—Feller conditf62] (see also [63, p.
601]), which in our setting becomes users—a result obtained independently in [51] without ana-

K lyzing capacity.
,hm E, [pfjbf»l{pfjb? >¢b | pij] =0 (61) !Equation (56) gives the capacity per user and per symfol (.
Vet chips). To obtain the spectral efficiency, all we need to do is
multiply by K and divide by/N. Recalling that the energy per
symbol divided by the noise spectral levelSsIR = A2 /02,
L, [bjplj | plj] =0 we obtain that the asymptotic spectral efficiency for the single-

) user matched filter as a function ¢f = K/N and SNR is
which holds becausge,; has zero mean. Thus we need to shoyjyen py

that the set of sequencég;»,-- -, p1i } for which (61) holds

in addition to

has asymptotic unit probability for afl > 0. csumt _ ﬁ loe 1+ SNR 67)
Let us choose an arbitrary scalar> 0, and let us bound % 1+SNR3 /)’
each random variable in (61) by o
B B Upon substitution of
it > 1ot < o h+a{ > 3} .
N N SNR = cum =2 2%
h B No

< _531{%3 > g} +b3p§j1{p§j > ﬁ}. (62)

N N N we obtain that the asymptotic spectral efficiency of the single-
Upon taking expectations with respectitoand summing over user matched filter is equal to
7 we get that the left-hand side of (61) is upper-bounded by

(K — 1)h
—w Ll

OB\ B
K csumt <[3, Fo) =3 log, (1 + ) (68)

h
2 2 2 2
ViL{hb} > EN}] + Zpljl{plj > N}' (63) _ |
j=2 where v is the solution to
6Due to the convolution with a Gaussian random variable in the first 1 0
distribution of the divergence in (60), the convergence in (60) can also be = =3 log,(1+v)=—.
proven directly without invoking the general result in [62]. v
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Ratio of Spectral Efficiencies where R,jjl denotes thgk, j) element of the inverse of the
I crosscorrelation matrix. Since
osl (85, 5k) = bjx
such a transformation succeeds in completely eliminating any
0.6 interference from other users, and the decoder sees a single-
A — user memoryless channel. As we mentioned in Section |, even

:;N\\M\ if an optimum single-user encoder/decoder system is used,

\ this receiver is not optimal because the output stream of the
0.2y single-user decorrelator is not a sufficient statistic. The spectral

efficiency is obtained by summing the individual capacities

-2 0 2 4 6 8 and dividing by NV
E/N, (dB)
K
Fig. 6. Single-user matched filtering. Spectral efficiency with random signa- cdeco — oN Z log(1 + SNR7},) (72)

tures divided by spectral efficiency with optimally chosen signatures. Pt

where, is the optimum near—far resistance of theh user
It can be shown from (68) tha*™ (3, £-) is monotonically [25]

N,
increasing with/3, and ’ 1
E log,e 1N, M= R} (73)
lim csv™ </3, —b> _9%2¢  1iVo (69) Kk
F—00 No 2 2 E, What if R is not invertible? Then, the decorrelator can still

if 2 > loz 2. The asymptotic spectral efficiency for lar ebe defined through the Moore—Penrose generalized inverse of
No Be = ymp P Y %R [44], [25]. If s is not spanned by the interfering signature

E .
w, can be seen (from either (67) or (68)) to be waveforms, then (72) and (73) still hold provided the inverse
B, 8 1 in (73) is replaced by the Moore—Penrose inverses;lfis
Jim coumt </3, F) =3 log <1 + /_3> (70) spanned by the interfering signature waveforms, thee= 0.
No 0 In that case, the decorrelator for uskrcannot tune out
Thus (cf. Subsection IV-B) the interferers, but the capacity achievable by a single-user
' decoder is nonzero, as in the case of the single-user matched
csunt <[37 % ) < 1028‘6 filter.
0 Proposition V.1: For 5 < 1 and binary random spreading,
with asymptotic equality when botl,% — o0 and 8 — oc. the spectral efficiency of the decorrelator converges in mean

Fig. 6 shows the ratio of spectral efficiency of randorfiquare ask’ — oo to
spreading and single-user matched filtering to the spectral . deco B
efficiency of optimally designed sequences and maximum- Kh_l}},oc )
likelihood decoding. Recall that ifKk < N, orthogonal
sequences are optimal, andAf = mN, they remain optimal
provided each sequence is assignedntousers. In either lim E[C%®] = élog(l—i—SNR(l —9) (75)
case, the single-user matched filter is an optimal front-end. K—oo 2
However, in the latter case, the maximum-likelihood receivand
is different from the receiver considered in this section which . decoy
deals with the interferers as noise. The ratio of spectral Allféovar () =0. (76)

log(1 + SNR(1 — 3)). (74)

Proof: The proof entails showing

efficiencies is monotonically decreasing wifft. At £ | —  The capacity achievable in the event that the crosscorrelation
1.6 dB, the ratio isl/3 at ' = N, and higher for any other matrix is singular is bounded betweérand 3 log(1 + SNR).
K/N. Since that event has vanishing probability & — o),
neither the mean nor the variance @ will be affected
V. DECORRELATOR asymptotically if we can change the distribution under which

In contrast to the single-user matched filter, the decorrelatBriS chosen by conditioning on it being nonsingular. In that

for userk correlates the received signal with respect to tHeSe. the spectral efficiency is given by (72). By symmetry,
projection of the signature waveform, on the subspace the distribution of7; is independent of. Thus using (72)

orthogonal to the space spanned by the interfering wavefori{§ OPtain

[25]_. \_Nhen_the signature Wavef(_)rm§ are linearly independent E[ct] = ﬁE[log(l + SNR7x)] (77)
(R is invertible) then such a projection can be expressed as 2
K and using the Cauchy—Schwarz inequality
s(t) =Y Ryis(t 71 2
5u(t) ; ki 53(0) (1) var (C¥0) < %var (log (1+ SNRijk)).  (78)
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Note that had the random variablgs been independent, then Ratio of Spectral Efficiencies
we could have claimed equality in (78) after dividing the right- Iy
hand side byK. Fortunately, the bound in (78) is good enough
for our purposes. Consider the following result. 0.8
Proposition V.2 [25]: If 8 < 1,thenforallk =1,---. K 06!
the maximum near—far resistance satisfies
) 0.4}
lim 7, =1-0
K—oo
02!}
where the limit is in mean-square sense.
It is not true in general thatar(Xyx) — 0 implies -2 0 2 4 6 8
var (log (1 + Xx)) — 0. However, this implication can be By Mo (@)

shown to hold in our case becauZg: = SNR# is always Fig. 7. Decorrelator. Spectral efficiency with random signatures divided by
nonnegative. spectral efficiency with optimally chosen signatures.

Now, we can evaluate (74) at the signal-to-noise ratio

ON E, Since the decorrelator is an optimum front-end in the case

K N, of orthogonal sequences, the loss due to the use of random
sequences is given by (via (8) and (79))

to get the equation satisfied by the asymptotic spectral effi-

SNR = Cdeco

ciency of the decorrelator ydeco </3 ﬂ) do cro (3, &) _ c*((1-B)%) (80)
%) ) T o)

E Jéj E,\2E
deco a2 W . deco i Nl NI
c </3’ N0> T2 log’(l +e </3’ N0>/3 NO(1 /3)> if 3 < 1. Fig. 7 shows (80). Comparing this figure to Fig. 5
we can see that for higlﬁ% and low/3 the decorrelator almost

which upon comparison to (4), yields achieves optimal spectral efficiency (see also Fig. 1). As
£ £ should be expected and in contrast to the single-user matched
cdew(ﬁ,_") = AC* <(1_/3)_">, (79) filter, the suboptimality of the random choice decreases

No No with Zs

N

0 . . . . . .
The result in (79) can be interpreted as the decorrelatorThe results in this section hold verbatim if the received

L - : wers are different (but nonzero) since neither the decorre-
achieving the same efficiency of orthogonal spreading (cf. (ﬁor nor its output d(e end on th)e ower of the interferers
except for a penalty in signal-to-noise ratioléflog,,(1 — 3) P P P ‘

decibels. The system logét (22 ), that achieves the maximum e call attention to the fact t_hat for the_ decorrelator (a_lnd
of (79) 0 MMSE receiver in the next section) dynamic power allocation

is useful when3 exceeds the optimum loagf for a given fg
Ceco </3* <ﬂ> ﬂ) R </3 ﬂ) (Fig. 1). To see th|§, Ietiz = K*/K be the largest multiple
No ' No ’ " No of 1/K not exceeding3*/3. Every encoder can be forced
to transmit energy only in a fraction of symbols in a way
can be obtained as the solution to that K* users are simultaneously active at every symbol. This
allows each user to boost its power by a facigr: at the

4C (=8 x5) log, 2 = Fb times at which it is active. If the decorrelator is changed from
0 symbol to symbol so as to take into account only those users
Notice thatc® — 0 if that have nonzero power, then the resulting spectral efficiency
is equal toc®™*° (a3, fg ), which can be as close as desired to
Ey < log, 2 the optimumc®®(3*, fg) for sufficiently largek.

No —1-8"

This means that the minimunf,—g necessary for reliable VI. LINEAR MMSE RECEIVER
communication with the decorrelator is equal-td.6 dB plus  We start by recalling from [25] several elementary properties
the noise enhancement factor in decibels. Therefore, for avfythe linear MMSE multiuser receiver. If all the received
given f—g the spectral efficiency of the decorrelator becomesignal-to-noise ratios are identical, the MMSE receiver for the
zero for a value of3 that is strictly smaller tham (cf. Fig. 1). kth user correlates the incoming signal with

When the system loag is large enough, the spectral X
efficiency of the decorrelator with random spreading degrades ~ 1
to the pgint that it is even lower than that rc))f the s?nglg-user sw(t) = ZUJF SNRE],;s;(t)- (81)
matched filter. In such a case, performance can be improved
by neglecting the presence of a subset of users or, preferafligis linear transformation does not eliminate multiaccess
by using the linear transformation discussed in Section VI. interference from its output but it achieves the maximum

j=1
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output signal-to-interference ratio given by _ 1
1 1 ~ T [ 1+ SNRA(R)
Mu(SNR) T T sNRAI (82) =1 d 89
W _>/0 T+ SR /(@) 4 (89)
where M, (SNR) is the minimum mean-square error for the 1
kth user when all users have signal-to-noise ratio equal to =1- 4[JSNR]:(SNR’/3) (90)

SNR. The maximum rate achievable by a single-user decoder
depends on the distribution of the symbols transmitted Wyhere the density in (89) was defined in (21).

the interferers. Since the inputs are power-constrained, thel0 Show mean-square convergence (86), we note(that
minimax distribution for the interferers is Gaussian. Although/x(R) < 1, and we follow [25] to express the normalized
as noted before, this does not imply that Gaussian inputs ¥@siance ofMg(R) as

optimum if all input distributions are constrained to be equal, v, (M (R))

the MMSE spectral efficiency is lower-bounded by the spectral m

efficiency of a single-user channel with signal-to-noise ratio

i M (R) + E* Mk (R)] — 2Mg (R)E[Mg (R)]
onven by (52 K : E{ : MKI(R)EQ[MK(.IR)] :
B 1w 4 1 1
mmse > — log I R, ). 83 — _
cmmse > 2K;l g(1/[I + SNRR];}) (83) E[MK(R)} EN B (91)

It has been observed in [64] that the Gaussian approximatihe proposition will follow upon showing that the right-hand
for the output of the MMSE transformation is excellent eveside of (91) vanishes asymptotically. To that end, recall that
if there are very few binary-valued interferers. Moreover, as, denotes the spreading code of th user and define the
K — oo, the central-limit theorem proof in Proposition IV.1N x N matrix

can be extended to the current case to show that the spectral K—1
efficiency is not affected by the distribution of the symbols Z =TI+ SNR Z erel.
transmitted by the interferers. AKX — oo, not only does el

the bound in (83) become tight but it admits a particularl

interesting closed-form expression. It can be shown that [47], [25]

1

Proposition VI.1: For 3 > 0 and binary random spreading, YIRI 1 =SNR c}ZE_ch.
the spectral efficiency of the MMSE receiver converges in M (B)
mean square ak — oo to Taking expectations with respect to binary spreading codes
3 1 we get
Isli—lgo cmmee = 5 10g<1 + SNR — Z}"(SNR, /3)) (84)

E[ L } —1=SNRE[cE  ex]

where My (R)
N
def 9 B B 9 2 __SNR =1
Flo,) & (ol + V2?2 +1 -y fa(1 = Va2 +1)°. =2 D EIE ) (92)
(85) n=1
_SNR o
Proof: Analogously to Proposition V.1, the result follows - N [te(E )]
if we show the following convergence result for the minimum SNR N
mean-square error =—F Z)\ (E™h
N n=1 !
Mi(R) = [I + SNRRJ;;} (86)
1 _SNR 3 1 ]
=1- 4/38NR.7:(SNR,[3) (87) N — A (E)
1]—" 3 - 88 =FE {—SNR }
= |1+SNR— 7 (SNR,3)| . (88) N E)

Equation (88) follows from (85) after tedious algebra. To show
the convergence result in (87) let us show first that it holds
for the respective expectations. Consider the following chain:

SNR
14 SNR A (3 340, ene)

T SNR
EIM(R)] = E[[I + SNRE],,] -] Trewglv@d ©
1 1
= EE[tr [ + SNRR]|™] = SNR — ZJ’E(SNR, B) (94)
I( . .
1 B where (92) follows by averaging with respect ¢g, whose
=%F > X( +SNRR] ) components are independent and zero-mean; the limit (93)
j=1 follows from Proposition 11.1. O
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It is well known that the maximum sum-rate of thegrows. Moreover, since the analysis shows convergence of
Cover-Wyner capacity region of the one-dimensional addititke output signal-to-noise ratio of the MMSE receiver, the
white Gaussian noise multiple-access channel can be achiesegmptotic determinism (and equivalence of long and short
by the technique of successive cancellation [1]. Althougtandom spreading codes) applies to uncoded systems [25]
successive cancellation does not result in maximum-likelihoasd to the performance of suboptimal error-control codes.
decisions (regardless of whether data are encoded),Hibwever, for symbol-synchronous systems with small number
becomes asymptotically optimum as the error probability of users using certain simple error-correcting codes, the short-
intermediate decisions vanishes with code blocklength. Theym averaging effect of long codes may be beneficial [15].
implies that in a synchronous system where each user werén parallel to (66), if a target output signal-to-noise ratio of
assigned the same signature waveform, a successive cang@l&¥ is desired for the MMSE receiver, then it can be verified
(each of whose stages consists of a matched filter follow&dm the expression for the output signal-to-noise ratio in (94)
by a single-user decoder which ignores previously decod#tht the number of users that can be accommodated is (cf. [51])
users and treats yet undecoded users as noise) would be also 1 mmse
asymptotically optimum. Several recent references ([65]-[67]) K=N < + 1) <1 _P ) (101)
have generalized this result to theuser synchronous CDMA prmee SNR
channel by noticing that under the assumption of perfe
cancellation, the succesive canceler which uses an MM

usual,C™™( 3, ﬁg) is obtained by substituting

filter that ignores previously decoded users achieves the same 2E, e E,
capacity as the maximume-likelihood decoder. This is a direct SNR = Bﬁoc </3, m)
consequence of the following identity (cf. (26) and (83)):
X into
. _ . (k)1—1
log (det [I + SNRE]) = ;log(l/[f—i— SNRRVIGH) (95)  Lomee </37 %) _ glog<1 4 SNR - i]—"(SNR,/J)) (102)
= 0

where R*) denotes thekth principal minor (crosscorrelation Let us study the behavior of the spectral efficiency of the
matrix of usersl,---, k). Equation (95) is a special case oMMSE receiver for asymptotically Iarg%. ForO< B8 <1,

the elementary matrix identity the MMSE and decorrelator spectral efficiencies coincide (cf.
X Fig. 2)
det [AY] T] [A%];, = 1. (96) ok By weeo [ o Eb

No

As pointed out in [67], (95) can be used to express the optimum _
sum-capacity as an integral of the MMSE capacity we founthus according to (5) and (103), i < 1, then
in Proposition VI.1. Substituting (95) in (26) we obtain cm”‘se(/} Eb)

lim C™(SNR, R, K, K/j) o i
Koo PR oo C (No)
K
B i (k)7 —1 If 3 = 1, then it can be shown that
= lim o> log(1/[1+SNRRY] ) @7 M/
Pt Cmmse(l E;z,) 1
3 K 1 & Elim —C* ( . J;sA)O = 5
— s I - _ _ ot -GN 5N
= lim ;103 <1 + SNR 4]—"<SNR, Kﬁ)) (98) L 2 N
g 1 If 3 > 1, then it can be shown that
= —/ log[ 1 4+ SNR — = F(SNR, zf3) } dx (99)
2Jo 4 lim c™¢( A3 E = Elo /—3
1 /7? 1 By N T2 %1
_ 5/ log <1 4 SNR — Zjf(sr\we,z)) dz (100) o
0

The asymptotic behavior of the spectral efficiency of the
where the limits in (97) are understood in probability, (98MMSE receiver with3 — oo is identical to that of the
follows from (88), and (99) follows from the definition of single-user matched filter
Riemann integral. The solution of the definite integral in (100)
is given in (9). The expression for the difference between the lim Cmmse </3 ﬂ) — 108l 1Mo (104)
optimum and MMSE spectral efficiency given in (13) can be f—oo "N 2 2k,
checked from (9) and (88). 5,

We emphasize that the capacity found in Proposition Vl.fi)r No = 1056 2. )
holds regardless of whether the signature waveform change§'9- 8 depicts the function
from symbol to symbol (long pseudorandom codes) or stays . et Cmmse(ﬁ7 f”) cmmse (/37 f”)
constant. Even in the latter case, the randomness due to ~ Se( ) = — Ebo = —h 2
the choice of signatures vanishes as the number of users c (ﬁ’ No) pc (No)

B,
3 b
/’No
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Ratio of Spectral Efficiencies very competitive performance with limited complexity. The
I capacity-achieving nature of error-free successive cancellation
using single-user decoders with MMSE linear front ends (cf.

0.8 ¢ K=nz Section VI) lends further motivation for analyzing practical

/// approximations to that ideal scheme.

0.6 | The optimum coding—spreading tradeoff favors negligible
- KN spreading (with respect to the number of users) for either
A optimum or single-user matched-filter processing. In contrast,

nonnegligible spreading is optimum for linear multiuser de-
02y = tectors such as the decorrelator and the MMSE receiver. With
an optimal choice of spreading factor, the spectral efficiencies

-2 0 2 4 6 8 of the decorrelator and MMSE receivers grow without bound
Ey/N, (dB) as fg increases, in contrast to the single-user matched filter

Fig. 8. MMSE receiver: Spectral efficiency with random signatures diviaef®” Which large signal-to-noise ratios offer little incentive

by spectral efficiency with optimally chosen signatures. (Fig. 2). For largeK /N, even if the signal-to-noise ratio is

very low, the spectral efficiency of the single-user matched
filter is a fraction of the optimum one. So even though the

if 5 <1, and o X : .
background noise is dominant it pays to exploit the structure
s Ey\ aer C"™°(5, fg) of the multiaccess interference because there are several users
v B No ) T c+(@) (105) per degree of freedom. The loss in spectral efficiency due to
No

a random choice of spreading sequences depenq‘%odf,

if 3 > 1. Comparing Fig. 8 to Fig. 5 we see that, unlike théV, and the type of receiver used. Interestingly, we have found
optimal receiver, the MMSE receiver with random spreadiritpat for the optimal receiver, the single-user matched filter,

suffers substantial losses f&f = 3N. For K = N, and in the and the decorrelator, the maximal loss occurdiat N.

range of fg considered in Fig. 8, a random choice achieves We have focused exclusively on power-constrained inputs.
around 40% of the spectral efficiency achieved by orthogorléithe channel symbols modulating the signature waveforms
sequences. As the spreading gdihincreases, the MMSE are restricted to be binary, then existing results on the capacity

detector loss is more important at IoﬁéﬂL and approaches thatof single-user binary input Gaussian channels can be used to
in Figs. 5 and 7 for |argg%, The deleterious effect of low deal with the decorrelator, MMSE, and single-user matched
Y0

X on the decorrelator (Fig. 7) is not suffered by the Mmsilter. I—!owe\lier, optimal spec;tral effi_cielncy U_”derr]_S;:Ch con-
receiver. Relative to Fig. 6, we see that at I%Wthe MMSE straint is un nown, except w eh’/]_\f IS 1arge in which case
0 the symbolISNR is low and binary inputs are almost as good

and single-user matched filter behave similarly; at h%hthe as Gaussian [4], [71]

comparison depends heavily da/V. For low K/N systems (such as state-of-the-art CDMA),
either the decorrelator or the MMSE are excellent choices and
VII. CONCLUSION little inefficiency results from random rather than orthogonal

A misconception that has arisen in the last few years clairfignatures.
that in CDMA systems with a large number of users, error- Fading can be incorporated in the analysis, repladi(g)
control coding, perfect power control, and long codes, littly bx(i) = au; by (i), whereay, are i.i.d. random variables
can be gained by exploiting the structure of the multiaknown to the receiver but not to the transmitter. This frame-
cess interference at the receiver (cf. [18]). Our results hawork can be used to model either a classical fading effect
shown that exactly the opposite conclusion is true. Becausedependent from symbol to symbol because of interleaving)
of the deleterious effects of imperfect power control on thHer to account for nonideal power control fluctuations. Our
single-user matched filter, we would expect that the spectaflymptotic-in¥ results can be generalized to this setting and
inefficiency of that receiver to be even greater in that situatiof. Nonequal deterministic received powers, using recent results
Another misconception predicts that multiuser detectof the spectral distribution of random matrices [72], [73]
suffer from high sensitivity to the actual signature waveforms The coding—spreading tradeoff considered in this paper
(cf. [18]). On the contrary, our convergence results have shovgn not limited to direct-sequence spread-spectrum systems;
that, as the number of users grows, the variability in achievalecan be interpreted in a general way, where degrees of
signal-to-noise ratio and spectral efficiency due to the choifi@edom in time/frequency/space are used for coding and
of signature waveforms vanishes. spreading purposes. For example, multicarrier CDMA [75]
With large K /N, random CDMA incurs negligible spectralcan be considered a dual (in frequency) to the direct-sequence
efficiency loss relative to no-spreading if an optimum receivé@rmat (in time) [25].
is used. However, we have shown that linear multiuser de-For illustration purposes, let us consider the homogeneous
tection is distinctly suboptimal for larg&’/N. This warrants fading model [25] where chips are affected by identically
the study of nonlinear suboptimal multiuser detection, suéhstributed fading coefficientséz; = anicr. Let us also
as decision-feedback schemes [66], [65] and iterative decod-
ing procedures [68]-[70], which have already demonstrated See [74] for further discussion.
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2

assume that the fading coefficients have unit power and 1 log = +
A2

are known to the receiver. Under mild conditions on the ~ 2
distributions of {¢;;} [72], the optimal spectral efficiency
found in Proposition 1.2 can be shown to extend to this case.
In the case of{ = N — oo, it is interesting to compare the
performance of such a frequency-division spreading scheme,
to that where classical frequency division is used as an ¢, ,
orthogonal channel accessing technique. The latter gives r'§(,r O~
to the spectral efficiency (in bits per frequency slot)

2

1
coth — 5 Elog (1+ o? SNR) (106)

ACN

where the Lagrange coefficientis specified by

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 2, MARCH 1999

1 /2 Nes
m /0 COSs (9)

x log(cos® 6 + Vcost 6 + A2 sin® 6)de

(112)

77/2
/ cos™¥ 4 9\/(3084 6+ A2sin’ 6 d6
0
= SNR.

where the expectation is taken with respect to the fading powgdrified from (110) and (112):

random variable:? and wheresNR is the individual signal-to-

For low SNR, the following limiting behaviors can be

noise ratio (over all frequency slots). This is to be compared é“pt(SNR’Q’N) _ SNR log e + o(SNR) (113)
to the results of Proposition 111.2. For Io®NR both schemes ° N
yield the same behavior @fSNRlog ¢, and for largeSNR é‘;"‘(SNR 2,N) = % log ¢ 4 o(SNR) (114)
1 1
opt __ . _ = .
or = 2 log (SNR) 2 log e +o(1) (107) whereas at higlsNR
while the result in (106) depends on the distributioncdt N2
' ingCo ' i . log SNR P R= (=Rt
Certainly for no fadm@fdm is adyantageou;, being equwglentcopt(SNR 2, N) = og + (=)D Z (—1) 1
to the optimal accessing technique [8]. This advantage is als®® N — k
maintained for Rayleigh fading whera? is exponentially ) o :
distributed [76] and xlog2+o(1) s (115)
1 C ~ opt log SNR = (—1)FFL
C = 2 log (SNR) — 3 loge + o(1) (108) szp (SNR,2,N) = 8T + (=N ( /1 -1
L k=1 d
whereC = 0.57721 is the Euler constant. The comparison x log 2+ o(1). (116)

of (107) to (108) answers in part an open problem posed in

[76] on the relative advantage of CDMA versus TDMA in ayfe see that at either extreme 8KR, the gains of dynamic

single-cell fading channel.

ower allocation with spherical sequences vanish.

Our analysis has focused on symbol-synchronous CDI\/EA\|n the case ofV = 2, (109) becomes

channels. The generalization to symbol-asynchronous CDMA
is nontrivial (cf. [3]), but highly interesting for many appli-

CT(SNR,2,2) =

1
> log (1 4+ SNR)

cation$.
1, SNR )7
APPENDIX | +5log| 1+4/1- <m)
In this appendix we consider the two-user case with the 1
spherical random sequence model under which the density of — —log2.
p is given by (22). Then, the spectral efficiency with static 2
power allocation is
APPENDIX |l

CP(SNR, 2, N)

PrOOF OF PrOPOSITION I1I.1

1 L .
_ E[ﬁ log (14 2SNR + (1 — pQ)SNRQ)} (109) For every realization of? we can write

1 w2
= —log(1+SNR N2
Flos (14 SNR) £ = [ o 3(0)

2
x log <1 - < ) sin29d9>

and the dynamic-power spectral efficiency is

log det [I + SNR(R)R] — log det [I + SNRR]
= log det [(I +SNRR)™*(I + SNR(R)R)]
= log det [I + (SNR(R) — SNR)(I + SNRR) "' R].
(117)

SNR

—_— 110
1+ SNR (110)

Let us consider the matrix that appears in (117)

~ opt

C, (SNR,2, N) M(SNR) = (I + SNRR)™*R.

Note that ifv is an eigenvector oR with eigenvalue), then

v is an eigenvector oM (SNR) with eigenvalue equal to

A
14 SNRX’

= InaxE[% log (1 + 2SNR(p) + (1 — pQ)SNRQ(p))}
(111)

8See [77] for a signal-to-noise ratio analysis of the MMSE receiver in the
chip-synchronous case.
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Since the determinant of a nonnegative-definite matrix is the2] D. Goeckel and W. Stark, “Throughput optimization in multiple-access

product of its eigenvalues we have

— SNR)(I + SNRR) ' R]

SNR(R)
SNR

hlrb log det [I + (SNR(R)

r(R)log (118)

The maximization of the expected value of (118) with respeE:t

to the power allocation is equivalent to

K
max Z Plr(R
j=1

where the maximization is with
SNR(R)/SNR if »(R) = k such that

K
Z Plr(R

The method of Lagrange multipliers readily yields

) = jljloga(y)

respect te(k)

) =dle(d) = 1.

. j
al]) =
U= B @)
or, equivalently,
r(R)
SNR(R) = SNR——%—. O
(B) = SNR B ()
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