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Spectral Element Methods on Unstructured Meshes:
Comparisons and Recent Advances
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Spectral element approximations for triangles are not yet as mature as for
quadrilaterals. Here we compare different algorithms and show that using an
integration rule based on Gauss-points for simplices is of interest. We point out
that this can be handled efficiently and allows to recover the convergence rate
theoretically expected, even with curved elements.
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1. INTRODUCTION

The celebrated Spectral Element Method (SEM) has appeared to be of
great interest to extend the capabilities of spectral methods to complex
geometries. However, using quadrangular (hexahedral in 3D) elements may
be a severe restriction for the most complex geometries, because requiring
a structured mesh. Thus, Finite element meshes are usually based on trian-
gles (tetrahedra in 3D). Efforts have been made in the late 1990s to imple-
ment spectral methods based on simplices. In [11] (and related works) it
is proposed to use a “collapsed coordinate system”, so that the integra-
tion rules for quadrangles may be used for triangles. Such an approach
follows ideas developed earlier in the context of integration rules for sim-
plices (see, e.g., [13] and references herein). Its main drawback is that the
quadrature points are not symmetrically located in the triangle (tetrahe-
dron), and a priori useless accumulations of quadrature points, also used
as approximation points [11], arise in some vertices.

1 Laboratory J.-A. Dieudonné, UMR CNRS 6621 and University de Nice-Sophia Antipolis,
Parc Valrose, 06108 Nice Cedex 02, France. E-mails: {rpas, frapetti}@math.unice.fr

© 2006 Springer Science+Business Media, Inc.



Pasquetti and Rapetti

Here we start from the triangle based SEM (say the TSEM) introduced
in [16], where the Fekete points of the triangle are used as approximation
points (see, e.g., [3, 8] in 2D and [4, 9] in 3D for other sets of points).
This approach makes use of a nodal basis, i.e., Lagrange polynomials built
on Fekete points are used as basis functions to span the space PN(T ) of
all polynomials, defined on the triangle T , of total degree less or equal
than N . Fekete points show some nice properties that are described in
[15], where a computational algorithm and the location of the points are
given for polynomial approximations of degree up to N = 18. The Feke-
te points based TSEM was, e.g., used in [19], where an integration rule
different from the one used in [16] was introduced. In [12], we have revis-
ited the TSEM and also mentioned the importance of the integration rule.

In this paper, we focus on this latter point. To this end we con-
sider elliptic problems, for which the exact solutions are known, and com-
pare different approaches. The superiority of an approach based on Gauss
points to compute the integrals is numerically proved, especially by show-
ing that it supports the case of curved triangles with negligible additional
computational cost. Moreover, we emphasize that a rather small number
of quadrature points may allow to preserve the exponential convergence
rate. In Sec. 2, we describe the different algorithms. In Sec. 3, we give
comparisons for only one, non-curved and then curved spectral element,
before providing a convergence study for a test-case involving the spectral
element mesh of a non-polygonal domain.

2. TSEM ALGORITHMS

In this section, we describe the four following different approaches:

– TSEM-1: The Fekete point based method proposed in [16].
– TSEM-2: The Fekete point based method but improved by using

the semi-analytical integration rule introduced in [19].
– TSEM-3: The Fekete point based method but using a Gauss

points based integration rule.
– TSEM-4: The TSEM-3 with mass lumping.

TSEM-1: For the TSEM introduced in [16] the so-called Fekete
points are used as approximation points and the Lagrange polynomials
built on these points, say {φi}ni=1, as basis functions. Let {ψk}nk=1, be an
orthonormal basis of PN(T ), the space of polynomials defined on the tri-
angle T = {(r, s), −1�r, s�1, r + s�0} and of total degree �N , for the
usual L2(T ) inner product (the Koornwinder–Dubiner (KD) polynomials
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may be used to constitute such a basis [7]). Then, Fekete points, say
{xi}ni=1, are those which maximize the determinant of the Vandermonde
matrix V , such that Vij =ψj (xi ), 1� i, j �n, where n= (N + 1)(N + 2)/2.
Important properties of Fekete points are listed/proved in [15]. The main
one is that Fekete points are Gauss-Lobatto points for the cube [1, 2],
thus providing a strong link with the usual SEM. To set up the mass
and stiffness matrices, in [16] it is suggested to use an integration rule
that writes I = ∫

Ω uv dΩ ≈ ∑n
i=1 uiviJ (xi )wi , for the product of func-

tions u and v over the integration domain Ω. Here wi are the quadra-
ture weights, J (xi ) is the Jacobian determinant of the mapping g :T →Ω

at the Fekete points and ui = u(g(xi )) (and similarly for v). It can be
checked that assuming ψ1 to be the constant polynomial, then we have
wi =

√
2 (V −1)1i . Such a result is unfortunately minimal, i.e., only exact

for integrands in PN(T ). However, the TSEM-1 leads to a diagonal mass
matrix, the nice property shown by the SEM.

TSEM-2: In [19] the approach is similar except that both the electrostatic
points introduced in [8] and the Fekete points are used. Moreover, a much
more accurate integration rule is introduced. More precisely, if g is a lin-
ear mapping, the Jacobian determinant J is constant and in this case one
has I ≈utWv, where W =JV −tV −1, with the superscript t for “transposi-
tion” and where u and v gather the ui and vi , 1� i�n, respectively. Such
an integration rule is exact if u ◦ g and v ◦ g are polynomials of PN(T ),
which is by far superior to the TSEM-1. However, for the TSEM-2 the
mass matrix is no-longer diagonal: being u and v the Lagrange polyno-
mials built on the Fekete points, the elemental mass matrix equals W .

Extensions of this approach to the case where g is no-longer a linear
mapping are proposed in [10, 19]. In [19], the approach proposed in [11]
is used for curved elements, whereas in [10] a more accurate computation
of the matrix W is proposed. However, in this latter case the matrix W

is no-longer proportional to the one of the reference triangle but depends
on the shape of the triangular spectral element. In [10] it is suggested to
store the matrix W for each curved triangle. This requires rapidly a huge
amount of memory space, even if as outlined in [10] curved triangles are
not necessary for interior spectral elements. To avoid this severe drawback,
we check here a simpler approach: following what is done for the usual
SEM and in order to preserve the symmetry of the bilinear form, we use
for W the matrix W =J 1/2V −tV −1J 1/2, where J is no-longer a scalar but
the diagonal matrix J =diag{J1, . . . , Jn}, with Ji the Jacobian determinant
at point xi . This simplified approach is used in next section to obtain the
numerical results for the TSEM-2.
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TSEM-3: Let us introduce the set of m quadrature points, say {yi}mi=1,
allowing for an exact integration of polynomials, e.g., in P2N(T ), using an
integration rule as for the TSEM-1. Given the values at the approximation
points of a polynomial uN ∈PN(T ), one can set up an interpolation matrix
and differentiation matrices to compute, at the quadrature points, the val-
ues of uN and of its derivatives, respectively. In details, let uN ∈ PN(T ).
Knowing the ui = uN(xi ), 1� i�n, one can easily compute the uN(yi ),
1� i�m. To this end we use the KD polynomials and, denoting by ûj
the components of uN in the KD basis, we have ui =

∑n
j=1 ûjψj (xi )=∑n

j=1 Vij ûj . In matrix form, with û the vector of the ûj , we have u=
V û. Similarly, with u′ for the vector gathering the u(yi ) and V ′

ij =ψj
(yi ), we obtain u′ = V ′û = V ′V −1u. To compute derivatives, e.g., with
respect to r, at the quadrature points we use the KD polynomials: if
ψj (x)=

∑n
k=1ψj (xk)φk(x), then ∂rψj (yi )=

∑n
k=1ψj (xk)∂rφk(yi ), so that

we obtain for the differentiation matrix: D
′r = V

′rV −1 with (V
′r )ij =

∂rψj (yi ).
Once knowing such differentiation matrices, D

′r and D
′s , it is an easy

task, by applying the chain rule, to compute derivatives at the quadrature
points from the values at the approximation points. Note that if g is a
non-linear mapping, such an approach is not equivalent to the computa-
tion of the derivatives at the Fekete points followed by an interpolation
at the Gauss points. This latter approach would be more expensive and
moreover not accurate enough to preserve the exponential convergence
property.

The present approach, TSEM-3, shows some nice properties with
respect to the TSEM-2, (i) in terms of computational time, to set up
the stiffness matrix, (ii) because it does not require large memory space
storages for curved triangles and finally, (iii) because it is very flexi-
ble, allowing, e.g., to enforce an exact integration only for integrands
in P2N−1, similarly to the SEM, in order to still decrease the computa-
tional time. The TSEM-3 requires of course the use of highly accurate
integration rules based on Gauss points, as proposed in [5, 14, 18]. Unfor-
tunately, in practice such integration rules are not yet known (or accessi-
ble) for large values of N . In this case it remains possible to use Gauss
points based integration rules for the quadrangle, then using a mapping,
say h :Q→T , from the reference quadrangle Q={(r, s), −1� r, s�1} to
the reference triangle T . Such a mapping is, e.g., detailed for both 2D and
3D problems in [11], where it is moreover suggested to use the quadrature
points and weights associated to the tensorial product of Jacobi polynomi-
als P 1,0

i and P 0,0
j (Legendre polynomials), 0� i, j �NQ. Such polynomials

show indeed the property of being orthogonal with a weight proportional
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to the Jacobian determinant of h (2D case). With such an integration rule,
the quadrature points are no-longer symmetric and their number is maxi-
mal: (NQ+1)2 points are required for an exact integration of polynomials
over T of degree M=2NQ+1 in each variable. In Fig. 1, we compare the
distribution in T of the Gauss points, issued from [6], with those derived
from the Gauss points of the quadrangle. One should remark that in the
former case some Gauss points are out of the triangle, which is acceptable
for the quadrature points (but of coarse not for the approximation points)
and in the latter that an a priori useless accumulation of points occurs in
the upper vertex. In Table I we compare the number of quadrature points
for each integration rule.

TSEM-4: Just as the TSEM-2, the TSEM-3 suffers from the fact that the
mass matrix is not diagonal. This may constitute a drawback to solve,
e.g., evolution problems with an explicit scheme. To recover a diagonal
mass matrix one may think to use the mass-lumping technique. Such an
approach resumes to use for the mass matrix an integration rule such
that the matrix turns out to be diagonal. For P1-finite elements, the mass
lumping technique is equivalent to the use of an integration rule only
based on the vertices of the triangle. In the framework of the TSEM,
applying the same idea suggests to use the integration rule based on
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Fig. 1. Quadrature points in the reference triangle for M = 19 with a symmetric (left) and
non-symmetric (right) distribution.

Table I. Number of Quadrature Points for Different Values of M
and for each Integration Rule

Integration rule/M 7 9 11 13 15 17 19

Sym. 13 19 27 37 48 61 73
Non-sym. 16 25 36 49 64 81 100
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Fekete points to set up the mass matrix and on the Gauss points for the
stiffness matrix and for the source term, i.e., a compromise between the
TSEM-1 and TSEM-3.

3. NUMERICAL RESULTS

Comparisons are carried out for the following elliptic problem:

−∇2u+u=f in Ω

u=uD on �D ⊂ ∂Ω, ∂nu=0 on �N = ∂Ω\�D (1)

with ∂n for the normal derivative, Ω for the computational domain and
where f , u�, are smooth functions defined on Ω, �D, respectively.

3.1. Elemental Tests

We consider for Ω only one spectral element and compare the differ-
ent TSEM. Comparisons are also provided with a collocation method
and, considering a quadrilateral element rather than a triangular one, with
the usual SEM. For the collocation method no integration rule is required
since it is the strong form of the partial differential equation which is
solved.

Computations have been carried out for problem (1) with Dirichlet
boundary conditions (ΓN = ∅) and source term given in such a way that
the exact solution reads: uex = sin(2x+y) sin(x+1) sin(1−y). The com-
putational domains are deduced from the reference triangle T (or refer-
ence quadrangle Q) by the mapping: x= r + 0.5(s+ 1)+ ε(r3 + s2), y=
0.5s+ ε(r2 + s3), where ε= 0 or ε= 0.1. In the former case the mapping
is linear, so that there is only a stretching of the reference triangle whereas
in the latter we have a deformation. In Fig. 2 are shown the Fekete points
(N =18) for the triangle mapped with ε=0 and ε=0.1.

In semi-log representation, the variations of the max-norm of the
error at the Fekete points obtained with the linear mapping (ε = 0) are
shown in Fig. 3 (left). For the TSEM-3 and TSEM-4, computations have
been made using the mapping h : Q→ T . We do not have indeed the
Gauss quadrature points and weights of the triangle for M > 19, which
limits N � 10. Essentially it appears that the exponential rate of conver-
gence is achieved as soon as the integration rule is accurate enough. Thus,
the TSEM-1 and TSEM-4 do not yield a satisfactory result, in contrast to
the TSEM-2 and TSEM-3. However, as expected, the computational time
was longer for the TSEM-2. Also one observes that both the collocation
method and the usual SEM, with a rectangular element, yield the expected
exponential rate of convergence.
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Results obtained with the non-linear mapping (ε = 0.1) are shown
in Fig. 3 (right). Here, the only satisfactory results are obtained with
the TSEM-3 and, of course, with the collocation method and the usual
SEM. For the TSEM-2, one has initially the expected decrease of the error
before saturation. Thus, the simplified form of matrix W does not allow to
obtain spectrally accurate results with curved elements.

As mentioned in the previous section, the TSEM-3 is very flexible in
the sense that one can decrease the computational time by decreasing the
polynomial maximum degree M, for which the Gauss integration is exact.
Figure 4 (left) shows results obtained for NQ={N,N−1,N−2,N−3} and
also when using the symmetric quadrature rule with M=19. Essentially, in
the former case one observes satisfactory convergence rates and even simi-
lar errors, except for NQ=N−3, whereas in the latter case results are not
satisfactory for N = 15 and N = 18, due to a not enough accurate evalu-
ation of the integrals. Note however that such results may depend on the
degree of the polynomial mapping (here is 3 for ε=0.1).
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Fig. 2. Approximation points for ε=0 (left) and ε=0.1 (right), N =18.
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Fig. 4. TSEM-3: N -convergence study for several values of M with non-linear mapping
(left) and inverse of the condition number for different spectral approximations (right).

One may ask why using a TSEM when the collocation method
appears to yield very satisfactory results. However: (i) the study has been
carried out for only one element. When a set of elements is considered
then the transmission condition is the C1 continuity of the solution, which
may be difficult to implement; (ii) better condition numbers are obtained
with the TSEM. This is visualized in Fig. 4 (right) which shows the vari-
ations of the inverse of the condition number of the final matrix (as com-
puted with the routine DGESVX of the LAPACK library). The TSEM-3
condition number follows the one of the TSEM-2. This could be expected
since the tiny difference that can be observed only results from the use of
a non-linear mapping (final matrices are identical with a linear mapping).

3.2. TSEM-3: A N- and h-Convergence Study

Here we check the convergence properties of the TSEM-3 with
respect to N and to the number of spectral elements. To this end we con-
sider again the problem (1), with now Ω={(x, y), 0�x�1, 0�y�1−x2}
and ΓD = {(x,1 − x2), 0�x�1}. To avoid reaching the machine accuracy,
we have considered problem (1) with f and uD consistent with the stiff
function u= tanh 10 (x2 +y2 −0.52).

Figure 5 (left) shows the approximation points for N = 9 of a
42 triangle macro-mesh. In the following, computations are done with
macro-meshes of Nel = 21,42,64, and 90 triangles and the polynomial
approximation degree in each triangle is chosen among the values N =
3,6,9,12,15,18. A quadratic transformation is considered for each trian-
gle touching the curved boundary in order to describe it perfectly. This
can be done easily, by using the Lagrange polynomials involved in clas-
sical P2-finite element approximations.
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Fig. 5. Approximation points for N=9 on the macro-mesh of 42 triangles (left) and inverse
of the condition number of the problem matrix (right).

Figure 5 (right) shows the log-plot of the inverse of the condition
number versus the adopted degree N for the TSEM-3. As discussed in
[12], the condition number shows a O(N4) behavior, in agreement with
what is usually obtained for hp-finite element methods (h: element mesh
size, p: polynomial approximation degree).

Figure 6 (left) shows the log-plots of the error for different choices of
N . As expected the convergence to the exact solution is of algebraic type
and achieved with an order of accuracy close to (N+1) with respect to h.
The value N=3 is too small to allow for a correct approximation. Figure
6 (right) shows the semi log-plots of the error for the considered choices
of h. As expected exponential convergence is achieved with respect to N .
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4. CONCLUSION

In comparison with approaches previously proposed [10, 15, 19], the
TSEM that we have described (TSEM-3) makes use of two sets of points:
the approximation points and the quadrature points. This seems in fact
the only possible strategy, at least for elliptic problems, as also advocated
in [17]. For the approximation points we have chosen Fekete points and
for quadrature points we suggest to use Gauss points for simplices. How-
ever, for the quadrature points we have also used the Gauss points asso-
ciated to the quadrangle. The efficiency of the TSEM-3 results from the
introduction of differentiation matrices allowing to compute the deriva-
tives at the quadrature points from values given at the approximation
points, which is not usual in the frame of spectral methods. Moreover,
there is the possibility of “sub-integrating” by using, e.g., an integration
rule only exact in P2N−3 rather than in P2N thus yielding differentiation
matrices of smaller size.
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