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Abstract

Background: 

Accurate methods for extraction of meaningful patterns in high dimensional data have become

increasingly important with the recent generation of data types containing measurements across

thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction

(DR) method that is unsupervised in that it relies only on the data; projections are calculated in

Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the

data. However, relationships within sets of nonlinear data types, such as biological networks or

images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear

methods, in contrast, attempt to model important aspects of the underlying data structure, often

requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter

values vary when different classification algorithms are applied on the same rendered subspace,

making the results of such methods highly dependent upon the type of classifier implemented.

Results: We present the results of applying the spectral method of Lafon, a nonlinear DR method

based on the weighted graph Laplacian, that minimizes the requirements for such parameter

optimization for two biological data types. We demonstrate that it is successful in determining

implicit ordering of brain slice image data and in classifying separate species in microarray data, as

compared to two conventional linear methods and three nonlinear methods (one of which is an

alternative spectral method). This spectral implementation is shown to provide more meaningful

information, by preserving important relationships, than the methods of DR presented for

comparison.

Tuning parameter fitting is simple and is a general, rather than data type or experiment specific

approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the

DR step to each subsequent classification method, enabling the possibility of valid cross-experiment

comparisons.

Conclusion: Results from the spectral method presented here exhibit the desirable properties of

preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal

parameter fitting, providing a useful algorithm for purposes of visualization and classification across

diverse datasets, a common challenge in systems biology.
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Background

Dimensionality reduction (DR) is the process of rendering

high dimensional complex data in a low dimensional

space. Provided the process is calculated accurately, this

low dimensional representation is preferred for use in

inference and summarization for multiple reasons,

among which are ease of visualization in a reduced varia-

ble space and clarity (i.e. ready interpretation) of cluster-

ing or classification. Other benefits include the insights

into the data structure that can be obtained from the pro-

jected axes and the obvious denoising effect attained in

some types of DR. Reduction strategies often rely on linear

approaches defined by a method that represents x1, ..., xn

∈ �q as  in such a way that each  is obtained by

projecting xi into a common linear subspace of �q. Com-

monly used methods on data types relevant to bioinfor-

matics include principal components analysis (PCA) [1]

and classical multidimensional scaling (MDS) [2], which

calculate linear projections of the data; clearly such pro-

jections are unsuitable for nonlinear or curved surfaces.

These methods generally are based on minimization of a
global cost function, wherein large distances can drive the
embedding, minimizing the effect of local distance struc-
tures [3-5]. Where local data structures are not best sum-
marized linearly (yet important to the interpretation of
the experimental results), nonlinear methods that are ker-
nel-based (e.g. kernel PCA) [6] and graph theoretic like
spectral embedding [3-17] can be more appropriate.
These methods attempt to model the underlying manifold
by fitting a kernel parameter to optimize performance
(e.g. as assessed by some performance accuracy metric)
[6]. Unfortunately it is usually necessary to re-fit one or
more tuning parameter(s) to each different data type or
experiment set, making it difficult to propose a more gen-
eralized method across multiple data types. It is also diffi-
cult to avoid over-fitting the model to the data in this
scenario. In addition, when attempting to determine class
structure in the low dimensional space calculated from
these nonlinear approaches, different classifiers may
require separate spatial representations in order to appro-
priately partition the classes (e.g. quadratic discriminant
analysis (QDA) compared to linear discriminant analysis
(LDA)). Such parameter(s) modifications are optimized
with a specific range of values that can be different for
each classifier.

Two examples of high dimensional data types that fall
into this nonlinear domain include DNA microarrays and
image data. Microarrays contain the simultaneous meas-
urement for thousands of mRNA transcripts [18-20],
which can be viewed as n arrays with q dimensions (where

n<<q). Many of the biological processes (feedback loops,
oscillators, and repressilators) represented by measure-
ments generated with microarrays are nonlinear, provid-
ing a great challenge in expressing associations between
biological entities in a linear domain. Nilsson et al. dem-
onstrated the importance of this concept in their compar-
ison of MDS with a nonlinear algorithm, isometric feature
mapping (ISOMAP) [21,22]. ISOMAP uses nonlinear dis-
tances as estimated in the ambient space along with a lin-
ear MDS to a Euclidean target projection space [22]. This
nonlinear method was shown to render more robust par-
titioning of disease class structure on the low dimensional
manifold, when class membership predictions were eval-
uated against those obtained from linear projections from
MDS.

Images are another data type that can be represented in q
dimensions as well, where each image n is a vector. This
data type can exhibit comparable complexities to the
microarray example, particularly when imaging tissues
and organs. The Euclidean distance between two similar
images is seldom the optimal comparison criterion. Sim-
ple variations on the main image features, such as those
caused by registration issues (rotation and shifting), can
alter the pixel alignment, thereby modifying the defini-
tion of distance between the original image and the
rotated one, and distorting the apparent relationship. The
ideal method for DR should be capable of extracting
meaningful patterns in multiple data types (such as these
mentioned), should not be confined to a linear domain,
and should exhibit tuning parameter-fitting independ-
ence to minimize parameter optimization specific to each
example and classification method.

Given this goal, we examined the performance of a spec-
tral method presented by Lafon [3,4] and have shown that
it is successful in extracting meaningful structure in these
two disparate data types, both having high dimensionality
paired with low replication, with a method for calculating
the tuning parameter that does not have to be varied
across classifiers to achieve correct results. Previous work
by Lafon has demonstrated how ordered structure from
both helix and trefoils curves in �3 can be accurately pre-
served in the embedded space (�2) with a spectral method
[3]. We extend this work to address biological examples of
higher dimensionality, where accuracy in embedded
results is evaluated using a known ordering and classifica-
tion structure. In a more global sense, we demonstrate
that the spectral method is able to preserve the implicit
ordering within biological image data and can accurately
classify different taxonomic species within microarray
data. These results are compared to two linear approaches
(PCA with either correlation or covariance distance met-
rics), one nonlinear counterpart to classical MDS (i.e.
nonmetric MDS), and two similar nonlinear approaches

ˆ , , ˆx xn1 … x̂i



BMC Bioinformatics 2006, 7:74 http://www.biomedcentral.com/1471-2105/7/74

Page 3 of 13

(page number not for citation purposes)

(kernel PCA with a Gaussian radial basis function kernel;
weighted graph Laplacian as presented by Ng et al. [11]),
for the latter two of which numerous variations are often
promoted in the mathematical/statistical literature for
their successful application to a number of nonlinear data
types [11-13,15-17]. We demonstrate that for our data-
sets, the spectral approach presented here is not depend-
ent upon tuning parameter(s) optimization to allow
success across any of three separate classifiers chosen. This

is a considerable advantage to an investigator who needs
to make cross-experiment or multi-data type comparisons
that benefit from a tuning parameter-independent non-
linear DR approach.

Results and discussion
Image dataset

The image dataset was used to test the ability of each of
the projection methods to predict the correct image order-
ing, based on the size increment of the brain. Since the
largest source of variability separating each image in the
series is the increase in feature surface area, as a result of
the head size, only the first eigenfunction for each method
was used in the comparison. This calculation reduces the
dimensionality from �16,384 to �1. To assess the accuracy
of each method, a non-parametric measure of association
(Spearman's rho coefficient) was used, by which the
scores from the primary eigenfunction were ranked and
correlated against the correct ordering. A straight-line fit is
indicative of perfect image ordering.

Both the kernel PCA and the spectral method from Ng et
al. require fitting for the smoothing epsilon term to opti-
mize performance for the dataset. The results for this
parameter optimization are provided in Figure 1. The
maximum rho coefficient possible indicates the appropri-
ate value for this epsilon term for each method. Based
upon the observation that neither line reaches a maxi-
mum value of 1, it is apparent that neither method is
capable of determining the correct ordering of all of the
images.

The remaining methods: PCA-correlation, PCA-covari-
ance, nonmetric MDS, and the spectral method from
Lafon [3,4] do not require parameter fitting that is
dependent upon performance (as is necessary for the pre-
vious two nonlinear methods), so the images can be
directly rendered into a low dimensional representation.

Table 1 and Figure 2 illustrate the results for all of the pro-
jection methods. PCA-correlation has the lowest coeffi-
cient (rho = 0.902). The plot (Figure 2a) demonstrates
that the global size change is minimal after image 20 and
the subtler differences in shape are not picked up by this
method. This method thus fails to predict the correct pro-
gression between the images after this point. Both PCA-
covariance and nonmetric MDS (Figures 2b and 2c,
respectively) show exactly the same ability to solve for the
correct ordering of images (rho = 0.966). Since these two
methods give the same results, it is implied that the order-
ing of dissimilarity values (as fit with classical MDS) and
the rank of the ordering of dissimilarity values (as fit with
nonmetric MDS) are identical, which implies that there is
no benefit in using nonmetric MDS to recover the image
ordering. These two methods fail to retain the ordering

Parameter optimization plot for image exampleFigure 1
Parameter optimization plot for image example. 
Regression coefficients for image ordering determined by dif-
ferent epsilon values for kernel PCA and the spectral method 
from Ng et al. Epsilon values were increased to 300,000 to 
assess image ordering accuracy (data not shown), but trun-
cated for the plot to better visualize the global maxima. The 
dashed black horizontal line indicates a rho statistic value of 
1, though neither method reaches this threshold. Large fluc-
tuations in the rho statistic are observed for both methods at 
minimal values of epsilon. For kernel PCA a non-optimal 
solution is determined in the variable region, while for the 
spectral method from Ng et al., a maximum is determined in 
this region. The variability in the rho values at these minimal 
values can be associated with the optimal convergence of 
remote and local distances in the weight matrices (Figure 6) 
of kernel PCA and the spectral method from Ng et al (L). 
Small values of the epsilon parameter provide minimal con-
vergence of the L matrix distribution tails (very small dis-
tances and very large distance), which is optimal for the 
spectral method from Ng et al for this example. For kernel 
PCA, larger values of the epsilon parameter provide conver-
gence of large distances and greater convergence of small 
distances in the Gaussian radial basis function kernel matrix, 
which is determined to be optimal for this example.
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after image 22, although the deviations at this point are
not as drastic as those observed for the PCA-correlation
results. The two other nonlinear methods (Figures 2d and
2e), each of which requires parameter optimization, pre-
dict the image ordering more correctly than do the two
linear methods, indicating that this dataset is not best
summarized with linear methods. Where there are mean-
ingful local relationships, or nonlinearities, that the linear
methods fail to preserve in a low dimensional mapping,
nonlinear methods will be a more appropriate analysis
choice. However, neither kernel PCA nor the spectral
method from Ng et al. accurately preserves the correct
image ordering over the entire series (rho = 0.989 and rho
= 0.980, respectively). In this study, only the spectral
method from Lafon was able to correctly solve the implicit
ordering of the complete set of images (Figure 2f). This
spectral method shares the properties of nonlinearity with
kernel PCA and the spectral method from Ng et al. (which
is initially anchored on the transformation of the Eucli-
dean distance to some form of Gaussian kernel), however,
it does not require parameter fitting of the epsilon term in
order to produce optimal performance. Instead, the mini-
mum non-zero squared distance is calculated for the
smoothing term (for this example, ε = mini≠j ||xi - xj||2 =
140,245), meaning that this method is dependent only
upon the distribution of squared Euclidean distances. The
image ordering as produced by both PCA-correlation and
the spectral method from Lafon is provided in Figure 3.

Microarray dataset

The microarray dataset was used to evaluate the ability of
the projection methods to accurately classify samples
derived from three taxonomically separate species into
their respective groups, without conducting any prelimi-
nary feature selection (a procedure usually conducted in
order to better partition the groups). In each case, the
results of a method were calculated such that dimension-
ality was reduced from �12,625 to �2. Thereafter three clas-
sifiers using leave-one-out cross-validation (LOO-CV)
were calculated on this projected space, both to assess the
classification accuracy for each method and to compare

the differences in value of the optimal parameters for ker-
nel PCA and the spectral method from Ng et al. A nonlin-
ear classifier, k-nearest neighbors (KNN), was calculated,
setting k = 2 and k = 3; two settings of k were used since
each DR method renders the groupings differently,
thereby favouring two nearest neighbors for some meth-
ods and three nearest neighbors for others. The average
error rates were computed across 1,000 trials, to account
for the variation arising from ties broken at random in the
assignment of the nearest winning class which results in
slightly different classification results for subsequent tri-
als. In the event that the mean error rate is calculated to be
greater than zero, even when one or more of the trials pro-
vide a smaller error rate, a range is denoted in the results
(e.g. 0%–4.66%) to indicate that the occurrence of a lower
error rate is possible. Another commonly utilized classi-
fier, QDA, was calculated, as well as the linear classifier
counterpart, LDA, to allow comparison of the dependence
of the results of different classification methods on the
tuning parameter fitting in the first DR step.

As was done with the image data, optimal parameters
were determined for kernel PCA and the spectral method
from Ng et al. These values were evaluated with each clas-
sification algorithm separately. In determining the most
appropriate epsilon value for optimal classification accu-
racy, the optimal value for the spectral method from Ng et
al. varies according to the classifier used (Figure 4a). There
is a small window at a value of ε ~20,000 in which both
QDA (blue line) and LDA (red line) reach respective min-
imum total classification error rates of 2.22% and
15.56%. However, the KNN classifiers for k = 2 (black
line) and k = 3 (green line) require slightly higher epsilon
values (21,000 indicated by a dashed vertical line) to
reach their respective minimum total classification error
rates (2.22%–13.93% and 8.88%–13.79%, respectively).
It can be argued that increasing the trials of the KNN clas-
sifier might better adjust this minimum point in the two
KNN curves, where it coincides with the QDA and LDA
window for minimum error. However, without calculat-
ing error rates with three separate classifiers, but rather
independently determining the value for a given classifier,
this window would be unknown, in which case different
optimal parameter values for each classifier would be sug-
gested. For example, using LDA as a classifier to determine
the minimum error rate, a value of ε = 20,000 can be cho-
sen as the optimal parameter for the spectral method from
Ng et al.; however, for a KNN (k = 3) classifier in the same
example, this parameter value would not fall within the
range of the minimum error rate. Instead, a value of ε =
20,000 would provide a local minimum error of 14.08%,
as compared to the global minimum error of 13.79%.

The parameter optimization for kernel PCA shows similar
trends to the optimal values from the spectral method

Table 1: Spearman rho values used for evaluation of CATSCAN 

image ordering

Method rho

PCA (cor) 0.902

PCA (cov) 0.966

Nonmetric MDS 0.966

Kernel PCA (ε = 1,040) 0.989

Spectral-Ng et al. (ε = 70) 0.980

Spectral-Lafon 1.000

Two linear methods and four nonlinear methods are considered. For 
both kernel PCA and the spectral method from Ng et al., the methods 
were optimized at the epsilon (ε) values provided.
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Scatter plots of image ordering for six projection methodsFigure 2
Scatter plots of image ordering for six projection methods. (a) Regression of ranked eigenfunction values calculated 
by PCA-correlation vs. actual ordering. (b) Regression of ranked eigenfunction values calculated by PCA-covariance vs. actual 
ordering. Note that the scores have been reverse sorted for consistency with the other plots. (c) Regression of ranked eigen-
function values calculated by nonmetric MDS vs. actual ordering. (d) Regression of ranked eigenfunction values calculated by 
kernel PCA (ε = 1,040) vs. actual ordering. (e) Regression of ranked eigenfunction values calculated by the spectral method 
from Ng et al. (ε = 70) vs. actual ordering. (f) Regression of ranked eigenfunction values calculated by the spectral method from 
Lafon [3,4] vs. actual ordering.
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from Ng et al. However, the differences in optimal param-
eter solutions between the KNN classifier and both QDA
and LDA is much more pronounced with this DR method.
For the QDA classifier, the epsilon value is optimized to
provide a minimal error rate (0%) in the window of ε =
67,000 – 68,000, while for the LDA classifier, the epsilon
value is optimized to provide a minimal error rate
(2.22%) in the window of ε = 73,000 – 92,000. In addi-
tion, the epsilon values that provide the minimal KNN
error rates for k = 2 (2.22%–6.79%) and k = 3 (8.56%) are
at ε = 174,000 (indicated by a dashed vertical line in Fig-
ure 4) and ε = 57,000 (indicated by a solid vertical line in
Figure 4), respectively. This result from kernel PCA is con-
sistent with those obtained from the spectral methods of
Ng et al., and demonstrates that each of these two nonlin-
ear approaches have a dependence between the outcome

of the classification algorithm and an appropriately opti-
mized parameter. In addition, when comparing training
set classification results to LOO-CV, the optimal parame-
ter values are drastically different for both kernel PCA and
the spectral method of Ng et al. More importantly, the
parameter selection is completely dataset-dependent.
Note that here the scale is vastly different from that seen
in the image example, thus the optimal parameter is as
well. For these examples we examined two very disparate
data types, but the same conclusion of dataset-depend-
ence would almost certainly occur if two microarray data-
sets were compared, since there would still be differences
in distance distributions (the possibility of two microar-
ray datasets having identical distributions of Euclidean
distances is highly unlikely). In other work we have exam-
ined additional microarray datasets and examined func-

Images ordered by the primary eigenfunction for PCA-correlation and the spectral method from Lafon [3,4]Figure 3
Images ordered by the primary eigenfunction for PCA-correlation and the spectral method from Lafon [3,4]. 
(a) The ordering is not correctly preserved with PCA-correlation (in this series, moving from left to right and top to bottom). 
(b) The order is correctly preserved with the spectral method from Lafon [3,4] (in this series, moving from left to right and 
top to bottom).
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tional sub categories as well as disease state, cited here for
those who are interested [5].

All individual classification results are summarized in
Table 2, and the two-dimensional projections for each
method are shown (Figure 5). For the kernel PCA and
spectral method from Ng et al., the projection plots were
generated with the epsilon terms optimized for QDA (ε =
67,000 for kernel PCA and ε = 20,000 for the spectral
method from Ng et al). From the total error rate results
reported in Table 2, it is apparent that the nonlinear DR
methods of kernel PCA and the spectral method from
Lafon perform more accurately than do the two linear
methods (and nonmetric MDS) across all three of the clas-
sification algorithms (though using KNN with k = 2, PCA-
covariance and nonmetric MDS can achieve a minimal
error rate of 2.22%, similar to kernel PCA). Of these three
nonlinear DR methods tested (not including nonmetric
MDS), the spectral method from Lafon [3,4] outperforms
both kernel PCA and the spectral method from Ng et al.
Not only does the Lafon spectral method project the dif-
ferent species into well-partitioned groups (Figure 5f) for
a 0% error rate across all classification algorithms (except-
ing a single misclassified sample with the LDA classifier),
but the KNN classifier does not exhibit any deviation in

classification results across 1,000 iterations, unlike the
results obtained with any of the other methods. These
results, in addition to the property that tuning parameter
optimization is only dependent on the distribution of
squared Euclidean distances (for this example ε = mini≠j

||xi - xj||
2 = 1.29 × 109, indicates that the spectral method

from Lafon has significant advantages in tuning parame-
ter fitting as a nonlinear DR method by our two criteria.

Conclusion
Within these examples, the spectral method from Lafon is
demonstrated to extract more meaningful structure, rela-
tive to two linear and three nonlinear methods, for calcu-
lating low dimensional representations of high
dimensional data types, such as image and microarray
data, for purposes of determining ordered patterns or clas-
sification. As a nonlinear method it is shown to be a rea-
sonable choice for biological and image data types, where
it is important to preserve nonlinear relationships and
local geometries in a low dimensional embedding.
Though the nonlinear methods of kernel PCA and Ng's
spectral method also may be well suited for these data
types, they suffer the primary drawback of requiring data-
set- and classifier-specific tuning parameter optimization,
making the validity of cross-experiment comparisons

Parameter optimization plot for microarray exampleFigure 4
Parameter optimization plot for microarray example. Classification error rates for primary fibroblast cell lines 
between three separate species determined by different epsilon values for (a) the spectral method from Ng et al. and (b) ker-
nel PCA. Epsilon values were increased to 5 × 109 to assess classification accuracy (data not shown), but truncated for the plot 
to better visualize the global minima for each classifier method. The spectral method from Lafon has a 0% error rate across all 
methods except LDA, where only one sample is misclassified.
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Two-dimensional projections of the Affymetrix primary fibroblast cell lines, using six DR methodsFigure 5
Two-dimensional projections of the Affymetrix primary fibroblast cell lines, using six DR methods. For each plot, 
red 'x' symbols denote samples from bonobo (Pan paniscus), blue 'o' symbols denote samples from gorilla (Gorilla gorilla), and 
black '*' symbols denote samples from human (Homo sapien). (a) Two-dimensional projection calculated with PCA-correlation. 
(b) Two-dimensional projection calculated with PCA-covariance. (c) Two-dimensional projection calculated with nonmetric 
MDS. (d) Two-dimensional projection calculated with kernel PCA. Epsilon parameter was selected at optimal classification 
using QDA (ε = 67,000). (e) Two-dimensional projection calculated with the spectral method from Ng et al. Epsilon parameter 
was selected at optimal classification using QDA (ε = 20,000). (f) Two-dimensional projection calculated with the spectral 
method from Lafon.
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problematic. Other nonlinear manifold methods, such as
ISOMAP [22] and Local Linear Embedding (LLE) [23],
have similar optimization requirements as drawbacks,
although tuning parameter optimization and classifica-
tion accuracy for these two methods was not assessed
here. This data fitting step can be not only time consum-
ing, but also, as we have shown, varies according to which
classification algorithm is used as well as which dataset is
examined. In this work, the spectral method from Lafon is
shown to outperform competing methods and exhibit
independence to tuning parameter fitting across three sep-
arate classifiers and two unrelated high dimensional data
types. Much like any method of DR, this method is not
proposed to always elucidate the most meaningful struc-
ture across all high dimensional data types. Methods such
as boosting and bagging [24] and the relative distance
plane (RDP) [25] may be better suited for certain high
dimensional datasets. Rather, the results presented here
demonstrate success in two disparate datasets of high
dimensionality and the authors' hope is that this presen-
tation will encourage others to extend applications of this
method in research within the computational biology
community.

Methods
Data types

The image data was obtained from the Computer Vision
Laboratory at the University of Massachusetts at Amherst
[26]. A total of 54 slice-by-slice CATSCAN images were
obtained for the human head, where each image has
dimensions of 128 × 128 pixels. The average for each

image was calculated and the median of these averages
was determined to be 11.82. Each image was then scaled
to a target mean of this value.

The microarray data are from genomic primary fibroblast
cell lines [27,28] and were generated with Affymetrix oli-
gonucleotide hgu95v2 arrays for 46 samples: 23 human
(Homo sapien), 11 bonobo (Pan paniscus), and 12 gorilla
(Gorilla gorilla) donors. This is a publicly available dataset
within the 'fibroEset' package in R [29]. It should be noted
that two identical human donor arrays are in this dataset,
so one was removed, reducing the dataset to 45 total sam-
ples.

The data was provided in R already normalized by the
Affymetrix GeneChip MAS 5.0 algorithm. "Normalization
was done by calculating multiplicative scaling factors on
the basis of the median intensity of the 60th to 95th per-
centile of gene-expression scores" and intensities were
floored to 100 fluorescent units [29]. No further filtering
or scaling was conducted on this dataset, which consists of
12,625 expression points for each of 45 arrays.

Spectral methods

The spectral implementation of the weighted graph Lapla-
cian from Lafon [3,4] is calculated as follows: Given a set
of points X = {x1, x2, ..., xn} ∈ �q, let G = (E, V) be a graph
with edge weights or lines E, between pairs of vertices V.
Consistent with standard terminology from graph theory,
we can construct a graph, where each pair of vertices (xi, xj

∈ V(G)) is assigned a weight specific to the distance

Table 2: LOO-CV classification error rates for six DR methods and three classifiers (fibroblast data)

PCA (cor) PCA (cov) Nonmetric 
MDS

kernel PCA† Spectral Ng 
et al.‡

Spectral 
Lafon

*KNN (k = 2) Pan paniscus 27.27%–41.02% 0%–13.71% 0%–13.69% 0%–9.13% 0%–9.02% 0%

Gorilla gorilla 8.33%–29.39% 8.33%–12.61% 8.33%–12.42% 8.33%–12.49% 8.33%–29.33% 0%

Homo sapiens 4.55% 0%–2.28% 0%–2.22% 0%–2.26% 0%–4.66% 0%

Total 20.09% 2.22%–7.83% 2.22%–7.74% 2.22%–6.79% 2.22%–13.93% 0%

*KNN (k = 3) Pan paniscus 27.27% 18.18% 18.18% 9.09% 9.09% 0%

Gorilla gorilla 8.33% 16.67% 16.67% 16.67% 25% 0%

Homo sapiens 4.55% 4.55% 4.55% 0% 0%–3.04% 0%

Total 11.11% 11.11% 11.11% 8.56% 8.88%–13.79% 0%

QDA Pan paniscus 72.73% 9.09% 9.09% 0% 0% 0%

Gorilla gorilla 16.67% 8.33% 8.33% 0% 8.33% 0%

Homo sapiens 4.55% 0% 0% 0% 0% 0%

Total 24.44% 4.44% 4.44% 0% 2.22% 0%

LDA Pan paniscus 18.18% 9.09% 9.09% 0% 0% **9.09%

Gorilla gorilla 25% 8.33% 8.33% 8.33% 41.67% 0%

Homo sapiens 0% 0% 0% 0% 9.09% 0%

Total 11.11% 4.44% 4.44% 2.22% 15.56% **2.22%

*The k-nearest neighbors (KNN) classifier was calculated over 1,000 independent trials for the mean error rates to be determined. Range of error 
values indicate that one or more trials provided a smaller error rate, though the average was computed.
† KNN k = 2: ε = 174,000; KNN k = 3: ε = 57,000; QDA: ε = 67,000; LDA: ε = 73,000
‡ KNN k = 2: ε = 21,000; KNN k = 3: ε = 21,000; QDA: ε = 20,000; LDA: ε = 20,000
**The 9.09% error rate corresponds to a single Pan paniscus sample that is misclassified by LOO-CV using LDA as a classifier.
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between them [30]. The matrix, K1 is calculated from these
edge weights by a Gaussian kernel estimate

 if i ≠ j, where K1ii = 0 and ε
= mini≠j ||xi - xj||

2 > 0

The epsilon term is chosen at the minimum squared Eucli-
dean distance, as opposed to the average minimum dis-
tance (specified by Lafon) to induce maximum
convergence of distance (see section on Comparison of

transformed distances for an example). The vector, v is
calculated from the square root of the product between
matrix components from K1 and vector components from
e. The matrix P is then formed by the product of v and vT.
Then, the weighted graph Laplacian matrix, K is calculated
by component division of the matrix K1 elements

(K1ij where i = 1, ..., q and j = 1, ..., n) by the matrix P ele-
ments

(Pij where i = 1, ..., q and j = 1, ..., n). The calculations are
given as the following:

 where i = 1, ..., q; j = 1, ..., n; and e = (1, 1, ...,

1)T, then

P = vvT and

K = K1ij/Pij where i = 1, ..., q and j = 1, ..., n.

The K matrix is decomposed by singular value decompo-
sition (svd)

svd(K) = XHVT (Note that for this symmetric positive sem-
idefinite matrix K, the svd is the spectral decomposition,
however, to remain consistent with the nomenclature
specified by Lafon, the calculations with svd are used.)

and the n columns of the X matrix which define the left
singular vectors of K are scaled by the first column of X,
given by

 where j = 1, ..., n.

This provides n - 1 characteristic roots of the matrix K

given by Φj. It should be noted that the first column of X
is scaled by itself, creating a vector of values equal to 1. By
convention, this vector is designated by Φ0. As such, the
second column in the matrix X will be considered the pri-
mary Φ vector, and designated by Φ1. Utilizing these pri-
mary Φ vectors, the data can be embedded as points in �Φ.

The spectral implementation of the weighted graph Lapla-
cian from Ng et al. is similar up to the calculation of the
K1 matrix, however, the kernel is defined by a denomina-
tor term of 2ε2 as opposed to simply ε in Lafon's method.
In addition, the epsilon smoothing term (ε) (as will be
demonstrated in the Results section) is not optimized at
ε = min i≠j ||xi - xj||2 > 0, as it is in our modification to
Lafon's method, and thus requires fitting for each example
analyzed and classifier utilized. Following the calculation
of the K1 matrix, the matrix D is a diagonal matrix calcu-
lated from the row sums of K1,

 where i = 1, ..., q. Then the normalized

Laplacian matrix, L is calculated as

L = D-1/2K1D-1/2

The Laplacian matrix, L is decomposed by svd, and the n
columns of the X matrix which define the left singular vec-
tors of L have rows scaled to unit length into the matrix Y

svd(L) = XHVT (Note the point specified in the decompo-
sition of the weighted graph Laplacian as provided by
Lafon.)

 where i = 1, ..., q and j =1, ..., n.

Utilizing the primary Φ columns of this Y matrix, the data
can be embedded as points in �Φ.

Additional DR (projection) methods

Two implementations of PCA were calculated for compar-
ison: correlation and covariance. These calculations were
conducted with the prcomp function in the 'stats' package
of R [29]. Since classical MDS is synonymous to PCA cal-
culated on a Euclidean distance matrix, nonmetric MDS
was performed instead (based on ranking of dissimilari-
ties), to avoid redundant information and for an addi-
tional comparison with another nonlinear approach,
using the isoMDS [31] function in the 'MASS' package of R
[29]. Kernel PCA was calculated with a Gaussian radial
basis function kernel using the k.pca function in the
'kmethods' package of R [29]. This kernel function was
chosen to maintain consistency with the kernel used in
both spectral methods. The weighted graphs Laplacian for
the two spectral methods are anchored on some form of a
Gaussian kernel (see Spectral methods section for the dif-
ference between the kernels).
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Comparison of transformed distances

In order to better demonstrate how each of the three DR
methods with a kernel function transforms Euclidean dis-
tances to its respective weighting values (e.g. Gaussian
radial basis function, weighted graph Laplacian L matrix-
Ng et al., weighted graph Laplacian K matrix-Lafon), an
example was generated with simulated data. A data matrix
of five observations was generated (each composed of 10
variables) and the three methods with a kernel function
were calculated on the data matrix to compare between
the final transformed weight matrix that is decomposed
(i.e. svd) and the standard Euclidean distance matrix
(Table 3). This evaluation illustrates how distances within
each method are transformed in the final step prior to
decomposition, and shows where on the distribution
local and remote distances converge in this transforma-
tion. For example, in kernel PCA, a Gaussian radial basis
function kernel is computed from the distance matrix and
these entries are plotted against their respective Euclidean
distances to represent the transformed space that the
eigenfunctions are calculated on, in order to provide a low
dimensional embedding. For both weighted graphs Lapla-
cian from Ng et al. and Lafon, the weight values in the L
and K matrix, respectively, are compared against the Eucli-
dean distance matrix.

The Euclidean matrix in Table 3 contains 10 unique dis-
tance values. Two values are less than the 25% of the dis-
tribution, three values are greater than the 75% of the
distribution, and the remaining values are within the
interquartile range. This range of distances is utilized to
convey both the subtle and apparent differences within
the transformed space between methods.

The results are shown in Figure 6. For each plot, the points
represent the relationship between the transformed space
(y-axis) and Euclidean distance (x-axis). The trend lines in
each plot are determined by ordering both the x and y axis
vectors, so an ordered transformation from Euclidean dis-
tance values to the weighted values would be depicted
with a line that passes through each point. Those plots
that do not exhibit this line pattern do not maintain the
identical ordering from distances to weights. The latter
statement does not imply that there is either a disadvan-
tage or an advantage to the method. It simply provides a

means of comparison for those methods that distort the
ordering of some distances when transformed into a
weight value. The black line in each plot is calculated
based on assigning the epsilon smoothing term to the
minimum non-zero squared Euclidean distance (ε =
mini≠j ||xi - xj||2 > 0). Each subsequent line that is shaded
by a portion of the rainbow spectrum (ROYGB) is then
calculated by increasing this epsilon term by 1% (deter-
mined from the distribution of the squared Euclidean dis-
tances) increments up to the 50% of the distribution of
squared Euclidean distances. Each line color is assigned to
bins of 10% incremental values from 1% to 50% (e.g.
weight value lines calculated with epsilon = 1%–10% val-
ues from the distribution of squared Euclidean distances
are shaded red, epsilon = 11%–20% values from the dis-
tribution of squared Euclidean distances are shaded
orange, etc.).

From the kernel PCA plot in Figure 6a, a Gaussian radial
basis function demonstrates convergence of local Eucli-
dean distances in the transformation to weight values,
while remote distances exhibit more linearity with these
weight values. In addition, as the epsilon smoothing term
is increased at very small values, local distances converge
to similar weight values much faster than remote dis-
tances. This example illustrates how local distance struc-
ture is better preserved at levels specific to the epsilon
smoothing term utilized, than remote distances. Small
distances are collapsed to a similar weighted value, while
large distances maintain relatively stronger linearity with
Euclidean distances, though this is reduced as the epsilon
smoothing term is increased to values greater than the
10% of the distribution of squared Euclidean distances
(denoted by the change in line shading from red to
orange). The two smallest Euclidean distances converge to
similar values rather quickly as the epsilon smoothing
term is increased, while the points in the distance distribu-
tion converge more slowly. At epsilon values greater than
the 20% (line shading of yellow, green, and blue) of the
distribution of squared Euclidean distances, the weight
values all converge to the same value of 1.

The Laplacian matrix, L from Ng et al., in Figure 6b shows
that at minimal values of the epsilon smoothing term,
there is near linearity between Euclidean distances and

Table 3: Euclidean distance matrix for simulated example

1 2 3 4 5

1 0.0 5.4 26.8 31.4 56.4

2 5.4 0.0 30.2 35.6 59.5

3 26.8 30.2 0.0 12.2 39.1

4 31.4 35.6 12.2 0.0 40.0

5 56.4 59.5 39.1 40.0 0.0
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values in the matrix L. However, as the smoothing epsilon
term is increased, the convergence occurs with both local
and remote distances, while the points in the middle of
this distribution maintain similar values (represented by
the approximate slope of 0 from the values within the
interquartile range of the plot). Both tails of the trend line
quickly approach a weight value of ~0.25 with epsilon val-
ues at less than 20% of the distribution of squared Eucli-
dean distances (denoted by line shading of only red and
orange). This example illustrates that values within the
middle region of the distribution (as compared the right
and left tails of the distribution) are transformed to simi-
lar weight values in matrix L, with rather small values of
the smoothing epsilon term, and then as this epsilon
value is increased to only slightly larger values, all points
in the function converge to a similar weight value. In addi-
tion, the Laplacian matrix, L does not preserve the same
ordering of Euclidean distances.

The Laplacian matrix, K from Lafon (Figure 6c), in con-
trast to the matrix L, demonstrates convergence of weight
values on both extremes of the Euclidean distance vector
at very small values of the epsilon smoothing term, as
illustrated by the small variance in red lines (i.e. epsilon
vales at less than the 10% of the distribution of squared
Euclidean distance). Additionally, opposite to the matrix
L, these weight values become more linear (less con-
verged) on both right and left tails of the distribution as

the epsilon smoothing term is increased to values greater
than the 20% of the distribution of squared Euclidean dis-
tances (line shading corresponding to colors of yellow,
green, and blue). It is interesting to note that at maximal
epsilon values (indicated by yellow, green, and blue lines
in Figure 6c), the function generated by the weight values
in the K matrix resemble the function generated by the
weight values in the L matrix at the minimum epsilon
value (indicated by the black line in Figure 6b). However,
similar to the L matrix values, the ordering of Euclidean
distances is not preserved. This example illustrates how
the Lafon method differs from the other two, in that max-
imal convergence of both local and remote distances is
optimized at minimal epsilon values (i.e. values at less
than 10% of the distribution of squared Euclidean dis-
tance for this example). Based on the partitioned structure
in the data, this reduces the dynamic range of Euclidean
distances, particularly along the middle of the distribu-
tion, and transforms the distance structure to weight val-
ues (in matrix K) at both extremes of the distribution.
Such a transformation, that acts to create a large gap
between local and remote distances (at a partitioning
threshold driven by the data) is shown to provide an opti-
mal distance transformation for subsequent spectral
decomposition for purposes of elucidating meaningful
structure in image seriation and microarray species classi-
fication examples presented. Since the convergence of
local and remote distances in the K matrix is highly

Weighted values vs. Euclidean distanceFigure 6
Weighted values vs. Euclidean distance. For each plot, the black trend line is drawn based on ordering the values for each 
vector (weighted values and Euclidean distance values); this gives a general fitting of each curve. The portion of the rainbow 
spectrum (ROYGB) shading for the lines are drawn by the same criterion, however, each line is calculated based on a set of 
increasing epsilon smoothing values. For example, epsilon values are increased from the 1% quantile to the 50% quantile of the 
squared Euclidean distance distribution, where each set of 10% values are plotted with a separate color in the rainbow spec-
trum, staring at red and ending at blue. This method of line shading illustrates how the transformed Euclidean distances are 
adjusted across a dynamic range of epsilon values for each method. (a) Gaussian radial basis function kernel values vs. Eucli-
dean distances. (b) Entries in the matrix of the weighted graph Laplacian, L from Ng et al., vs. Euclidean distance. (c) Entries in 
the matrix of the weighted graph Laplacian, K from Lafon vs. Euclidean distance.
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dependent upon the primary partitioning point (for this
example, between the Euclidean distances of 12.2 and
26.8), it is assumed that the most meaningful structures
are defined by the difference between the smallest two
Euclidean distances and the remaining eight Euclidean
distances.

Classifiers

The k-nearest neighbor (KNN) algorithm (for k = 2 and 3)
was calculated for 1,000 independent trials for each
method (to address the problem of random assignment
when ties occur in nearest neighbor voting) and the mean
error was computed using the knn function in the 'class'
package of R [29]. The discriminant analysis classifiers
both for separate variances (QDA) and pooled variances
(LDA) were computed using the qda and lda functions,
respectively, in the 'MASS' package of R [29]. All classifica-
tion models were trained and tested with leave-one-out
cross-validation (LOO-CV).
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