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S U M M A R Y

We present a derivation of the equations describing wave propagation in porous media based

upon an averaging technique which accommodates the transition from the microscopic to

the macroscopic scale. We demonstrate that the governing macroscopic equations determined

by Biot remain valid for media with gradients in porosity. In such media, the well-known

expression for the change in porosity, or the change in the fluid content of the pores, acquires

two extra terms involving the porosity gradient. One fundamental result of Biot’s theory is the

prediction of a second compressional wave, often referred to as ‘type II’ or ‘Biot’s slow com-

pressional wave’, in addition to the classical fast compressional and shear waves. We present

a numerical implementation of the Biot equations for 2-D problems based upon the spectral-

element method (SEM) that clearly illustrates the existence of these three types of waves as

well as their interactions at discontinuities. As in the elastic and acoustic cases, poroelastic

wave propagation based upon the SEM involves a diagonal mass matrix, which leads to explicit

time integration schemes that are well suited to simulations on parallel computers. Effects as-

sociated with physical dispersion and attenuation and frequency-dependent viscous resistance

are accommodated based upon a memory variable approach. We perform various benchmarks

involving poroelastic wave propagation and acoustic–poroelastic and poroelastic–poroelastic

discontinuities, and we discuss the boundary conditions used to deal with these discontinuities

based upon domain decomposition. We show potential applications of the method related to

wave propagation in compacted sediments, as one encounters in the petroleum industry, and

to detect the seismic signature of buried landmines and unexploded ordnance.
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1 I N T RO D U C T I O N

Poromechanics was born in the 1920s with Terzaghi (1923, 1943), a civil engineer, whose concept of effective stress for 1-D porous

deformation and its influence on settlement analysis, strength, permeability and erosion of soils, marks the beginning of the engineering

branch of Soil Mechanics. Terzaghi’s effective stress principle mathematically articulates that the pore fluid bears part of the load applied to

a column. The effective stress acting on the soil-solid skeleton is the difference between the total stress and the pore fluid pressure. But it is

Biot (1941) who formulated the 3-D theory of soil consolidation, which is nowadays known as the Biot theory of poroelasticity. Subsequently,

Biot incorporated inertial terms into the analysis to develop the theory of wave propagation in a fluid-saturated porous medium (Biot 1956a,b,

1962a,b). Biot theory has been extensively used in the petroleum industry, where seismic surveys are performed to determine the physical

properties of reservoir rocks. The theory is of broad, general interest when a physical understanding of the coupling between solid and fluid

phases is desired.

One fundamental result of Biot theory is the prediction of a second compressional wave, which may attenuate rapidly due to viscous

damping, generally referred to as ‘type II’ or ‘Biot’s slow compressional wave’, in addition to the classical fast compressional and shear

waves, confirming the results of Frenkel (1944). Indeed, Frenkel was actually the first to investigate wave propagation in fluid saturated porous

media in his study of seismoelectric waves, and to demonstrate the existence of two compressional waves, one characterized by in-phase

movement between the solid and the fluid (fast), and the other one by out-of-phase movement (slow). However, Frenkel neglected some

aspects compared to the more accepted theory developed by Biot (see Pride 2003; Smeulders 2005, for a more in-depth discussion).
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It was only in the 1980s that Biot and Frenkel’s prediction of the existence of a slow compressional wave was clearly observed

experimentally by Plona (1980) for water-saturated sintered glass beads at ultrasonic frequencies (500 kHz to 2.25 MHz). Experiments at low

frequencies (e.g. Van der Grinten et al. 1985, for both air and water as pore constituents) and in the limit of zero frequency (e.g. Chandler

1981; Chandler & Johnson 1981) followed. At high frequencies, the first report of a slow compressional wave in water-saturated natural rock

is due to Kelder & Smeulders (1997). All these experiments are in good agreement with the theory.

The behaviour of the slow compressional wave is highly frequency-dependent. At low frequencies, the fluid flow in the pores is of

Poiseuille type, where viscous forces dominate the flow. In this case, the slow compressional wave behaves like a diffusion phenomenon and

is highly attenuated (Biot 1956a). At high frequencies, inertial forces dominate the flow and the slow compressional wave propagates, still

exhibiting high attenuation (Biot 1956b). Wave attenuation mechanisms originate from the motion of pore fluid relative to the solid skeleton

in the form of viscous and inertial dissipation (Biot 1962b). Geertsma & Smit (1961) also point out the attenuation of the fast compressional

wave at low frequencies through mode conversion at discontinuities.

Biot developed his theory based upon the principle of virtual work, ignoring processes at the microscopic level. Moreover, even

if the Biot (1962a,b) formulations are claimed to be valid for non-uniform porosity, gradients in porosity are not explicitly incorpo-

rated in the original theory. More recent studies focused on averaging techniques (e.g. Whitaker 1999) to derive the macroscopic porous

medium equations from the microscale, and made an attempt to derive an expression for the change in porosity (e.g. Pride et al. 1992;

Sahay et al. 2001), but there is still room for clarification of such an expression, and to properly integrate the effects of porosity

gradients.

Throughout this paper we aim to present a straightforward derivation of the main equations describing wave propagation in poroelastic

media, with a particular emphasis on the effects of gradients in porosity. To that end, we will work with the linearized equations of motion,

both at the microscopic and the macroscopic scale. In Section 2, we recall the microscale equations in the solid and the fluid. The macroscopic

equations for porous media are derived in Section 4 using the averaging principle described in Section 3. Section 5 is dedicated to two simple

cases, the static problem and Darcy flow, to develop some intuition for the form of the ‘drag force’ arising from porosity gradients. In Section 6,

we determine a macroscopic expression for the ‘interfacial strain’ and present a complete expression for the change in porosity. In Section 7,

we use a Gedanken experiment to constrain the remaining unknowns present in the interfacial strain formulation, thus obtaining the complete

poroelastic constitutive relationships. The macroscopic equations of motion are presented in Section 8, where we consider implementations

with and without frequency-dependent dissipation. In particular, we consider the effects of physical dispersion and attenuation, as well as

frequency-dependent viscous resistance. Finally, we summarize the full set of macroscopic equations for the problem of wave propagation in

porous media and express the various wave speeds in such complex media in Sections 9 and 10.

In Section 11, we describe a numerical implementation of wave propagation in porous media. First, we establish the weak form of

the governing equations. Next, we determine the spatial discretization of this variational problem using a spectral-element method (SEM)

(Komatitsch 1997; Komatitsch & Tromp 1999). As in a finite-element method (FEM), the mesh represents a subdivision of the model volume

in terms of a number of finite elements, at which level the problem is approximated. The difference between a FEM and a SEM lies in the use

of higher-degree Lagrange polynomials to interpolate functions on the elements. As a result, the SEM retains the ability of a FEM to handle

complex geometries while keeping the strength of exponential convergence and accuracy resulting from the use of high-degree polynomials

(e.g. Chaljub et al. 2007; De Basabe & Sen 2007). We will see that, as for acoustic and elastic problems, the combination of Lagrange

interpolation with Gauss–Lobatto–Legendre (GLL) quadrature leads to a diagonal mass matrix, and thus to fully explicit time integration

schemes.

In Section 13, we present 2-D benchmarks to support our implementation. The first benchmark is a simple test of wave propagation

in a homogeneous porous medium, using an explosive source. As expected by the theory, we observe two types of compressional waves.

The numerical solution is compared to an analytical solution derived by Dai et al. (1995) and shows excellent agreement. For subsequent

benchmarks we focus on more complex media and discuss the boundary conditions at acoustic–poroelastic and poroelastic–poroelastic

discontinuities. In each case, we use a domain decomposition technique to ensure the continuity of traction and displacement at an interface

involving only (poro)elastic media, and the continuity of traction and the normal component of displacement at an interface involving a

fluid. Finally, in Section 14 we present sample applications of potential interest for modelling wave propagation in compacted sediments, for

example, in petroleum industry settings or for the detection of buried landmines and unexploded ordnance.

2 M I C RO S C O P I C E Q UAT I O N S O F M O T I O N

We begin by summarizing the microscopic equations of motion in the solid and the fluid. The reader is referred to Aki & Richards (1980) and

Carcione (2007) for a detailed introduction to seismic wave propagation. In subsequent sections we will average these microscopic equations

to obtain a macroscopic description of wave propagation in porous media.

2.1 Solid

Microscopic conservation of mass in the solid is governed by the continuity equation

∂tρs + ∇ · (ρsvs) = 0, (1)
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where ρ s denotes the density of the solid, and vs = ∂ t us its velocity. Linearized microscopic conservation of momentum in the solid is

determined by

ρs∂t vs = ∇ · Ts . (2)

The microscopic solid stress tensor Ts is related to the microscopic solid strain tensor ǫ s through the fourth-order elastic tensor cs via Hooke’s

law

Ts = cs :ǫs . (3)

The solid strain tensor may be expressed in terms of its isotropic and deviatoric parts as

ǫs =
1

2

[

∇us + (∇us)T
]

=
1

3
(∇ · us)I + ds, (4)

where I denotes the identity tensor and ds the solid strain deviator

ds =
1

2

[

∇us + (∇us)T
]

−
1

3
(∇ · us)I, (5)

and a superscript T denotes the transpose.

In an isotropic solid characterized by a bulk modulus κ s and a shear modulus μs the components of the elastic tensor cs may be expressed

as

cs
i jkl = (κs − 2/3μs)δi jδkl + μs(δikδ jl + δilδ jk), (6)

and the constitutive relationship (3) becomes

Ts = κs(∇ · us)I + 2μsds . (7)

2.2 Fluid

Microscopic conservation of mass in the fluid is governed by the continuity equation

∂tρ f + ∇ · (ρ f v f ) = 0, (8)

where ρ f denotes the density of the fluid, and v f = ∂ t u f its velocity. Linearized microscopic conservation of momentum in the fluid is

determined by

ρ f ∂t v f = ∇ · T f . (9)

The microscopic fluid constitutive relationship is determined by linearized compressible Navier–Stokes theory:

T f = κ f (∇ · u f )I + 2η f ∂t d f , (10)

where κ f denotes the bulk modulus of the fluid, η f its viscosity, and ∂ t d f its deviatoric strain rate

∂t d f =
1

2

[

∇v f + (∇v f )T
]

−
1

3
(∇ · v f )I. (11)

It will sometimes be convenient to introduce the fourth-order operator c f with components

c
f

i jkl =
(

κ f − 2/3η f ∂t

)

δi jδkl + η f ∂t (δikδ jl + δilδ jk), (12)

such that we can write (10) in a form similar to (3):

T f = c f :ǫ f , (13)

where

ǫ f =
1

2

[

∇u f + (∇u f )T
]

=
1

3
(∇ · u f )I + d f . (14)

2.3 Boundary conditions

The fluid and solid are in contact at a fluid–solid interface �. Let n̂ denote the unit outward normal to the fluid–solid interface �, pointing

from the solid to the fluid. At this interface both the microscopic tractions and displacements need to be continuous:

n̂ · Ts = n̂ · T f on �, (15)

and

us = u f on �. (16)
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Figure 1. Schematic representation of the waves generated in a poroelastic material: FP denotes the fast compressional wave, S the shear wave and SP the

slow compressional wave. Also shown is a schematic close-up of the porous medium with volume �, which may be subdivided in terms of its solid and fluid

parts �s and � f , respectively. The microscopic fluid–solid boundary is denoted by �, and the unit normal to this boundary, pointing from the solid to the

fluid, is denoted by n̂.

3 AV E R A G I N G

Our next goal is to average the microscopic equations of motion discussed in the previous section to obtain the macroscopic equations of

motion. To this end, we introduce formulae to average gradients and rates, which are operators appearing in the microscopic equations.

Following Pride & Berryman (1998), we introduce a generic weight function W (x −x′), where x and x′ denote position vectors in the porous

medium. The function W has a value of one in the vicinity of x = x′ and monotonically decreases to zero at distances x′ far from x. The

model volume � may be subdivided in terms of its solid and fluid parts �s and � f , respectively, such that � = �s ∪ � f (Fig. 1). As already

mentioned, the interface between the solid and fluid is denoted by �.

We now define the following volume measures of W :

V =

∫

�

W (x − x′) d3x′, (17)

Vs(x) =

∫

�s

W (x − x′) d3x′, (18)

V f (x) =

∫

� f

W (x − x′) d3x′. (19)

Note that V is independent of x because W depends on the difference x − x′. Thus, the volume over which we average is fixed. Note also

that

V = Vs(x) + V f (x). (20)

3.1 Porosity

The porosity φ of the macroscopic medium is defined by

V f (x) = φ(x)V or Vs(x) = [1 − φ(x)]V . (21)

Throughout this paper we will accommodate gradients in porosity, that is, we will not assume that the porosity is constant.
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3.2 Volume average

Consider arbitrary microscopic tensor fields 
 s and 
 f defined in the solid or the fluid, respectively. Their volume averages are defined by

〈
s〉(x) =
1

V

∫

�s

W (x − x′)
s(x′) d3x′, (22)

〈
 f 〉(x) =
1

V

∫

� f

W (x − x′)
 f (x′) d3x′. (23)

3.3 Phase average

Alternatively, the phase averages of the fields 
 s and 
 f are defined by


s(x) =
1

Vs(x)

∫

�s

W (x − x′)
s(x′) d3x′, (24)


 f (x) =
1

V f (x)

∫

� f

W (x − x′)
 f (x′) d3x′. (25)

Using the definition of porosity (21), the phase averages (24) and (25) may be related to the volume averages (22) and (23):

〈
s〉 = (1 − φ)
s, 〈
 f 〉 = φ
 f . (26)

3.4 Averaging gradients

The gradient of the volume averages (22) and (23) is determined by

∇〈
p〉(x) =
1

V

∫

�p

[∇W (x − x′)]
p(x′) d3x′

= −
1

V

∫

�p

[∇′W (x − x′)]
p(x′) d3x′

=
1

V

∫

�p

W (x − x′)[∇′
p(x′)] d3x′ −
1

V

∫

�p

∇
′[W (x − x′)
p(x′)] d3x′, (27)

where ∇
′ denotes the gradient with respect to the x′ coordinates. Thus, using (22) or (23) for the first term and the divergence theorem on the

second term, we find

∇〈
p〉 = 〈∇
p〉 −
1

V

∫

�

W n̂′
p


′
p d2x′, (28)

where a subscript p can denote either s (solid) or f (fluid), a prime denotes evaluation at x′, and n̂s = n̂ = −n̂ f denotes the unit normal to the

fluid–solid interface �, pointing from the solid to the fluid. (28) relates the gradient of the average, ∇〈
 p〉, to the average of the gradient, 〈∇


 p〉.

In terms of the phase averages 
s and 
 f , invoking (26), we have alternatively

〈∇
s〉 = ∇[(1 − φ)
s] +
1

V

∫

�

W n̂′
 ′
s d2x′, (29)

〈∇
 f 〉 = ∇(φ
 f ) −
1

V

∫

�

W n̂′
 ′
f d2x′, (30)

similar to results obtained by Pride & Berryman (1998).

3.5 Averaging rates

For temporally and spatially variable fields 
 p(x, t), by analogy with the average of a gradient, 〈∇
 p〉, we may obtain the average of a rate,

〈∂ t
 p〉, as follows (Whitaker 1999):

∂t 〈
p〉 = 〈∂t
p〉 +
1

V

∫

�

W n̂′
p · v′

p

′
p d2x′, (31)

where the second term accommodates advection of the fluid–solid interface �. Thus we obtain in terms of the phase averages 
s and


 f

〈∂t
s〉 = ∂t [(1 − φ)
s] −
1

V

∫

�

W n̂′ · v′
s


′
s d2x′, (32)
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〈∂t
 f 〉 = ∂t (φ
 f ) +
1

V

∫

�

W n̂′ · v′
f 


′
f d2x′, (33)

where we have recognized that for time-dependent problems the porosity may vary as a function of time due to relative changes in the solid

and fluid volumes �s and � f .

We will use the averaging rules (29) and (30) and (32) and (33) to obtain the macroscopic equations of motion. Terms of the form

∂ t
 p + ∇ · (
 pv p) frequently appear in the microscopic equations of continuum mechanics. Note that (29) and (32) imply that

〈∂t
s〉 + 〈∇ · (
svs)〉 = ∂t [(1 − φ)
s] + ∇ · [(1 − φ)
svs], (34)

and that (30) and (33) imply that

〈∂t
 f 〉 + 〈∇ · (
 f v f )〉 = ∂t (φ
 f ) + ∇ · (φ
 f v f ), (35)

because the interfacial integrals cancel.

3.6 Spatial and temporal derivatives of porosity

The spatial and temporal averages (29) and (32) or (30) and (33) have immediate consequences for porosity. Upon taking the fields 
 s or 
 f

to be constants, we find that the gradient of porosity is determined by

∇φ(x, t) =
1

V

∫

�t

W (x − x′)n̂(x′, t) d2x′, (36)

whereas its temporal derivative is given by

∂tφ(x, t) = −
1

V

∫

�t

W (x − x′)n̂(x′, t) · v f (x′, t) d2x′. (37)

Strictly speaking, as the wavefield moves through the porous material the solid and fluid measures V s and V f vary with time, and so does the

fluid–solid boundary �. So just for clarity, the subscript t on the surface � recognizes its temporal variation, as does the explicit dependence

of the normal n̂ on t.

4 M A C RO S C O P I C E Q UAT I O N S

To obtain the macroscopic equations of motion we will make two key assumptions.

(i) The microscopic material properties ρ s , ρ f , cs , κ f and η f are constant on the scale of the averaging volume V defined by (17), but

these parameters may vary at the macroscale.

(ii) The wavelengths of the waves of interest are large compared to the averaging volume V . For example, for grain sizes on the order

of 100 µm, the characteristic diameter of the averaging volume should be larger than 1000 µm, and the minimum wavelength of the waves

should be on the order of 1 cm (Pride et al. 1992).

4.1 Conservation of mass

Upon applying the averaging rules (29) and (32) to the microscopic continuity equation (1), we obtain the macroscopic equation for the

conservation of mass:

∂t [(1 − φ)ρs] + ∇ · [(1 − φ)ρsvs] = 0. (38)

This implies that

∂t ln ρs + vs · ∇ ln ρs + ∂t ln(1 − φ) + vs · ∇ ln(1 − φ) + ∇ · vs = 0. (39)

Similarly, upon averaging the microscopic fluid continuity equation (8) based upon (30) and (33) we obtain

∂t (φρ f ) + ∇ · (φρ f v f ) = 0, (40)

which implies

∂t ln ρ f + v f · ∇ ln ρ f + ∂t ln φ + v f · ∇ ln φ + ∇ · v f = 0. (41)

4.2 Constitutive relationships

Next, we need to average the constitutive relationships. Upon averaging the solid constitutive relation (3) based upon (29) we obtain

〈Ts〉 = (1 − φ)Ts = cs : 〈ǫs〉, (42)

where the averaged solid strain tensor is determined by

〈ǫs〉 =
1

2
[〈∇us〉 + 〈(∇us)T 〉] =

1

2
[∇〈us〉 + (∇〈us〉)

T ] + E. (43)

C© 2008 The Authors, GJI, 175, 301–345

Journal compilation C© 2008 RAS



Spectral-element simulations of wave propagation in porous media 307

We have introduced the ‘interfacial strain’ tensor

E =
1

V

∫

�

W
1

2
(n̂′u′

s + u′
s n̂′) d2x′. (44)

Note from (37) that

tr(E) =
1

V

∫

�

W n̂′ · u′
s d2x′ = −�φ (45)

is the change in porosity. We may write the interfacial strain in terms of its isotropic and deviatoric parts as

E = −
1

3
�φ I + Ŵ, (46)

where Ŵ is the ‘deviatoric interfacial strain’

Ŵ =
1

V

∫

�

W

[

1

2
(n̂′u′

s + u′
s n̂′) −

1

3
(n̂′ · u′

s)I

]

d2x′. (47)

We thus have

(1 − φ)Ts = cs :∇[(1 − φ)us] + cs :E. (48)

In a later section we will seek to find an explicit expression for the interfacial strain E in terms of the macroscopic parameters.

Similarly, upon averaging the fluid constitutive relation (13) we obtain

〈T f 〉 = φT f = c f : 〈ǫ f 〉. (49)

Using the definition (30), the averaged fluid strain tensor is determined by

〈ǫ f 〉 =
1

2
[∇〈u f 〉 + (∇〈u f 〉)

T ] − E, (50)

where the interfacial strain tensor E is defined by (44), and where we have used the microscopic boundary condition (16). We thus have

φT f = c f :∇(φu f ) − c f :E. (51)

4.3 Momentum equations

Averaging the solid conservation of momentum equation (2) and neglecting non-linear terms yields

(1 − φ)ρs∂t vs = ∇ · [(1 − φ)Ts] + d, (52)

where we have defined the ‘drag’

d =
1

V

∫

�

W n̂′ · T′
s d2x′. (53)

We will seek to find an explicit macroscopic expression for this drag force.

Similarly, averaging the fluid conservation of momentum equation (9) yields

φρ f ∂t v f = ∇ · (φT f ) − d, (54)

where, invoking the microscopic continuity of traction (15), the drag term d is defined by (53).

It is interesting to note that most derivations of the macroscopic equations of motion for porous media agree up to this point. The

challenge now lies in finding macroscopic expressions for the interfacial strain tensor E and the drag force d.

5 D R A G F O RC E

The drag force defined in (53) needs to be expressed in terms of macroscopic quantities. In the following two subsections we will examine

simple cases in order to assess the form of this drag force. We will come back to its full expression in subsequent sections.

5.1 Static problem

For the equilibrium configuration, that is, when us = 0 and u f = 0, we have microscopic equilibrium in the solid

∇ · T0
s + ρsg = 0, (55)

where g denotes the gravitational acceleration. In the fluid we have

−∇ p0
f + ρ f g = 0, (56)

where T0
f = −p0

f I. Averaging (55) based upon (29) and (56) based upon (30) we find

〈∇ · T0
s 〉 + 〈ρsg〉 = ∇ · [(1 − φ)T

0

s ] + d0 + (1 − φ)ρsg = 0, (57)

−〈∇ p0
f 〉 + 〈ρ f g〉 = −∇(φ p0

f ) − d0 + φρ f g = 0, (58)
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where we have used the microscopic boundary condition (15) to define the ‘static drag force’, that is, the force exerted by the pore fluid on

the solid matrix,

d0 =
1

V

∫

�

W n̂′ · T0
s

′
d2x′ = −

1

V

∫

�

W n̂′ p0
f

′
d2x′. (59)

Upon adding (57) and (58) we find that

∇ · T
0
+ ρg = 0, (60)

where we have introduced the ‘average static stress’

T
0

= (1 − φ)T
0

s − φ p0
f I, (61)

and the average density

ρ = (1 − φ)ρs + φρ f . (62)

Since the fluid density ρ f and gravity g vary only on the macroscopic scale, we deduce from (56) that the hydrostatic fluid pressure p0
f

also varies only on the macroscopic scale as well, that is, p0
f = p0

f . Consequently we may write

d0 = −
1

V

∫

�

W n̂′ p0
f

′
d2x′ = −p0

f

1

V

∫

�

W n̂′ d2x′ = −p0
f ∇φ, (63)

where we have used (36). The hydrostatic pore fluid thus exerts a force −p0
f ∇φ in the direction of decreasing porosity. Note that when the

pore space is empty, that is, consists of vacuum, or when the porosity is constant, this force vanishes.

5.2 Darcy flow

According to Darcy’s law, the rate of fluid flow in a rigid porous material is governed by (e.g. Bear 1972; Dahlen 1990)

φη f k−1 · v f = −∇ p
Darcy
f + ρ f g, (64)

where p
Darcy
f denotes the macroscopic fluid pressure, k the permeability tensor and η f the viscosity.

Under quasistatic conditions, when inertial forces may be ignored, the microscopic equilibrium condition for the fluid is

−∇ p
Darcy
f + ρ f g = 0, (65)

where p
Darcy
f denotes the microscopic fluid pressure. The corresponding macroscopic condition obtained by averaging (65) is

−∇(φ p
Darcy
f ) − dDarcy + φρ f g = 0, (66)

where we have defined the quasi-static drag force

dDarcy =
1

V

∫

�

W n̂′ · T f
′ d2x′. (67)

Upon using Darcy’s law (64) in (66), we find an explicit expression for the drag force:

dDarcy = −p
Darcy
f ∇φ + φ2η f k−1 · v f . (68)

Note that in the absence of flow the Darcy drag (68) reduces to the hydrostatic drag (63).

6 I N T E R FA C I A L S T R A I N

In this section, we will express the interfacial strain E defined by (44) in terms of macroscopic quantities.

6.1 Variational principle

Based upon our experiences with the hydrostatic drag force (63) and the drag force for Darcy flow (68), we anticipate a contribution to the

drag force d defined by (53) of the form T f · ∇φ. Thus, the solid macroscopic momentum equation (52) contains the right-hand side terms

∇ · [(1 − φ)Ts] + T f · ∇φ, (69)

and the macroscopic fluid momentum equation (54) contains the right-hand side terms

∇ · (φT f ) − T f · ∇φ. (70)

Note again that when there are no gradients in porosity or when the pore space is empty the drag force T f · ∇φ vanishes. Based upon these

considerations, we seek to find a functional F = F(us, u f , ∇us,∇u f ) with the following attributes:

∂ F

∂∇us

= (1 − φ)Ts, (71)
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∂ F

∂∇u f

= φT f , (72)

∂ F

∂us

= −
∂ F

∂u f

= −T f · ∇φ, (73)

subject to the Maxwell relations

∂2 F

∂∇u f ∂∇us

=
∂2 F

∂∇us∂∇u f

, (74)

∂2 F

∂u f ∂us

=
∂2 F

∂us∂u f

, (75)

∂2 F

∂∇u f ∂us

=
∂2 F

∂us∂∇u f

, (76)

∂2 F

∂u f ∂∇us

=
∂2 F

∂∇us∂u f

, (77)

such that

∇ ·

(

∂ F

∂∇us

)

−
∂ F

∂us

= ∇ · [(1 − φ)Ts] + T f · ∇φ = (1 − φ)∇ · Ts + (T f − Ts) · ∇φ, (78)

∇ ·

(

∂ F

∂∇u f

)

−
∂ F

∂u f

= ∇ · (φT f ) − T f · ∇φ = φ∇ · T f . (79)

The existence and form of this functional may also be established by invoking the principle of virtual work, as we show in Appendix A.

By assuming a quadratic form for the functional F involving all possible tensor products between us, u f , ∇us , and ∇u f , and enforcing the

constraints (71)–(77), it may be shown that this leads to the following expression for the interfacial strain (44):

E = −φα :∇us + c−1
s : (cs − c f :α) :us∇φ + c−1

s :c f :α : ∇(φu f ), (80)

and the explicit form of the quadratic functional is

F =
1

2
(∇us) : [(1 − φ)cs − φcs :α] : (∇us) +

1

2
(∇u f ) : [φ(c f − c f :c−1

s :c f :α)] : (∇u f )

+ (∇us) : (φc f :α) : (∇u f )

+ (∇us) : (c f :α) : (u f − us)∇φ + (∇u f ) : (c f − c f :c−1
s :c f :α) : (u f − us)∇φ

+
1

2
φ−1(∇φ)(u f − us) : (c f − c f :c−1

s :c f :α) : (u f − us)∇φ. (81)

The dimensionless fourth-order tensor α exhibits the symmetries α ijkl = α jikl = α ijlk = αklij, that is, in its most general form there are 21

independent parameters. Note that at this stage this tensor remains to be determined. Expressions of the form c−1
s : c f in (80) and (81) should

be interpreted in terms of Voigt’s notation with contracted indices. In this notation, the solid or fluid fourth-order elastic tensor is written as

C IJ , I , J = 1, . . . , 6, such that an expression of the form c−1
s : c f becomes a regular (6 × 6) matrix expression in Voigt notation: C−1

s ·C f .

Thus, if c denotes an elastic tensor, c−1 denotes the corresponding compliance tensor.

The macroscopic stresses Ts and T f are now completely defined in terms of macroscopic quantities by

∂ F

∂∇us

= (1 − φ)Ts = [(1 − φ)cs − φcs :α] :∇us + (φc f :α) :∇u f + (c f :α) : (u f − us)∇φ, (82)

∂ F

∂∇u f

= φT f = [φ(c f − c f :c−1
s :c f :α)] :∇u f + (φc f :α) :∇us + (c f − c f :c−1

s :c f :α) : (u f − us)∇φ. (83)

In an isotropic material, the tensor α may be written in terms of two scalar parameters α and β as

αi jkl = (α − 2/3β)δi jδkl + β(δikδ jl + δilδ jk). (84)

The change in porosity �φ defined in (45) may then be obtained by taking the trace of (80):

�φ = −us · ∇φ + αφ(κ f /κs)[(κs/κ f )∇ · us − ∇ · u f − (u f − us) · ∇ ln φ], (85)

where the scalar α remains to be determined. Note that (85) equivalently refers to the change in ‘fluid content’ of the pore space, since we are

interested in fully saturated pores. In the case of constant porosity (85) reduces to the well-known result

�φ = αφ[∇ · us − (κ f /κs)∇ · u f ], (86)

where one may regard the difference ∇ ·us − (κ f /κs)∇ ·u f as a measure of the ‘effective deformation’ of the frame (in the sense of Terzaghi).

For the deviatoric part of E, Ŵ defined in (47), let us define the symmetric, traceless strain deviator tensors

ds =
1

2
[∇us + (∇us)T ] −

1

3
(∇ · us)I, (87)
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d f =
1

2
[∇u f + (∇u f )T ] −

1

3
(∇ · u f )I, (88)

and the symmetric, traceless tensors

γ s =
1

2
[(∇φ)us + us∇φ] −

1

3
(us · ∇φ)I, (89)

γ f =
1

2
[(∇φ)u f + u f ∇φ] −

1

3
(u f · ∇φ)I. (90)

The deviatoric part of (80) may now be expressed as

Ŵ = γ s + β(η f /μs)∂t (γ f − γ s) − βφ[ds − (η f /μs)∂t d f ], (91)

where the scalar β remains to be determined.

6.2 From (us,u f ) to (us,w)

Following Biot, using the definition of the displacement of the fluid relative to the solid weighted by the porosity,

w = φ(u f − us), (92)

which may be seen as a volumetric fluid flow per unit surface area, (81) may be rewritten in terms of the variables us and w as

F =
1

2
(∇us) : [(1 − φ)cs − φ(cs − c f ) :α + φc f :α + φ(c f − c f :c−1

s :c f :α)] : (∇us)

+
1

2
(∇w) : [φ−1(c f − c f :c−1

s :c f :α)] : (∇w) + (∇us) : (c f − c f :c−1
s :c f :α + c f :α) : (∇w). (93)

This is a remarkable result, because all the terms in (81) involving gradients in porosity, ∇φ, are naturally accommodated by gradients

involving w. The constitutive relationships (82) and (83) become

(1 − φ)Ts = [(1 − φ)cs − φ(cs − c f ) :α] :∇us + (c f :α) :∇w, (94)

φT f = (c f − c f :c−1
s :c f :α) :∇w + φ(c f − c f :c−1

s :c f :α + c f :α) :∇us . (95)

Again we see that gradients in porosity are naturally absorbed by the definition (92).

Upon defining the average macroscopic stress

T = (1 − φ)Ts + φT f , (96)

and using the constitutive relationships (94) and (95), we discover that the quadratic functional (93) can also be established by using the

principle of virtual work in terms of us and w:

F =
1

2
(T :∇us + T f :∇w). (97)

We can identify the different elements of (97) as (1) the virtual work done by the average solid displacement us against the average stress

T, and (2) the virtual work done by the porosity-weighted relative displacement w against the average fluid stress T f . Note that (97) may be

rewritten in terms of us and u f as

F =
1

2

[

(1 − φ)Ts :∇us + φT f :∇u f + T f :∇φ(u f − us)
]

, (98)

where the different terms may be interpreted as (1) the averaged virtual work related to the solid phase, (2) the averaged virtual work

related to the fluid phase and (3) the virtual work done by the relative displacement of the fluid and solid against the drag force T f · ∇φ. In

Appendix A, we provide an alternative derivation of the macroscopic expression for the interfacial strain based upon the principle of virtual

work. In effect, the quadratic forms (93), (97) and (98) are different representations of the ‘potential energy density’ associated with poroelastic

wave propagation.

7 ‘ D R A I N E D ’ PA R A M E T E R S

In this section, we are going to identify the remaining unknown fourth-order tensor α introduced in (81), or, in the isotropic case (84),

the scalars α and β. This will uniquely specify the macroscopic constitutive relationships (94) and (95) in terms of macroscopic material

parameters. Our strategy will be to refer to a Gedanken experiment in order to identify α, and thus to obtain expressions for �φ and Ŵ and

thereby fully constrain T and T f . This approach is similar to that of Pride et al. (1992) and Carcione (2007), but contrary to these authors,

who used the well-known ‘jacketed’ and ‘unjacketed’ experiments, we rely on the definition of the effective stress (Terzaghi 1923, 1943).
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Figure 2. Three types of bulk moduli define the incompressible behaviour of a porous medium: the frame modulus, κ fr, the solid modulus, κ s , and the fluid

modulus, κ f . Similarly, two types of shear moduli need to be considered: the shear modulus of the frame, μfr, and the shear modulus of the solid, μs . These

five moduli combined with the solid density ρ s , the fluid density ρ f , the fluid viscosity η f , and the permeability k define the nine microscopic parameters that

describe a viscous, isotropic, porous medium.

7.1 Gedanken experiment

Let us imagine a dry porous medium, that is, the pore space is empty. We aim to describe the deformation of the skeleton part of such a

medium, that is, the frame (Fig. 2). The elastic frame is characterized by a fourth-order tensor cfr, or, in the isotropic case, by a bulk modulus

κ fr and a shear modulus μfr.

The constitutive equation we are looking for links the effective stress, Teff , perceived by the frame, and its effective deformation:

Teff = cfr :ǫeff . (99)

By defining these effective fields, we isolate the behaviour of the frame by suppressing the effects of the pore fluid on the stress and on the

deformation of the frame. This approach is thus equivalent to looking at the system in the absence of pore fluid.

The effective stress is defined as the difference between the total stress, T, and the part of the stress exerted by the fluid, T f , (Terzaghi

1923, 1943):

Teff = T − T f . (100)

Upon using the definition (96) of T, (100) may also be expressed as

Teff = (1 − φ)(Ts − T f ). (101)

We define the effective deformation of the frame as the total deformation of the solid skeleton minus the deformation of the solid phase due

to the stress exerted by the fluid:

ǫeff =
1

2

[

∇us + (∇us)T
]

− c−1
s :T f . (102)

We thus can rewrite the constitutive equation for the frame, (99), in the form

(1 − φ)(Ts − T f ) = cfr : (∇us − c−1
s :T f ). (103)

The trace of (103) is equivalent to the form given by Pride et al. (1992), when the authors look for a closure relationship to constrain the

isotropic part of E, that is, the change in porosity �φ. In our approach, the isotropic and the deviatoric parts of E are both determined at the

same time.

Upon using (48) and (51), (103) may be expressed as

cs :∇[(1 − φ)us] + cs :E − φ−1(1 − φ)
[

c f :∇(φu f ) − c f :E
]

= cfr :
{

∇us − φ−1c−1
s : [c f :∇(φu f ) − c f :E]

}

. (104)

This yields the following expression for E:

E =
[

φcs + (1 − φ)c f − cfr :c−1
s :c f

]−1
:
[

φ[cfr − (1 − φ)cs] :∇us + φcs :us∇φ +
[

(1 − φ)c f − cfr :c−1
s :c f

]

:∇(φu f )
]

. (105)

Upon comparing (80) and (105), we deduce that

α = [φcs + (1 − φ)c f − cfr :c−1
s :c f ]−1 : [(1 − φ)cs − cfr]. (106)

Thus, the complete constitutive equations (94) and (95) become

(1 − φ)Ts =
{

(1 − φ)cs − φ(cs − c f ) :
[

φcs + (1 − φ)c f − cfr :c−1
s :c f

]−1
: [(1 − φ)cs − cfr]

}

:∇us

+
{

c f :
[

φcs + (1 − φ)c f − cfr :c−1
s :c f

]−1
: [(1 − φ)cs − cfr]

}

:∇w, (107)

and

φT f =
{

c f − c f :c−1
s :c f : [φcs + (1 − φ)c f − cfr :c−1

s :c f ]−1 : [(1 − φ)cs − cfr]
}

:∇w

+φ
{

c f − c f :c−1
s :c f : [φcs + (1 − φ)c f − cfr :c−1

s :c f ]−1 : [(1 − φ)cs − cfr]

+c f : [φcs + (1 − φ)c f − cfr :c−1
s :c f ]−1 : [(1 − φ)cs − cfr]

}

:∇us . (108)
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At this stage, let us consider various limiting cases. First, let us assume that c f → 0, then (107) and (108) simplify to

(1 − φ)Ts = cfr :∇us

φT f = 0. (109)

In the absence of fluid, the porous medium deforms according to the elastic frame tensor cfr, as expected.

Second, suppose that c f → cs and us = u f , then (107) and (108) simplify to

(1 − φ)Ts = (1 − φ)cs :∇us, (110)

φT f = φcs :∇us, (111)

which yields

T = (1 − φ)Ts + φT f = cs :∇us . (112)

(112) shows that the total deformation of the porous medium (solid skeleton and pore fluid) is solely governed by the solid elastic tensor cs .

Third, let us consider the limiting case where φ → 0, then the total stress T simplifies to

T = Ts = cs :∇us, (113)

showing that the medium deforms according to the solid elastic tensor cs , and the total stress is the solid stress, as expected.

Finally, suppose that φ → 1, then the total stress T becomes

T = T f = c f :∇u f . (114)

The medium now deforms according to the fluid tensor c f , and the total stress is simply the fluid stress, as expected.

7.2 Isotropic media

In isotropic media, the tensor α is defined in terms of the two scalar fields α and β by (84). The scalar α is obtained by taking the trace of

(106):

α =
(1 − φ)κs − κfr

φκs + (1 − φ)κ f − κfrκ f /κs

, (115)

and the deviatoric part of (106) gives the scalar β:

β =
(1 − φ)μs − μfr

φμs + (1 − φ)η f ∂t − (μfr/μs)η f ∂t

. (116)

Note that, strictly speaking, the quantity β, like c f , is an operator, because it contains partial derivatives with respect to time. The application

of this operator is in practice most easily accomplished in the frequency domain. We will continue to use the notation (116) with this

understanding.

We can now express the change in porosity, �φ defined by (85), as

�φ = −us · ∇φ + φ

[

(1 − φ)κ f − κ f κfr/κs

φκs + (1 − φ)κ f − κfrκ f /κs

]

[(κs/κ f )∇ · us − ∇ · u f − (u f − us) · ∇ ln φ], (117)

and the deviatoric interfacial strain Ŵ (91) is given by

Ŵ = γ s +

[

(1 − φ)η f ∂t − μfrη f /μs∂t

φμs + (1 − φ)η f ∂t − (μfr/μs)η f ∂t

]

(γ f − γ s)

−

[

φ(1 − φ)μs − φμfr

φμs + (1 − φ)η f ∂t − (μfr/μs)η f ∂t

]

[ds − (η f /μs)∂t d f ]. (118)

We can further simplify (118) when the pore fluid does not bear any shear stress, that is, η f ∂ t = 0, or when η f ≪ μs :

Ŵ = γ s − [(1 − φ) − μfr/μs]ds . (119)

In the case of constant porosity (∇ φ = 0), (117) and (119) are in agreement with Pride et al. (1992).

For an isotropic medium, the constitutive eqs (107) and (108) become

(1 − φ)Ts =

{

κs[(1 − φ)κ f + φκfr] − κfrκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · us +
(1 − φ)κsκ f − κfrκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · w

}

I

+

{

[(1 − φ)μs − μfr](1 − φ)η f ∂t + φμsμfr

φμs + (1 − φ)η f ∂t − (μfr/μs)η f ∂t

}

2ds

+

[

(1 − φ)μsη f ∂t − μfrη f ∂t

φμs + (1 − φ)η f ∂t − (μfr/μs)η f ∂t

]

2
(

φd f + γ f − γ s

)

, (120)
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and

φT f =

[

φκsκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · w +
φκ f (κs − κfr)

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · us

]

I

+

{

[(1 − φ)μs − μfr]η f ∂t

φμs + (1 − φ)η f ∂t − (μfr/μs)η f ∂t

}

2ds

+

[

φμsη f ∂t

φμs + (1 − φ)η f ∂t − (μfr/μs)η f ∂t

]

2
(

φd f + γ f − γ s

)

. (121)

The constitutive equations (120) and (121) may be further simplified when the pore fluid does not bear any shear stress:

(1 − φ)Ts =

{

κs[(1 − φ)κ f + φκfr] − κfrκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · us +
(1 − φ)κsκ f − κfrκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · w

}

I + 2μfrds, (122)

and

φT f = φ

[

κsκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · w +
κ f (κs − κfr)

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · us

]

I. (123)

Note that in this approximation the solid phase shear modulus μs disappears. Shear stress is thus entirely supported by the frame.

7.3 Comparison with the Biot coefficients

The original Biot constitutive equations (Biot 1956ab, 1962a,b) may be written in the form

T =

[(

H −
4

3
μfr

)

∇ · us + C∇ · w

]

I + 2μfrds, (124)

and

T f = −p f I = (C∇ · us + M∇ · w) I. (125)

The moduli H , C and M are defined in terms of material (solid, fluid and frame) properties as follows (Geertsma & Smit 1961; Stoll & Bryan

1970):

H =
(κs − κfr)

2

D − κfr

+ κfr +
4

3
μfr, (126)

C =
κs(κs − κfr)

D − κfr

, (127)

M =
κ2

s

D − κfr

, (128)

where

D = κs[1 + φ(κs/κ f − 1)]. (129)

Upon substituting (127), (128) and (129) in (125), we obtain

T f = −p f I =

[

κ f (κs − κfr)

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · us +
κsκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · w

]

I. (130)

We thus find that (125) is in exact agreement with (123). We can similarly show the equivalence between (124) and the sum of (122) and

(123). This establishes the equivalence between our derivation and Biot’s results, and confirms again the validity of the Biot equations for

media with gradients in porosity.

8 E Q UAT I O N S O F M O T I O N

In the two sections that follow, the equations of motion are derived both without and with taking into account dissipation processes generated

by viscous Poiseuille (laminar) flow. A third section is dedicated to the frequency-dependence of fluid flow, which allows us to derive the

equations of motion at high frequencies. We also discuss and introduce a viscoelastic rheology to account for non-Biot attenuation mechanisms

related to the anelasticity of the frame (Stoll & Bryan 1970; Stoll 1977).

8.1 No dissipation

Following Biot (1956a), we write the ‘kinetic energy density’ in the form

K =
1

2
ρ11∂t us · ∂t us + ρ12∂t us · ∂t u f +

1

2
ρ22∂t u f · ∂t u f , (131)

where the coefficients ρ 11, ρ 22 and ρ 12, may be interpreted as the total effective mass density of the moving solid, the total effective mass

density of the fluid moving within the skeleton and a coupling coefficient, respectively.
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In order to derive the equations of motion, we consider the Euler–Lagrange equations associated with the variational principle defined

by the Lagrangian density

L = K − F, (132)

that is

∂

∂t

∂L

∂q̇
+ ∇ ·

(

∂L

∂∇q

)

−
∂L

∂q
= 0. (133)

Here q refers to the generalized coordinates us and u f . Contributions due to dissipative processes have been neglected and will be considered

in the next section. Written out in full, the Euler–Lagrange equations (133) are

ρ11∂
2
t us + ρ12∂

2
t u f − ∇ · [(1 − φ)Ts] − T f · ∇φ = 0, (134)

ρ12∂
2
t us + ρ22∂

2
t u f − ∇ · (φT f ) + T f · ∇φ = 0, (135)

for the solid and the fluid, respectively. These equations may be rewritten in the form

(1 − φ)ρs∂
2
t us = ∇ · [(1 − φ)Ts] + T f · ∇φ − [ρ11 − (1 − φ)ρs]∂2

t us − ρ12∂
2
t u f , (136)

φρ f ∂
2
t u f = ∇ · (φT f ) − T f · ∇φ − ρ12∂

2
t us − (ρ22 − φρ f )∂2

t u f . (137)

Upon comparing (136) and (137) with (52) and (54) we can identify the drag terms as

d = T f · ∇φ − [ρ11 − (1 − φ)ρs]∂2
t us − ρ12∂

2
t u f , (138)

d = T f · ∇φ + ρ12∂
2
t us + (ρ22 − φρ f )∂2

t u f . (139)

Since (138) and (139) need to be equal, we deduce that

ρ11 = (1 − φ)ρs − ρ12, ρ22 = φρ f − ρ12, (140)

and we can interpret ρ 11 and ρ 22 as the ‘effective mass densities’ of the solid and fluid, respectively.

At this point, let us assume that the fluid is restrained from moving, that is, u f = 0. Then, according to (137), we see that in order to

prevent any fluid displacement, we need to apply a force in the opposite direction to the solid acceleration. Thus, we must have ρ 12 < 0. The

drag term may be written in terms of ρ 12 as

d = T f · ∇φ − ρ12

(

∂2
t u f − ∂2

t us

)

, (141)

where the last term may be interpreted as the inertial drag that the fluid exerts on the solid, when there is a relative acceleration between the

two phases. Note that if we rewrite the kinetic energy density in terms of ρ 12 we find

K =
1

2
(1 − φ)ρs∂t us · ∂t us +

1

2
φρ f ∂t u f · ∂t u f −

1

2
ρ12(∂t u f − ∂t us) · (∂t u f − ∂t us). (142)

The kinetic energy density is now expressed as the sum of (1) the average of the kinetic energy density of the solid, (2) the average of the

kinetic energy density of the fluid and (3) the kinetic energy density due to the relative motion of an additional apparent fluid mass arising

from the inertial drag of the fluid.

The coefficient ρ 22, the effective density of the fluid, is determined in Biot (1962a) and Leclaire et al. (1994) by introducing a linear

relationship between the relative macroscopic fluid flow, w, and the relative microvelocities within the pores in order to take into account the

fact that not all the pore fluid moves in the direction of the macroscopic pore fluid stress gradient because of the geometry of the pore space.

A recent paper derives this coefficient based on a more general concept of dispersion of velocities in the fluid (Molotkov 2002). However, in

the case of isotropy of the microvelocity field, those different studies propose the same expression:

ρ22 = mφ2, (143)

where m = cρ f /φ. The parameter c corresponds to the ‘tortuosity’, which is an experimental quantity often defined as the ratio between the

actual flow path and the straight line distance between the ends of the flow path. Using (140) it follows that

−ρ12 = mφ2 − φρ f = (c − 1)φρ f , ρ11 = (1 − φ)ρs + mφ2 − φρ f = (1 − φ)ρs + (c − 1)φρ f . (144)

8.2 Dissipation

Next, dissipation generated by viscous flow of the fluid phase is taken into account, and it is assumed to depend only on the relative motion

between the fluid and the solid. The Euler–Lagrange equations (133) are therefore appended as follows:

∂

∂t

∂L

∂q̇
+ ∇ ·

(

∂L

∂∇q

)

−
∂L

∂q
+

∂ Dp

∂q̇
= 0, (145)

where D p is the dissipation potential directly connected to Darcy’s law (Biot 1956a, 1962a):

Dp =
1

2
φ(∂t u f − ∂t us) · b · φ(∂t u f − ∂t us). (146)
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The second-order, symmetric tensor b is a function of the fluid properties:

b = η f k−1, (147)

and is valid for Poiseuille (laminar) pore fluid flow (see Section 8.3 for a discussion), where η f is the fluid viscosity and k the porous medium

permeability tensor. Written out in full the Euler–Lagrange equations (145) are

(1 − φ)ρs∂
2
t us = ∇ · [(1 − φ)Ts] + T f · ∇φ + (c − 1)φρ f

(

∂2
t u f − ∂2

t us

)

+ φ2η f k−1 · (∂t u f − ∂t us), (148)

φρ f ∂
2
t u f = ∇ · (φT f ) − T f · ∇φ − (c − 1)φρ f (∂2

t u f − ∂2
t us) − φ2η f k−1 · (∂t u f − ∂t us). (149)

The drag term is thus

d = T f · ∇φ + φ2η f k−1 · (∂t u f − ∂t us) + (c − 1)φρ f (∂2
t u f − ∂2

t us), (150)

where the first term on the right-hand side represents the force due to gradients in porosity (which we also encountered for media in hydrostatic

equilibrium and for Darcy flow), the second term is a viscous term that captures drag on the pore walls associated with relative motion between

the fluid and the solid (which we also encountered in Darcy flow), and the final term represents a dissipative force associated with inertial

drag due to the relative acceleration between the fluid and the solid.

8.3 Frequency dependence

For oscillatory motion, the tensor b defined in (147), expressing the viscous resistance to fluid flow, becomes frequency dependent (Biot

1956a). At low frequencies, the fluid flow is laminar (Poiseuille flow), meaning that inertial forces are negligible compared to viscous forces,

which control the flow regime. In this case, the flow regime may be expressed in terms of a classical diffusion equation, and b is given by

(147). At high frequencies, when the fluid flow is no longer laminar, the fluid velocity distribution within the pores is more complex, and the

effects of viscosity are felt only in a thin boundary layer. In this case, inertial forces dominate the flow regime. Biot’s characteristic frequency

defining the limit between the two flow regimes is given by (Biot 1956b; Auriault et al. 1985; Carcione 2007)

fc = min

(

η f φ

2πcρ f ki j

)

, (151)

where k i j denotes the components of the permeability tensor.

In order to accommodate the change in flow regime at high frequencies, Biot (1956b) uses a frequency-dependent correction factor in

the term involving b. In later work, Biot (1962b) introduces the notion of a viscodynamic operator to account for viscous flow over the full

frequency range. Comparisons of the predicted attenuation to experimental measurements at low frequencies (Mochizuki 1982) and high

frequencies (Arntsen & Carcione 2001) show that the dissipation predicted by a theory involving only viscous resistance is smaller than

observed in laboratory experiments. Thus, viscous resistance to fluid flow accounts only for a part of the attenuation and dissipation processes

in a porous medium over the full frequency range (Stoll & Bryan 1970; Stoll 1977). Other dissipation phenomena of a mechanical, chemical

or thermoelastic nature may also play a role, and these are often referred to as ‘non-Biot’ attenuation mechanisms. They are associated with

the anelasticity of the frame, and are usually taken into account by introducing a viscoelastic rheology (Biot 1962a,b; Carcione 1993).

In the following, we present the implementation of both corrections in the time domain. This will allow us to numerically address

attenuation and viscous damping over the full frequency range, and thus to accurately model such processes.

8.3.1 Anelastic response of the frame

In previous studies, anelasticity of the frame has been accommodated by regarding the coefficients H , M , C and μfr as complex, frequency-

dependent moduli (Stoll & Bryan 1970; Stoll 1977). Typically, the moduli are separated in terms of real solid and fluid properties and complex

frame properties.

Following Carcione (1993, 2007), we describe attenuation controlled by the anelasticity of the frame by introducing a viscoelastic

rheology. The basic hypothesis is that the current stress depends upon the strain history, such that (124) and (125) may be rewritten as

T(t) =

∫ t

−∞

[

∂t B(t − t ′)∇ · us(t ′) I + ∂t C(t − t ′)∇ · w(t ′) I + 2∂tμfr(t − t ′)ds(t ′)
]

dt ′, (152)

and

T f (t) =

∫ t

−∞

[

∂t C(t − t ′)∇ · us(t ′) I + ∂t M(t − t ′)∇ · w(t ′) I
]

dt ′, (153)

where we have introduced the compressional modulus

B = H −
4

3
μfr =

(κs − κfr)
2

D − κfr

+ κfr. (154)

Similar to viscoelastic single-phase media, a series of L standard linear solids may be introduced to capture dissipation in poroelastic media

(Liu et al. 1976; Carcione et al. 1988b; Robertsson et al. 1994). Such an approach results in an almost constant quality factor Q over a selected

frequency range, thus modelling an absorption-band poroelastic medium (Carcione 1993).
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At this point we make the same assumption as Stoll & Bryan (1970), Stoll (1977), which is that only the time-dependence of the bulk

and shear moduli of the frame, κ fr and μfr, that is, the assemblage of particles, needs to be considered, accommodating the fact that various

forms of energy dissipation may occur at grain contacts. Moreover, considering the fact that the bulk quality factor is generally observed to be

several orders of magnitude larger than the shear quality factor, dissipation is mainly controlled by shear attenuation, and thus only the time

dependence of the isotropic frame shear modulus μfr needs to be accommodated (Komatitsch & Tromp 1999). Modelling an absorption-band

poroelastic medium by a series of L standard-linear solids, we express the frame shear modulus as

μfr(t) = μR
fr

[

1 −

L
∑

ℓ=1

(1 − τ ǫℓ/τ σℓ) exp(−t/τ σℓ)

]

H (t), (155)

where μR
fr denotes the relaxed frame shear modulus, H(t) is the Heaviside function and τ ǫℓ and τ σℓ are strain and stress relaxation times,

respectively. Using the anelastic frame shear modulus (155), the constitutive relationships (152) and (153) may be rewritten as

T = (B∇ · us + C∇ · w) I + 2μU
fr ds −

L
∑

ℓ=1

Rℓ, (156)

and

T f = −p f I = (C∇ · us + M∇ · w) I. (157)

Note that in this approximation only the total stress T is affected. The unrelaxed frame shear modulus, μU
fr , is defined by

μU
fr = μR

fr

[

1 −

L
∑

ℓ=1

(1 − τ ǫℓ/τ σℓ)

]

, (158)

and the symmetric, traceless tensors Rℓ, ℓ = 1, . . . , L , represent a series of (tensor) memory variables which are governed by

∂t R
ℓ = −Rℓ/τ σℓ + δμℓ

frds/τ
σℓ, (159)

where the modulus defect δμℓ
fr is given by

δμℓ
fr = −μR

fr (1 − τ ǫℓ/τ σℓ). (160)

8.3.2 Viscous resistance

As already mentioned, the notion of a viscodynamic operator was introduced by Biot to cope with the change in fluid flow regime at high

frequencies. Unfortunately, this factor is highly sensitive to the pore network structure, meaning that an analysis of the frequency dependence

should be performed for each specific material (Biot 1962b). For example, Biot (1962b) derived frequency-domain expressions for cylindrical

silt, which have been widely used (e.g. Auriault et al. 1985; Carcione & Quiroga-Goode 1996). An alternative strategy would be to regard η f

and k as empirical parameters, and to assume no particular pore geometry.

In this section we present another alternative, which involves redefining b, given by (147), as a relaxation function, thus treating viscous

resistance similar to attenuation processes related to the anelasticity of the frame. Using this approach, the components of the relaxation

function b(t) may be described in terms of L′ viscous relaxation mechanisms as (Carcione 2007; de la Puente 2008)

bi j (t) = η f k−1
i j

[

1 −

L ′
∑

ℓ=1

(

1 − θ ǫℓ
i j /θσℓ

)

exp(−t/θσℓ)

]

H (t), (161)

where θ ǫℓ
i j and θσℓ are strain and stress relaxation times, respectively. Note that at low frequency (t → ∞), we recover (147). Using this

expression, the drag term (150) may be rewritten as

d = T f · ∇φ + φ2bU · (∂t u f − ∂t us) + (c − 1)φρ f

(

∂2
t u f − ∂2

t us

)

−

L ′
∑

ℓ=1

rℓ, (162)

where bU is the unrelaxed viscous term defined by

bU
i j = η f k−1

i j

[

1 −

L ′
∑

ℓ=1

(

1 − θ ǫℓ
i j /θσℓ

)

]

, (163)

and rℓ, ℓ = 1, . . ., L ′, represent series of (vector) memory variables which satisfy

∂t r
ℓ = −rℓ/θσℓ + φ2δbℓ · (∂t u f − ∂t us)/θσℓ. (164)

The viscous defect δbℓ is determined by

δbℓ
i j = −η f k−1

i j

(

1 − θ ǫℓ
i j /θσℓ

)

. (165)

In practice, it often suffices to use a single mechanism (L ′ = 1).
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8.4 Biot’s equations of motion

By adding equations (148) and (149) and keeping the second equation (149), we obtain an alternative set of equations, incorporating the

frequency-dependent viscosity introduced in the previous section,

ρ∂2
t us + ρ f ∂

2
t w = ∇ · T, (166)

ρ f ∂
2
t w + φρ f ∂

2
t us = ∇ · (φT f ) − T f · ∇φ − (c − 1)ρ f ∂

2
t w − φb(t)(∗·)∂t w, (167)

where we have used the definitions (92) for w, (96) for the average macroscopic stress T and (62) for the average density ρ. The symbol (∗ ·)

denotes time convolution combined with the dot product. (167) may finally be rearranged as

m∂2
t w + ρ f ∂

2
t us + b(t)(∗·)∂t w = ∇ · T f , (168)

where m = ρ f c/φ. We thus recover the original Biot equations of motion (Biot 1956a, 1962a). Note that we have demonstrated that the Biot

equations of motion in terms of us and w ‘remain valid for media with gradients in porosity’.

9 S U M M A RY O F T H E M A I N E Q UAT I O N S

In summary, wave propagation in poroelastic media is governed by the macroscopic equations of motion

(1 − φ)ρs∂
2
t us = ∇ · [(1 − φ)Ts] + T f · ∇φ + (c − 1)φρ f

(

∂2
t u f − ∂2

t us

)

+ φ2b(t)(∗·)
(

∂t u f − ∂t us

)

, (169)

φρ f ∂
2
t u f = φ∇ · T f − (c − 1)φρ f (∂2

t u f − ∂2
t us) − φ2b(t)(∗·)(∂t u f − ∂t us). (170)

The most general anisotropic constitutive relationships are (107) and (108) in terms of the anisotropic frame, solid and fluid tensors cfr, cs

and c f , respectively. The much simpler isotropic constitutive relationships for a porous isotropic medium are

(1 − φ)Ts =

[

κs[(1 − φ)κ f + φκfr] − κfrκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · us +
(1 − φ)κsκ f − κfrκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · w

]

I + 2μfr(t) ∗ ds, (171)

and

φT f = φ

[

κsκ f

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · w +
κ f (κs − κfr)

φκs + (1 − φ)κ f − κfrκ f /κs

∇ · us

]

I. (172)

Alternatively, we may use the macroscopic equations of motion in terms of us and w (the Biot formulation)

ρ∂2
t us + ρ f ∂

2
t w = ∇ · T, (173)

m∂2
t w + ρ f ∂

2
t us + b(t)(∗·)∂t w = ∇ · T f , (174)

where m = ρ f c/φ, c denotes the tortuosity. In this case the isotropic constitutive relationships are

T = (B∇ · us + C∇ · w) I + 2μfr(t) ∗ ds, (175)

and

T f = −p f I = (C∇ · us + M∇ · w) I, (176)

with B = H − 4
3
μfr and where the coefficients H , C and M are defined in (126)–(128).

Finally, we add to this set of equations the expression for the relative change in porosity:

� ln φ = −us · ∇ ln φ +

[

(1 − φ)κ f − κ f κfr/κs

φκs + (1 − φ)κ f − κfrκ f /κs

]

[(κs/κ f )∇ · us − ∇ · u f − (u f − us) · ∇ ln φ]. (177)

Given the explicit expression for the change in porosity (177), we may now use (39) and (41) to obtain the corresponding changes in the solid

and fluid densities induced by the motions:

� ln ρs = −� ln(1 − φ) − us · ∇ ln(1 − φ) − ∇ · us − us · ∇ ln ρs, (178)

� ln ρ f = −� ln φ − u f · ∇ ln φ − ∇ · u f − u f · ∇ ln ρ f . (179)

If the background density and porosity are constant, the changes in porosity (177), solid density (178) and fluid density (179) reduce to

� ln φ =

[

(1 − φ)κ f − κ f κfr/κs

φκs + (1 − φ)κ f − κfrκ f /κs

]

[(κs/κ f )∇ · us − ∇ · u f ], (180)

� ln ρs =
φ

1 − φ
� ln φ − ∇ · us, (181)

� ln ρ f = −� ln φ − ∇ · u f . (182)
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1 0 D I L ATAT I O NA L A N D RO TAT I O NA L WAV E S P E E D S

In this section, we determine the dilatational and rotational wave speeds in terms of the properties of a homogeneous porous medium. The

results in this section demonstrate the existence of two compressional waves, a fast and a slow P wave, plus a shear wave. In subsequent

benchmarks against semi-analytical reference solutions, we will see numerous examples of the propagation and interaction of all three types

of waves.

In the system (us, w), we recall that the equations of motion for the solid and for the fluid relative to the solid are

(ρ − φρ f /c)∂2
t us = ∇ · T −

φ

c
∇ · T f +

φ

c
b(t) ∗ ∂t w, (183)

ρ f cρ − φρ2
f

φρ
∂2

t w = ∇ · T f −
ρ f

ρ
∇ · T − b(t) ∗ ∂t w, (184)

with

T = (B∇us + C∇ · w) I + 2μfr(t) ∗ ds, (185)

T f = (C∇ · us + M∇ · w) I. (186)

Note that since we are considering homogeneous, isotropic properties, the permeability is a simple scalar, k = k I, and thus we only need to

consider a scalar viscous relaxation function

b(t) = η f k−1

[

1 −

L ′
∑

ℓ=1

(1 − θ ǫℓ/θσℓ) exp(−t/θσℓ)

]

H (t). (187)

We now introduce the classic decomposition of the displacements in terms of their dilatational and rotational components by using the

operations div and curl, such that

∇ · us = e, (188)

∇ × us = �, (189)

∇ · w = ς (190)

and

∇ × w = ψ . (191)

The equations governing the propagation of dilatational and rotational waves are obtained by applying the divergence and curl operations,

respectively, to (183) and (184).

10.1 Dilatational wave propagation

Applying the divergence operation to (183) and (184), using the definitions (185) and (186), and assuming constant material properties yields

(ρ − φρ f /c)∂2
t e = ∇

2

{[

B +
4

3
μfr(t)

]

e + Cς

}

−
φ

c
∇

2(Ce + Mς ) +
φ

c
b(t) ∗ ∂tς, (192)

ρ f cρ − φρ2
f

φρ
∂2

t ς = ∇
2(Ce + Mς ) −

ρ f

ρ
∇

2

[(

B +
4

3
μfr(t)

)

e + Cς

]

− b(t) ∗ ∂tς. (193)

Assuming plane wave propagation in the x direction, the solutions to these equations are written as

e = A1 exp[i(lx + ωt)], (194)

and

ς = A2 exp[i(lx + ωt)], (195)

where ω denotes the real angular frequency, l the complex wavenumber and z p = ω/l the complex speed. The frequency-domain viscous

operator b(ω) has the form (Carcione 2007)

b(ω) = η f k−1

[

1 − L ′ +

L ′
∑

ℓ=1

(

1 + iωθ ǫℓ

1 + iωθσℓ

)

]

(196)

and the frequency domain shear modulus has the form (Carcione et al. 1988a)

μfr(ω) = μR
fr

[

1 − L +

L
∑

ℓ=1

(

1 + iωτ ǫℓ

1 + iωτ σℓ

)

]

. (197)
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Upon substituting (194) and (195) in (192) and (193), we obtain

(ρ − φρ f /c)A1ω
2 =

[

B +
4

3
μfr(ω)

]

A1l2 + C A2l2 −
φ

c
(C A1l2 + M A2l2) − i

φ

c
b(ω)A2ω (198)

and

ρ f cρ − φρ2
f

φρ
A2ω

2 = C A1l2 + M A2l2 −
ρ f

ρ

{[

B +
4

3
μfr(ω)

]

A1l2 + C A2l2

}

+ ib(ω)A2ω. (199)

Eliminating A1 and A2 gives an equation for the speed, z p:
[

ρ −
φρ f

c
+ i

b(ω)

ω

φρ

cρ f

]

z4
p −

{[

B +
4

3
μfr(ω)

]

+ M
φρ

cρ f

−
2φ

c
C + i

b(ω)

ω

φ

cρ f

[

B +
4

3
μfr(ω)

]}

z2
p

+
φ

cρ f

{[

B +
4

3
μfr(ω)

]

M − C2

}

= 0. (200)

This equation has two complex roots:

z2
p =

{

B + 4
3
μfr(ω) + M φρ

cρ f
−

2φ

c
C + i

b(ω)

ω

φ

cρ f

[

B + 4
3
μfr(ω)

]

}

2
[

ρ −
φρ f

c
+ i

b(ω)

ω

φρ

cρ f

]

±

√

{

B + 4
3
μfr(ω) + M φρ

cρ f
−

2φ

c
C + i

b(ω)

ω

φ

cρ f

[

B + 4
3
μfr(ω)

]

}2

− 4
[

ρ −
φρ f

c
+ i

b(ω)

ω

φρ

cρ f

]

φ

cρ f

{[

B + 4
3
μfr(ω)

]

M − C2
}

2
[

ρ −
φρ f

c
+ i

b(ω)

ω

φρ

cρ f

] .

(201)

We denote these two roots z pI and z pII, with z pI > z pII. They correspond to the complex wave speeds associated with a fast dilatational P

wave when the solid and the fluid move in-phase, and a slow dilatation P wave when the solid and the fluid move out-of-phase (Biot 1956a;

Carcione 2007).

The phase speeds of the fast and slow dilatational P waves are defined as the angular frequency, ω, divided by the real part of the complex

wavenumber, l, that is,

cpI =
[

Re(z−1
pI )
]−1

, cpII =
[

Re
(

z−1
pII

)]−1
. (202)

The corresponding inverse quality factors are defined as

Q−1
pI =

Im(z2
pI)

Re(z2
pI)

, Q−1
pII =

Im(z2
pII)

Re(z2
pII)

. (203)

At this point we compare our expressions for the dilatational phase speeds and quality factors with those derived by Carcione &

Quiroga-Goode (1996) in the case of a poroacoustic medium (i.e. μfr = 0), considering a porosity φ = 0.3, a viscosity η f = 0.001 Pa s, and a

homogeneous permeability k = 1 × 10−10 m2 ( f c = 452 kHz). The remaining properties are summarized in Table 2. Figs 3(1) and (2) show

the phase speeds and inverse quality factors, respectively, of the fast P and slow P waves as a function of frequency using the low-frequency

theory, that is, b is defined by (147). We find good agreement between our formulation and that of Carcione & Quiroga-Goode (1996). Note

the diffusive behaviour and quasi-static character of the slow P wave at low-frequencies, when the wave is highly attenuated due to viscous

damping.

Finally, note that in the absence of viscosity, that is, when η f = 0, the fast and slow dilatational wave speeds are determined by

c2
p =

[

B + 4
3
μfr(ω) + M φρ

cρ f
−

2φ

c
C
]

2
(

ρ −
φρ f

c

)

±

√

[

B + 4
3
μfr(ω) + M φρ

cρ f
−

2φ

c
C
]2

− 4
(

ρ −
φρ f

c

)

φ

cρ f

{[

B + 4
3
μfr(ω)

]

M − C2
}

2
(

ρ −
φρ f

c

) . (204)

10.2 Rotational wave propagation

Applying the curl operation to (183) and (184) and assuming constant material properties yields

(ρ − φρ f /c)∂2
t � = μfr(t) ∗ ∇2� +

φ

c
b(t) ∗ ∂tψ, (205)

ρ f cρ − φρ2
f

φρ
∂2

t ψ = −
ρ f

ρ
μfr(t) ∗ ∇2� − b(t) ∗ ∂tψ . (206)
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Figure 3. (1) Dilatational phase speeds and (2) inverse quality factors of the fast and slow P waves as a function of frequency using the low-frequency theory

(i.e. b is defined by 147). The vertical dashed line is the characteristic frequency, f c , which indicates the upper limit for the validity of the low-frequency

theory. Our formulation is in good agreement with that of Carcione & Quiroga-Goode (1996). Note the diffusive behaviour and quasi-static character of the

slow P wave at low-frequencies, when the wave is highly attenuated due to viscous damping.

Without loss of generality, we write the solutions of these equations for plane wave propagation in the x direction as

� = B1 exp[i(lx + ωt)], (207)

and

ψ = B2 exp[i(lx + ωt)], (208)

where the complex speed of these waves is z s = ω/l.

Upon substituting (207) and (208) in (205) and (206), we obtain

(ρ − φρ f /c)B1ω
2 = μfr(ω)l2 B1 − i

φ

c
b(ω)B2ω (209)

and

ρ f cρ − φρ2
f

φρ
B2ω

2 = −
ρ f

ρ
μfr(ω)l2 B1 + ib(ω)B2ω. (210)

Eliminating B1 and B2 gives an equation for the complex speed, z s , which after simplification may be expressed as:

z2
s =

μfr(ω)

ρ −
φρ f

c

+

φρ f

cρ

b(ω)

ω

[

i
ρ f cρ−φρ2

f

φρ
+

b(ω)

ω

]

μfr(ω)

(

ρ f cρ−φρ2
f

φρ

)2

+
[

b(ω)

ω

]2
. (211)

We thus note the presence of only one type of shear wave, with phase speed

cs =
[

Re
(

z−1
s

)]−1
, (212)

and inverse quality factor

Q−1
s =

Im(z2
s )

Re(z2
s )

. (213)

In the absence of viscosity, when η f = 0, we have

c2
s =

μfr(ω)

ρ − φρ f /c
. (214)

Finally, note also the relation between the solid rotation, �, and the fluid rotation relative to the solid, ψ :

ψ = −
φ

c
�. (215)
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10.3 Practical considerations

In practice, one may have experimental data that determine the wave speeds c pI, c pII and cs and the inverse quality factors Q−1
pI , Q−1

pII and Q−1
s

as a function of frequency. From a numerical perspective, this frequency dependence may be captured by prescribing the appropriate stress

and strain relaxation times θ ǫℓ and θσℓ for the viscous operator b(ω) in (196), and the stress and strain relaxation times τ ǫℓ and τ σℓ for the

frame shear modulus in (197). This is similar to the determination of the stress and strain relaxation times needed to fit an absorption band

solid for anelastic problems (see e.g. Komatitsch & Tromp 1999).

1 1 D I S C R E T I Z AT I O N

In the following, we first seek to establish the weak form of the governing equations. Subsequently, we determine the spatial discretization

of this variational problem using a SEM (Komatitsch 1997; Komatitsch & Tromp 1999). Finally, we discuss the assembly stage and time

marching. We will see that we obtain a diagonal mass matrix, which implies that the SEM provides the same numerical benefits for simulations

of poroelastic wave propagation as it does for acoustic and elastic problems.

To avoid mathematical complications, we do not incorporate attenuation and frequency-dependent viscous processes in the discretization

that follows. But as discussed in previous sections, these effects may be readily accommodated based upon a simple memory variable approach

(see e.g. Komatitsch & Tromp 1999, 2002; Carcione 1993, 2007).

11.1 Weak form

We consider the set of equations in terms of us and w, which naturally takes into account gradients in porosity, with an explicit source term:

ρ∂2
t us + ρ f ∂

2
t w = ∇ · T + f, (216)

m∂2
t w + ρ f ∂

2
t us + η f k−1 · ∂t w = ∇ · T f + f, (217)

where we have introduced the following constitutive relationships for an isotropic medium

T = G :∇us + C∇ · w I, (218)

and

T f = −p f I = (C∇ · us + M∇ · w) I. (219)

For convenience we have defined a tensor G whose elements are

G i jkl = (H − 2μfr)δi jδkl + μfr(δikδ jl + δilδ jk). (220)

This choice allows us to avoid cumbersome notation and has the additional benefit of naturally extending the theory to more general anisotropic

problems.

The macroscopic source term f excites the wave motion and is linearly partitioned between the solid and the fluid phase assuming a

uniform distribution of the force within the porous medium. In the context of an earthquake, it is written in terms of a moment tensor M, as

(e.g. Dahlen & Tromp 1998)

f = −M · ∇δ(x − xs)S(t), (221)

where xs refers to the point source location, δ(x −xs) is the Dirac delta distribution located at xs and S(t) is the source time function.

We write (216) and (217) in a weak form by dotting each equation with arbitrary test vectors ũ and w̃, respectively, and integrating over

the model volume �:
∫

�

ρũ · ∂2
t us d3x +

∫

�

ρ f ũ · ∂2
t w d3x =

∫

�

ũ :∇T d3x +

∫

�

ũ · f d3x, (222)

∫

�

mw̃ · ∂2
t w d3x +

∫

�

ρ f w̃ · ∂2
t us d3x +

∫

�

η f w̃ · (k−1 · ∂t w) d3x =

∫

�

w̃ :∇T f d3x +

∫

�

w̃ · f d3x. (223)

Integrating by parts and replacing the source by its explicit expression (221) yields
∫

�

ρũ · ∂2
t us d3x +

∫

�

ρ f ũ · ∂2
t w d3x = −

∫

�

∇ũ :T d3x +

∫

Ŵ

n̂ · T · ũ d2x + M :∇ũ(xs)S(t), (224)

∫

�

mw̃ · ∂2
t w d3x +

∫

�

ρ f w̃ · ∂2
t us d3x +

∫

�

η f w̃ · (k−1 · ∂t w) d3x = −

∫

�

∇w̃ :T f d3x

+

∫

Ŵ

n̂ · T f · w̃ d2x + M :∇w̃(xs)S(t), (225)

where Ŵ is comprised of the free surface, the interfaces between acoustic–poroelastic, elastic-poroelastic and poroelastic–poroelastic domains,

and the absorbing boundaries. Note that this definition of the surface Ŵ explicitly allows for first-order discontinuities in the model parameters,

including the porosity. (224) and (225) represent the basis for the discretization of our problem developed in the following sections.
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11.2 Assembly and temporal discretization

Details of the SEM discretization may be found in Komatitsch & Vilotte (1998), Komatitsch & Tromp (1999) and Komatitsch et al. (2005).

Integration at the elemental level of (224) and (225) leads to a set of mass and stiffness matrices and source vectors similar to the elastic case.

In addition, we define a damping matrix which involves the viscous damping force present in (225). Detailed expressions for the mass and

damping matrices may be found in Appendix B. One should note that, similar to the elastic case, the mass matrices are diagonal.

We need to distinguish between the ‘local mesh’ of GLL integration and interpolation points defining one element (using as four indices

the three GLL labels α, β and γ plus an element label �e), and the ‘global mesh’ of all the gridpoints of the system (using a single index I).

We also need to take into account the fact that integration points which lie on the sides, edges, or corners of an element are shared amongst

neighbouring elements. Let us denote the mapping between the local mesh and the global mesh as

(α, β, γ,�e) → (I ). (226)

The contributions from all elements which share a global gridpoint need to be summed. This process is referred to as the ‘assembly’ of the

system, and routines used to perform this task are available from FEM modelling. If we use U to denote the solid displacement vector of the

global system and W to denote the relative fluid displacement vector of the global system (i.e. U and W contain the displacement vectors at

all the gridpoints in the global mesh), the discretized set of equations may be written in the form

M1Ü + M2Ẅ + K1U + K2W = F (227)

for the solid, and

M3Ẅ + M4Ü + DẆ + K3W + K4U = F (228)

for the fluid, where M1, M2, M3 and M4 are the global diagonal mass matrices; K1, K2, K3 and K4 are the global stiffness matrices; D is the

global damping matrix and F is the global source vector. Note that, because we choose the same test vectors, ũ and w̃, for the solid part and

for the fluid part, respectively, M4 = M2 and K4 = K2. Using basic matrix algebra, (227) and (228) may be further rewritten as
[

Ms 0

0 M f

][

Ü

Ẅ

]

+

[

0 Ds

0 D f

][

U̇

Ẇ

]

+

[

Ks
s Ks

f

K f
s K

f

f

][

U

W

]

=

[

Fs

F f

]

, (229)

where

Ms = M1 − M2M−1
3 M2, M f = M3 − M2M−1

1 M2, (230)

Ds = −M2M−1
3 D, D f = D, (231)

Ks
s = K1 − M2M−1

3 K2, Ks
f = K2 − M2M−1

3 K3, K f
s = K2 − M2M−1

1 K1, K
f

f = K3 − M2M−1
1 K2, (232)

Fs = F − M2M−1
3 F, F f = F − M2M−1

1 F. (233)

Detailed expressions for the corresponding matrix elements at the global level may be found in Appendix C. The critical observation is that

the global mass matrices Ms and M f are diagonal.

Because the system (229) is diagonal, it may be solved based upon a simple explicit time marching scheme. We use a Newmark

scheme (e.g. Hughes 1987) implemented using a predictor/multicorrection technique. (C17) and (C18) provide the formulae to compute the

acceleration at any given time. The predictor phase at the beginning of each time step �t is given by

dn+1 = dn + vn�t +
1

2
an(�t)2, (234)

vn+1 = vn +
1

2
an�t, (235)

an+1 = 0, (236)

where d is the displacement, v the velocity and a the acceleration. The corrector phase at the end of each time step is given by

an+1 = M−1RHS, (237)

vn+1 = vn+1 +
1

2
an+1�t, (238)

dn+1 = dn+1. (239)

1 2 B O U N DA RY C O N D I T I O N S

The top surface of our model is a free surface, such that in the weak formulation the integral of the traction along this boundary vanishes.

We need to absorb the outgoing waves at the edges of our computational domain in order to avoid artificial reflections and to simulate an

unbounded medium. To that end, we use classical first-order absorbing boundary conditions based upon a paraxial approximation (Clayton &
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Figure 4. 2-D spectral-element simulation of wave propagation in a homogeneous porous medium whose properties are summarized in Table 1. The domain

dimensions are 1000 m × 1000 m, the explosive source with a dominant frequency of 30 Hz (yellow cross) is located at xs = (500, 300) and the receiver (yellow

circle) at xr = (600, 400). The top boundary is a free surface and the remaining three edges are absorbing boundaries. (1) Snapshot of the vertical-component

macroscopic solid displacement us at t = 0.12 s. The fast P (a) and slow P (b) waves may be observed. (2) Comparison of the vertical-component velocity

synthetic seismograms (solid black line) to the Dai et al. (1995) analytical solution (dashed red line), and their difference multiplied by a factor of 5 (dashed

black line). We have also noted the RMS misfit between the analytical solution and the SEM simulation, as we will do for all such comparisons in this paper.

Table 1. Poroelastic medium properties.

Variable name Symbol Unit Value

Solid density ρ s kg m−3 2650

Fluid density ρ f kg m−3 880

Porosity φ – 0.1

Tortuosity c – 2

Solid bulk modulus κ s GPa 12.2

Fluid bulk modulus κ f GPa 1.985

Frame bulk modulus κ fr GPa 9.6

Fluid viscosity η f Pa s 0

Frame shear modulus μfr GPa 5.1

Fast P wave c pI m s−1 2639

Slow P wave c pII m s−1 961

S wave cs m s−1 1449

Engquist 1977; Engquist & Majda 1977). The associated conditions for the tractions are

t = ρ̄cpI(∂t us · n̂)n̂ + ρ f cpII(∂t w · n̂)n̂ + (ρ̄ − ρ f φ/c)cs(I − n̂n̂) · ∂t us, (240)

and

t f = ρ f c/φcpII(∂t w · n̂)n̂ + ρ f cpI(∂t us · n̂)n̂. (241)

Note that recent studies have started to adopt the perfectly matched layer (PML) methodology, first introduced for electromagnetic waves

(Berenger 1994), to problems of poroelastic wave propagation (Zeng & Liu 2001b; Zeng et al. 2001; Martin et al. 2007). The PML

implementation is not included in this paper but will be addressed in the near future. The boundary conditions related to domain heterogeneity

(acoustic–poroelastic, poroelastic–elastic and poroelastic–poroelastic) are dealt with based upon domain decomposition, and are further

discussed as they arise in subsequent sections.

1 3 2 - D B E N C H M A R K S

In the following sections, we validate our implementation of poroelastic wave propagation for various 2-D models. Wave speeds in the models

may be calculated based upon the results presented in Section 10. In Section 13.1, we perform a series of tests involving wave propagation

in a simple homogeneous poroelastic medium. Section 13.1.1 treats propagation in the high-frequency regime for an inviscid fluid. Our SEM

solution is compared to an analytical solution derived by Dai et al. (1995). The stability and accuracy of the implementation are further
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Figure 5. 2-D spectral-element simulation of wave propagation in a homogeneous porous medium whose properties are summarized in Table 1. The domain

dimensions are 1000 m × 1000 m, the explosive source with a dominant frequency of 30 Hz (yellow cross) is located at xs = (500, 300) and the receiver (yellow

circle) at xr = (600, 400). The top boundary is a free surface and the remaining three edges are absorbing boundaries. Snapshot of the vertical-component

displacement at t = 0.12 s for (1) a reference model using a regular mesh, and (2) the same model with a randomly perturbed mesh (Courtesy of Dimitri

Komatitsch). The fast P (a) and slow P (b) waves may be observed. (3) Comparison of the vertical- and horizontal-component velocity synthetic seismograms

(regular mesh: solid black line, perturbed mesh: dashed red line).

illustrated in Section 13.1.2, where we present results for the same problem using a randomly deformed mesh. Sections 13.1.3 and 13.1.4

highlight viscous damping phenomena in the low- and high-frequency regimes, where we compare our SEM solutions to analytical solutions

derived by Carcione & Quiroga-Goode (1996). In Section 13.2, we focus on coupling between acoustic and poroelastic waves. Finally, in

Section 13.3 we deal with porosity discontinuities, and in Section 13.4 we discuss the coupling between poroelastic and elastic waves.

All of the numerical experiments are performed using Lagrange polynomials of degree 4, resulting in 25 GLL points in each element.

In order to maintain stability and accuracy, we prescribe a minimum of 5 gridpoints per shortest wavelength and a Courant stability number

less than 0.4.

13.1 Homogeneous porous media

13.1.1 Analytical solution: high-frequency, inviscid fluid

In order to validate our formulation, we consider a homogeneous poroelastic medium subjected to an explosion with a Gaussian source time

function with a dominant frequency of 30 Hz. For an inviscid fluid (η f = 0), we compare the numerical solution obtained based upon our

SEM to the analytical solution derived by Dai et al. (1995). The model setup is displayed in Fig. 4(1). The poroelastic medium properties are

summarized in Table 1. The vertical-component velocity seismograms obtained with the SEM and the analytical solution are compared in

Fig. 4(2). The difference between the two results enhanced by a factor of 5 is also plotted, which illustrates the excellent agreement between

the SEM and the analytical solution for both the fast and the slow P waves. This is further confirmed by the RMS misfit between the SEM

solution and the analytical solution, as indicated in Fig. 4(2). In what follows, we will indicate this misfit for all benchmarks against analytical

solutions.
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Table 2. Poroacoustic medium properties.

Variable name Symbol Unit Value

Solid density ρ s kg m−3 2650

Fluid density ρ f kg m−3 880

Porosity φ – 0.3

Tortuosity c – 1.2

Solid bulk modulus κ s GPa 12.2

Fluid bulk modulus κ f GPa 1.985

Frame bulk modulus κ fr GPa 9.6

Fluid viscosity η f Pa s 0 (0.001)

Permeability k m2 10−10

Fast P wave c pI m s−1 2250 (2163)a (2250)b,c

Slow P wave c pII m s−1 1403 (476)a (1403)b,c

Note: For further details see the text in Sections 13.1.3 and 13.1.4.
aViscous model in the low-frequency regime.
bViscous model in the high-frequency regime using a frequency-dependent

viscous correction.
cViscous model in the high-frequency regime using low-frequency Biot theory.

13.1.2 Randomly perturbed mesh

In this Section we show that our implementation remains accurate even when using deformed meshes. To that end, we consider the same

problem as in Section 13.1.1, but this time we employ a randomly perturbed mesh (regular mesh: Fig. 5(1), perturbed mesh: Fig. 5(2)).

The perturbed mesh is obtained by randomly stretching the position of the mesh points compared to their origin (i.e. the regular mesh)

from 0 ± 1.1 m (which corresponds to ±20 per cent of the element length) in the x and z directions. Comparison of the vertical- and

horizontal-component velocity synthetic seismograms confirms the accuracy and stability of our implementation. Note that the RMS misfit

for the randomly perturbed mesh is only slightly larger than for the regular mesh.

13.1.3 Analytical solution: low-frequency, viscous fluid

To investigate low-frequency poroelastic wave propagation involving a viscous fluid, we use a model setup similar to that in Section 13.1.1

(Fig. 4(1)). In this case, however, the source–receiver distance is 666 m, and we use a Ricker wavelet source time function with a dominant

frequency of 30 Hz. First, we compare wave propagation two models (Model A is viscous and Model B is inviscid) to illustrate the effects

of viscous damping as discussed in Section 8.3. Next, we compare our viscous simulation to an analytical solution derived by Carcione

& Quiroga-Goode (1996) for a poroacoustic problem, which implies that there is no shear deformation (i.e. μfr is taken to be zero). The

properties of the poroacoustic medium are summarized in Table 2.

Model A is viscous with a viscosity η f = 0.001 Pa s and an isotropic permeability k = 10−10m2 ( f c = 452 Hz (151)), whereas the fluid

in Model B is inviscid. Results for the two models are displayed in Figs 6(1) and (2), where we plot the solid and fluid pressures, respectively.

The slow P wave is highly attenuated in Model A and exhibits diffusive behaviour, in agreement with the theory (Biot 1956a; Carcione &

Quiroga-Goode 1996). In inviscid Model B the slow P wave is observed. Note the difference in the fast P wave traveltimes, as predicted by

the analytical solution for the dilatational wave speeds in Section 10.1.

Figs 6(3) and (4) show a comparison between SEM synthetics for viscous Model A and the analytical solution derived by Carcione &

Quiroga-Goode (1996), which are in good agreement. The spectral-element mesh consists of 300 × 260 elements, the time step is 1.25 ×

10−4 s, and the total number of time steps is 6000. A challenge when dealing with wave propagation in a porous medium in the low-frequency

regime is to find a stable numerical scheme that captures the diffusive behaviour of the slow P wave. Frequently, explicit time schemes

encounter numerical stability issues, which has led to the development of alternative techniques (e.g. Discontinuous Galerking Methods, see

de la Puente et al. 2007). The good agreement between the SEM solution for viscous Model A and the analytical solution demonstrates the

stability and accuracy of our approach, which is based upon a predictor/corrector explicit time scheme and classical SEM stability criteria

(Komatitsch & Vilotte 1998).

13.1.4 Analytical solution: high-frequency, viscous fluid

To address high-frequency poroelastic wave propagation involving a viscous fluid, we use a similar setup as in the previous section. The

properties of the poroacoustic medium are similar to viscous Model A used in Section 13.1.3 (see Table 2). However in this case, in order to

shift the simulation to the high-frequency regime, we use a Ricker wavelet source time function with a dominant frequency of 106 Hz and a

source–receiver distance of 0.21 m. To address the change in fluid flow regime at high frequencies as described by Biot (1956b), we use the

frequency-dependent correction discussed in Section 8.3.2

First, we show solid and fluid pressure seismograms in Figs 7(1) and (2), respectively, comparing results obtained using frequency-

dependent viscous resistance with low-frequency Biot theory (i.e. b is still given by (147), the appropriate expression for Poiseuille flow). In
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Figure 6. (1) Solid pressure and (2) fluid pressure seismograms obtained for viscous Model A in the low-frequency regime (black line; using a viscosity

η f = 0.001 Pa s and an isotropic permeability k = 10−10 m2, see Table 2) and inviscid Model B (red line; see Table 2). The explosive source has a dominant

frequency of 30 Hz and the source–receiver distance is 666 m. The slow P wave (b) is highly attenuated due to viscous damping in Model A. Comparison of (3)

solid pressure and (4) fluid pressure obtained for Model A (black line) with an analytical solution derived by Carcione & Quiroga-Goode (1996) (red dashed

line).

the high-frequency domain, the slow P wave exhibits propagative behaviour. Frequency-dependent viscous resistance leads to attenuation of

both the fast and slow P waves compared to low-frequency Biot theory. The attenuation is stronger for the slow P wave in the fluid. Note that

the fast P wave in the solid is in-phase with respect to the fast P wave in the fluid, whereas the slow P waves are out-of-phase, as predicted by

the theory. Finally, Figs 7(3) and (4) demonstrate good agreement between the frequency-dependent viscous SEM simulation and an analytical

solution derived by Carcione & Quiroga-Goode (1996) using the frequency-domain viscous operator b(w) defined in (196).

13.2 Coupling between acoustic and poroelastic waves

In this section we recall the equation of motion for acoustic waves and discuss coupling between an acoustic and a poroelastic medium, before

presenting an application.

13.2.1 Acoustic wave equation

To describe wave propagation in an inviscid fluid, we use the formulation introduced by Chaljub & Valette (2004) and Komatitsch et al.

(2005):

ρa∂
2
t χa = κ∇

2χa, (242)

where the acoustic fluid displacement, ua , is expressed in terms of a scalar potential, χ a , as ua = ∇χ a , and the acoustic pressure pa is defined

by pa = −ρ a∂
2
t χ a . Multiplying (242) with an arbitrary test vector χ̃a and integrating by parts yields

∫

�

ρa

κ
χ̃a ∂2

t χa d3x = −

∫

�

∇χ̃a · ∇χa d3x +

∫

Ŵ

χ̃a n̂ · ∇χa d2x. (243)
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Figure 7. Pressure seismograms obtained using a viscosity η f = 0.001 Pa s and an isotropic permeability k = 10−10 m2 (Table 2). The explosive source has a

dominant frequency of 106 Hz, thus shifting the experiment to the high frequency regime ( f c = 452 Hz). The source–receiver distance is 0.21 m. Comparison

of (1) the solid pressure and (2) the fluid pressure using the frequency-dependent viscous resistance described in Section 8.3.2 (black line; θ ǫ = 3.84 × 10−4

s and θσ = 6.59 × 10−5 s) and Biot low-frequency theory (red line; b is given by (147)). Compared to Biot low-frequency theory, the frequency-dependent

viscous resistance leads to attenuation of both the fast P (a) and slow P (b) waves. Note that the effect is more significant for the slow P wave in the fluid phase.

Comparison of (3) the solid pressure and (4) the fluid pressure using frequency-dependent viscous resistance (black line) to the analytical solution derived by

Carcione & Quiroga-Goode (1996) (red dashed line).

The kinematic boundary condition at the acoustic–poroelastic interface involves free slip, so only the normal component of displacement,

n̂ · ua = n̂ · ∇χa , needs to be continuous across the interface. Thus, the second integral on the right-hand side in (224) is replaced by
∫

Ŵ

n̂ · T · ũ d2x = −

∫

Ŵ

pa n̂ · ũ d2x, (244)

and the second integral on the right hand side in (225) by
∫

Ŵ

n̂ · T f · w̃ d2x = −

∫

Ŵ

pa n̂ · w̃ d2x, (245)

that is, we exchange the tractions between the fluid and the poroelastic medium at their common interface. Finally, feedback from the

poroelastic medium to the fluid is accommodated by replacing the second integral on the right hand side of (243) by
∫

Ŵ

χ̃a n̂ · ∇χa d2x =

∫

Ŵ

χ̃a n̂ · [(1 − φ)us + φu f ] d2x =

∫

Ŵ

χ̃a n̂ · (us + w) d2x, (246)

thus exchanging the normal component of displacement between the fluid and the poroelastic medium.

13.2.2 Coupled acoustic and poroelastic waves

In this section, we consider a model with an acoustic layer (inviscid fluid, η f = 0) on top of a homogeneous poroelastic layer. The model

domain is 4800 m × 4800 m. The porous medium properties are summarized in Table 3. We use a Ricker wavelet source time function (i.e.

the derivative of a Gaussian) with a dominant frequency of 15 Hz. The source is located in the acoustic domain at xs = (1600, 2900). We place

one receiver at xr1 = (2000, 2934) in the acoustic domain and a second receiver at xr2 = (2000, 1867) in the poroelastic domain (Fig. 8(1)).
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Table 3. Acoustic–poroelastic model properties.

Variable name Symbol Unit Value

Acoustic layer

Density ρ kg m−3 1020

Bulk modulus κ GPa 2.295

P wave c pI m s−1 1500

S wave cs m s−1 0

Poroelastic layer

Solid density ρ s kg m−3 2500

Fluid density ρ f kg m−3 1020

Porosity φ – 0.4

Tortuosity c – 2

Solid bulk modulus κ s GPa 16.0554

Fluid bulk modulus κ f GPa 2.295

Frame bulk modulus κ fr GPa 10.0

Fluid viscosity η f Pa s 0

Frame shear modulus μfr GPa 9.63342

Fast P wave c pI m s−1 3677

Slow P wave c pII m s−1 1060

S wave cs m s−1 2378

Table 4. Poroelastic–poroelastic model properties—homogeneous case.

Variable name Symbol Unit Value

Upper layer

Solid density ρ s kg m−3 2200

Fluid density ρ f kg m−3 950

Porosity φ – 0.4

Tortuosity c – 2

Solid bulk modulus κ s GPa 6.9

Fluid bulk modulus κ f GPa 2.0

Frame bulk modulus κ fr GPa 6.7

Fluid viscosity η f Pa s 0

Frame shear modulus μfr GPa 3.0

Fast P wave c pI m s−1 2693

Slow P wave c pII m s−1 1186

S wave cs m s−1 1410

Lower layer

Solid density ρ s kg m−3 2650

Fluid density ρ f kg m−3 750

Porosity φ – 0.2

Tortuosity c – 2

Solid bulk modulus κ s GPa 6.9

Fluid bulk modulus κ f GPa 2.0

Frame bulk modulus κ fr GPa 6.7

Fluid viscosity η f Pa s 0

Frame shear modulus μfr GPa 3.0

Fast P wave c pI m s−1 2219

Slow P wave c pII m s−1 1169

S wave cs m s−1 1325

Fig. 8(2) displays SEM synthetic seismograms at the two receivers, which are compared to the analytical solution provided by Dr Julien Diaz

(University of Pau, France) (Diaz & Ezziani 2007). The RMS misfit values demonstrate that the results are in good agreement.

13.3 Heterogeneous poroelastic media

In this section we investigate wave propagation in layered porous media. First, in Section 13.3.1, we specify the boundary conditions used

to deal with porosity discontinuities. Next, in Sections 13.3.2 and 13.3.3 we present two applications. Finally, in Section 13.3.4 we discuss

differences between gradients and discontinuities in porosity.
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Figure 8. Acoustic–poroelastic simulation of wave propagation in a water layer over a homogeneous poroelastic half-space, as tabulated in Table 3. The model

dimensions are 4800 m × 4800 m, the source (yellow cross) is located at xs = (1600, 2900) and the receivers (yellow circles) at xr1 = (2000, 2934) and at

xr2 = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries. The explosive source has a Ricker wavelet source time

function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component of displacement at t = 1.00 s. We can observe the direct P (a) and the

reflected P (b) waves in the acoustic domain, while the transmitted fast P (c), the P-to-S converted (d), and the P-to-slow P converted (e) waves are clearly

visible in the poroelastic domain. (2) Vertical-component velocity seismograms at receivers 1 and 2 (SEM: solid black line, analytical solution: dashed red

line). We use domain decomposition between the fluid and the poroelastic solid as described in Section 13.2.1

13.3.1 Boundary conditions

One needs to realize that any discontinuity in porosity results in a discontinuous relative fluid displacement w = φ(u f − us). In the SEM

discretization, the assembly stage forces w to be continuous across an element boundary. Thus, simulations involving gradients in porosity

are accommodated, but discontinuities in porosity are not. In order to account for discontinuities in porosity, we use the concept of domain

decomposition in a similar manner as used for coupling acoustic and elastic domains (Chaljub & Valette 2004; Komatitsch et al. 2005). Thus,

each poroelastic domain is treated independently. Coupling is achieved by applying the principle of continuity of traction and displacement

across the interface between the two poroelastic domains. Practically, if we denote the two domains by subscripts 1 and 2, the boundary

conditions are

T
1
· n̂ = T

2
· n̂, T

1

f · n̂ = T
2

f · n̂, u1
s = u2

s , w1 = w2. (247)

13.3.2 Continuous bulk and shear moduli and a jump in porosity

We consider a two-layer poroelastic model. The properties of the two layers are summarized in Table 4. Note that the bulk and shear moduli

of the two layers are identical, whereas the porosities and densities are different. The dimensions of the domain are 4800 m × 4800 m. The
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Figure 9. Simulation of wave propagation in a model consisting of two homogeneous poroelastic layers with continuous bulk and shear moduli and

discontinuous porosities, as tabulated in Table 4. The model dimensions are 4800 m × 4800 m, the source (yellow cross) is located at xs = (1600, 2900) and the

receivers (yellow circles) at xr1 = (2000, 2934) and at xr2 = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries.

The explosive source has a Ricker wavelet source time function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component displacement at

t = 0.82 s. The direct fast P (a), the reflected fast P (b), the reflected fast P-to-S and the fast P-to-slow P converted (c) waves (which overlap because they have

similar wave speeds) may be observed in the upper layer, together with the direct slow P (d), the reflected slow P (e), the reflected slow P-to-S converted (f),

and the reflected slow P-to-fast P converted (g) waves. We also observe the reflected fast P wave due to the free surface (h). In the lower layer, the transmitted

fast P (i), fast P-to-S and fast P-to-slow P converted (j) waves (which again overlap because they have similar wave speeds) can clearly be identified, together

with the transmitted slow P and slow P-to-S converted (k) and slow P-to-fast P converted (l) waves. There are some weak spurious reflections from the

absorbing boundary at x = 0. (2) Vertical-component velocity seismograms at receivers 1 and 2 (SEM: solid black line, analytical solution: dashed red line).

We use domain composition to accommodate the first-order discontinuity in porosity in the Biot (us , w) formulation based upon the approach described in

Section 13.3.1

explosive source is located in the upper layer at xs = (1600, 2900). We place one receiver in each domain at xr1 = (2000, 2934) and xr2 =

(2000, 1867) (Fig. 9(1)). Fig. 9(2) displays SEM synthetic seismograms at the two receivers, which are compared to the analytical solution

provided by Dr Julien Diaz. As demonstrated by the RMS misfit values, the results are again in good agreement.

13.3.3 Discontinuous bulk and shear moduli and a jump in porosity

Again, we consider a two-layer poroelastic model. The properties of the layers are summarized in Table 5. Note that in this case we choose

distinct bulk and shear moduli for the two layers, and a discontinuous porosity. The dimensions of the domain are 4800 m × 4800 m.

The explosive source is located in the upper layer at xs = (1600, 2900). We place one receiver in each domain at xr1 = (2000, 2934) and

xr2 = (2000, 1867) (Fig. 10(1)). Fig. 10(2) shows the SEM synthetic seismograms at the two receivers, which are in good agreement with the

analytical solution provided by Dr Julien Diaz.
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Table 5. Poroelastic–poroelastic model properties—heterogeneous case.

Variable name Symbol Unit Value

Upper layer

Solid density ρ s kg m−3 2200

Fluid density ρ f kg m−3 950

Porosity φ – 0.4

Tortuosity c – 2

Solid bulk modulus κ s GPa 6.9

Fluid bulk modulus κ f GPa 2.0

Frame bulk modulus κ fr GPa 6.7

Fluid viscosity η f Pa s 0

Frame shear modulus μfr GPa 3.0

Fast P wave c pI m s−1 2693

Slow P wave c pII m s−1 1186

S wave cs m s−1 1410

Lower layer

Solid density ρ s kg m−3 2650

Fluid density ρ f kg m−3 750

Porosity φ – 0.2

Tortuosity c – 2

Solid bulk modulus κ s GPa 37

Fluid bulk modulus κ f GPa 1.7

Frame bulk modulus κ fr GPa 2.2

Fluid viscosity η f Pa s 0

Frame shear modulus μfr GPa 4.4

Fast P wave c pI m s−1 2535

Slow P wave c pII m s−1 744

S wave cs m s−1 1416

13.3.4 Gradient in porosity

In this section, we perform various simulations involving porosity gradients or discontinuities, as tabulated in Table 4, to highlight the

differences between the following five models:

(i) Model A: no domain decomposition, meaning we incorrectly consider w to be continuous across the porosity discontinuity (as discussed

in Section 13.3.1).

(ii) Model B: a smooth porosity gradient.

(iii) Model C: an intermediate porosity gradient.

(iv) Model D: a sharp porosity gradient.

(v) Model E: domain decomposition (as discussed in Section 13.3.2, Fig. 9).

For each of these five models, the behaviour of the porosity across the interface is displayed in Fig. 11. The dimensions of the domain are

4800 m × 4800 m. The explosive source is located in the upper layer at xs = (1600, 2900). We use a Ricker wavelet source time function

with a dominant frequency of 15 Hz. We place one receiver in each domain at xr1 = (2000, 2934) and xr2 = (2000, 1867) (Figs 12(1)–(4)).

As mentioned at the beginning of Section 13.3.1, the SEM discretization naturally accounts for porosity gradients, but not for disconti-

nuities in porosity. A comparison of seismograms for the various models (Fig. 12(5)) at receivers 1 and 2 shows that a gradient in porosity is

not the right tactic to handle a porosity discontinuity. We note the strong sensitivity to the nature of the gradient by observing the increasing

level of accuracy reached by Models B–D, as we sharpen the porosity gradient. Moreover, we have confirmation that porosity discontinuities

are not naturally taken into account by our SEM discretization of w by comparing Models A and E, that is, domain decomposition is required

to properly model a discontinuity in porosity.

13.4 Coupling between elastic and poroelastic waves

We recall the elastic wave equation and discuss the coupling with a poroelastic domain, before presenting an application.

13.4.1 Elastic wave equation

The equation of motion for an elastic medium is

ρe∂
2
t ue = ∇ · Te, (248)
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Figure 10. Simulation of wave propagation in a model consisting of two homogeneous poroelastic layers with discontinuous bulk and shear moduli and

porosities, as tabulated in Table 5. The model dimensions are 4800 m × 4800 m, the source (yellow cross) is located at xs = (1600, 2900) and the receivers

(yellow circles) at xr1 = (2000, 2934) and at xr2 = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries. The

explosive source has a Ricker wavelet source time function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component displacement at t =

0.82 s. The direct fast P (a), the reflected fast P (b), and the reflected fast P-to-S and fast P-to-slow P converted (c) waves (which overlap because they have

similar wave speeds) may be observed in the upper layer, together with the direct slow P (d), the reflected slow P (e), the reflected slow P-to-S converted (f), and

the reflected slow P-to-fast P converted (g) waves. We also observe the reflected fast P wave due to the free surface (h). In the lower layer, the transmitted fast

P (i) and fast P-to-slow P converted (j) waves may be clearly identified, together with the transmitted slow P (k), slow P-to-S converted (l) and slow P-to-fast

P converted (m) waves. Note that the transmitted fast P-to-S converted wave, which presents a low amplitude, is not visible. (2) Vertical-component velocity

seismograms at receivers 1 and 2 (SEM: solid black line, analytical solution: dashed red line). We use domain composition to accommodate the first-order

discontinuity in porosity in the Biot (us , w) formulation based upon the approach described in Section 13.3.1

with

Te = ce :∇ue, (249)

where ce is the fourth-order elastic tensor. For an isotropic material we have

ce
i jkl = (κe − 2/3μe)δi jδkl + μe(δikδ jl + δilδ jk). (250)

Here κ e denotes the bulk modulus and μe the shear modulus. Dotting (248) with an arbitrary test vector ũe and integrating by parts leads to

the following weak form:
∫

�

ρeũe · ∂2
t ue d3x = −

∫

�

∇ũe :Te d3x +

∫

Ŵ

n̂ · Te · ũe d2x. (251)

Coupling between the elastic and the poroelastic domains is achieved by imposing the following boundary conditions:

T · n̂ = Te · n̂, T f · n̂ = Te · n̂, us = ue, w = 0. (252)
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Figure 11. Various gradients in porosity used to mimic a porosity discontinuity.

13.4.2 Poroelastic–elastic coupling

We consider a poroelastic layer on top of an elastic layer; the properties of the two layers are summarized in Table 6. Note that we choose

the poroelastic upper layer properties to be identical to one of the previous models (Section 13.3.2) and that we choose the elastic lower layer

properties (bulk and shear moduli) such that the phase speeds are identical to those in the poroelastic lower layer of the same previous model

(compare Tables 4 and 6). In Section 10, we summarized expressions for the fast and slow compressional wave speeds as well as the shear

wave speed in homogeneous porous media. We recall that the compressional and shear wave speeds in a purely elastic medium, c p and cs ,

respectively, are determined by

cp =

√

√

√

√

√

κe +
4

3
μe

ρe

, cs =

√

μe

ρe

. (253)

The phase speeds displayed in Table 6 have been calculated based upon these formulae and may be compared to the values summarized

in Table 4. The dimensions of the domain are 4800 m × 4800 m. The explosive source is located in the upper (poroelastic) layer at

xs = (1600, 2900). We place one receiver in each domain at xr1 = (2000, 2934) and xr2 = (2000, 1867) (Fig. 13(1)). Fig. 13(2) displays

synthetic seismograms at the two receivers, together with the seismograms obtained for the previous model with a discontinuity in porosity

(Section 13.3.3). The results at receiver 1, located in the poroelastic upper layer, show differences in the amplitude of the various phases

between the two models, except for the direct fast and slow P waves. The results at receiver 2, located in the elastic lower layer, exhibit

equivalent arrival times but differences in amplitudes. The amplitude differences between the two simulations clearly illustrate the implications

of the distinct reflection and transmission coefficients at poroelastic–elastic and poroelastic–poroelastic interfaces.

1 4 S A M P L E A P P L I C AT I O N S

In this section, we present examples of poroelastic wave propagation in more complex media.

14.1 Compacted sedimentary layer

We consider a model with an acoustic (water) layer on top of a compacted sedimentary layer (with an exponential decrease in porosity with

depth and constant bulk and shear moduli, see Fig. 14(1)). This experiment has ingredients relevant to problems encountered in the petroleum

industry. We use a Ricker wavelet source time function with a dominant frequency of 15 Hz. We compare the results obtained based upon this

model with those obtained for the model used as a benchmark in Section 13.2.2 to highlight the effects of a porosity gradient (Fig. 14(2)).

We observe exactly the same arrival times and amplitudes at receiver 1 in the acoustic domain, while we observe clear differences at receiver

2 in the poroelastic domain. These differences highlight the effects of a porosity gradient on phase speeds (see Section 10). For a porosity

of 0.4 we have c pI = 3677 m s−1, c pII = 1060 m s−1 and cs = 2378 m s−1, whereas for a porosity of 0.1 we have c pI = 3279 m s−1, c pII =

862 m s−1 and cs = 2046 m s−1, and in the purely elastic layer c p = 3399 m s−1 and cs = 1963 m s−1. Note that because of the smoothly

vanishing porosity towards the elastic interface, the poroelastic–elastic boundary does not act as a strong reflector.

This application clearly illustrates that our spectral-element implementation of the Biot equations remains stable and valid when the

porosity vanishes. In such regions, the volumetric fluid flow per unit surface area, w, vanishes, and the Biot equations reduce to the elastic

wave equation.
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Figure 12. Simulations of wave propagation in a model consisting of two homogeneous poroelastic layers with continuous bulk and shear moduli and

discontinuous porosities, as tabulated in Table 4. The dimensions of the domain are 4800 m × 4800 m. The explosive source is located in the upper layer at

xs = (1600, 2900). We use a Ricker source time function with a dominant frequency of 15 Hz. We place one receiver in each domain at xr1 = (2000, 2934) and

xr2 = (2000, 1867). Various types of models have been designed to address a discontinuity in porosity, as shown in Fig. 11. Snapshots of the vertical-component

displacement at t = 0.82 s for (1) Model A: no domain decomposition, (2) Model B: a smooth porosity gradient, (3) Model C: an intermediate porosity

gradient, (4) Model D: a sharp porosity gradient, and Model E: domain decomposition (see Fig. 9). The direct fast P (a), the reflected fast P (b), the reflected

fast P-to-S and the fast P-to-slow P converted (c) waves (which overlap because they have similar wave speeds) may be observed in the upper layer, together

with the direct slow P (d), the reflected slow P (e), the reflected slow P-to-S converted (f), and the reflected slow P-to-fast P converted (g) waves. We also

observe the reflected fast P wave due to the free surface (h). In the lower layer, the transmitted fast P (i), fast P-to-S and fast P-to-slow P converted (j) waves

(which again overlap because they have similar wave speeds) can clearly be identified, together with the transmitted slow P and slow P-to-S converted (k) and

slow P-to-fast P converted (l) waves. (5) Vertical-component velocity seismograms at receivers 1 and 2.
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Table 6. Poroelastic–elastic model properties.

Variable name Symbol Unit Value

Poroelastic layer

Solid density ρ s kg m−3 2200

Fluid density ρ f kg m−3 950

Porosity φ – 0.4

Tortuosity c – 2

Solid bulk modulus κ s GPa 6.9

Fluid bulk modulus κ f GPa 2.0

Frame bulk modulus κ fr GPa 6.7

Fluid viscosity η f Pa s 0

Frame shear modulus μfr GPa 3.0

Fast P wave c pI m s−1 2693

Slow P wave c pII m s−1 1186

S wave cs m s−1 1410

Elastic layer

Density ρ e kg m−3 2650

Bulk modulus κ e GPa 6.845

Shear modulus μe GPa 4.652

P wave c p m s−1 2219

S wave cs m s−1 1325

Table 7. Acoustic–poroelastic model properties: buried object detection.

Variable name Symbol Unit Value

Acoustic layer

Density ρ kg m−3 1020

Bulk modulus κ GPa 2.295

P wave c pI m s−1 1500

S wave cs m s−1 0

Poroelastic layer

Solid density ρ s kg m−3 2650

Fluid density ρ f kg m−3 750

Porosity φ – 0.4 (0.14)

Tortuosity c – 2

Solid bulk modulus κ s GPa 37.0

Fluid bulk modulus κ f GPa 1.7

Frame bulk modulus κ fr GPa 2.2

Fluid viscosity η f Pa s 0

Frame shear modulus μfr GPa 6.0

Fast P wave c pI m s−1 2709 (2811)

Slow P wave c pII m s−1 923 (705)

S wave cs m s−1 1857 (1604)

Elastic buried metal object

Density ρ e kg m−3 4000

Bulk modulus κ e GPa 63.6

Shear modulus μe GPa 8

P wave c p m s−1 4309

S wave cs m s−1 1414

14.2 Buried object detection

Considerable attention has been given by military and humanitarian organizations to improving the detection and characterization of a large

variety of buried landmines and unexploded ordnance (UXO) worldwide. For example, acoustic methods have been employed for such

detection purposes (e.g. Scott et al. 2001; Zeng & Liu 2001a; Xiang & Sabatier 2003).

We designed two models to evaluate the signature of a purely elastic buried object in three types of environments:

(i) Model 1: acoustic layer on top of a poroelastic medium with a porosity gradient and no viscous damping.

(ii) Model 2: acoustic layer on top of a poroelastic medium with a porosity gradient and viscous damping (with η f = 10−3 Pas, an isotropic

permeability k = 10−12 m2, and f c = 42 kHz).

(iii) Model 3: acoustic layer on top of an elastic medium.
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Figure 13. Simulation of wave propagation in a model consisting of a homogeneous elastic layer beneath a homogeneous poroelastic layer, as tabulated in

Table 6. The model dimensions are 4800 m × 4800 m, the source (yellow cross) is located at xs = (1600, 2900) and the receivers (yellow circles) at xr1 =

(2000, 2934) and at xr2 = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries. The explosive source has a Ricker

wavelet source time function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component displacement at t = 0.82 s. The direct fast P (a), the

reflected fast P (b), and the reflected fast P-to-S (c) and fast P-to-slow P converted (c’) waves may be observed in the poroelastic domain, together with the

direct slow P (d), the reflected slow P (e), the reflected slow P-to-S converted (f), and the reflected slow P-to-fast P (g) converted waves. We also observe the

reflected fast P wave due to the free surface (h). In the elastic domain, the transmitted fast P (i) wave can clearly be identified, together with the transmitted

slow P and slow P-to-S (k) and slow P-to-fast P converted (l) waves. Note that the transmitted fast P-to-S converted wave has a low amplitude and is not

visible. (2) Vertical-component velocity seismograms at receivers 1 and 2 (poroelastic–elastic interface: solid black line, poroelastic–poroelastic discontinuity

as in Section 13.3.3: dashed red line). We use domain composition as described in Section 13.4.1.

We use a Ricker wavelet source time function with a dominant frequency of 5 kHz, that is, three orders of magnitude higher than in

previous experiments. The source is located in the acoustic domain, and we place 20 receivers close to the bottom of this domain [Figs 15(1)–

(3)]. The model dimensions are 10 × 8 m, that is, much smaller than in the previous experiments. The model geometry mimics a typical

under water landmine/UXO detection experiment (Tables 7 and 8).

The differences between synthetic seismograms for Models 1, 2 and 3 with and without the buried metal object [Fig. 15(4)] illustrate

the corresponding seismic signatures. The differential seismograms for Models 1 and 2 illustrate the impact of viscous damping on the slow

compressional waves, which are clearly suppressed in Model 2. The signature of the object in differential seismograms for elastic Model 3 is

notably different from that in the poroelastic models. Clearly, the nature of the environment in which the object is buried has an influence on

the object’s signature.
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Figure 14. Simulation of wave propagation in a water layer over a compacted sedimentary layer, as tabulated in Table 3 but with variable porosity. The model

dimensions are 4800 m × 4800 m, the source (yellow cross) is located at xs = (1600, 2900) and the receivers (yellow circles) at xr1 = (2000, 2934) and at

xr2 = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries. The explosive source has a Ricker wavelet source time

function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component displacement at t = 1.00 s. We can observe the direct P (a) and the

reflected P (b) waves in the acoustic domain, the transmitted fast P (c), the fast P-to-S (d), and the fast P-to-slow P (e) waves in the poroelastic domain. (2)

Porosity profile in the poroelastic layer. (3) Vertical-component velocity seismograms at receivers 1 and 2 (compacted sediment layer: solid black line, constant

porosity of 0.4: solid red line). We use domain composition as described in Section 13.4.1.

1 5 C O N C LU S I O N S

This paper presents a numerical implementation of poroelastic wave propagation using a SEM. The first part is dedicated to a straightforward

derivation of the main equations that govern wave propagation in a general poroelastic medium. This set of equations is derived using an

averaging principle, which accommodates the transition from the microscopic to the macroscopic scale. We pay particular attention to the

effects of gradients in porosity, and we show that the original Biot formulation naturally takes such gradients into account. The popular

equation for the ‘change in fluid content’ acquires two extra terms related to porosity gradients.

The second part of the paper deals with the numerical aspects of wave propagation in porous media. Using a spectral-element approach

one naturally obtains a diagonal mass matrix, which—as in the elastic and acoustic cases—leads to explicit time schemes that lend themselves

very well to applications on large parallel computers. Coupling between acoustic, elastic and poroelastic waves at first-order interfaces may

be accommodated based upon domain decomposition. In particular, problems involving a sharp discontinuity in porosity may be efficiently

handled in this fashion. Our spectral-element implementation compares favourably to analytical reference solutions for problems involving

acoustic–poroelastic and poroelastic–poroelastic coupling at first-order discontinuities. Gradual transitions from porous to elastic media are

stably and accurately accommodated by the method.
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Figure 15. Simulation of wave propagation in a model consisting of a water layer over a poroelastic layer (1 and 2) or an elastic layer (3) with a buried metal

object (yellow rectangle). The properties of the acoustic and poroelastic layers are summarized in Table 7, and those of the acoustic and elastic layers in Table 8,

together with the elastic metal object properties. The model dimensions are 10 m × 8 m, the source (yellow cross) is located at xs = (2.5, 4.0) and 20 receivers

(yellow circles) are evenly located between xr1 = (4.0, 3.5) and at xr20 = (8.0, 3.5). All the edges are absorbing boundaries. The explosive source has a Ricker

wavelet source time function with a dominant frequency of 5 kHz. Snapshot of the vertical-component displacement at t = 1.76 ms for (1) Model 1: porosity

gradient and no viscous damping, (2) Model 2: porosity gradient and viscous damping and (3) Model 3: elastic. We can observe the direct P (a) and the

reflected P (b) waves in the acoustic domain, the transmitted fast P (c), the P-to-S converted (d), and the fast P-to-slow P converted (e) waves in the poroelastic

domain, plus waves reflected by the elastic object (f). (4) Difference between vertical-component velocity seismograms at receivers 1-20 for Model 1 with

and without the buried metal object. These differential seismograms highlight the signature of the buried target. (5) Difference between vertical-component

velocity seismograms at receivers 1-20 for Model 2 with and without the buried metal object. (6) Difference between vertical-component velocity seismograms

at receivers 1-20 for elastic Model 3 with and without the buried metal object. We use domain composition as described in Section 13.4.1.
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Table 8. Acoustic–elastic model properties: buried object

detection.

Variable name Symbol Unit Value

Acoustic layer

Density ρ kg m−3 1020

Bulk modulus κ GPa 2.295

P wave c pI m s−1 1500

S wave cs m s−1 0

Elastic layer

Density ρ e kg m−3 2650

Bulk modulus κ e GPa 7.26

Shear modulus μe GPa 9.14

P wave c pI m s−1 2709

S wave cs m s−1 1857

Elastic buried metal object

Density ρ e kg m−3 4000

Bulk modulus κ e GPa 63.6

Shear modulus μe GPa 8

P wave c p m s−1 4309

S wave cs m s−1 1414

Future applications of the method will involve 3-D simulations of poroelastic wave propagation in complex geometrical domains. These

simulations will be of interest in the context of oil reservoir monitoring, and also for the seismic detection of landmines and unexploded

ordnance buried in compacted sediments.
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A P P E N D I X A : A LT E R NAT I V E D E R I VAT I O N O F T H E M A C RO S C O P I C I N T E R FA C I A L

S T R A I N

In this appendix, we seek to determine the interfacial strain using the principle of virtual work. To that end, we use the definition of the

potential energy per unit volume P of the poroelastic medium (98) in terms of us and u f :

2P = (1 − φ)Ts :∇us + φT f :∇u f + T f :∇φ(u f − us). (A1)

This quadratic form can also be written as

P =
∂ P

∂∇us

:∇us +
∂ P

∂∇u f

:∇u f +
∂ P

∂us

· us +
∂ P

∂u f

· u f . (A2)
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Upon comparing (A1) and (A2) we deduce that

∂ P

∂∇us

=
1

2
(1 − φ)Ts , (A3)

∂ P

∂∇u f

=
1

2
φT f , (A4)

∂ P

∂us

= −
1

2
T f · ∇φ , (A5)

∂ P

∂u f

=
1

2
T f · ∇φ . (A6)

Expecting the interfacial strain E to be a function of us, u f , ∇us and ∇u f , we can write it in the following general form

E = α1 :∇us + α2 :us∇φ + α3 :∇u f + α4 :u f ∇φ, (A7)

where α1, α2, α3 and α4 remain to be determined. We recall the constitutive relationships (48) and (51):

(1 − φ)Ts = cs :∇[(1 − φ)us] + cs :E (A8)

and

φT f = c f :∇(φu f ) − c f :E. (A9)

Since P is an exact differential, we have the following constraints:

∂2 P

∂∇u f ∂∇us

=
1

2

∂[(1 − φ)Ts]

∂∇u f

=
∂2 P

∂∇us∂∇u f

=
1

2

∂(φT f )

∂∇us

, (A10)

∂2 P

∂u f ∂us

= −
1

2

∂(T f · ∇φ)

∂u f

=
∂2 P

∂us∂u f

=
1

2

∂(T f · ∇φ)

∂us

, (A11)

∂2 P

∂∇u f ∂us

= −
1

2

∂(T f · ∇φ)

∂∇u f

=
∂2 P

∂us∂∇u f

=
1

2

∂(φT f )

∂us

, (A12)

∂2 P

∂u f ∂∇us

=
1

2

∂[(1 − φ)Ts]

∂u f

=
∂2 P

∂∇us∂u f

=
1

2

∂(T f · ∇φ)

∂∇us

. (A13)

Using the constraints (A10)–(A13) together with (A7), (A8) and (A9) it may be shown that

α2 = c−1
f :c f + φ−1c−1

s :c f :α1, (A14)

α3 = −c−1
s :c f :α1, (A15)

α4 = −φ−1c−1
s :c f :α1. (A16)

This implies that

P =
1

2
(∇us) : [(1 − φ)cs − φcs :α] : (∇us) +

1

2
(∇u f ) : [φ(c f − c f :c−1

s :c f :α)] : (∇u f )

+ (∇us) : (φc f :α) : (∇u f ) + (∇us) : (c f :α) : (u f − us)∇φ

+ (∇u f ) : (c f − c f :c−1
s :c f :α) : (u f − us)∇φ

+
1

2
φ−1(∇φ)(u f − us) : (c f − c f :c−1

s :c f :α) : (u f − us)∇φ, (A17)

and

E = −φα :∇us + c−1
s : (cs − c f :α) :us∇φ + c−1

s :c f :α : ∇(φu f ), (A18)

where we have introduced the fourth-order tensor

α = −φ−1α1. (A19)

We can now see that the result (A18) is entirely consistent with (80).

A P P E N D I X B : S PAT I A L D I S C R E T I Z AT I O N

As in a classical FEM, the mesh in the SEM involves a subdivision of the model volume � into n el non-overlapping elements �e, e =

1, . . . , n el. Each of these elements is mapped to a reference domain [−1, 1]nd (a square in 2-D, nd = 2, and a cube in 3-D, nd = 3), such

that there is a unique relationship between a point x within �e and a GLL point ξ = (ξ , η, ζ ) in the reference domain. Details regarding the

discretization may be found in Komatitsch & Tromp (1999) and Komatitsch et al. (2005). In the following we give expressions for the solid

and fluid mass matrices as well as the viscous damping matrix resulting from integration at the elemental level of (224) and (225).
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B1 Solid mass matrix

Using the spectral-element discretization scheme, the mass matrix for the skeleton part at the elemental level (224) may be integrated as
∫

�e

ρũk∂
2
t uskd3x ≈

∑

α,β,γ

ραβγ wαwβwγ J αβγ
e

∑

α′,β ′,γ ′

lα′ (ξα)lβ ′ (ηβ )lγ ′ (ζγ )
∑

α′′,β ′′,γ ′′

lα′′ (ξα)lβ ′′ (ηβ )lγ ′′ (ζγ )∂2
t u

α′′β ′′γ ′′

sk (t), (B1)

where ũ is a test vector, wα denote the weights associated with the GLL points of integration, J αβγ
e = J e(ξ α , ηβ , ζ γ ) is the Jacobian evaluated

at the GLL point (ξα, ηβ , ζγ ), ραβγ = ρ(ξα, ηβ , ζγ ) denotes the density evaluated at a GLL point, and l α is a Lagrange polynomial. Using the

property lα(ξα′ ) = δαα′ of the Lagrange polynomials, (B1) simplifies to
∫

�e

ρũk∂
2
t uskd3x ≈

∑

α,β,γ

ραβγ wαwβwγ J αβγ
e ∂2

t u
αβγ

sk (t). (B2)

Note that the term ραβγ wαwβwγ J αβγ
e is a multiplicative factor, such that the elemental mass matrix is diagonal. Note also that ρ =

(1 −φ)ρs +φρ f can vary from one gridpoint to an other, thus allowing for material gradients within an element (Komatitsch & Tromp 2002).

The second term can also be interpreted as a mass matrix, accommodating the relative acceleration of the fluid, and may be similarly

integrated as
∫

�e

ρ f ũk∂
2
t wkd3x ≈

∑

α,β,γ

ρ
αβγ

f wαwβwγ J αβγ
e ∂2

t w
αβγ

k (t), (B3)

where ρ
αβγ

f wαwβwγ J αβγ
e is a simple multiplicative factor, leading to a diagonal matrix.

B2 Fluid mass matrix

The first term on the left-hand side of (225) is a mass matrix relative to the fluid. It may be integrated as
∫

�e

mw̃k∂
2
t wkd3x ≈

∑

α,β,γ

mαβγ wαwβwγ J αβγ
e ∂2

t w
αβγ

k (t), (B4)

where mαβγ wαwβwγ J αβγ
e is again a simple multiplicative factor and m = ρ f c/φ can vary from one gridpoint to an other.

The second term on the left hand side may be interpreted as a second mass matrix relative to the skeleton and is integrated as
∫

�e

ρ f w̃k∂
2
t uskd3x ≈

∑

α,β,γ

ρ
αβγ

f wαwβwγ J αβγ
e ∂2

t u
αβγ

sk (t). (B5)

This mass matrix is also diagonal.

B3 Viscous damping matrix

The third term on the left hand side of (225) is the viscous damping force and may be diagonally integrated as
∫

�e

η f w̃k

∑

j

(k−1)k j∂tw j d
3x ≈

∑

α,β,γ

η
αβγ

f wαwβwγ J αβγ
e

∑

j

(k−1)
αβγ

k j ∂tw
αβγ

j (t). (B6)

A P P E N D I X C : G L O B A L S Y S T E M M AT R I C E S

Let us have a closer look at the global system (229) and the corresponding global system matrices (230)–(233). Denoting the elements of the

global diagonal mass matrices by M1 = [M 1(I J )], M2 = [M 2(I J )], and M3 = [M 3(I J )], we have

M1(I I ) =
∑

(α,β,γ,�e)→(I )

wαwβwγ Jeρ,

M2(I I ) =
∑

(α,β,γ,�e)→(I )

wαwβwγ Jeρ f ,

M3(I I ) =
∑

(α,β,γ,�e)→(I )

wαwβwγ Jeρ f c/φ,
(C1)

where we have omitted the indices α β γ on the Jacobian and the model parameters to avoid clutter. As a result we find

M s
(I I ) = M1(I I ) − M2

2(I I ) M
−1
3(I I ) =

∑

(α,β,γ,�e)→(I )

wαwβwγ Je

(

ρ −
φ

c
ρ f

)

,

M
f

(I I ) = M3(I I ) − M2
2(I I ) M

−1
1(I I ) =

∑

(α,β,γ,�e)→(I )

wαwβwγ Je

(

ρρ f c − φρ2
f

φρ

)

. (C2)
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Similarly, we can evaluate the elements of DDs
= DsẆ and DD

f
= D f Ẇ as

DD
s
(I ) = −

∑

(α,β,γ,�e)→(I )

φαβγ

cαβγ
η f wαwβwγ Je

∑

j

(k−1)k j∂tw j (t), (C3)

and

DD
f

(I ) =
∑

(α,β,γ,�e)→(I )

η f wαwβwγ Je

∑

j

(k−1)k j∂tw j (t). (C4)

The elements of TT s
s = Ks

sU,TT
s
f = Ks

f W,TT
f
s = K f

s U, and TT
f

f = K
f

f W are:

TT
s
s(I ) =

∑

(α,β,γ,�e)→(I )

⎡

⎣wβwγ

∑

α′

wα′ J α′βγ
e

∂lα(ξα′ )

∂ξ

∑

j

G
α′βγ

k jil

1

2
(∂i u

α′βγ

sl + ∂lu
α′βγ

si )∂ jξ

+ wαwγ

∑

β ′

wβ ′ J αβ ′γ
e

∂lβ (ξβ ′ )

∂η

∑

j

G
αβ ′γ

k jil

1

2
(∂i u

αβ ′γ

sl + ∂lu
αβ ′γ

si )∂ jη

+ wαwβ

∑

γ ′

wγ ′ J αβγ ′

e

∂lγ (ξγ ′ )

∂ζ

∑

j

G
αβγ ′

k jil

1

2
(∂i u

αβγ ′

sl + ∂lu
αβγ ′

si )∂ jζ

⎤

⎦

−
∑

(α,β,γ,�e)→(I )

φαβγ

cαβγ

⎡

⎣wβwγ

∑

α′

wα′ J α′βγ
e

∂lα(ξα′ )

∂ξ

∑

j

Cα′βγ ∂i u
α′βγ

si δk j∂ jξ

+ wαwγ

∑

β ′

wβ ′ J αβ ′γ
e

∂lβ (ξβ ′ )

∂η

∑

j

Cαβ ′γ ∂i u
αβ ′γ

si δk j∂ jη

+ wαwβ

∑

γ ′

wγ ′ J αβγ ′

e

∂lγ (ξγ ′ )

∂ζ

∑

j

Cαβγ ′

∂i u
αβγ ′

si δk j∂ jζ

⎤

⎦ ,

(C5)

TT
s
f (I ) =

∑

(α,β,γ,�e)→(I )

⎡

⎣wβwγ

∑

α′

wα′ J α′βγ
e

∂lα(ξα′ )

∂ξ

∑

j

Cα′βγ ∂iw
α′βγ

i δk j∂ jξ

+ wαwγ

∑

β ′

wβ ′ J αβ ′γ
e

∂lβ (ξβ ′ )

∂η

∑

j

Cα′βγ ∂iw
α′βγ

i δk j∂ jη

+ wαwβ

∑

γ ′

wγ ′ J αβγ ′

e

∂lγ (ξγ ′ )

∂ζ

∑

j

Cα′βγ ∂iw
α′βγ

i δk j∂ jζ

⎤

⎦

−
∑

(α,β,γ,�e)→(I )

φαβγ

cαβγ

⎡

⎣wβwγ

∑

α′

wα′ J α′βγ
e

∂lα(ξα′ )

∂ξ

∑

j

Mα′βγ ∂iw
α′βγ

i δk j∂ jξ

+ wαwγ

∑

β ′

wβ ′ J αβ ′γ
e

∂lβ (ξβ ′ )

∂η

∑

j

Mαβ ′γ ∂iw
αβ ′γ

i δk j∂ jη

+ wαwβ

∑

γ ′

wγ ′ J αβγ ′

e

∂lγ (ξγ ′ )

∂ζ

∑

j

Mαβγ ′

∂iw
αβγ ′

i δk j∂ jζ

⎤

⎦ ,

(C6)

C© 2008 The Authors, GJI, 175, 301–345

Journal compilation C© 2008 RAS



344 C. Morency and J. Tromp

TT
f

s(I ) =
∑

(α,β,γ,�e)→(I )

⎡

⎣wβwγ

∑

α′

wα′ J α′βγ
e

∂lα(ξα′ )

∂ξ

∑

j

Cα′βγ ∂i u
α′βγ

si δk j∂ jξ

+ wαwγ

∑

β ′

wβ ′ J αβ ′γ
e

∂lβ (ξβ ′ )

∂η

∑

j

Cα′βγ ∂i u
α′βγ

si δk j∂ jη

+ wαwβ

∑

γ ′

wγ ′ J αβγ ′

e

∂lγ (ξγ ′ )

∂ζ

∑

j

Cα′βγ ∂i u
α′βγ

si δk j∂ jζ

⎤

⎦

−
∑

(α,β,γ,�e)→(I )

ρ
αβγ

f

ραβγ

⎡

⎣wβwγ

∑

α′

wα′ J α′βγ
e

∂lα(ξα′ )

∂ξ

∑

j

G
α′βγ

k jil

1

2
(∂i u

α′βγ

sl + ∂lu
α′βγ

si )∂ jξ

+ wαwγ

∑

β ′

wβ ′ J αβ ′γ
e

∂lβ (ξβ ′ )

∂η

∑

j

G
αβ ′γ

k jil

1

2
(∂i u

αβ ′γ

sl + ∂lu
αβ ′γ

si )∂ jη

+ wαwβ

∑

γ ′

wγ ′ J αβγ ′

e

∂lγ (ξγ ′ )

∂ζ

∑

j

G
αβγ ′

k jil

1

2
(∂i u

αβγ ′

sl + ∂lu
αβγ ′

si )∂ jζ

⎤

⎦ , (C7)

and

TT
f

f (I ) =
∑

(α,β,γ,�e)→(I )

⎡

⎣wβwγ

∑

α′

wα′ J α′βγ
e

∂lα(ξα′ )

∂ξ

∑

j

Mα′βγ ∂iw
α′βγ

i δk j∂ jξ

+ wαwγ

∑

β ′

wβ ′ J αβ ′γ
e

∂lβ (ξβ ′ )

∂η

∑

j

Mα′βγ ∂iw
α′βγ

i δk j∂ jη

+ wαwβ

∑

γ ′

wγ ′ J αβγ ′

e

∂lγ (ξγ ′ )

∂ζ

∑

j

Mα′βγ ∂iw
α′βγ

i δk j∂ jζ

⎤

⎦

−
∑

(α,β,γ,�e)→(I )

ρ
αβγ

f

ραβγ

⎡

⎣wβwγ

∑

α′

wα′ J α′βγ
e

∂lα(ξα′ )

∂ξ

∑

j

Cα′βγ ∂iw
α′βγ

i δk j∂ jξ

+ wαwγ

∑

β ′

wβ ′ J αβ ′γ
e

∂lβ (ξβ ′ )

∂η

∑

j

Cαβ ′γ ∂iw
αβ ′γ

i δk j∂ jη

+ wαwβ

∑

γ ′

wγ ′ J αβγ ′

e

∂lγ (ξγ ′ )

∂ζ

∑

j

Cαβγ ′

∂iw
αβγ ′

i δk j∂ jζ

⎤

⎦ . (C8)

This requires knowledge of the partial derivatives of us and w at the GLL points. We have

∂i us j (x(ξα, ηβ , ζγ ), t) =

[

∑

σ

u
σβγ

s j (t)
∂lσ (ξα)

∂ξ

]

∂iξ +

[

∑

σ

u
ασγ

s j (t)
∂lσ (ηβ )

∂η

]

∂iη +

[

∑

σ

u
αβσ

s j (t)
∂lσ (ζγ )

∂ζ

]

∂iζ, (C9)

and

∂iw j (x(ξα, ηβ , ζγ ), t) =

[

∑

σ

w
σβγ

j (t)
∂lσ (ξα)

∂ξ

]

∂iξ +

[

∑

σ

w
ασγ

j (t)
∂lσ (ηβ )

∂η

]

∂iη +

[

∑

σ

w
αβσ

j (t)
∂lσ (ζγ )

∂ζ

]

∂iζ. (C10)

The elements for the source vectors are

F s
(I ) =

(

1 −
φαsβsγs

cαsβsγs

)

S(t)

nl
∑

σ,τ,ν

lσ (ξαs )lτ (ηβs )lν(ζγs )[Qστν
k1 l ′

α(ξαs )lβ (ηβs )lγ (ζγs ) + Qστν
k2 lα(ξαs )l ′

β (ηβs )lγ (ζγs )

+Qστν
k3 lα(ξαs )lβ (ηβs )l ′

γ (ζγs )], (C11)

and

F
f

(I ) =

(

1 −
ρ

αsβsγs

f

ραsβsγs

)

S(t)
∑nl

σ,τ,ν lσ (ξαs )lτ (ηβs )lν(ζγs )[Qστν
k1 l ′

α(ξαs )lβ (ηβs )lγ (ζγs ) + Qστν
k2 lα(ξαs )l ′

β (ηβs )lγ (ζγs )

+Qστν
k3 lα(ξαs )lβ (ηβs )l ′

γ (ζγs )], (C12)

where x(ξαs , ηβs , ζγs ) = xs and Qki =
∑

j Mk j∂ jξi . The system (229) thus reduces to

MsÜ = RHSs, (C13)

M f Ẅ = RHS f , (C14)

C© 2008 The Authors, GJI, 175, 301–345

Journal compilation C© 2008 RAS



Spectral-element simulations of wave propagation in porous media 345

where

RHSs
(I ) = F s

(I ) −
[

DD
s
(I ) + TT

s
s(I ) + TT

s
f (I )

]

, (C15)

RHS
f

(I ) = F
f

(I ) −
[

DD
f

(I ) + TT
f

s(I ) + TT
f

f (I )

]

. (C16)

The mass matrices being diagonal, these linear equations may be solved by simple division:

Ü(I ) = M s−1
(I I ) RHSs

(I ), (C17)

Ẅ(I ) = M
f −1

(I I ) RHS
f

(I ). (C18)
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