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Purpose: Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance
imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because
manual segmentation of such lesions is both time consuming and highly susceptible to human error
and issues of reproducibility, an automated lesion segmentation method is highly desirable. Tradi-
tional automated image segmentation methods such as boundary-based active contour (AC) models
require a strong gradient at the lesion boundary. Even when region-based terms are introduced to
an AC model, grayscale image intensities often do not allow for clear definition of foreground and
background region statistics. Thus, there is a need to find alternative image representations that might
provide (1) strong gradients at the margin of the object of interest (OOI); and (2) larger separation
between intensity distributions and region statistics for the foreground and background, which are
necessary to halt evolution of the AC model upon reaching the border of the OOI.
Methods: In this paper, the authors introduce a spectral embedding (SE) based AC (SEAC) for lesion
segmentation on breast DCE-MRI. SE, a nonlinear dimensionality reduction scheme, is applied to
the DCE time series in a voxelwise fashion to reduce several time point images to a single paramet-
ric image where every voxel is characterized by the three dominant eigenvectors. This parametric
eigenvector image (PrEIm) representation allows for better capture of image region statistics and
stronger gradients for use with a hybrid AC model, which is driven by both boundary and region in-
formation. They compare SEAC to ACs that employ fuzzy c-means (FCM) and principal component
analysis (PCA) as alternative image representations. Segmentation performance was evaluated by
boundary and region metrics as well as comparing lesion classification using morphological features
from SEAC, PCA+AC, and FCM+AC.
Results: On a cohort of 50 breast DCE-MRI studies, PrEIm yielded overall better region and
boundary-based statistics compared to the original DCE-MR image, FCM, and PCA based image
representations. Additionally, SEAC outperformed a hybrid AC applied to both PCA and FCM im-
age representations. Mean dice similarity coefficient (DSC) for SEAC was significantly better (DSC
= 0.74 ± 0.21) than FCM+AC (DSC = 0.50 ± 0.32) and similar to PCA+AC (DSC = 0.73
± 0.22). Boundary-based metrics of mean absolute difference and Hausdorff distance followed the
same trends. Of the automated segmentation methods, breast lesion classification based on morpho-
logic features derived from SEAC segmentation using a support vector machine classifier also per-
formed better (AUC = 0.67 ± 0.05; p < 0.05) than FCM+AC (AUC = 0.50 ± 0.07), and PCA+AC
(AUC = 0.49 ± 0.07).
Conclusions: In this work, we presented SEAC, an accurate, general purpose AC segmentation tool
that could be applied to any imaging domain that employs time series data. SE allows for projection
of time series data into a PrEIm representation so that every voxel is characterized by the dominant
eigenvectors, capturing the global and local time-intensity curve similarities in the data. This PrEIm
allows for the calculation of strong tensor gradients and better region statistics than the original image
intensities or alternative image representations such as PCA and FCM. The PrEIm also allows for
building a more accurate hybrid AC scheme. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4790466]
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I. BACKGROUND

Breast lesion segmentation is an important preprocessing step
in a computer aided diagnosis (CAD) framework for breast
dynamic contrast enhanced (DCE) magnetic resonance imag-
ing (MRI). Several studies have shown that quantitative mor-
phological features extracted from breast lesions are help-
ful for distinguishing between benign and malignant breast
lesions.1, 2 Typically, a radiologist’s expert delineation of
the lesion boundary is considered the gold standard for le-
sion segmentation. However, manual segmentation is noto-
riously susceptible to inter-rater variability in breast MRI
interpretation1, 3 and is extremely time consuming. For these
reasons, automated methods for lesion segmentation are war-
ranted.

Because accurate lesion segmentation is time consuming,
many groups have explored various automated segmenta-
tion methods for breast DCE-MRI.4–8 Automated lesion seg-
mentation methods for breast DCE-MRI have been explored
mostly in the context of voxelwise clustering of the data. Sz-
abo et al.4 used a voxelwise classifier that used dynamic con-
trast signal intensities in conjunction with an artificial neural
network to identify lesion areas of interest. Other researchers
who have also used voxelwise classifiers for segmentation in-
clude Twellmann et al.,5 who used the dynamic contrast sig-
nal intensities in conjunction with a support vector machine
(SVM) classifier and Chen et al.,6 who used a fuzzy c-means
(FCM) clustering scheme. Additionally, Wu et al.7 clustered
the time-series data of breast DCE-MRI using Markov ran-
dom fields. Although these voxelwise methods are reasonably
effective, most require postprocessing morphological opera-
tions such as hole-filling and dilation in order to provide a
closed contour for the lesion of interest.

An alternative to voxelwise methods are shape-based de-
formable models, most popular of which is the active contour
(AC) (Refs. 9–15) model. The theory of the AC, introduced
by Kass et al.,9 is that (1) the segmentation of any object of
interest (OOI) in an image, whose edges can be described
by a closed curve, is equivalent to the location of edges, or
sharp intensity gradients; and (2) this segmentation can be
generated by iteratively deforming a curve toward the edges
of the OOI. Traditional AC models have been typically clas-
sified as: (1) boundary based,9, 10 such as the AC described
by Kass et al.,9 or (2) region-based methods.11 However, to
use an AC model, an image representation that is conducive
to the stopping criteria of the curve evolution is necessary.
For example, boundary-based methods require strong gradi-
ents located at the boundary of the OOI to provide an effective
stopping criterion for the evolving AC model. For radiologic
imaging applications involving MRI or computed tomogra-
phy (CT) data, boundary-based methods may not be effec-
tive due to image acquisition artifacts such as partial volume
effects16, 17 and a low signal to noise ratio. These may result
in fuzziness of the object boundary, thus reducing the effec-
tiveness of the stopping criteria. Region-based methods rely
on the image statistics of foreground and background regions
in the image. A grayscale radiologic image may not provide a
large enough difference between foreground and background

image statistics to provide an effective stopping criterion for
a region-based AC. Consequently, AC methods require the
use of alternative image representations that might provide
(1) strong gradients at the margin of the OOI; and (2) larger
separation between intensity distributions and region statistics
for the foreground and the background which would allow the
AC to stop evolving at the border of the OOI.

Alternative image representations have been previously ex-
plored for noise filtering,18 image registration,19 and fuzzy
connectedness-based image segmentation.20 Nyul et al.19 em-
ployed ball-scale for multiprotocol image registration, where
ball-scale19 is a locally adaptive scale definition such that ev-
ery image voxel location is parametrized by the radius of the
largest ball that satisfies some predefined local homogeneity
criterion. Saha21 defined tensor scale (t-scale) at every spa-
tial location as the largest ellipse that satisfies some prede-
fined homogeneity criterion at that location. The t-scale based
representation has been employed in the context of image
segmentation and filtering.21, 22 A generalized scale represen-
tation introduced by Madabhushi and Udupa23 was applied
similar to bias field correction,23 noise filtering,24 and inten-
sity standardization.25 For each of these local scale notions,
transforming the data into an alternative image space allowed
for an improvement in the corresponding image processing
tasks.

Nonlinear dimensionality reduction (NLDR) methods at-
tempt to transform data from a high-dimensional space to
a more manageable, low-dimensional space representation
and can be particularly powerful in data visualization26

and classification.27–29 Spectral embedding (SE), a type of
NLDR, uses the eigenvectors corresponding to the mini-
mum eigenvalues derived from the eigenvalue decomposi-
tion of a weighted affinity matrix,30 where the affinity matrix
represents the pairwise dissimilarity between all the objects
to be classified, obtained via a Gaussian, exponential, or
polynomial kernel in the original feature space. SE also al-
lows for parametrically representing high-dimensional data
in a reduced dimensional space, and several researchers have
employed SE in the context of image partitioning30, 31 and
clustering.32 The primary hypothesis driving the work pre-
sented in this paper is that the application of SE to time se-
ries or longitudinal data might allow for better capture and
representation of both region and boundary-based statistics
compared to currently available methods. In addition, these
improved region and boundary statistics can allow for con-
struction of improved hybrid active contour schemes. To the
best of our knowledge, no attempts have been made thus far to
explore the utility of NLDR schemes to seek improved image
representations that would be amenable for use in conjunction
with an AC-based segmentation scheme.

II. PREVIOUS RELATED WORK AND MOTIVATION

The traditional AC operates on the scalar grayscale im-
age intensities. However, time series data, such as DCE-MRI,
contain multiple time points over which the image of the
lesion of interest is captured. Typically, if a traditional AC
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is used, only a single time point (usually the time point at
which the lesion maximally enhances) is used for segmenta-
tion. However, implementations of the AC model have been
developed for multidimensional images.12–15 Chan et al.13

presented an extension of the original scalar image-based
AC model applied to vector-valued images. Rousson and
Deriche14 also presented a vector-valued active contour. In a
recent application to a medical imaging problem, Xu et al.15

developed a tensor gradient-based AC for use with histopatho-
logical images by computing the gradient from vectorial im-
ages. Xu et al.15 showed that the tensor gradient more com-
pletely captured the gradient information in a multichannel
image than using a single channel of the image, yielding a
more accurate AC scheme.

SE aims to partition the data instances in a way that max-
imizes intracluster similarity while simultaneously minimiz-
ing intercluster similarity,30 and the eigenvectors are oriented
along the directions of fundamental patterns in the data. In the
context of DCE-MRI, these fundamental patterns are related
to the time-intensity curves at each voxel in the image, and the
time-intensity curves from lesion and nonlesion areas tend to
have different characteristics as previously shown in multiple
different studies.4, 6 Thus, by applying SE across all voxels in
an image, we are able to characterize voxels according to their
time-intensity curves, an approach that, to our knowledge, has
not been taken before with respect to DCE-MRI data. In ad-
dition, voxel similarity is reflected by the eigenvectors at each
voxel such that voxels with similar eigenvector values have
similar time-intensity curves. Because this is performed in a
voxelwise fashion, the image scene composed of the eigen-
vector values reflect region similarities and global differences
in the images (see Fig. 1).

Using this alternative image scene information driven by
the intensity profiles can provide greater knowledge for ap-
proximating the region statistics of the image via SE’s ability
to preserve global data information.30 Similarly, the alterna-
tive image scene information resulting from SE provides bet-
ter boundary information by preserving the local image infor-
mation as well as constraining the data in such a way that the

FIG. 1. Workflow of SEAC. (a) Each time point image for a given MR slice
is collated, and every voxel location is characterized by a T-dimensional sig-
nal intensity vector, where T represents the total number of time points at
which the MRI is acquired during the course of the administration of the
contrast agent. (b) SE is performed in a voxelwise fashion to preserve global
and local similarities in time-intensity curves at each voxel, where voxels
having similar colors signify similar time-intensity curves. (c) A hybrid AC
segmentation, manually initialized in the vicinity of the lesion, leverages the
improved region and boundary-based statistics to generate a final lesion seg-
mentation (shown via the yellow curve).

FIG. 2. (a) PCA is used as an alternative image representation (Ref. 27) to
drive the AC and is unable to successfully stop at the lesion boundary be-
cause the image gradients at the lesion boundary are not strong enough (final
segmentation as yellow curve). (b) FCM is unable to capture the lesion at all
using the AC, and no contour results. (c) Ground truth manual segmentation
by a radiologist who is blinded to lesion diagnosis is shown in red superim-
posed on the maximum contrast enhancement image.

distances between voxel clusters with different time-intensity
curve profiles will be maximized.

Recently, Eyal et al.27 used the principal eigenvectors de-
rived from principal component analysis (PCA) to determine
a parametric representation of breast DCE-MRI data for le-
sion classification. In contrast to SE, the feature matrix in
PCA is a covariance matrix. The eigenvectors associated with
the largest eigenvalues rotate the data along axes of maximum
variance, and if used in the context of a boundary-based AC,
the gradient functional derived from the PCA eigenvectors
would be based on a gradient of deviation from the mean. Im-
age gradients derived in this fashion may not be strong enough
in some cases to serve as the stopping criterion for an AC
formulation, which is illustrated by the example in Fig. 2(a),
where the AC overshoots the boundary of the OOI unlike the
SEAC model in Fig. 1(c).

In this paper, we present a new SE-based AC (SEAC)
scheme for segmentation of lesions on time series data such
as DCE-MRI. SEAC results in strong gradients at object
boundaries. SE can be applied to any multidimensional,
longitudinal, or time-series data whereby the multiattribute
data are reduced to a single parametric image representa-
tion, though in this work we have limited our application to
breast DCE-MRI. Each voxel in this reduced dimensional,
parametric image representation is characterized by the set
of orthonormal eigenvectors that aim to preserve both lo-
cal and global similarities,30 so a SE approach might also
yield improved region-based statistics, which in conjunction
with stronger boundary gradients results in an improved hy-
brid AC scheme. We compare SEAC to alternative image
representation methods which use (1) the original grayscale
image at peak contrast enhancement (peakCE) to drive the
AC (peakCE+AC); (2) FCM to drive the AC (FCM+AC);
and (3) principal components derived from PCA to drive the
AC segmentation (PCA+AC). SEAC is quantitatively com-
pared to peakCE+AC, FCM+AC, and PCA+AC by calculat-
ing both boundary- and region-based metrics which compare
the final segmentation resulting from SEAC, peakCE+AC,
PCA+AC, and FCM+AC to the ground truth segmentation
performed manually by a radiologist who is blinded to the le-
sion diagnosis. The accuracy of SEAC is further compared to
FCM+AC,6, 8 the method widely used for automated breast
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lesion segmentation on DCE-MRI, as well as PCA+AC by
comparing the classification accuracy. In this case, classifica-
tion accuracy is based on quantitative morphology features of
the lesions which are extracted from the automated segmen-
tation (SEAC, PCA+AC, or FCM+AC) methods. The use of
SEAC is not limited to DCE-MRI data alone and could poten-
tially be used for lesion detection and segmentation on other
types of longitudinal or time series data as well as other types
of multiparametric imaging (e.g., T1-, T2-, and diffusion-
weighted imaging).

The remainder of the paper is as follows. Section III con-
tains a brief overview of the SEAC algorithm and theory. Sec-
tion IV describes the calculation of the gradient tensors de-
rived from SE. Section V describes the hybrid AC used in
conjunction with SE. Section VI comprises the experimental
design. Section VII describes the results and discussion, and
in Section VIII we present concluding remarks.

III. BRIEF OVERVIEW OF SEAC

This section provides an introduction to the workflow for
SEAC, illustrated in Fig. 1.

Step 1. Apply SE to the DCE-MRI: Let F = [F(c)]T

∈ RN×T , ∀c ∈ C be the data matrix of N = |C| (where | · |
is the cardinality of a set) feature vectors with dimensional-
ity T. F(c) represents the features assigned to a given voxel,
c. In our case, F(c) contains the assigned signal intensity val-
ues at every voxel c ∈ C at each time point t ∈ {0, 1, 2, . . . ,
T − 1}, where T is the number of time points in the DCE-MRI
time series. t = 0 refers to the time at which the precontrast
image is acquired and t ∈ {1, . . . , T − 1} refer to the times at
which the subsequent postcontrast images are acquired. The
aim of SE is to reduce F ∈ RN×T to a lower d-dimensional
space where d � T. The three eigenvectors associated with
the three smallest eigenvalues (i.e., d = 3 in this implementa-
tion of SE) at each voxel location in the image that result from
the SE are used to represent the color values in the paramet-
ric eigenvector image (PrEIm). To implement this, the three
selected eigenvector values are assigned to each of the three
color channels [i.e., the first eigenvector value in the hue chan-
nel, the second eigenvector value in the saturation channel,
and the third eigenvector in the value channel of a hue, satu-
ration, value (HSV) image, see Fig. 1(b)].

Step 2. Calculate spatial gradients on the PrEIm: The spa-
tial (X- and Y-directional) tensor-based gradients are derived
from the SE eigenvectors, which are incorporated into the en-
ergy functional of a hybrid AC model. Tensor gradients de-
rived from the vectorial image provide stronger gradients for
driving the AC model than the corresponding gradient derived
from a scalar image.15

Step 3. Manual initialization of the AC model: A point
within the OOI is selected manually, which serves as the ini-
tialization for the AC model.

Step 4. Evolve AC on PrEIm: The hybrid AC deviates from
traditional boundary- or region-based AC models by combin-
ing both boundary and region information from the image, al-
lowing the two types of image information to simultaneously
drive the AC model to optimize the curve such that: (1) the

difference between region statistics inside and outside the AC
is maximized; and (2) the gradient magnitude is maximized
at the border between foreground and background areas of
the image scene. Moreover, we employ a selective, intelligent
weighting of the region, and boundary terms of the hybrid
AC. This is done by identifying the optimal combination of
weights for the region and boundary terms in the hybrid AC
model.

IV. GRADIENT TENSORS IN SPECTRAL
EMBEDDING SPACE

IV.A. Review of theory of spectral embedding

Let v(c) be the function that defines the eigenvectors as-
sociated with c, ∀c ∈ C, and let V be the eigenspace defined
by v(C). For simplicity of notation in the SE formulation, we
define f as a single vector in F , dissociated from its spatial
voxel location in the image and v̂ = [v(c)∀c ∈ C]T ∈ RN×d ,
as the vectorized form of v(c). The optimal v̂ is obtained by
solving the generalized eigenvalue decomposition problem,

(D − W )v̂ = v̂�dD, (1)

where �d is the matrix corresponding to the eigenvalues asso-
ciated with the smallest d eigenvectors. W is the weighted ad-
jacency matrix that characterizes the similarity between pair-
wise observations, i and j. The graph edge weight of two
nodes, i and j, can be formulated by the Gaussian similar-

ity function w(i, j ) = exp(−‖f(i)−f(j )‖2
2

σ 2
C

), where σC is a scaling

parameter. D is the degree matrix such that the degree of a
vertex is defined as di = ∑

j w(i, j ), i, j ∈ {1, . . . , N}. The
graph theoretic derivation of the eigenvalue problem found in
Eq. (1) can be found in Shi et al.30 and von Luxburg.33

The resulting d eigenvectors corresponding to the d small-
est eigenvalues at every voxel location in the image can be
used to construct PrEIm representations of the DCE-MRI data
(Fig. 1). Objects that are adjacent to each other in the embed-
ding space will consequently have a similar color [Fig. 1(b)].

IV.B. Computing spatial gradients in spectrally
embedded space

Following the calculation of the eigenvectors by solving
the minimization of Eq. (1), the gradients of the embedding
vectors can be calculated along the spatial coordinates axes,
resulting in a tensor gradient function,∇V .

∇V is inspired by the Cumani operator,34 a second-order
differential operator for vectorial images, based on the Di
Zenzo multivalued geometry.35 Thus, ∇V defines a tensor
gradient over the eigenvector space and the gradient is cal-
culated via the local structure tensor.

For an eigenimage V = v(C), where v(C), ∀c ∈ C, is the
associated set of eigenvectors for the entire voxel scene, C,
the L2 norm of v(c) at each c ∈ C can be written in matrix
form as

dv(c)2 =
[

dx

dy

]T
[

ρ11 ρ12

ρ21 ρ22

] [
dx

dy

]
, (2)
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where

ρ11 =
(

∂v(c)

∂x

)T (
∂v(c)

∂x

)

=
(

∂v1(c)

∂x

)2

+
(

∂v2(c)

∂x

)2

+
(

∂v3(c)

∂x

)2

,

ρ12 = ρ21 =
(

∂v(c)

∂x

)T (
∂v(c)

∂y

)
= ∂v1(c)

∂x
· ∂v1(c)

∂y

+∂v2(c)

∂x
· ∂v2(c)

∂y
+ ∂v3(c)

∂x
· ∂v3(c)

∂y
. (3)

Here, ρ22 is defined similar to ρ11 along the Y axis. It is im-
portant to note that ρ11, ρ12, and ρ22 are computed on the
eigenvectors of each voxel in the embedding space. The ma-
trix ρ(v(c)) = [ ρ11 ρ12

ρ21 ρ22
] is the first fundamental form in vec-

tor eigenspace and is also referred to as the local structure
tensor. For the matrix [ρ(v(c))], the maximum and mini-
mum eigenvalues of the matrix (λ̃+ and λ̃−) represent the
extreme rates of change in the direction of their correspond-
ing eigenvectors. λ̃+ and λ̃− may be formally expressed by
λ̃± = (ρ11 + ρ22 ± √�)/2, where � = (ρ11 − ρ22)2 + 4ρ2

12.
The tensor gradient is defined as12

γ (v(c)) =
√

λ̃+ − λ̃−, (4)

∀c ∈ C. Thus, ∇V ≈ γ (v(C)) when the tensor gradient is cal-
culated over the entire image scene, C. From Eqs. (2)−(4),
it is also easy to show that for voxel c the grayscale gradient√

∂2vj

∂x2 + ∂2vj

∂y2 , where j = 1, (widely employed for edge detec-
tion) is a special case of the tensor gradient γ ( · ). In contrast,
the tensor gradient of the embedding vectors (v1, v2, v3) in
the XY plane are computed as described in Eq. (4). An exam-
ple of the improved gradient information found in the tensor
gradient derived from SE compared to the grayscale intensity
image is shown in Fig. 3.

V. SPECTRAL EMBEDDING BASED
ACTIVE CONTOUR

V.A. Active contour model and its energy functional

We assume that the image plane � ∈ R2 is partitioned into
two regions by a curve ϒ . The foreground region, or region

FIG. 3. (a) Original grayscale MR image of a malignant breast lesion at
peak contrast enhancement along with the (b) grayscale gradient derived from
PeakCE image and the (c) tensor gradient derived from PrEIm (not shown).
Details of the lesion region are shown at the bottom right corner of (b) and (c).
Note that the edges of the lesion in (c) are much stronger than those shown in
(b), in turn generating a stronger edge based stopping criterion for SEAC.

of interest (ROI), is defined as �1, and the background re-
gion (i.e., the remainder of the image) is defined as �2 (see
Table I for further details). The relationship among � and its
constituents are as follows:

� = �1 ∪ �2 ∪ ϒ, (5)

where �1 and �2 are nonoverlapping. In other words,

�1 ∩ �2 = ∅. (6)

V.B. Edge-based active contour

Previous AC methods have proposed various approaches to
formulate the optimal partition of the image plane �, which
can be obtained by the minimization of an energy functional.
An AC deforms in order to approximate the border between
regions of interest and noninterest.11, 13–15, 36 In the simplified
case, the energy functional is formulated as the integral of an
edge detector function10

E1 =
∫

ϒ

g(v(c))dc, (7)

where

g(v(c)) = 1

1 + γ (v(c))
. (8)

Equation (7) will converge to the contour that represents the
regions of steepest gradient in the image. Note that in this case
the gradient function, γ (v(c)) is often calculated by the gray
level gradient.36 However, in this paper we have chosen the
gradient function to be a tensor gradient function.15

In order to maintain stable curve evolution and eliminate
the need for reinitialization of the curve at each iteration of the
evolution of the curve,37 we have also chosen to implement a
second term

E2 =
∫

�

1

2
(‖∇φ‖) − 1)2dc. (9)

The combined energy functional is defined as

EBound(φ) = βE1 + ζE2

= β

∫
ϒ

g(v(c))dc + ζ

∫
�

1

2
(‖∇φ‖) − 1)2dc. (10)

V.C. Region-based active contour

The region-based model employs statistical information
derived from different regions (foreground and background)
to drive the AC model, which is independent of the edge de-
tector function and does not require precise initialization.38

One important region-based AC model is the Rousson-
Deriche model,14 which assumes that the image plane com-
prises two regions and the intensities of voxels within each
region satisfy a Gaussian distribution. The contour evolves as
a result of competition between the log probability of cur-
rent voxels c belonging to the foreground and background
regions. The optimal image partition is generated by max-
imizing the a posteriori partition probability, P (�|v(c)).
The assumptions are: (1) All partitions are equally possible.
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(2) Homogeneity of a region exists within a given boundary.
(3) Voxels within a given region are independent. The gener-
alized energy functional for the region-based term can then be
described as follows:14

EReg(φ) = −α1

∫
�

[H (φ) log p(v(c)|θ1)

+ (1 − H (φ)) log p(v(c)|θ2)]dc

+α2

∫
�

|∇H (φ)|dc, (11)

where H(φ) is the Heaviside function and p(v(c)|θh) (h ∈ {1,
2}) is the multivariate Gaussian distribution function with pa-
rameter θh = {μh, �h}, where μh and �h are the mean and
covariance of the intensity in the region h(h ∈ {1, 2}) and are
estimated by

μh = 1

|�h|
∫

�h

v(c)dc,

�h = 1

|�h|
∫

�h

(v(c) − μh)(v(c) − μh)T dc. (12)

V.D. Hybrid active contour energy functional

Since region-based AC models do not typically include
boundary information, a hybrid AC model can be employed
to combine the strengths of boundary-based (10) and region-
based (11) models by incorporating both gradient and region

information into the AC model. The corresponding energy
functional can be shown as

EHybrid(φ) = −α

∫
�

[H (φ) log p(v(c)|θ1)

+ (1 − H (φ)) log p(v(c)|θ2)]dc

+β

∫
�

g(v(c))|∇H (φ)|dc

+ ζ

∫
�

1

2
(‖∇φ‖) − 1)2dc. (13)

Using calculus of variations, the curve evolution
function can be derived by minimizing the energy
function (13),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ(t ; c)

∂t
= αδ(φ)[log p(v(c)|θ1) − log p(v(c)|θ2)]

+βδ(φ)div
[
g(v(c))

∇φ

|∇φ|
]

+ ζ

[
�φ − div

( ∇φ

‖∇φ‖
)]

,

φ(0, c) = φ0(c), ∀c ∈ ϒ,

(14)

where H(φ) is the Heaviside function, �1 and �2 are the
image foreground and background, respectively, φ(t; c) is
the level set function, α and β are positive constant pa-
rameters that can be used to variably weight the region-
and boundary-based terms, ζ is the weight of the con-
tour stabilization term [see Eq. (9)], and δ(φ) is the Delta
function. From an initial contour φ0, the curve evolution func-
tion in Eq. (14) is evolved until model convergence. The iter-
ative implementation of the curve evolution can be found in
Sec. V.E.

V.E. SEAC algorithm

Input. Ĉ = (C, γ )
Output. Final AC: φT

begin
1. {Compute tensor gradient of PrEIm as described in Eqs. (2)−(4)}.
2. Calculate g(v(c)) = 1

1+γ (v(c)) ;
3. Model p(v(c)|θh), h ∈ {1, 2} using multivariate Gaussians to approximate intensity distributions;
4. Formulate energy functional [Eq. (5)] using p(v(c)|θh), h ∈ {1, 2} and g(v(c));
5. Initialize φ(t; c) = φ0, where t = 0;
6. while |φ(t; c) − φ(t − 1; c)| > ε do
7. Compute ∂φ

∂t
[see Eq. (14)];

8. t = t + 1;
9. φT = φ(t; c);
10. end while
end

VI. EXPERIMENTAL DESIGN

VI.A. Data description

A total of 50 (30 malignant, 20 benign) breast DCE-MRI
studies were obtained from the Hospital at the University of

Pennsylvania. All of these were clinical cases where a screen-
ing mammogram revealed a lesion suspicious for malignancy.
All studies were collected under Institutional Review Board
approval, and lesion diagnosis was confirmed by biopsy
and histological examination. Sagittal T1-weighted, spoiled
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TABLE I. Commonly employed notation and symbols.

Symbol Description Symbol Description

C 2D Cartesian grid of voxels c = (x, y) C 2D image scene
F(c) Signal intensity vector of c F Set of all time intensity vectors [F(c)]T, ∀c ∈ C

v(c) Eigenvectors associated with voxel c ρ(v(c)) Local structure tensor of v(c)
f Single feature vector V Eigenscene associated with C
C The zero level set C = {c ∈ � : φ(c) = 0} γ (v(c)) Tensor gradient computed on v

H(φ) Heaviside function H (φ) =
{

1, φ(c) ≥ 0;
0, φ(c) < 0.

�h, h ∈ {1, 2} Region membership �h =
{

�1, φ(c) ≥ 0;
�2, φ(c) < 0.

δ(φ) Delta function: δ(φ) = 0, φ(c) �= 0; φ(t; c) The level set function∫ ∞
∞ δ(φ)dφ = 1. (Ref. 48)

gradient echo sequences with fat suppression consisting of
one series before contrast injection of Gd-DTPA (precontrast)
and three to eight series after contrast injection (postcontrast)
were acquired at 1.5 T (Siemens Magnetom). Single slice di-
mensions were 384 × 384 or 512 × 512 with a slice thickness
of 3 mm. Temporal resolution between postcontrast acquisi-
tions was a minimum of 90 s.

VI.B. Implementation of SEAC

For each voxel, c, in each image, a dynamic signal intensity
vector was created consisting of the signal intensity values of
the voxel at each time point in the time series as described
in Table I. For each dataset, a seed point is selected in the
region of interest based on visual inspection of the MR im-
age. The same seed point is used across all alternative image
representations. In order to ensure the fidelity of manual seed
point selection, we also performed an experiment where 20
random seed points were selected for curve evolution on each
dataset and calculated the standard deviation from the mean
dice similarity coefficient for each lesion. The average stan-
dard deviation for 20 randomly selected seed points over all
50 lesions was 0.098.

Since the hybrid active contour incorporates region and
boundary information, the individual constituent terms need
to be differentially weighted based on the specific image do-
main to optimize the active contour. Thus, we performed a
brute force examination of these weights by first trying all
combinations of weights on all the datasets. The accuracy of
the segmentation as described in Sec. VI.C was used to de-
termine the optimal parameters for a given image initializa-
tion. The range of parameters used with each AC model is
described in Table II, and these values were based on the em-

pirically derived optimal weights used previously.40 The stop-
ping criterion for the AC is that which minimizes the energy
function such that the difference in energy between a given
iteration of the AC and the iteration preceding it is less than
a predefined threshold (see Sec. V.E for further details). The
best results for the SEAC hybrid model were a combination of
weighting the region term at 0.4 and the boundary term at 6.4
and weighting the region term at 0.1 and the boundary term at
6.4. The best results for the PCA weighted the region term at
0.2 and the boundary term at 6.4.

VI.C. Comparative image representation strategies

Like SE, FCM, and PCA are applied to the images on a
per-voxel basis that allows for direct comparison of the meth-
ods to serve as an initialization to the AC model.

VI.C.1. Fuzzy c-means

Fuzzy c-means clustering as described in Chen et al.6 is a
popular scheme for automated segmentation of breast lesions
on DCE-MRI.41, 42 FCM is a data clustering scheme similar to
k-means in that data are clustered around a prescribed num-
ber of centroids. However, unlike k-means, the resulting class
membership is a fuzzy membership to each cluster. We imple-
ment FCM similar to the method in Shi et al.8 (referred to as
FCM+AC) to compare the AC driven by FCM to that driven
by SE in SEAC, where FCM is applied to the time-intensity
vectors, F .

VI.C.2. Principal component analysis

PCA (Ref. 43) is a linear dimensionality reduction method
which attempts to reduce the dimensionality of the data while

TABLE II. Summary of experiments and corresponding parameters.

Method Comparison strategies (n = 50) Parameters used

Boundary PeakCE, PCA, FCM, PrEIm α = 0, β = 1, ζ = 1
Region PeakCE, PCA, FCM, PrEIm α = 1, β = 0, ζ = 1
Hybrid FCM, PrEIm α, β ∈ {0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8},

ζ = 1
SVM classification FCM, PrEIm Radial basis function (Ref. 39)
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retaining maximum variance of the dataset. PCA is most pop-
ularly implemented by performing an eigenvalue decomposi-
tion of a covariance matrix generated from the original data.
The resulting eigenvectors are then considered to be the prin-
cipal components, and the first few retain the maximum vari-
ance in the original dataset. In addition, if the eigenvectors
are chosen to be orthonormal, then the variance captured by
a given eigenvector is reflected by the corresponding eigen-
value. In this study, the input matrix to PCA is also F .

VI.C.3. Applying the hybrid active contour
to the comparative strategies

After FCM and PCA are performed on all images, the
hybrid active contour model is applied to both the three-
dimensional FCM parametric image result (referred to as
FCM+AC), which uses three class probability clusters, and
the three-dimensional PCA parametric image result (referred
to as PCA+AC), which uses three eigenvectors at each pixel
location. In order to demonstrate the limitations of using the
grayscale intensity images, we also compare SEAC to an AC
driven by the PeakCE image.

VI.C.4. Segmentation performance
evaluation measures

VI.C.4.a. Ground truth generation. The ROI associated
with the lesion was manually segmented via MRIcro imag-
ing software44 by an attending radiologist with expertise in
MR mammography who was naive to the lesion diagnosis.
The radiologist selected a 2D slice of the MRI volume that
was most representative of each lesion, and the analyses were
performed only for that 2D slice. The ground truth segmen-
tation is defined as the manual segmentation performed by
the radiologist, and ground truth diagnosis was confirmed on
histopathologic examination of lesion biopsy by a pathologist.

VI.C.4.b. Boundary-based metrics. Mean absolute dif-
ference (MAD) is calculated by evaluating the mean differ-
ence between each point, cz, on Ga

1(Ĉ) = {cz|z ∈ {1, . . . , Z}}
(SEAC, PCA+AC or FCM+AC), where Z = |Ga

1(Ĉ)| and
| · | is the cardinality of any set, and the corresponding clos-
est point, cψ , on the ground truth (GT) manual segmentation
Gb

1(C) = {cψ |ψ ∈ {1, . . . , |Gb
1(C)|} such that,

MAD = 1

Z

Z∑
z=1

[min
ψ

‖cz − cψ‖2]. (15)

Lower values of MAD reflect a more similar segmentation to
the GT manual segmentation.

We also calculate maximum Hausdorff distance (HDmax),
which is calculated as

HDmax = max
z

[min
ψ

‖cz − cψ‖2] (16)

and reflects the maximum error between the automated and
manual segmentations.

VI.C.4.c. Area-based metrics. Dice similarity coeffi-
cient (DSC) is calculated as follows:

DSC = 2
∣∣Ga

2(Ĉ) ∩ Gb
2(C)

∣∣∣∣Ga
2(Ĉ)

∣∣ + ∣∣Gb
2(C)

∣∣ , (17)

where Ga
2(Ĉ) is the area enclosed by the automated segmen-

tation and Gb
2(C) is the area enclosed by the manual GT seg-

mentation. The closer the DSC value is to 1, the more similar
the automated lesion segmentation is to the GT segmentation.

VI.C.4.d. Classifier-based metrics. Because an accurate
lesion segmentation is necessary for accurate morphologi-
cal feature extraction,1, 2 classification accuracy would be a
way to test SEAC’s ability to function in the setting of a
computer aided diagnosis system compared to other state
of the art breast lesion segmentation methods. Morphologi-
cal features45 (area overlap ratio, normalized average radial
distance ratio, standard deviation of normalized distance ra-
tio, variance of distance ratio, compactness, and smoothness)
based on the lesion contour are extracted and used in con-
junction with a support vector machine (SVM) classifier to
determine if morphological features based on SEAC segmen-
tations will result in higher classifier accuracy compared to
morphological features based on FCM+AC or PCA+AC seg-
mentations of breast lesions. We calculated six morphological
features45 on 50 datasets (20 benign; 30 malignant).

The boundaries resulting from SEAC, FCM+AC, and
PCA+AC were used for morphological feature extraction.
The features, which are obtained for each lesion via each
of the different segmentation schemes (SEAC, FCM+AC,
PCA+AC), were then used in conjunction with a SVM
classifier39 with ten trials of tenfold cross validation to deter-
mine the lesion diagnosis. The distance of an object from the
hyperplane was then converted to a pseudolikelihood45 which
was used to generate a ROC curve for evaluating the different
SVM classifiers.

VI.C.4.e. Paired t-test. For the optimized hybrid AC
model, statistical analysis is performed by calculating a paired
t-test6 between the metrics obtained using FCM+AC and
PCA+AC compared to SEAC. For the classification experi-
ment, a population mean of 0.5 was used since the AUC of
each method is being compared to an AUC of 0.5.42

FIG. 4. (a) Ground truth segmentation of the lesion and alternative image
representations using (b) FCM, (c) PCA, and (d) SEAC. Similar colors in
each of figures (b)−(d) demonstrate voxels taken to have similar enhance-
ment curves by the respective algorithm. The inset at the bottom right of each
figure (b)−(d) demonstrates the final segmentation (yellow contour) using a
boundary-based AC model. (d) SEAC provides the final contour most simi-
lar to (a) ground truth segmentation since (b) FCM+AC under-segments the
lesion and (c) PCA+AC overshoots the boundary of the lesion.
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TABLE III. Evaluation of image representations in conjunction with a
boundary-based AC (n = 50).

AC method MAD (μ ± σpixels) DSC (μ ± σ ) HDmax (μ ± σpixels)

PeakCE + AC 7.26 ± 12.02 0.56 ± 0.31 13.11 ± 14.11
FCM + AC 6.64 ± 6.37 0.50 ± 0.32 11.86 ± 10.14
PCA + AC 5.50 ± 4.23 0.52 ± 0.25 11.2 ± 7.50
SEAC 5.87 ± 5.94 0.57 ± 0.30 11.06 ± 9.90

VII. EXPERIMENTAL RESULTS AND DISCUSSION

In this study, we evaluate two different aspects of SEAC.
(1) We compare the alternative data representations obtained
via peakCE, FCM, PCA, and SE in terms of their abil-
ity to drive region-based and boundary-based AC segmen-
tation schemes. We hypothesize that SE will provide better
boundary and region statistics for driving an AC segmenta-
tion scheme than peakCE, FCM, or PCA. (2) We compare the
FCM+AC and PCA+AC schemes with SEAC with respect
to the ability of each to drive a hybrid AC model.

VII.A. Comparison of different image representation
schemes in capturing gradients

Figure 4 shows an example of a boundary-based AC driven
by FCM, PCA, and SEAC. In this example, it is clear that the
SE image would provide better gradient information for driv-
ing a boundary-based AC. For the particular study considered,
the AC was unable to detect any strong boundaries using the
FCM image, and therefore the AC did not evolve much be-
yond the manual initialization. Table III shows the boundary-
and area-based measures of using a boundary-based AC alone
with FCM+AC, PCA+AC, and SEAC. The boundary-based
AC performed best with SEAC in terms of DSC and HDmax.
PCA performed slightly better than SEAC in terms of MAD.

VII.B. Comparison of different image representation
schemes in capturing region statistics

Figure 5 shows a region-based AC model driven by
PeakCE, FCM, PCA, and SE. PeakCE and FCM performed
particularly poorly in conjunction with the region-based AC.
The PeakCE and FCM initializations were unable to pro-

FIG. 5. (a) Ground truth segmentation and alternative image representations
using (b) FCM, (c) PCA, and (d) SEAC. Similar colors in each of figures
(b)−(d) demonstrate voxels taken to have similar enhancement curves by the
respective algorithm. The inset at the bottom right of each figure (b)−(d)
demonstrates the final segmentation (yellow contour) using a region-based
AC model. Note that FCM produced no final contour (b).

TABLE IV. Evaluation of image representations in conjunction with a
region-based AC (n = 50). (PeakCE+AC and FCM+AC results omitted due
to instability of the respective region-based ACs.)

AC method MAD (μ ± σ ) DSC (μ ± σ ) HDmax (μ ± σ )

PCA + AC 4.87 ± 4.35 0.48 ± 0.24 10.9 ± 7.01
SEAC 4.24 ± 3.80 0.53 ± 0.26 9.76 ± 7.35

duce a stable curve evolution based solely on region statis-
tics, and thus, no results are reported for PeakCE+AC or
FCM+AC in Table IV. Table IV shows the performance of
a region-based AC in terms of MAD, DSC, and HDmax for
SE and PCA. Again, SEAC provided the segmentations that
were most similar to ground truth in terms of MAD, DSC,
and HDmax. Considering the fact that dimensionality reduc-
tion methods are meant to preserve global patterns in the data,
it is not surprising that the region term is able to capitalize on
this strength of both the linear and NLDR methods used in
this paper.

VII.C. Comparing image segmentation strategies

VII.C.1. Boundary-based measures

We compare SEAC to a version of the previously
published8 FCM+AC model as well as PCA+AC using a
hybrid active contour model. Table V shows the results for
the optimized hybrid models for PCA+AC, FCM+AC, and
SEAC. SEAC and PCA+AC resulted in a statistically signif-
icant improvement over FCM+AC in terms of MAD, DSC,
and HDmax (indicated by an asterisk (*) in Table V). Since
the FCM segmentations degraded when the region-based term
was added to the model, the optimized SEAC and PCA+AC
models are compared to the boundary-based FCM+AC. In
addition, a t-test was performed to test the hypothesis that
(1) SEAC more accurately approximates the ground truth
segmentation in terms of MAD, HD, and DSC compared to
FCM; and (2) SEAC demonstrates a statistically significant
improvement segmentation over the popular FCM segmenta-
tion method. Figure 6 shows an example of the hybrid AC
segmentation driven by FCM, PCA, and SE, which shows the
improved segmentation using SEAC compared to FCM+AC
and PCA+AC.

VII.C.2. Classifier accuracy

Once the AC was optimized for FCM+AC, PCA+AC, and
SEAC, the best case active contour for each segmentation

TABLE V. Evaluation of image representations in conjunction with a hybrid
AC (n = 50, *p < 0.05).

AC method MAD (μ ± σ ) DSC (μ ± σ ) HDmax (μ ± σ )

FCM + AC 6.64 ± 6.37 0.50 ± 0.32 11.86 ± 10.14
PCA + AC *3.11 ± 3.09 *0.73 ± 0.22 8.17 ± 7.36
SEAC *2.31 ± 2.26 *0.74 ± 0.21 *5.64 ± 5.04
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FIG. 6. (a) Original grayscale postcontrast image and image representations derived from (b) FCM, (c) PCA and (d) SE. Note that the colormaps displayed for
the three methods only reflect the voxel similarities as determined by the three schemes, voxels with similar time-intensity curves being assigned similar colors.
The second row of images shows the ground truth segmentation (e) in red and the hybrid AC segmentation (yellow line) overlaid on ground truth driven by (f)
the FCM+AC segmentation, (g) PCA+AC segmentation, and (h) SEAC.

method was used to generate the lesion contours from which
morphological features are extracted. Lesion classification
was then performed using a SVM classifier39 based on these
automatically derived contours. The classification results us-
ing the automatically derived contours are then compared to
classification driven by contours from manual segmentations.
A Student’s t-test is then performed to compare the AUC
for each classifier to the null hypothesis, which is an AUC
= 0.5, or no difference in classification from that expected
by chance.42 This is tested against the hypothesis that there is
no statistical difference between the AUC derived from breast
lesion classification using the SEAC, PCA, or FCM segmen-
tations and an AUC of 0.5. Table VI shows the SVM classi-
fication AUC for ten trials of tenfold cross validation based
on morphological features based on FCM+AC and SEAC.
SEAC performed better than FCM+AC and PCA+AC, and
the AUC for the ROC curve for SEAC is statistically signif-
icant compared to an AUC of 0.5,42 whereas the AUCs for
FCM+AC and PCA+AC was not statistically significantly
better than an AUC of 0.5. The AUC of 0.67 for SEAC is also
comparable to the AUC for lesion diagnosis based on mor-
phological features found elsewhere in the literature.46 These
results suggest that SEAC was capable of capturing sub-
tleties of lesion morphology that are critical to accurate lesion
classification.

TABLE VI. Classification accuracy based on automated segmentation
(n = 50, * p < 0.05).

Segmentation method AUC (μ ± σ )

FCM + AC 0.50 ± 0.07
PCA + AC 0.49 ± 0.07
SEAC* 0.67 ± 0.05

VIII. CONCLUDING REMARKS

In this paper, we demonstrate that the spectral embedding
based active contour (SEAC): (1) provides a better image
representation for both boundary- and region-based AC seg-
mentation schemes compared to PeakCE+AC, FCM+AC, or
PCA+AC; (2) provides a better image representation for a
hybrid active contour model than FCM, a popular segmenta-
tion method for breast DCE-MRI; and (3) provides a more
accurate classification of breast lesions based on quantitative
morphologic features as captured on DCE-MRI.

We have presented a new AC model [spectral embedding
based AC, (SEAC)] involving use of an alternative image rep-
resentation obtained via a nonlinear dimensionality reduction
scheme that results in stronger boundary gradients and im-
proved region statistics, in turn providing improved stopping
criteria for the AC. SE transforms the high-dimensional DCE-
MRI time series data to a reduced dimensional space that is
composed of an orthogonal basis set of eigenvectors. This
transformed space provides strong tensor gradients and im-
proved region statistics compared to those that might be ob-
tained from the original grayscale image alone. On a cohort
of 50 breast DCE-MRI studies, we showed that SEAC best
approximated manual lesion segmentations when using both
a boundary- and a region-based AC model when compared to
the widely used FCM segmentation as well as PeakCE+AC
and PCA+AC. We also demonstrated that on a cohort of
50 lesions, the morphological features derived from SEAC
yielded better lesion classification compared to morpholog-
ical features derived from a PCA- or FCM-based segmenta-
tion. While in this work, we demonstrate the use of SEAC
with breast DCE-MRI data, SEAC could be easily applied to
segmenting structures on other high-dimensional, time-series
imaging data as well. However, it is important to note that,
as with any information-based segmentation scheme, SEAC
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is based on the theory that different tissues will have different
uptake curves. Therefore, if two tissues have similar contrast
uptake curves, they may be included in the same lesion seg-
mentation, and this is a potential limitation of SEAC.

When using a hybrid AC model, determining the weights
for each term in the energy functional is a difficult task.
In this paper, the optimal weights for the hybrid AC model
were obtained by first performing the segmentations using
various combinations of a predetermined range of weights.
In performing the experiments with hybrid active contour
models, it was noted that while the PCA+AC model per-
formed well with a heavily weighted boundary-based term,
the SEAC method performed well for some datasets with
a heavily weighted region term and for some datasets with
a heavily weighted boundary term. The relative weights of
the region and boundary terms could be predicted by the ex-
periments which examined segmentation accuracy with the
boundary and region terms alone. The weights that provided
the best segmentations for the PCA+AC model used one
set of weights, while SEAC performed best with two sets
of weights. This flexibility of SEAC may, in fact, be one of
the advantages of SEAC over PCA+AC, and this may make
SEAC less susceptible to image artifacts. While this approach
to the determination of weights did provide some improve-
ment over both the boundary- and region-based AC models,
it is quite possible that these weights are not fully optimized,
and future work will be devoted to determining the best ap-
proach to this problem. Another area for future work relates
to the bias field correction performed on the images using the
N3 bias field correction method.47 In this study, we found that
bias field correction did not improve the accuracy of SEAC
(see the Appendix). Although this should be further explored
in future work, it seems as though the full dynamic range of
image intensities is useful in generating the PrEIm. Our find-
ings may also suggest that N3 is not the appropriate bias field
correction scheme for this particular dataset.

The classification results demonstrated in this paper also
suggest that endpoint classification may be an additionally
important metric for the evaluation of automated segmenta-
tion methods designed for use in conjunction with computer-
aided diagnosis systems.

We also found that for our datasets, which ranged in im-
age grid size from 384 × 384 to 512 × 512 voxels, that total
run-time ranged from approximately 3−12 min on a 72 GB
RAM, 2.66 GHz, 2x Quad-Core Xeon X5550 processor ma-
chine, depending on the size of the image. Future work will
also be devoted to optimizing SE and AC code components
for run-time efficiency.
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TABLE VII. Segmentation accuracy in conjunction with bias field correction
(n = 50).
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APPENDIX: EFFECTS OF BIAS FIELD
CORRECTION ON SEGMENTATION ACCURACY

In order to examine the effects of bias field correction on
classification accuracy, we calculated SEAC before and af-
ter bias field correction. Bias field artifacts were corrected by
means of the popular N3 algorithm,47 which incrementally
deconvolves smooth bias field estimates from acquired image
data, resulting in a bias-field corrected image. We then used
the same set of weights (α = 0.4, β = 6.4) applied to both
sets of PrEIm. The final results are listed in Table VII. In this
study, we found that bias field correction did not improve the
accuracy of SEAC. Although this should be further explored
in future work, it seems as though the full dynamic range of
image intensities is useful in generating the PrEIm. Our find-
ings may also suggest that N3 is not the appropriate bias field
correction scheme for this particular dataset.
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