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S U M M A R Y

We use a spectral-element method to simulate seismic wave propagation throughout the entire

globe. The method is based upon a weak formulation of the equations of motion and combines

the flexibility of a finite-element method with the accuracy of a global pseudospectral method.

The finite-element mesh honours all first- and second-order discontinuities in the earth model.

To maintain a relatively constant resolution throughout the model in terms of the number of

grid points per wavelength, the size of the elements is increased with depth in a conforming

fashion, thus retaining a diagonal mass matrix. In the Earth’s mantle and inner core we solve the

wave equation in terms of displacement, whereas in the liquid outer core we use a formulation

based upon a scalar potential. The three domains are matched at the inner core and core–

mantle boundaries, honouring the continuity of traction and the normal component of velocity.

The effects of attenuation and anisotropy are fully incorporated. The method is implemented

on a parallel computer using a message passing technique. We benchmark spectral-element

synthetic seismograms against normal-mode synthetics for a spherically symmetric reference

model. The two methods are in excellent agreement for all body- and surface-wave arrivals

with periods greater than about 20 s.

Key words: body waves, elastodynamics, global seismology, numerical techniques, seismic

wave propagation, surface waves.

1 I N T R O D U C T I O N

The calculation of accurate synthetic seismograms for fully 3-D

global earth models poses a formidable challenge. The effects of an

anisotropic asthenosphere, a slow crust with highly variable thick-

ness, sharp fluid–solid discontinuities at the inner core (ICB) and

core–mantle (CMB) boundaries, ellipticity, free-surface topography

and attenuation must all be accounted for. In this article we demon-

strate that the spectral-element method (SEM), introduced more

than 15 years ago in computational fluid mechanics (Patera 1984;

Maday & Patera 1989; Fischer & Rønquist 1994), can meet this chal-

lenge. The method has been used to accurately model wave propa-

gation on local and regional scales, both in 2-D (Priolo et al. 1994;

Komatitsch 1997; Faccioli et al. 1997; Komatitsch & Vilotte 1998)

and in 3-D (Komatitsch 1997; Faccioli et al. 1997; Komatitsch &

Vilotte 1998; Seriani 1998; Komatitsch & Tromp 1999; Paolucci

et al. 1999). Previous publications have documented that the more

specific aspects of global wave propagation can be dealt with by the

SEM: Komatitsch & Vilotte (1998), Komatitsch & Tromp (1999)

and Paolucci et al. (1999) demonstrate that the effects of free sur-

face topography can be accommodated; Komatitsch et al. (2000a)

show that fluid–solid boundaries can be accurately modelled; Seriani

et al. (1995) and Komatitsch et al. (2000b) incorporate effects due

to anisotropy, and Komatitsch & Tromp (1999) implement attenu-

ation. In this article we combine all these ingredients to tackle the

problem of global wave propagation.

For spherically symmetric earth models, normal-mode summa-

tion is the preferred method for the calculation of synthetic seis-

mograms (e.g. Dahlen & Tromp 1998). Normal-mode synthetics

are accurate typically for periods greater than about 8 s (i.e. just

above the microseismic noise band) and involve the summation of a

few hundred thousand modes. The effects of fluid–solid boundaries,

transverse isotropy with a radial symmetry axis and radial models of

attenuation can all be accommodated. In this article we benchmark

our SEM synthetic seismograms against reference normal-mode

synthetics calculated for the Preliminary Reference Earth Model

(PREM) (Dziewonski & Anderson 1981).

The SEM has been previously applied to the problem of 3-D

global wave propagation in innovative work by Chaljub (2000),

Chaljub et al. (2001) and Capdeville et al. (2002). They use a so-

called ‘mortar’ version of the SEM (Bernardi et al. 1990, 1994;

Lahaye et al. 1997), which allows for non-conforming meshes in

which each side of every element does not have to match up ex-

actly with the side of a neighbouring element. This makes mesh

design more flexible, as it allows one to use smaller elements in

the upper part of the model where wave speeds are slowest. There

is, however, a significant increase in the complexity and cost of the

implementation because the mass matrix is no longer diagonal on
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Spectral-element simulations of global seismic waves 391

the non-conforming interfaces. As a result, an iterative solver has to

be used to solve the non-diagonal system. Here we use a classical

SEM based upon a conforming mesh that retains a diagonal mass

matrix. Chaljub (2000) and Capdeville et al. (2002) incorporate

the effects of self-gravitation in a subsequent article (Komatitsch

& Tromp 2002), but they do not incorporate anisotropy or atten-

uation or the crust at short periods. Capdeville et al. (2002) deal

with problems posed by the fluid outer core by introducing an ef-

ficient coupling technique, which matches a normal-mode solution

in the core to a SEM in the mantle. This allows one to reduce the

cost of the method by assuming a spherically symmetric solution

in the core and using spectral elements only in the upper part of

the model. However, the requirement that the matching surface be

strictly spherically symmetric precludes the incorporation of ef-

fects due to CMB topography or the Earth’s ellipticity. Tromp &

Komatitsch (2000) used a SEM to simulate wave propagation in a

portion of the globe. In this article we extend the simulations to

the entire globe and incorporate effects due to anisotropy, attenua-

tion and the solid inner core. We implement the fluid–solid match-

ing conditions using a simple and efficient domain decomposition

technique.

Other researchers have attempted to simulate 3-D global wave

propagation based upon a coupled-mode approach, in which the

modes of a 3-D earth model are expressed as a sum over the modes

of a spherically symmetric earth model (e.g. Park 1986; Park &

Yu 1992; Lognonné & Romanowicz 1990; Capdeville et al. 2000),

or direct-solution methods, which use more general basis functions

(e.g. Hara et al. 1991; Geller & Ohminato 1994; Takeuchi et al.

2000). Coupled-mode and direct-solution synthetics are expensive

to calculate, particularly for models with strong lateral variations

which require a wide coupling bandwidth. Effects due to boundary

undulations are linearized, which makes it difficult to accommodate

significant variations in crustal thickness. The finite-difference tech-

nique (e.g. Igel & Weber 1996; Chaljub & Tarantola 1997; Thomas

et al. 2000) provides an alternative approach to the calculation of

global synthetics. It is well-known, however, that finite-difference

methods are inaccurate for surface waves because of numerical dis-

persion (e.g. Robertsson 1996). Furthermore, the design of a grid

for the globe poses geometrical difficulties because of the decrease

in grid spacing with depth. In addition, diffracted phases are hard

to model accurately, in particular at the CMB, because of the stag-

gered nature of the grid. Finally, pseudospectral methods have been

used to address the problem (e.g. Tessmer et al. 1992; Carcione &

Wang 1993; Furumura et al. 1998; Igel 1999). As in finite-difference

methods, gridding the entire globe has not yet been accomplished

because of difficulties related to the spherical geometry, and the

accurate implementation of the free surface boundary condition is

problematic. In addition, major velocity discontinuities in the model

are difficult to take into account because of the global polynomial

nature of the solution. In practice, coupled-mode, direct-solution,

finite-difference and pseudospectral methods often have to assume

that earth models are 2-D axisymmetric to reduce the computational

burden. The COSY project (Igel & Geller 2000) brought together

several research groups in an attempt to benchmark numerical algo-

rithms for 1-D and 3-D Earth models. The results are summarized in

a special issue of Physics of the Earth and Planetary Interiors (Vol-

ume 119, 2000) which illustrates many of the difficulties associated

with the problem.

2 M E S H I N G T H E G L O B E

As in any finite-element method, a first crucial step towards the ac-

curate simulation of 3-D seismic wave propagation is the design

of a mesh: the model volume � needs to be subdivided into a

number of non-overlapping elements �e, e = 1, . . . , ne, such that

� = ∪
ne
e=1 �e. In this section we highlight some of the basic ingre-

dients of mesh design, which are classical finite-element results.

For a detailed introduction to finite-element methods the reader is

referred to Zienkiewicz (1977) and Hughes (1987).

A classical spectral-element method relies upon a mesh of hexa-

hedral finite elements �e that are isomorphous to the cube. Tetrahe-

dra, which are classical in finite-element methods, are excluded in

the SEM because of the tensorization of the polynomial basis that

is required to obtain an exactly diagonal mass matrix, as will be ex-

plained in Section 3. The six sides of each hexahedral element must

match up exactly with the sides of neighbouring elements. Such a

mesh is traditionally called a conforming mesh in the finite-element

literature. For reasons of accuracy, a good mesh should honour all the

major first- and second-order discontinuities in the model, and the

size of the elements should reflect the distribution of wave speeds,

such that one maintains a relatively similar number of grid points

per wavelength throughout the model. Since wave speed generally

increases with depth, this implies that the elements should become

gradually larger with depth. These requirements make the design of

a mesh for the globe challenging.

The mapping between Cartesian points x = (x, y, z) within a de-

formed, hexahedral element �e and the reference cube may be writ-

ten in the form

x(ξ) =

na
∑

a=1

Na(ξ)xa . (1)

Points within the reference cube are denoted by the vector

ξ= (ξ, η, ζ ), where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1 and −1 ≤ ζ ≤ 1. The

geometry of our finite elements is defined in terms of na = 27 con-

trol points, or anchors, xa , as shown in Fig. 1. The na shape func-

tions Na are triple products of degree 2 Lagrange polynomials. The

three Lagrange polynomials of degree 2 with three control points

ξ0 = −1, ξ1 = 0, and ξ2 = 1 are ℓ2
0(ξ ) = 1

2
ξ (ξ − 1), ℓ2

1(ξ ) = 1 − ξ 2

and ℓ2
2(ξ ) = 1

2
ξ (ξ + 1). Given the choice of anchors xa , the shape

functions Na determine the geometry of the element.

A small volume dx dy dz within a given finite element

is related to a volume dξ dη dζ in the reference cube by

dx dy dz = Jdξ dη dζ , where the Jacobian J of the mapping is

Figure 1. The geometry of each of the curved hexahedra is defined by

27 control nodes. This is a schematic example of a curved element and its

anchors.
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392 D. Komatitsch and J. Tromp

given by J = |∂(x, y, z)/∂(ξ, η, ζ )|. The partial derivative matrix

∂x/∂ξ needed for the calculation of J is obtained by analytically

differentiating the mapping (eq. 1). Partial derivatives of the shape

functions Na are defined in terms of Lagrange polynomials of de-

gree 2 and their derivatives. One needs to ensure that the mapping

(eq. 1) is unique and invertible, i.e. ξ(x) should be well-defined and

the Jacobian J should never vanish. As in any finite-element method

(e.g. Hughes 1987), the behaviour of the Jacobian J is controlled by

the geometry of the mesh, and is a measure of its quality.

We will see that modelling interactions between the fluid and

solid parts of the model at the CMB and ICB requires the evalu-

ation of surface integrals. The mesh on a fluid–solid discontinu-

ity Ŵ consists of boundary elements Ŵb, b = 1, . . . , nb, such that

Ŵ = ∪
nb

b = 1 Ŵb. The quadrilateral boundary elements Ŵb are simply

the bottom or top sides of hexahedral volume elements �e that

border the CMB or ICB. They are isomorphous to the square. Let

−1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1 denote points in the square, and let x denote

points in a boundary element Ŵb. The mapping between points in

a quadrilateral boundary element and the reference square may be

written in the form

x(ξ, η) =

na
∑

a=1

Na(ξ, η)xa . (2)

We use nine anchors xa to describe the geometry of a boundary

element Ŵb, which is the number of anchors that lie on one face of

a hexahedral volume element �e shown in Fig. 1. The nine shape

functions Na(ξ, η) are double products of Lagrange polynomials of

degree 2.

The orientation of the reference square is chosen such that the

unit outward normal, n̂, to a boundary element, Ŵb, is given by

n̂ =
1

Jb

∂x

∂ξ
×

∂x

∂η
, (3)

where Jb denotes the Jacobian of the transformation,

Jb =

∥

∥

∥

∥

∂x

∂ξ
×

∂x

∂η

∥

∥

∥

∥

. (4)

To calculate the Jacobian, Jb, and the unit outward normal, n̂, one

needs to determine the six partial derivatives ∂x/∂ξ and ∂x/∂η.

This is accomplished by analytically differentiating the mapping

(eq. 2).

The mesh we use is based upon the concept of the ‘quasi-uniform

gnomonic projection’, or ‘cubed sphere’ (Sadourny 1972; Ronchi

et al. 1996; Taylor et al. 1997), which was introduced for global wave

propagation problems by Taylor et al. (1997) and Chaljub (2000).

The key idea is to map each of the six sides of the cube to the sur-

face of the sphere. Labelling the six faces of the cube by Roman

numerals I–VI, on each individual face we introduce Cartesian co-

ordinates (α, β) such that −π/4 ≤ α ≤ π/4 and −π/4 ≤ β ≤ π/4

map out the face, as shown in Fig. 2. Next, let the Cartesian coordi-

nates (x, y, z) denote points on the surface of a sphere with radius

r, such that r = (x2 + y2 + z2)1/2, and define the auxiliary vari-

ables X = tan α, Y = tan β and Z = r (1 + X2 + Y 2)−1/2. Then the

mapping from each of the six faces of the cube to the surface of a

sphere with radius r is defined by (e.g. Ronchi et al. 1996; Chaljub

2000):

Face I: x = Z , y = X Z , z = Y Z ,

Face II: x = −Z , y = −X Z , z = Y Z ,

Face III: x = −X Z , y = Z , z = Y Z ,

Face IV: x = X Z , y = −Z , z = Y Z ,

Figure 2. View of the six building blocks that constitute the cubed sphere.

Each of the six faces I–VI of the cube is represented by an equidistant mesh

in terms of surface coordinates −π/4 ≤ α ≤ π/4 and −π/4 ≤ β ≤ π/4.

Analytical relations map the six faces of the cube to the surface of the sphere,

resulting in the angularly equidistant mesh shown to the top right for one of

the six faces.

Face V: x = −Y Z , y = X Z , z = Z ,

Face VI: x = Y Z , y = X Z , z = −Z .

In this fashion an equidistant grid in α and β on each face of the

cube is mapped to an angularly equidistant grid on the surface of the

sphere with radius r. As underlined by Ronchi et al. (1996), this gives

a mesh on the surface of the sphere with smooth variations of the

Jacobian, which is a requirement for good mesh design. By using the

cubed-sphere mapping twice, once for the free surface of the model

and a second time at the ICB, and using a linear interpolation in the

radial direction between these two surface mappings, we obtain the

mesh shown in Fig. 3. Note that the cubed sphere consists of six

of these building blocks, or chunks, that have their origin in the six

faces of the cube (Fig. 2).

Unfortunately, the mesh in Fig. 3 is not suitable for numerical

simulations of 3-D wave propagation, because the elements natu-

rally decrease in size with depth due to the spherical geometry. To

Figure 3. By using the cubed sphere mapping illustrated in Fig. 2 twice,

first at the free surface and a second time at the ICB, and using a standard

linear interpolation in the radial direction between these two surfaces, we

obtain the mesh shown in the figure. This mesh has the undesirable property

that the size of the elements decreases dramatically with depth. To maintain

a relatively constant number of grid points per wavelength, element size

should increase with depth.
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Spectral-element simulations of global seismic waves 393

Figure 4. Mesh size needs to be increased in the globe as a function of

depth to maintain a similar number of grid points per wavelength throughout

the model. This is accomplished in three stages. Left: top view of the six

building blocks that constitute the cubed sphere. Besides a top and bottom,

each block has four sides that need to match up exactly with four other

blocks to complete the cube, as indicated by the arrows. Schematically, these

four sides have one of three designs: A, B or C, as illustrated on the right.

When the six blocks are fitted together to make the entire globe, they match

perfectly.

maintain a relatively similar number of grid points per wavelength

the elements should instead increase in size, because seismic veloci-

ties in PREM generally increase with depth. An increase in element

size can be obtained by first doubling the mesh in one lateral di-

rection, and subsequently, at a greater depth, increasing its size in

the other lateral dimension (e.g. Komatitsch & Tromp 1999). In-

creasing the mesh size with depth in a single chunk in this fashion

is therefore straightforward. However, accomplishing this for more

than one chunk in such a manner that each element on the side of

one chunk matches up perfectly with an element on the side of a

neighbouring chunk, in order to obtain a geometrically conform-

ing mesh for the entire sphere, is more difficult. Fig. 4 illustrates

schematically how this may be accomplished based upon a three-

stage doubling as a function of depth. Note that there are three types

of chunks: AB, AC, and BC. In each of the types the doubling is per-

formed at different levels, such that the final six chunks fit together

perfectly to make the entire globe based upon the cubed-sphere map-

ping. The main drawbacks of this mesh are the transition regions

in which the doublings are implemented, because some resolution

is lost due to the irregular shape of the elements. As mentioned

earlier, an alternative is the use of a non-conforming mesh in the

context of the ‘mortar’ method (Chaljub 2000), with the related

complexity of implementation and the loss of a diagonal matrix

system.

To avoid singularities at the Earth’s centre, Chaljub (2000) intro-

duced the idea of placing a cube around the centre of the inner core.

The mesh within this cube needs to match up with the cubed sphere

mesh at the ICB. The mapping between this spherical surface and

the surface of the cube in the inner core is obtained by simple linear

interpolation between the two surfaces. Fig. 5 shows the actual mesh

used in the simulations for the inner core. Note that the mesh at the

surface of the cube is not regular, but rather a flat version of the

cubed sphere mapping shown in Fig. 3.

Figure 5. To avoid a mesh singularity associated with the Earth’s centre,

we place a cube at the centre of the solid inner core. We use a simple linear

interpolation to create the mesh between the surface of the central cube

and the cubed sphere mesh at the ICB. This figure shows the actual mesh

used within the solid inner core. Note that there is a layer of three elements

between the ICB and the central cube. Note also that element size within

the central cube is not constant; this reflects a match-up with the angularly

equidistant mesh at the ICB.

The mesh used in the 3-D simulations is shown in Fig. 6 and is

designed to honour all first-order discontinuities in the Preliminary

Reference Earth Model (PREM) (Dziewonski & Anderson 1981),

which are the Moho at a depth of 24.4 km, the upper-mantle dis-

continuities at depths of 220 km, 400 km and 670 km, the CMB,

and the ICB. It also honours second-order discontinuities at 600 km,

771 km and at the top of D′′. The mesh is doubled in size once be-

low the Moho, a second time below the 670 km discontinuity and a

third time just above the ICB. Each of the six chunks has 240 × 240

elements at the free surface and, as a result of the three doublings,

30 × 30 elements at the ICB.

The radial density and velocity profiles of the model are deter-

mined by PREM. The 3 km thick water layer and the lower crust

of PREM have been replaced by PREM upper crust, such that our

model has a homogeneous crust with a thickness of 24.4 km and

the constant properties of the PREM upper crust. The reason for

this simplification is that the exact location of the boundary be-

tween the upper and lower crust can only be honoured by using at

least two layers of finite elements in the crust, which would increase

the computer memory requirements too dramatically. Of course the

Earth’s real crust is very different from that of PREM, which uses

an average of the oceanic and continental crust. The depth of the

associated upper/lower crust boundary therefore has little meaning

at the global scale. PREM has a transversely isotropic asthenosphere

between 24.4 km and 220 km, which is incorporated in our SEM

simulations. We will consider wave propagation in PREM with and

without incorporating attenuation. Normal-mode catalogues with a

shortest period of 8 s were calculated for identical versions of PREM

to obtain elastic and anelastic reference solutions.
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394 D. Komatitsch and J. Tromp

Figure 6. (a) Mesh used for the simulations presented in this study. It honors first-order discontinuities at depths of 24.4 km, 220 km, 400 km, and 670 km,

the CMB, and the ICB; it also honours second-order discontinuities at 600 km, 771 km, and at the top of D′′. The mesh is doubled in size once below the

Moho, a second time below the 670 km discontinuity, and a third time just above the ICB. Each of the six chunks has 240 × 240 elements at the free surface

and 30 × 30 elements at the ICB. The triangle indicates the location of the source, situated on the equator and the Greenwich meridian. Rings of receivers with

a 2◦ spacing along the equator and the Greenwich meridian are shown by the dashes. We also show a close-up of the two mesh doublings in the mantle (b) .

3 T H E S P E C T R A L - E L E M E N T M E T H O D

In this article we ignore the effects of self-gravitation and rotation

on global wave propagation. Self-gravitation and rotation are only

relevant in the context of long-period surface waves and will be

considered in a subsequent article (Komatitsch & Tromp 2002).

3.1 Mantle and Crust

The wave equation for the Earth’s mantle and crust may be written

in the form

ρ∂2
t s = ∇ · T + f, (5)

where ρ denotes the 3-D distribution of density and T the stress

tensor which is linearly related to the displacement gradient ∇s by

Hooke’s law:

T = c : ∇s. (6)

In a transversely isotropic earth model, such as PREM, the elastic

tensor c is determined in terms of the five elastic parameters A, C,

L, N, and F (Love 1911).

In an attenuating medium, Hooke’s law (eq. 6) needs to be mod-

ified such that the stress is determined by the entire strain history:

T(t) =

∫ t

−∞

∂t c(t − t ′) : ∇s(t ′) dt ′. (7)

In seismology, the quality factor Q is observed to be constant over

a wide range of frequencies. Such an absorption-band solid may

be mimicked by a series of L standard linear solids (Liu et al.

1976; Carcione et al. 1988; Moczo et al. 1997). In practice, two

or three linear solids usually suffice to obtain an almost constant Q

(Emmerich & Korn 1987). Attenuation in the Earth is mainly con-

trolled by the shear quality factor, such that only the time dependence

of the isotropic shear modulus needs to be accommodated (the bulk

quality factor is several hundred times larger than the shear qual-

ity factor throughout the Earth). In a transversely isotropic earth

model one keeps track of the time dependence of the effective shear

modulus. The shear modulus of such a standard linear solid may be

written in the form (Liu et al. 1976)

µ(t) = µR

[

1 −

L
∑

ℓ=1

(

1 − τ ǫ
ℓ

/

τ σ
ℓ

)

e−t/τσ
ℓ

]

H (t). (8)

Here µR denotes the relaxed modulus, H (t) is the Heaviside func-

tion and τ σ
ℓ and τ ǫ

ℓ denote the stress and strain relaxation times,

respectively, of the ℓth standard linear solid. Using the absorption-

band shear modulus (eq. 8), the constitutive relation (eq. 7) may be

rewritten in the form

T = cU : ∇s −

L
∑

ℓ=1

Rℓ, (9)

where cU is the unrelaxed elastic tensor determined by the unrelaxed

shear modulus

µU = µR

[

1 −

L
∑

ℓ=1

(

1 − τ ǫ
ℓ

/

τ σ
ℓ

)

]

. (10)
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Spectral-element simulations of global seismic waves 395

For each standard linear solid one needs to solve the memory-

variable equation

∂t Rℓ = −(Rℓ − δµℓD)
/

τ σ
ℓ , (11)

where D is the strain deviator:

D = 1
2
[∇s + (∇s)T ] − 1

3
(∇ · s)I. (12)

Here a superscript T denotes the transpose and I is the identity ten-

sor. The memory-variable tensors Rℓ are symmetric and have zero

trace, such that each standard linear solid introduces five additional

unknowns. The modulus defect δµℓ associated with each individual

standard linear solid is determined by

δµℓ = −µR

(

1 − τ ǫ
ℓ

/

τ σ
ℓ

)

. (13)

The earthquake source is represented by a point force f, which

may be written in terms of the moment tensor M as

f = −M · ∇δ(r − rs)S(t). (14)

The location of the point source is denoted by rs, δ(r − rs) de-

notes the Dirac delta distribution located at rs, and the source-time

function is given by S(t).

Two types of boundary conditions must be considered: on the

free surface the traction n̂ · T, where n̂ denotes the unit outward

normal on the free surface, vanishes, and on the CMB the normal

component of velocity n̂ · v and the traction n̂ · T are continuous.

Finite-difference and pseudospectral methods are based upon the

equation of motion (eq. 5) subject to the appropriate boundary condi-

tions, which is a differential or ‘strong’ formulation of the problem.

Spectral-element methods, like finite-element, coupled-mode, and

direct-solution methods, are based upon an integral or ‘weak’ for-

mulation of the problem. This formulation is obtained by taking the

dot product of the momentum equation (eq. 5) with an arbitrary vec-

tor w, called a test vector in the finite-element literature, integrating

by parts over the volume M of the mantle and crust and imposing

the stress-free boundary condition. This gives
∫

M

ρw · ∂2
t s d3r = −

∫

M

∇w : T d3r + M : ∇w(rs)S(t)

−

∫

CMB

w · T · n̂ d2r, (15)

where n̂ is the unit outward normal on the CMB. Eq. (15) is equiv-

alent to the strong formulation (eq. 5) subject to the appropriate

boundary conditions because it holds for any test vector w.

The weak formulation (eq. 15) is valid for a completely gen-

eral, anelastic, anisotropic model. To correctly model interactions

between the solid mantle and the fluid core, we need to impose

the continuity of traction and of the normal velocity at the CMB.

Coupling fluid and solid finite elements is not an easy problem nu-

merically (e.g. Thompson & Pinsky 1996; Bermúdez et al. 1999).

In this study we implement the fluid–solid interactions based upon

a domain decomposition method: in the mantle we impose the con-

tinuity of traction and in the next section on the fluid outer core we

will impose the continuity of normal velocity. To impose continuity

of traction, we replace the traction term n̂ · T in the integral over

the CMB by the traction −pn̂ in the fluid, where p denotes the fluid

pressure. We find
∫

M

ρw · ∂2
t s d3r = −

∫

M

∇w : T d3r + M : ∇w(rs)S(t)

+

∫

CMB

pn̂ · w d2r. (16)

3.2 Outer core

In the fluid outer core, the equation of motion is

ρ∂t v = −∇ p, (17)

where v denotes the velocity in the fluid and the pressure p is deter-

mined by

∂t p = −κ∇ · v, (18)

where κ is the adiabatic bulk modulus of the fluid. On the CMB and

the ICB the traction −pn̂ and the normal component of velocity

n̂ · v must be continuous.

To solve the system of eqs (17) and (18), we introduce a scalar

potential χ (e.g. Everstine 1981; Kallivokas & Bielak 1993; Lesieur

1997) such that

p = −∂tχ. (19)

From eq. (17) and the initial conditions (v = 0 at t = 0), we find that

v = ρ−1∇χ. (20)

Upon substituting eqs (19) and (20) into eq. (18) we obtain a scalar

equation for χ :

κ−1∂2
t χ = ∇ · (ρ−1∇χ ). (21)

The weak form of this equation is obtained by multiplying it by a

scalar test function w and integrating by parts over the volume OC

of the outer core:
∫

OC

κ−1w∂2
t χ d3r = −

∫

OC

ρ−1∇w · ∇χ d3r +

∫

CMB

wn̂ · v d2r

−

∫

ICB

wn̂ · v d2r, (22)

where we used eq. (20) in the surface integrals over the CMB and

ICB. Again n̂ is the unit outward normal on either the CMB or the

ICB.

Komatitsch et al. (2000a) used a fluid–solid domain decomposi-

tion approach that is valid for homogeneous fluids. The weak for-

mulation, eq. (22), is valid for general, inhomogeneous fluids. At

the CMB and the ICB we need to implement the second step of our

domain decomposition technique by imposing the continuity of nor-

mal velocity. The continuity of traction has already been imposed in

eq. (16). At this point we replace the normal component of velocity

n̂ · v in the integrals over the CMB and ICB with the normal com-

ponent of velocity n̂ · ∂t s in the mantle or inner core to represent the

interactions correctly:
∫

OC

κ−1w∂2
t χ d3r = −

∫

OC

ρ−1∇w · ∇χ d3r +

∫

CMB

wn̂ · ∂t s d2r

−

∫

ICB

wn̂ · ∂t s d2r. (23)

Note that the system of eqs (16) and (23) honours both the con-

tinuity of traction and of the normal component of velocity and

therefore correctly represents the fluid–solid interactions. This is

the key motivation behind our domain decomposition approach.

3.3 Inner core

The weak form of the equation of motion in the solid inner core is

similar to eq. (16):
∫

IC

ρw · ∂2
t s d3r = −

∫

IC

∇w : T d3r −

∫

ICB

pn̂ · w d2r. (24)

Note that the inner core–outer core interactions, represented by the

surface integrals over the ICB in eqs (23) and (24), also honour
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396 D. Komatitsch and J. Tromp

continuity in traction and continuity of the normal component of

velocity. The normal follows the same convention as in previous

sections.

3.4 Interpolation on an element

The next step is to represent the displacement field on an element,

which requires the introduction of grid points in each element. In

traditional finite-element methods the same low-degree polynomi-

als used to describe the geometry of an element are also used to

represent functions, such as the displacement field s, on an ele-

ment. Spectral-element methods also use a low-degree polynomial

to describe the shape of an element, but employ a higher-degree

polynomial to represent functions. In this regard, SEMs are related

to so-called h-p finite-element methods, which also use polynomials

of higher degree (e.g. Guo & Babus̆ka 1086). Typically, a SEM uses

Lagrange polynomials of degree 4 to 10 for the interpolation of func-

tions (Seriani & Priolo 1994). The n + 1 Lagrange polynomials of

degree n are defined in terms of n + 1 control points −1 ≤ ξα ≤ 1,

α = 0, . . . , n, by

ℓn
α(ξ ) =

(ξ − ξ0) · · · (ξ − ξα−1) (ξ − ξα+1) · · · (ξ − ξn)

(ξα − ξ0) · · · (ξα − ξα−1) (ξα − ξα+1) · · · (ξα − ξn)
. (25)

As a result of this definition, the Lagrange polynomials return a

value of either zero or one when evaluated at a control point:

ℓn
α(ξβ ) = δαβ , (26)

where δ denotes the Kronecker delta. In a SEM, the control points

ξα , α = 0, . . . , n, needed in the definition eq. (25) are chosen to be

the n + 1 Gauss–Lobatto–Legendre points, which are the roots of

(1 − ξ 2)P ′
n(ξ ) = 0, where P ′

n denotes the derivative of the Legendre

polynomial of degree n (Canuto et al. 1988, p. 61). The reason for

this choice is that, as we shall see, the combination of Lagrange

interpolants with Gauss–Lobatto–Legendre quadrature greatly sim-

plifies the algorithm, in particular regarding time-marching, since it

leads to a diagonal mass matrix and therefore to fully explicit time

schemes.

Functions f on an element are interpolated in terms of triple prod-

ucts of Lagrange polynomials as

f (x(ξ, η, ζ )) ≈

nα ,nβ ,nγ
∑

α,β,γ=0

f αβγ ℓα(ξ )ℓβ (η)ℓγ (ζ ), (27)

where f αβγ = f (x(ξα, ηβ , ζγ )) denotes the value of the function f

at the Gauss–Lobatto–Legendre point x(ξα, ηβ , ζγ ). We have

dropped the superscript n on the Lagrange polynomials to avoid

clutter in the notation. Note that, in principle, the method allows

for different polynomial degrees, nα , nβ , nγ , in each of the three

directions ξ , η, ζ .

Using the polynomial representation eq. (27), the gradient of

a function, ∇ f =
∑3

i = 1
x̂i∂i f , evaluated at the Gauss-Lobatto-

Legendre point x(ξα′ , ηβ ′ , ζγ ′ ), may be written in the form

∇ f (x(ξα′ , ηβ ′ , ζγ ′ )) ≈

3
∑

i=1

x̂i

[

(∂iξ )α
′β ′γ ′

nα
∑

α=0

f αβ ′γ ′

ℓ′
α(ξα′ )

+ (∂iη)α
′β ′γ ′

nβ
∑

β=0

f α′βγ ′

ℓ′
β (ηβ ′ )

+ (∂iζ )α
′β ′γ ′

nγ
∑

γ=0

f α′β ′γℓ′
γ (ζγ ′ )

]

. (28)

Here x̂i , i = 1, 2, 3, denote unit vectors in the directions of increasing

x, y, and z, respectively, and ∂i , i = 1, 2, 3, denote partial derivatives

in those directions. We use a prime to denote derivatives of the

Lagrange polynomials, as in ℓ′
α . The matrix ∂ξ/∂x is obtained by

inverting the matrix ∂x/∂ξ. This inverse exists provided the Jacobian

J is non-singular, which is a requirement for the proper design of

the mesh, as mentioned earlier.

3.5 Integration over an element

To solve the weak form of the equations of motion (16), (23),

and (24), numerical integrations over the elements need to be per-

formed. In classical finite-element methods, one frequently uses

Gauss quadrature for this purpose. In a spectral-element method,

one uses the Gauss–Lobatto–Legendre integration rule, because it

leads to a diagonal mass matrix when used in conjunction with the

Gauss–Lobatto–Legendre interpolation points, which greatly sim-

plifies the algorithm. Using Gauss–Lobatto–Legendre quadrature,

integrations over elements with volume �e may be expressed as

∫

�e

f (x) d3x =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f (x(ξ, η, ζ ))J (ξ, η, ζ ) dξ dη dζ

≈

nα ,nβ ,nγ
∑

α,β,γ=0

ωαωβωγ f αβγ J αβγ , (29)

where J αβγ = J (ξα, ηβ , ζγ ), andωα > 0, forα = 0, . . . , n, denote the

weights associated with the Gauss–Lobatto–Legendre quadrature

(Canuto et al. 1988, p. 61). To perform this integration of functions

and their partial derivatives over the elements, the values of the

inverse Jacobian matrix ∂ξ/∂x need to be computed at the (n + 1)3

Gauss–Lobatto–Legendre integration points.

On the fluid–solid boundaries in the model we need to evaluate

surface integrals in order to implement the coupling based upon do-

main decomposition. At the elemental level, using Gauss–Lobatto–

Legendre quadrature, these surface integrations may be written in

the form
∫

Ŵb

f (x) d2x =

∫ 1

−1

∫ 1

−1

f (x(ξ, η))Jb(ξ, η) dξ dη

≈

nα ,nβ
∑

α,β=0

ωαωβ f αβ J
αβ

b , (30)

where Ŵb denotes the surface element, and J
αβ

b = Jb(ξα, ηβ ) is the

Jacobian eq. (4) evaluated at the Gauss–Lobatto–Legendre points

of integration.

3.6 Discretization of the weak formulation

To obtain explicit expressions for the weak formulation of the prob-

lem, we first expand the displacement field s and the test vector w

in terms of Lagrange polynomials:

s(x(ξ, η, ζ ), t) ≈

3
∑

i=1

x̂i

nσ ,nτ ,nν
∑

σ,τ,ν=0

sστν
i (t)ℓσ (ξ )ℓτ (η)ℓν(ζ ), (31)

w(x(ξ, η, ζ )) =

3
∑

i=1

x̂i

nσ ,nτ ,nν
∑

α,β,γ=0

w
αβγ

i ℓα(ξ )ℓβ (η)ℓγ (ζ ). (32)

This choice of test vector makes the SEM a Galerkin method, be-

cause the basis functions are the same as those used to represent
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Spectral-element simulations of global seismic waves 397

the displacement. We evaluate the integrals in eqs (16), (23) and

(24) at the elemental level based upon Gauss–Lobatto–Legendre

quadrature. The term on the left hand side of the weak form of

the equation of motion (16) is traditionally called the mass matrix

in finite-element modelling. At the elemental level, this integration

may be written as
∫

�e

ρw · ∂2
t s d3x =

∫ 1

−1

∫ 1

−1

∫ 1

−1

ρ(x(ξ))w(x(ξ))

· ∂2
t s(x(ξ), t) J (ξ) d3ξ. (33)

Upon substituting the interpolations eqs (31) and 32 in eq. (33),

using the quadrature eq. (29), we obtain

∫

�e

ρw · ∂2
t s d3x ≈

nα ,nβ ,nγ
∑

α,β,γ=0

ωαωβωγ J αβγ ραβγ

3
∑

i=1

w
αβγ

i s̈
αβγ

i (t),

(34)

where ραβγ = ρ(x(ξα, ηβ , ζγ )), and where a dot denotes differentia-

tion with respect to time. By independently setting factors of w
αβγ

1 ,

w
αβγ

2 and w
αβγ

3 equal to zero, as the weak formulation eq. (15) must

hold for any test vector w, we obtain independent equations for each

component of acceleration s̈
αβγ

i (t) at grid point (ξα, ηβ , γγ ). The re-

markable property of eq. (34) is that the value of acceleration at

each point of a given element, s̈
αβγ

i (t), is simply multiplied by the

factor ωαωβωγ ραβγ J αβγ . In finite-element parlance one says that

the elemental mass matrix is diagonal. It is this desirable property

that has motivated the use of Lagrange interpolants together with

Gauss–Lobatto–Legendre quadrature. Unlike in traditional finite-

element methods, no linear system of equations needs to be inverted,

and one can take full advantage of this property by using an explicit

time-marching algorithm, as we will see later in this section. This

is similar to the key idea used in finite-element methods with mass

lumping (e.g. Cohen et al. 1993; Bao et al. 1998).

The next integral that needs to be evaluated at the elemental level

is the first term on the right hand side of eq. (16), which is called

the stiffness matrix in finite-element modelling. We find

∫

�e

∇w : T d3x ≈

nα ,nβ ,nγ
∑

α,β,γ=0

3
∑

i=1

w
αβγ

i

×

[

ωβωγ

nα′
∑

α′=0

ωα′ J α′βγ
e F

α′βγ

i1 ℓ′
α(ξα′ )

+ ωαωγ

nβ′
∑

β ′=0

ωβ ′ J αβ ′γ
e F

αβ ′γ

i2 ℓ′
β (ηβ ′ )

+ ωαωβ

nγ ′
∑

γ ′=0

ωγ ′ J αβγ ′

e F
αβγ ′

i3 ℓ′
γ (ζγ ′ )

]

(35)

where

Fik =

3
∑

j=1

Ti j∂ jξk, (36)

and Fστν
ik = Fik(x(ξσ , ητ , ζν)) denotes the value of Fik at the Gauss–

Lobatto–Legendre integration point x(ξσ , ητ , ζν). For brevity, we

have introduced index notation ξi , i = 1, 2, 3, where ξ1 = ξ , ξ2 = η,

and ξ3 = ζ . In index notation, the elements of the mapping matrix

∂ξ/∂x may be written as ∂iξ j . The value of the stress tensor T at the

integration points is determined by

T(x(ξα, ηβ , ζγ ), t) = c(x(ξα, ηβ , ζγ )) : ∇s(x(ξα, ηβ , ζγ ), t). (37)

This calculation requires knowledge of the gradient of displace-

ment ∇s at the Gauss–Lobatto–Legendre integration points. Upon

differentiating eq. (31) we obtain

∂i s j (x(ξα, ηβ , ζγ ), t) =

[

nσ
∑

σ=0

s
σβγ

j (t)ℓ′
σ (ξα)

]

∂iξ (ξα, ηβ , ζγ )

+

[

nσ
∑

σ=0

s
ασγ

j (t)ℓ′
σ (ηβ )

]

∂iη(ξα, ηβ , ζγ )

+

[

nσ
∑

σ=0

s
αβσ

j (t)ℓ′
σ (ζγ )

]

∂iζ (ξα, ηβ , ζγ ). (38)

In an anelastic medium, the stiffness matrix is still given by eq. (35),

except that the stress tensor eq. (37) needs to be replaced by

T(x(ξα, ηβ , ζγ ), t) = c(x(ξα, ηβ , ζγ )) : ∇s(x(ξα, ηβ , ζγ ), t)

−

L
∑

ℓ=1

Rℓ(x(ξα, ηβ , ζγ ), t), (39)

in accordance with eq. (9). The implication is that the five inde-

pendent components of the symmetric, zero-trace memory tensor

Rℓ need to be stored on the grid for each standard linear solid. For

this reason, the memory requirements for an anelastic simulation

increase substantially over those for purely elastic simulations. It is

worth mentioning that to alleviate this burden, memory variables

could be spread across an element, such that one carries only one

memory variable at each gridpoint, obtaining the expected anelastic

behaviour in average (Zeng 1996; Day 1998).

The second term on the right hand side of the weak form of the

equation of motion in the mantle, eq. (16), is the source term, which

may be expressed as (Komatitsch & Tromp 1999)

M : ∇w(xs) ≈

nα ,nβ ,nγ
∑

α,β,γ=0

3
∑

i=1

w
αβγ

i

{

nσ ,nτ ,nν
∑

σ,τ,ν=0

ℓσ

(

ξαs

)

ℓτ

(

ηβs

)

ℓν

(

ζγs

)

×
[

Gστν
i1 ℓ′

α

(

ξαs

)

ℓβ

(

ηβs

)

ℓγ

(

ζγs

)

+ Gστν
i2 ℓα

(

ξαs

)

ℓ′
β

(

ηβs

)

ℓγ

(

ζβs

)

+ Gστν
i3 ℓα

(

ξαs

)

ℓβ

(

ηβs

)

ℓ′
γ

(

ζγs

)]

}

, (40)

where

G ik =

3
∑

j=1

Mi j∂ jξk, (41)

and where Gστν
ik = G ik(x(ξσ , ητ , ζν)) and x(ξαs , ηβs , ζγs ) = xs. Note

that, due to the polynomial expansion, a point moment-tensor source

gets spread over the entire element that contains the point source.

This is not a problem, since the expression is consistent with the

polynomial basis, except if receivers are placed very close to the

source, particularly within the same element (Faccioli et al. 1997).

Note also that the location of the source does not need to correspond

to a Gauss–Lobatto–Legendre grid point.

The final term on the right hand side of the weak form of the

equation of motion in the mantle and crust, eq. (16) is the surface

integral over the CMB that represents the interactions in traction

between the solid mantle and the liquid core. A key ingredient of our

domain decomposition technique is that, since we have a conforming

mesh everywhere, i.e. the grid points on the CMB are common

to the meshes in the mantle and in the outer core, we can take
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398 D. Komatitsch and J. Tromp

the value of pressure at a given grid point from the fluid side, and

use it directly in the surface integral on the solid side. Therefore,

no interpolation is needed at a fluid–solid interface. This type of

matching is referred to as pointwise matching in the finite-element

literature. At the elemental level on a boundary, the surface integral

may therefore be expressed as

∫

Ŵb

pn̂ · w d2r ≈

nα ,nβ
∑

α,β=0

ωαωβ J
αβ

b χ̇αβ (t)

3
∑

i=1

w
αβ

i n̂
αβ

i , (42)

where we have used eq. (19).

In the fluid outer core, the left hand side of the weak form of the

equation of motion, eq. (23), may be written at the elemental level

in the form

∫

�e

κ−1w∂2
t χ d3r ≈

nα ,nβ ,nγ
∑

α,β,γ=0

ωαωβωγ J αβγ (καβγ )−1wαβγ χ̈αβγ (t).

(43)

As for the left hand side of the weak form in the solid regions,

eq. (34), this elemental ‘mass’ matrix is diagonal. The first integral

on the right side of the fluid weak formulation, eq. (23) becomes at

the elemental level
∫

�e

ρ−1∇w · ∇χd3r

≈

nα ,nβ ,nγ
∑

α,β,γ=0

wαβγ

[

ωβωγ

nα′
∑

α′=0

ωα′ J α′βγ
e (ρα′βγ )−1(∂1χ )α

′βγ ℓ′
α(ξα′ )

+ ωαωγ

nβ′
∑

β ′=0

ωβ ′ J αβ ′γ
e (ραβ ′γ )−1(∂2χ )αβ ′γ ℓ′

β (ηβ ′ )

+ ωαωβ

nγ ′
∑

γ ′=0

ωγ ′ J αβγ ′

e (ραβγ ′

)−1(∂3χ )αβγ ′

ℓ′
γ (ζγ ′ )

]

, (44)

where

(∂iχ )αβγ =

nα
∑

α=0

χαβ ′γ ′

ℓ′
α(ξα′ )∂iξ +

nβ
∑

β=0

χα′βγ ′

ℓ′
β (ηβ ′ )∂iη

+

nγ
∑

γ=0

χα′β ′γ ℓ′
γ (ζγ ′ )∂iζ. (45)

The remaining volume and surface integrals in eqs (23) and (24) are

identical in form to other integrals already discussed in this section.

3.7 Assembly of the system and time marching

In each individual spectral element, functions are sampled at the

Gauss–Lobatto–Legendre points of integration. Grid points that lie

on the sides, edges, or corners of an hexahedral element are shared

amongst neighbouring elements, as illustrated in Fig. 7. Therefore,

as in a classical finite-element method, we need to distinguish the

local mesh of grid points that define an element from the global

mesh of all the grid points in the model, many of which are shared

amongst several spectral elements. A mapping between grid points

in the local mesh and grid points in the global mesh needs to be

defined; efficient routines are available for this purpose from finite-

element modelling. Before the system can be marched forward in

time, the contributions (the so-called internal forces) from all the

elements that share a common global grid point need to be summed.

Figure 7. Schematic illustration of the local and global meshes for a

four-element 2-D spectral-element discretization with a polynomial degree

of N = 4. Each element contains (N + 1)2 = 25 Gauss–Lobatto–Legendre

points that constitute the local mesh for each element. These points are non-

evenly spaced but have been drawn evenly spaced here for simplicity. In the

global mesh, points lying on edges or corners (as well as on faces in 3-D) are

shared between elements. The contributions to the global system of degrees

of freedom, computed separately on each element, have to be summed at the

common points represented by black dots. Exactly two elements share points

on an edge in 2-D, while corners can be shared by any number of elements

depending on the topology of the mesh, which may be non-structured.

In a traditional finite-element method this is referred to as assem-

bling the system. This assembly stage is a costly part of the calcu-

lation on parallel computers, because information from individual

elements needs to be shared with neighbouring elements. From a

computational point of view, this operation involves communica-

tions between distinct CPUs.

Let U denote the displacement vector of the global system in the

solid regions, i.e. U contains the displacement vector at all the grid

points in the global mesh, classically referred to as the global degrees

of freedom of the system. The ordinary differential equation that

governs the time dependence of the global system may be written

in the form

MÜ + KU + BU = F, (46)

where M denotes the global diagonal mass matrix, K the global stiff-

ness matrix, B the boundary interactions at the CMB or ICB and F

the source term, all of which have been described at the elemental

level earlier in this section. To take full advantage of the fact that the

global mass matrix is diagonal, time discretization of the second-

order ordinary differential equation (46) is achieved based upon a

classical explicit second-order finite-difference scheme, which is a

particular case of the more general Newmark scheme (e.g. Hughes

1987), moving the stiffness and boundary terms to the right-hand

side. Such a scheme is conditionally stable, and the Courant sta-

bility condition is governed by the maximum value of the ratio

between the P-wave velocity and the size of the grid spacing. In

the fluid regions of the model, we solve a system similar to eq.

(46) but written in terms of the generalized scalar potential χ . Be-

cause of the domain decomposition used to match the fluid and the

solid regions of the model, we implement the scheme in a staggered
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Spectral-element simulations of global seismic waves 399

predictor–multicorrector format (Park & Felippa 1980; Felippa &

Deruntz 1984; Thompson & Pinsky 1996; Komatitsch et al. 2000a),

iterating on the coupling conditions (i.e. the surface integrals over

the CMB and the ICB). Such an iterative scheme converges very

rapidly (Komatitsch et al. 2000a), after only two iterations in prac-

tice in the cases presented in this study. The iterations have a negli-

gible impact on the cost of the method since we only need to iterate

on the degrees of freedom that are coupled at the interface (i.e. only

the layers of elements in contact with the CMB and the ICB, which

represent a very small percentage of the total number of elements).

The memory-variable equation, eq. (11), is solved for Rℓ using

a modified second-order Runge–Kutta scheme in time, since such

schemes are known to be efficient for this problem (Carcione 1994).

We do not spread the memory variables across the grid.

Two quantities that reflect the quality of the mesh are the number

of grid points per wavelength, i.e. the resolution of the mesh in terms

of how well it samples the wavefield,

N = τ0(v/�h)min, (47)

and the stability condition

C = �t(v/�h)max, (48)

which illustrates how large the time step of the explicit time inte-

gration scheme can be while maintaining a stable simulation. Here

τ0 denotes the shortest period of the source, (v/�h)min denotes the

minimum ratio of wave speed v and grid spacing �h within a given

element, and (v/�h)max denotes the maximum ratio of wave speed

and grid spacing. Fig. 8 illustrates that we maintain a relatively sim-

ilar number of grid points per wavelength, N, throughout the mesh

Figure 8. (a) We maintain a relatively similar number of grid points per wavelength, N defined in eq. (47) for a 25 s reference period, throughout the mesh

shown in Fig. 6. The color scale indicates the average number of points per wavelength from 4 (dark blue) to 12 or more (red). Note that the doubling region

right below the Moho oversamples the wavefield because the size of the elements in the doubling layer is too small relative to the wave speeds. Note also that

the number of grid points per wavelength for the inner-core shear wave (≃4) is slightly too small since the SEM needs roughly 4.5 points per wavelength to be

accurate (Seriani & Priolo 1994). This is acceptable in practice because the inner-core shear wave is a very small phase. (b) Illustration of the stability condition,

C defined by eq. (48), throughout the mesh. The stability value goes from 0.10 (dark blue) to 0.46 (red). Note that the size of the time step is controlled by

elements in the doubling region just above the ICB, where the stability value has a maximum.

shown in Fig. 6, and also shows the stability condition, C, obtained

with the time step used in the numerical simulations. This underlines

that the mesh coarsening of Fig. 6 used in this article is a simple and

efficient solution for meshing the entire Earth.

It is worth mentioning that the two time schemes used in this study

are only second-order accurate, contrary to the high-order spatial ac-

curacy provided by the spectral-element discretization. Therefore it

might be of interest in the future to switch to higher-order time

schemes, as proposed for instance by Tarnow & Simo (1994). How-

ever, in the current implementation this problem is not critical since

the stability condition of the explicit time scheme imposes a reason-

ably small time step, which provides an accurate evolution in time,

even with a simple second-order scheme.

4 P A R A L L E L I M P L E M E N T A T I O N

The mesh designed for the Earth in Fig. 6 is too large to fit in memory

on a single computer. We therefore implement the method on a clus-

ter of PCs using a message-passing programming methodology. Re-

search on how to use large PC clusters for scientific purposes started

in 1994 with NASA’s Beowulf project, named after the famous

Old English poem narrating the adventures of the Scandinavian

prince Beowulf (e.g. Heaney 2000), later followed by the Hyglac

project at Caltech and the Loki project at Los Alamos (Taubes 1996;

Sterling et al. 1999). The name of the initial project is now used as a

generic name for this type of architecture: these PC cluster comput-

ers are referred to as ‘Beowulf ’ machines. Clusters are now being

used in many fields in academia and industry. Hans-Peter Bunge

from Princeton University was among the first to use such clusters

to address geophysical problems. Their main advantage is that they
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400 D. Komatitsch and J. Tromp

Figure 9. Each of the six chunks that makes up the cubed sphere is sub-

divided in terms of 25 slices of elements. Each of these slices resides on a

single CPU. The central cube is handled by one extra processor, such that

the entire calculation involves 151 CPUs. The results on the edges of a slice

need to be communicated to all its neighbours. Note that the communication

patterns are different for slices inside a chunk, on the edges of a chunk, and

on the corners of a chunk.

provide an excellent price-performance ratio, i.e. impressive perfor-

mance can be reached at relatively low cost compared to classical

shared-memory computers. The main drawback of the parallel ap-

proach is that one needs to use message-passing techniques, since

memory is distributed over the different PCs, which makes the im-

plementation of algorithms usually more difficult. An important

advantage, however, is the portability of codes written based upon

Figure 10. The MPI communication pattern is particularly difficult for the

central cube, which is handled by a separate processor that needs to commu-

nicate with all the other processors, because every slice of the mesh touches

it. Some slices have been removed for clarity. One needs to use a master/slave

programming methodology in order to avoid communication patterns that

deadlock. In our implementation, the central cube acts as a master to which

all the slices, the slaves, report the results of their calculations. The master

collects the results from the slices, adds them to his calculations, and sends

the results back to the slaves, who update their calculations.

Figure 11. Focal mechanisms for the 1996 February 17 Irian Jaya earth-

quake which occurred at a depth of 15 km, and the 1994 June 9 Bolivia event

which occurred at a depth of 647 km. Both events have a moment magnitude

Mw = 8.2.

Figure 12. (a) Gaussian source–time function used in the benchmarks be-

tween the SEM and normal-mode method (solid line). The source-time func-

tion is very similar to a triangle with a half-duration of 18 s (dotted line).

(b) Spectral amplitude of the source. Unlike the triangle, the Gaussian

source–time function has no significant energy at periods shorter than 20 s.
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Spectral-element simulations of global seismic waves 401

Figure 13. A SEM (solid lines) and normal-mode (dotted lines) record sections for elastic, anisotropic PREM. The event is the 1996 February 17 Irian Jaya

earthquake which occurred at a depth of 15 km. Stations record ground displacement at 2◦ intervals along the equator. Each trace is individually scaled so that

they all have the same maximum value. (a) vertical component, (b) radial component and (c) Transverse component. The SEM and normal-mode synthetics

are in excellent agreement for all body- and surface-wave arrivals; they almost cannot be distinguished on the scale of this figure.
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402 D. Komatitsch and J. Tromp

Figure 13. (Continued.)
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Spectral-element simulations of global seismic waves 403

Figure 13. (Continued.)
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404 D. Komatitsch and J. Tromp

this philosophy, because they can virtually run on any kind of ma-

chine, including shared-memory computers.

The standard approach for programming clusters is to use a

message-passing library called MPI (e.g. Gropp et al. 1994; Pacheco

1997), an acronym for ‘Message Passing Interface’. MPI has be-

come a de facto standard in the parallel computing community, thus

ensuring the portability of software. More specifically, we use the

open-source implementation called MPICH from Argonne National

Laboratory (Gropp et al. 1996). In our SEM, because we can use

fully explicit time-marching schemes since the mass matrix is diag-

onal by construction, the PCs spend most of their time doing compu-

tations, and communications of results between PCs represent only

a small fraction of the time of simulation. Therefore, clusters of PCs

are ideal for this application in spite of the high latency of the inex-

pensive 100 Mbits s−1 standard Ethernet network connecting them.

The SEM calculations are performed on a PC cluster in the Seis-

mological Laboratory at Caltech. This machine consists of 80 dual-

processor PCs with 1 Gb of memory each. The simulations are dis-

tributed over 151 processors: each of the six chunks that constitute

the globe is subdivided amongst 25 processors (corresponding to 25

mesh slices), and the cube at the centre of the inner core uses one

separate processor. Fig. 9 shows how the slices are designed in the

cubed-sphere mesh. Note that inside each of the six chunks the mesh

of slices is derived from a regular Cartesian topology. However, the

topology of the network of slices is different between chunks: each

corner of each chunk is shared between three rather than two or

four slices. This complicates the message-passing implementation

since, as illustrated in Fig. 7, in the assembly of the global system

given by eq. (46) one needs to sum all the contributions (i.e. the

internal forces computed separately in each slice) between slices.

This problem is solved using a three-step sequence of messages: we

first assemble the contributions between slices inside each chunk;

Figure 14. Comparison between normal-mode and SEM synthetics at an

epicentral distance of 60◦ for the shallow Irian Jaya event. (a) Vertical com-

ponent (b) Transverse component. Note the strongly dispersed surface waves

and the excellent match for the body-wave arrivals.

then between slices located on the edges of different chunks, ex-

cluding the corners of valence 3; then in a last step we assemble

these corners separately.

The mesh shown in Fig. 6 contains a total of approximately

2.6 million spectral elements. In each spectral element we use a poly-

nomial degree N = 4 for the expansion of the Lagrange interpolants

at the Gauss–Lobatto–Legendre points (as in eqs 34 and 35 for in-

stance), which means each spectral element contains (N + 1)3 = 125

points, and the total global system of eq. (46), counting common

points on the edges only once, contains 180 million points (corre-

sponding to approximately 483 million degrees of freedom since we

solve for the three components of displacement at each grid point,

except in the fluid outer core, where we solve for the scalar poten-

tial). Polynomial degrees around 4 or 5 have proven to be optimal

for wave propagation problems using the SEM, since they provide

the best trade-off between accuracy and time-integration stability

(Seriani & Priolo 1994). After division of the mesh into slices, each

processor is responsible for 17,000 elements; with a polynomial de-

gree N = 4, this corresponds to roughly 1.2 million grid points per

processor. It is worth mentioning that, because of the mesh coarsen-

ing with depth, as shown in Fig. 6, most of the elements are located

in the upper part of the model, where the wave speeds are slowest:

13 per cent of the elements are in the crust, 70 per cent in the man-

tle, 16 per cent in the outer core, and 1 per cent in the inner core

(the small central cube in Fig. 10 excluded, since it is handled by a

Figure 15. Comparison between normal-mode synthetics for anisotropic

PREM (solid line) and isotropic PREM (dotted line). The effect of an

anisotropic asthenosphere is to significantly delay the Rayleigh wave, (a)

vertical component, and slightly speed up the Love wave, (b) transverse com-

ponent. Note that the SEM results shown in Fig. 14 capture the anisotropic

effects very well.
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Spectral-element simulations of global seismic waves 405

separate processor). Therefore, most of the cost of the calculations

comes from the upper mantle, and the entire core is almost negligi-

ble in terms of CPU time (also because in the outer core we solve

for a scalar potential instead of a vector, which therefore further

reduces the number of calculations).

The central cube in the inner core, shown in Fig. 10, poses yet

another difficulty from a message-passing point of view. Since it

is handled by a separate processor, and since it shares grid points

with all the other slices, a separate communication pattern has been

implemented based upon a master-slave programming philosophy:

all the slices send their local contributions (the internal forces com-

puted locally) to the central cube, which acts as a master, collecting

and summing them, and then sending the result back to the slices,

which act as slaves. The number of elements in the central cube is

smaller than in any of the slices; this guarantees that the speed of

the calculation is not governed by the processor responsible for the

inner core (otherwise this would be a good example of poor load

balancing).

5 R E S U L T S

In this section we carefully benchmark the SEM against normal-

mode synthetics for anisotropic PREM without the ocean layer. We

use the mesh and source-receiver geometry shown in Fig. 6. In each

simulation the epicentre is located on the equator and the Greenwich

meridian. Stations record ground displacement along the equator

and the Greenwich meridian at 2 degree intervals. For reference, we

used two normal-mode catalogues with a shortest period of 8 s: one

without attenuation and another one with attenuation. No free-air,

tilt, or gravitational potential corrections were applied (Dahlen &

Tromp 1998).

The simulations presented in this section are accurate for periods

greater than about 20 s. However, for routine, practical applica-

tions it is more convenient to use a step moment tensor in time and

convolve with the desired moment-rate function Ṡ(t) later. This is

perfectly acceptable in the SEM. In all the simulations we use a

Figure 16. Record section comparison between SEM (solid lines) and

mode (dotted lines) synthetics for core-sensitive body-wave arrivals SKS

and SKKS between 80◦ and 180◦. At each epicentral distance we plot both

the SEM and the mode solutions, which are basically indistinguishable. The

accurate predictions for SKS and SKKS validate the domain decomposition

between the fluid and solid regions of the model as well as the potential used

to represent the inhomogeneous fluid discussed in Section 3.2. Note that the

converted phase PS is also very well modelled.

very short moment-rate function (an error function with a duration

of one second). For the periods involved in the simulations this is

equivalent to using a Heaviside function. We subsequently convolve

the results with the desired moment-rate function (see Fig. 12 for

the Gaussian source–time function used in the examples below). It

is worth mentioning that the signals generated by this Heaviside-

like source contain significant energy far above the resolution of

both our grid (spatial resolution) and our time scheme (temporal

resolution). This is not a problem since these artefacts remain in

a frequency band that is later filtered by the convolution with the

real source–time function. Comparisons, not shown here, between

the convolved results and a SEM simulation based explicitly upon

the source–time function in Fig. 12 showed that the two results are

indistinguishable within the precision of the time scheme.

5.1 Shallow event

As a first example, we simulate the 1996 February 17 Irian Jaya

earthquake. This large Mw = 8.2 event had its hypocentre at a depth

of 15 km. Because of its shallow depth, the event generates strong

surface waves, which provide a difficult test for the SEM: the free

surface boundary condition, the thin, slow crust, and the anisotropic

asthenosphere all come into play. The focal mechanism is shown in

Fig. 11 and the moment-rate function in Fig. 12. The event has a

half-duration of 18 s. Attenuation is turned off in this first simulation

in order to validate the method for purely elastic, anisotropic media.

In Fig. 13 we show 90 min long vertical, radial and transverse

record sections for epicentral distances from 0◦ to 360◦ and stations

along the equator, as shown in Fig. 6. Each epicentral distance is

associated with two traces: one calculated based upon normal-mode

summation and the other based upon the SEM. The fact that the two

synthetic seismograms are basically indistinguishable demonstrates

that the SEM synthetics are very accurate. Many classical teleseis-

mic body-wave arrivals can be easily distinguished. On the vertical

and radial component one can clearly see P, S and their surface

bounces, as well as the strongly dispersed Rayleigh wave. On the

radial component one can discern the core reflected shear waves

ScS1– 4, as well as SKS and SKKS. On the transverse component, S,

SS, SSS, and SSSS are very prominent, and so are ScS1– 5, and the

Love wave. Note that near the antipode, where energy is arriving

from all directions and the transverse component has little meaning,

Figure 17. Comparison between SEM (solid line) and mode (dotted line)

synthetics for ScS multiples on the transverse component. ScS3 and ScS4

are seen twice: once propagating along the minor arc and a second time

propagating along the major arc. These core-reflected SH waves are roughly

20 times smaller in amplitude than the dominant Love wave (Fig. 14).
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406 D. Komatitsch and J. Tromp

SKKS energy can be seen around 32 min in both the mode and the

SEM solutions.

In Fig. 14 we show a more detailed comparison between normal-

mode and SEM synthetics at an epicentral distance of 60◦. Because

Figure 18. Comparison between SEM (solid line) and mode (dotted line) synthetics at the antipode. This is a difficult location because rays emanating from

the source converge simultaneously from all directions, plus the epicentral distance is largest, leading to maximal numerical dispersion in a 90 min record.

Again the mode and SEM synthetics on the (a) vertical, (b) radial and (c) transverse components are in excellent agreement. Note that in an elastic Earth model,

focusing at the antipode is rather dramatic for surface waves: the amplitude of the Love wave exceeds 4 cm.

the mode synthetics are only quasi-analytical, and therefore also

contain some numerical errors, we do not show the difference be-

tween the SEM and normal-mode synthetics since this is not an

objective estimate of the accuracy of the SEM. The figure
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Spectral-element simulations of global seismic waves 407

Table 1. Strain relaxation times used to reproduce the appropri-

ate PREM Q values using three standard linear solids in parallel.

The stress relaxation times used are the same for all five regions:

τσ
1 = 159.15494 s, τσ

2 = 22.50791 s, and τσ
3 = 3.18310 s.

Depth range (km) Q τ ǫ
1 (s) τ ǫ

2 (s) τ ǫ
3 (s)

0–80 600 159.56831 22.55187 3.19149

80–220 80 162.01122 22.85290 3.24777

220–670 143 160.82505 22.69650 3.21878

670–2891 (CMB) 312 159.94162 22.59299 3.19930

5150 (ICB)–6371 84.6 161.87152 22.83321 3.24415

illustrates the level of accuracy for P, PP, S, and SS body waves

as well as the Rayleigh wave on the vertical component. On the

transverse component, body-wave arrivals S, SS, SSS and ScS can

all be clearly discerned and are very well matched. As illustrated

in Tromp & Komatitsch (2000), surface-wave dispersion is very

sensitive to the detailed structure of the crust. The effects of the

anisotropic asthenosphere are illustrated in Fig. 15 by compar-

ing normal-mode synthetics for anisotropic and isotropic PREM.

Anisotropy has a profound effect on the behaviour of surface waves.

Note in particular that the Love wave is slightly faster in anisotropic

Figure 19. Approximation of an absorption-band model with a constant

quality factor Q at periods between 20 and 1000 s based upon three standard

linear solids. (a) Approximate quality factor (solid line) obtained by fitting

a series of three linear solids to a constant Q of 80 (dotted line). Except

at very long periods, the approximation is accurate to within a few per

cent. (b) Physical dispersion associated with the absorption-band model.

The physical dispersion associated with PREM is shown by the dotted line.

Over the period range of interest, the series of three standard linear solids

mimics the dispersion very well.

PREM, whereas the Rayleigh wave is significantly slower. These

differences clearly illustrate the difficulties associated with the sim-

ulation of shallow events and demonstrate how well the SEM re-

sults in Figs 13 and 14 incorporate effects due to the crust and

anisotropy.

The accuracy of the implementation of the inhomogeneous outer

core based upon a scalar potential, as discussed in Section 3.2, is

well illustrated by the SKS and SKKS arrivals in Fig. 16. The fact

that normal modes and the SEM agree very well both in phase

and in amplitude also validates the implementation of the domain

decomposition between the fluid and solid regions of the model and

the associated boundary conditions.

For SH waves the outer core acts as a free surface. Fig. 17 illus-

trates that core-reflected SH waves are accurately modelled up to

ScS4. These ScS multiples are about 20 times smaller in amplitude

than the Love wave, which illustrates the level of accuracy in the

synthetics (note the difference in vertical scale between Figs 14 and

17).

Probably the most difficult location for a comparison between

normal modes and any numerical method is at the antipode, because

of the convergence of all raypaths. In addition in our 90 min long

simulation the antipode is also the point at which the waves have

accumulated a maximum amount of numerical dispersion. Fig. 18

illustrates that the SEM results agree very well with the modes on

all three components at this special location.

Figure 20. SEM (solid line) and mode (dotted line) synthetic seismograms

for the great magnitude 8.2 1994 June 9 Bolivia earthquake recorded at

station ST04 of the BANJO Array (e.g. Clarke et al. 1995). The depth of

the event is 647 km. Anisotropy and attenuation are both included in this

simulation. (a) North–south component, (b) vertical component. The east–

west component is nodal for this station. Note the strong near field term

linking the P and S wavefronts, the large 6.6 mm and 7.3 mm static offsets

observed on the vertical and north–south components, respectively, as well

as the strong ScS and sScS core-reflected phases.
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408 D. Komatitsch and J. Tromp

5.2 Deep event

Our second simulation is for the 1994 June 9 deep Bolivia event of

magnitude Mw = 8.2. The focal mechanism is illustrated in Fig. 11;

the depth is 647 km. We use a moment-rate function similar to the

one used for the Irian Jaya event (Fig. 12), but with a slightly shorter

half-duration of 15 s.

At this point we wish to validate our implementation of atten-

uation in the method. Associated with PREM is a five-layer at-

tenuation model. As mentioned earlier, we only incorporate shear

Figure 21. SEM (solid line) and mode (dotted line) synthetic seismograms for the great magnitude 8.2 1994 June 9 Bolivia earthquake, recorded at TriNet

station PAS in Pasadena, California. The depth of the event is 647 km. Anisotropy and attenuation are both included in this simulation. (a) Vertical component,

(b) longitudinal component, (c) transverse component. The agreement is almost perfect on the three components.

attenuation: bulk attenuation can be safely neglected because the

bulk Q is several hundred times larger than the shear Q. The calcu-

lation of normal-mode seismograms for anelastic Earth models is

based upon first-order perturbation theory, which is acceptable for

the attenuation associated with PREM (e.g. Dahlen & Tromp 1998);

however as a consequence the mode synthetics in this section are

not as accurate as in the purely elastic case of the previous section.

For each layer we determine stress and stain relaxation times τ σ
ℓ

and τ ǫ
ℓ for an absorption-band model over the period range between

20 and 1000 s, based upon three standard linear solids. Because of
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the broad period range, a solution based upon two solids does not

give a satisfactory result. We evenly space the three stress relaxation

times τ σ
ℓ in logarithmic frequency. Next, we determine the strain re-

laxation times τ ǫ
ℓ by minimizing the difference between the desired

constant Q and predictions based upon the series of three standard

linear solids using a simple iterative inversion scheme. Table 1 sum-

marizes the stress and strain relaxation times used to reproduce the

appropriate PREM Q values. Fig. 19 illustrates that the series of

three standard linear solids can approximate a constant Q efficiently

to within a few per cent. Associated with the absorption-band model

is physical dispersion which affects the arrival times of the waves. To

accommodate this, we take PREM, which has a reference frequency

of 1 Hz, i.e. ω0 = 2π , and determine the shear modulus appropriate

for a frequency ωc at the logarithmic centre of the frequency range

of interest (Liu et al. 1976):

µ(ωc) = µ(ω0) [1 + 2/(π Qµ) ln (ωc/ω0)]. (49)

Given µ(ωc) we can calculate the relaxed modulus µR , from which

we obtain the time dependent modulus µ(t) and the unrelaxed mod-

ulus µU based upon eqs (8) and (10), respectively. Fig. 19 also

illustrates that, over the frequency band of interest, the dispersion

associated with the PREM Q model is very well mimicked by three

standard linear solids.

In Fig. 20 we compare normal-mode and SEM synthetics at sta-

tion ST04 of the BANJO array in Bolivia at a distance of 5◦ south of

the epicentre (more details about the BANJO array can be found in

Clarke et al. 1995). This simulation is motivated by an experiment

performed by Ekström (1995) who used normal-mode summation

to analyze the static offset resulting from the event, and by the ob-

servations of a large offset in the BANJO data by Jiao et al. (1995).

Again we find very good agreement between the modes and the

SEM. In particular, the strong near-field term linking the P and S

arrivals is accurately modelled, and the static offset of 6.6 mm on

the vertical component and 7.3 mm on the North–South component

is well recovered. Note also the distinct ScS arrival on this com-

ponent at 800 s and the sScS arrival at 1080 s, which are perfectly

reproduced. These ScS phases are clearly observed in the BANJO

data (Clarke et al. 1995).

Next, we check the results of our simulation at teleseismic dis-

tance at the Pasadena, California, TriNet station PAS at an epicentral

distance of 68◦. Fig. 21 shows the three components of displacement

both for the modes and the SEM. To appreciate the effects of attenu-

ation and how accurately it has been modelled by the SEM, we show

in Fig. 22 the vertical component of displacement computed using

Figure 22. To illustrate the effects of attenuation and physical dispersion

associated with anelastic PREM, we compare vertical component mode syn-

thetics for PREM with (solid line) and without (dotted line) incorporating

the effects of anelasticity. Note that elastic PREM is faster than anelastic

PREM, and that in particular the S wave is significantly attenuated.

modes with and without attenuation. One can see that the wave-

forms are significantly affected by attenuation, both in phase and

amplitude. In Fig. 23 we compare our SEM synthetic seismogram

for the vertical component of velocity at PAS to the real data. Both

records have been lowpass-filtered with the same six-pole two-pass

Butterworth filter with a corner period of 40 s, and our synthetics

have been convolved with the instrument response. We note that

this is the only time in this study that we filter our synthetics. The

agreement is quite satisfactory, keeping in mind that our synthetics

are based upon PREM and therefore do not include effects due to

3-D heterogeneity.

To illustrate that our implementation of the inner core is correct,

we show in Fig. 24 a close-up of PKP arrivals on the vertical compo-

nent. The PKP waveforms are very sensitive to the very high value

of Poisson’s ratio, 0.44, in the inner core: if the shear-wave velocity is

not correctly represented, the PKP waveforms change considerably.

Numerically this poses a challenge, because if the mesh is not

fine enough the very slow inner-core shear-wave velocity of about

3.6 km s−1 is not sampled by enough points per wavelength. In our

results, the PKP(AB) and PKP(BC) outer core branches as well

as the PKP(DF) inner core branch are all very accurately mod-

elled. A very weak Pdiff arrival can be seen in the P shadow in both

synthetics. The PKP(DF) arrival has travelled through the cube at

the centre of the inner core, which is handled by one processor

that needs to interact with all the other processors in the parallel

implementation of the method, as explained previously. Note the

very prominent depth phases, e.g. pPKP(DF), which arrive about

two and a half minutes after the corresponding direct phases due

to the large depth of the event. To appreciate the level of accuracy

involved in the calculation of the PKP phases, note from Fig. 18 that

the amplitudes of these arrivals are tiny compared to the later parts

of the record (the depth of the event does not significantly affect this

observation).

6 C O N C L U S I O N S

We have developed and implemented a spectral-element method

(SEM) for the simulation of global seismic wave propagation. The

method has been carefully benchmarked against normal-mode syn-

thetics for elastic and anelastic versions of spherically symmetric

earth model PREM. The SEM accurately incorporates effects due

to the slow, thin crust, a transversely isotropic asthenosphere, sharp

Figure 23. Comparison between SEM synthetics for anelastic, anisotropic

PREM and real data recorded at TriNet station PAS in Pasadena, California,

after the 1994 June 9 Bolivia event. Both vertical component velocity records

have been lowpass-filtered with the same six-pole two-pass Butterworth filter

with a corner period of 40 s, and the SEM synthetics have been convolved

with the instrument response. This is the only time in this study that we filter

SEM synthetics.
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410 D. Komatitsch and J. Tromp

Figure 24. Record section comparison of PKP phases calculated for anelastic, anisotropic PREM based upon the SEM (solid lines) and modes (dotted lines)

between 130◦ and 230◦ along the Greenwich meridian. At each epicentral distance we plot both the SEM and the mode solution. All PKP arrivals, including

PKIKP, which has travelled through the central cube in the mesh, are well reproduced. Note also a very weak Pdiff arrival in both synthetics between 130◦ and

170◦ and between 190◦ and 230◦. This validates the master/slave parallel programming methodology that is used to implement the inner core, as illustrated in

Fig. 10. It also demonstrates that we can correctly handle the unusually high value of Poisson’s ratio in the inner core. Note from Fig. 18 that the size of the

PKP arrivals around 20 min is tiny compared to later arrivals.

fluid–solid boundaries at the CMB and ICB, a high Poisson’s ratio

in the inner core and attenuation.

We emphasize that, for the same numerical cost, the SEM can

accurately simulate wave propagation in fully 3-D Earth models

that incorporate effects due to ellipticity and free surface topogra-

phy with only a slight modification of the mesh used in this article.

A crust with variable thickness and a laterally heterogeneous man-

tle can also be accommodated. The method currently does not in-

corporate effects due to the Earth’s rotation, self-gravitation or the

oceans. Rotation and self-gravitation only affect long-period sur-

face waves, but the oceans are relevant for surface-reflected phases,

such as PP or SS, and affect Rayleigh wave dispersion. These top-

ics are the subject of another publication (Komatitsch & Tromp

2002).

The calculations presented in this article required 151 processors,

30 Gb of distributed memory for the elastic simulations, and 50

Gb of memory for the anelastic simulations (the anelastic memory

requirements could be reduced considerably by spreading the mem-

ory variables used to model attenuation). They used tens of hours

of CPU time, depending on the desired length of the seismograms.

These requirements may seem formidable, but the fact of the mat-

ter is that the simulations can be performed on PC clusters that are

comparable in price to less powerful shared-memory machines. Dis-

tributed computing on PC cluster computers using message passing

has enabled individual investigators to perform numerical simula-

tions that were previously barely possible on the most powerful su-

percomputers. Within ten years, computers reaching 1000 teraflops

(1 petaflop) will be available (Sterling & Messina 1995), and the cal-

culations presented in this study will be performed in a matter of sec-

onds. This will open the door to tomographic inversions based upon

SEMs.
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