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Abstract

Massive, quiescent galaxies are already observed at redshift z∼4, i.e., ∼1.5 Gyr after the big bang. Current models
predict them to be formed via massive, gas-rich mergers at z>6. Recent ALMA observations of the cool gas and dust
in z6 quasars have discovered [C II]- and far-infrared-bright galaxies adjacent to several quasars. In this work, we
present sensitive imaging and spectroscopic follow-up observations, with HST/WFC3, Spitzer/IRAC, VLT/MUSE,
Magellan/FIRE, and LBT/LUCI-MODS, of ALMA-detected, dust-rich companion galaxies of four quasars at z6,
specifically acquired to probe their stellar content and unobscured star formation rate. Three companion galaxies do not
show significant emission in the observed optical/IR wavelength range. The photometric limits suggest that these
galaxies are highly dust-enshrouded, with unobscured star formation rates SFRUV < few Me yr−1, and a stellar content
of M*<1010Me yr−1. However, the companion to PJ167−13 shows bright rest-frame UV emission (F140W
AB=25.48). Its spectral energy distribution resembles that of a star-forming galaxy with a total SFR∼50 Me yr−1

and M*∼9×109Me. All the companion sources are consistent with residing on the galaxy main sequence at z∼6.
Additional, deeper data from future facilities, such as the James Webb Space Telescope, are needed in order to
characterize these gas-rich sources in the first gigayear of cosmic history.
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1. Introduction

A large population of massive (∼1011Me), quiescent, and
compact galaxies has been observed at very early cosmic times
(2<z<4) when the universe was between ∼1.6 and ∼3.6 Gyr
old (e.g., van Dokkum et al. 2008; Straatman et al. 2014). Several
studies suggest that these galaxies formed from gas-rich, major
mergers at 3z7 (e.g., Hopkins et al. 2008; Wuyts et al.
2010). High-redshift (z3) submillimeter galaxies (SMGs) have
been invoked as possible progenitors of these massive z2 “red-
and-dead” sources (e.g., Toft et al. 2014).

SMGs are galaxies with large infrared luminosities (LIR
1012Me), which are thought to experience short and intense
episodes of star formation (e.g., Blain et al. 2002; Spilker et al.
2014). Recent studies show that SMGs at z∼3.5 often have
subcomponents or companions when observed at kiloparsec-scale
resolution (e.g., Hodge et al. 2013b; Gomez-Guijarro et al.
2018), or located in dense environments (e.g., Hodge et al. 2013a;
Riechers et al. 2014), suggesting that these sources have
experienced recent mergers. At even higher redshifts (z6),
only a few SMGs not hosting a central active galactic nucleus
have been observed. Riechers et al. (2013) found a dust-obscured,
extremely star-forming SMG at z=6.3 with a star formation rate
SFR ∼3000Me yr−1; Fudamoto et al. (2017) and Zavala et al.
(2018) discovered a z=6.03 galaxy whose SFR was somewhat
smaller (∼950Me yr−1); Marrone et al. (2018) discovered a pair

of massive SMGs with similar SFR at z∼6.9. The only other

highly star-forming (100Me yr−1) objects known thus far at

such redshifts, with luminosities extending to slightly fainter

values (LIR∼few 1011 Le) than classical SMGs, are the host

galaxies of z6 quasars (e.g., Walter et al. 2009; Venemans

et al. 2012, 2018; Wang et al. 2013; Decarli et al. 2018).
Quasars are among the most luminous sources in the universe;

in recent years, the number of such objects known at z6 greatly
increased, thanks to the advent of deep, large-area sky surveys

(e.g., Fan et al. 2006; Bañados et al. 2016, 2018, Mazzucchelli

et al. 2017b; Reed et al. 2017, 2019; Matsuoka et al. 2018; Wang

et al. 2018). Observations of the stellar light from their host

galaxies have been very challenging, due to the much brighter,

nonthermal radiation from the central engine (e.g., Decarli et al.

2012; Mechtley et al. 2012). On the other hand, emission from

cool gas and dust in the observed (sub)millimeter wavelength

regime has been studied in several sources, providing a wealth of

information on the composition, dynamics and conditions in the

interstellar medium (ISM) of their hosts (e.g., Maiolino et al.

2009; Willott et al. 2015; Venemans et al. 2016, 2017). In

particular, the singly ionized 158 μm carbon emission line, [C II],
is one of the main coolants of the ISM and is very bright (it can

emit up to 1% of the total far-infrared emission in star-forming

galaxies). It has been used extensively as a key diagnostic of

galactic physics (see Carilli & Walter 2013 and Diaz-Santos et al.

2017 for reviews, and Herrera-Camus et al. 2018a, 2018b for

recent works).
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Recently, Decarli et al. (2018) and Venemans et al. (2018)
undertook a survey of [C II] and underlying dust continuum
emission in 27 quasar host galaxies at z6, with the Atacama
Large Millimeter Array (ALMA), at a resolution of 1″, i.e.,
∼5.5 pkpc at those redshifts. Surprisingly, they serendipitously
discovered [C II]- and far-infrared-bright companion galaxies in
the fields of four quasars, with projected separations of 60 kpc
and line-of-sight velocity shifts of 450 km s−1 (Decarli et al.
2017). In addition, Willott et al. (2017) used ALMA observations
at 0 7 resolution (i.e., ∼4 pkpc at z∼6.5) to find a very close
companion galaxy to the quasar PSO J167.6415–13.4960 at
z∼6.5, at a projected distance of only 5 kpc and velocity
separation of ∼300 km s−1. Similar sources have also been
observed in lower-redshift systems (e.g., at z∼5; Trakhtenbrot
et al. 2017). These findings, together with the discovery of a
couple of galaxies adjacent to two quasars at z∼4 and 6
(McGreer et al. 2014), a Lyα-emitting galaxy ∼12 kpc away
from a z∼6.6 quasar (Farina et al. 2017), and a close quasar-
galaxy pair at z∼6 (Neeleman et al. 2019), provide observa-
tional support to the theoretical paradigm that z∼6 quasars
reside in rich galactic environments (e.g., Volonteri & Rees 2006;
Overzier et al. 2009; Angulo et al. 2012). However, we note that
other studies did not find overdensities of [C II]/dust-continuum-
emitting galaxies (e.g., Venemans et al. 2016; Champagne et al.
2018), or of LAEs (e.g., Bañados et al. 2013; Mazzucchelli et al.
2017a; Ota et al. 2018) around a sample of z6 quasars. The
observed [C II]-bright companion galaxies have been considered
as potential progenitors of z∼4 red-and-dead galaxies (Decarli
et al. 2017). Previous optical/NIR observations have failed to
detect rest-frame UV/optical emission from any of these
companion galaxies, suggesting that they are heavily obscured
and limiting the study of their overall physical properties (Decarli
et al. 2017).

In this work, we present new sensitive optical/NIR follow-
up observations obtained from several ground- and space-based
facilities, specifically designed to probe companion galaxies to
four 6<z<6.6 quasars. In particular, we aim to observe the
bulk of their stellar emission in the rest-frame optical
wavelength range (∼5000–7000Å), in order to assess their
total stellar mass (M*). We also aim to measure their rest-frame
UV radiation (∼1200–1500Å), to probe the contribution from
the young stellar population, and to determine how much of the
star formation is unobscured. We observed the fields around
three quasars presented in Decarli et al. (2017): SDSS J0842
+1218, PSO J231.6576–20.8335, and CFHQS J2100−1715
(hereafter J0842, PJ231, and J2100, respectively), and around

PSO J167.6415–13.4960 (hereafter PJ167; Venemans et al.
2015b; Willott et al. 2017). In the following sections, we will
refer to each of the respective companions as “quasar_short_
name”c. We also obtained data for a millimeter-bright source,
detected only in the dust continuum emission, close to the
quasar VIK J2211−3206 (hereafter J2211; B. Venemans et al.
2019, in preparation).13 This galaxy is part of the sample of
dust-continuum-emitting sources discovered around several
z∼6 quasars by Champagne et al. (2018), for which no
redshift confirmation is available. We present our follow-up
data and discuss our constraints on the properties of this source
in Appendix A.
This paper is structured as follows. In Section 2 we present

our observations and data reduction. In Section 3.1 we compare
the companion galaxies’ photometry with the spectral energy
distributions (SEDs) of local galaxies, and in Section 3.2 we
estimate the (un)obscured star formation rates from the rest-
frame (UV) optical emission. In Section 3.3 we place the M*
and SFR of the companions in the context of observations of
SMGs and normal star-forming galaxies at comparable
redshifts. Finally, in Section 4 we present our conclusions
and outlook.
The magnitudes reported in this work are in the AB system.

We use a ΛCDM cosmology with H0=70 km s−1 Mpc−1,
Ωm=0.3, and ΩΛ=0.7.

2. Observations and Data Reduction

We collect available observations of the fields in our sample,
either from the literature or obtained with dedicated follow-up
campaigns. The coordinates, redshifts, spatial and velocity
separations of the quasars, and their companion galaxies are
reported in Table 1. Details on the optical/NIR observations
used here, i.e., dates, instruments/telescopes, exposure times
and filters, are shown in Table 2.

2.1. Optical/NIR Spectroscopy

We collected optical and NIR spectroscopic data for the
quasars and their respective companions.
We observed the quasars PJ231 and J2100 with the Multi

Unit Spectroscopic Explorer (MUSE; Bacon et al. 2010) at the
Very Large Telescope (VLT), imaging a total field of view of
1×1 arcmin2, with a spatial resolution of 0 2 pixel−1 and a

Table 1

Coordinates, Redshifts, Spatial Projected Distances, and Velocity Shifts of the Quasars and the Adjacent Galaxies Studied in This Work

Name R.A. (J2000) Decl. (J2000) z zerr Δrprojected Δvline of sight References

(kpc) (km s−1
)

SDSS J0842+1218 08:42:29.43 12:18:50.4 6.0760 0.0006 (1)

SDSS J0842+1218c 08:42:28.95 12:18:55.1 6.0656 0.0007 47.7±0.8 −443 (1)

PSO J167.6415–13.4960 11:10:33.98 −13:29:45.6 6.5154 0.0003 (2)

PSO J167.6415–13.4960c 11:10:34.03 −13:29:46.3 6.5119 0.0003 5.0 −140 (2)

PSO J231.6576–20.8335 15:26:37.84 −20:50:00.8 6.58651 0.00017 (1)

PSO J231.6576–20.8335c 15:26:37.87 −20:50:02.3 6.5900 0.0008 8.4±0.6 +137 (1)

CFHQS J2100−1715 21:00:54.70 −17:15:21.9 6.0806 0.0011 (1)

CFHQS J2100−1715c 21:00:55.45 −17:15:21.7 6.0796 0.0008 60.7±0.7 −41 (1)

Note. These measurements are obtained from the narrow [C II] emission line and underlying dust continuum observed by ALMA. References are as follows: (1)

Decarli et al. (2017), (2) Neeleman et al. (2019).

13
This quasar was also recently independently discovered by Chehade et al.

(2018), with the name of VST-ATLAS J332.8017−32.1036.
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spectral coverage between 4650 Å and 9300Å. We observed
the field of the quasar J2100 using Director’s discretionary time
(Program ID: 297.A-5054(A), PI: Decarli) during the nights of
2016 August 25 and 26. Sky conditions were good, with seeing
varying from 0 8 to 1 3. PJ231 was observed on 2017 July 2
as a part of our program 099.A-0682A (PI: Farina) in almost
photometric sky conditions and median seeing of 0 8. We
reduced the data using the MUSE Data Reduction Software
(Weilbacher et al. 2012, 2014). The final cubes were then post-
processed as in Farina et al. (2017). In particular, the pipeline-
produced variance cube was rescaled to match the observed
variance of the background at each wavelength channel. This
allowed us to compute more realistic errors that reflect possible
correlations between neighboring voxels. The spectrum of
J2100c was extracted with a fixed aperture of 1″ radius
centered at the position derived from our ALMA data. In
PJ231, the quasar and companion are separated by only 1 5,
requiring careful removal of the quasar contribution. We
created a point-spread function (PSF) model directly from the
quasar by collapsing the spectral region >2000 km s−1 redward
of the Lyα line, at a wavelength not contaminated by strong
sky emission. At each wavelength channel, the PSF model was
rescaled to match the flux of the quasar within 2 spaxels (0 4)
of the central emission and then subtracted. The spectrum of
the companion was then extracted from this PSF-subtracted
data cube with an aperture of 1″ radius. A more detailed
analysis of this full data set will be presented in E. P. Farina
et al. (in preparation).

We also acquired spectra of the quasar J0842 with the Multi-
Object Double Spectrograph (MODS; Pogge et al. 2010) at the
Large Binocular Telescope (LBT), in binocular mode on 2016
May 8 and 10. The orientation of the slit covered both the quasar
and the [C II] companion galaxy. We used the 1 2 slit and the
GG495 filter. We collected two exposures of 1320 s, for a total of
1h28m on target. Data reduction was performed with standard
Python and IRAF procedures. In particular, we corrected for bias

and flat with the modsCCDRed package14 and we wavelength-
and flux-calibrated the data using IRAF. The wavelength scale
was calibrated using bright sky emission lines, delivering an
accuracy of ∼0.2Å at λ>7000Å. The standard star GD153
was observed to flux-calibrate the data. We further scale the
spectrum of the quasar J0842 to match the observed zP1
magnitude, as taken from the internal final release, PV3, of the
Pan-STARRS1 Survey (zP1=19.92±0.03, Magnier et al.
2016; see also Jiang et al. 2015 for further details on the
discovery and the photometry of this quasar). We applied this
scaling to the spectrum of the companion, as extracted with a
boxcar filter at the position obtained from the ALMA data.
We observed the companions of PJ231 and J0842, and the

quasar PJ231, with the Folded-port InfraRed Echelette (FIRE;
Simcoe et al. 2008) at the Magellan Baade Telescope. We
observed PJ231 and its companion simultaneously, while we
performed a blind offset from the quasar to J0842c. The data
were reduced following standard techniques, including bias
subtraction, flat field, and sky subtraction. The wavelength
calibration was obtained using sky emission lines as reference
(see also Bañados et al. 2014). We used the standard stars
HIP43018 and HIP70419 to flux calibrate and correct for
telluric contamination in the spectra of J0842c and PJ231c,
respectively; we implemented the absolute flux calibration
considering the J magnitude of PJ231 (J AB=19.66±0.05;
Mazzucchelli et al. 2017b).
We show all the spectra extracted at the companion positions

in Figure 1. No clear emission from any of the companion’s
spectra is detected. In all cases, we estimated the 3σ limits on
the Lyα emission line as:

( )å å l= ´ ´ Da s
= =

F 3 err , 1
i

N

i

i

N

iLy ,3

1

2

1

Table 2

Information on Optical/IR Spectroscopic and Imaging Observations Used in This Work

Name Date/Program ID Telescope/Instrument Filters/λ Range Exp. Time

SDSS J0842+1218a 2016 May 8/10 LBT/MODS 0.51–1.06 μm 1320 s

2016 Mar 15 Magellan/FIRE 0.82–2.49 μm 4176 s

2017 Apr 27/14876 HST/WFC3 F140W 2612 s

2011 Jan 22/12184 HST/WFC3 F105W 356 s

2017 Feb 9/13066 Spitzer/IRAC 3.6, 4.5 μm 7200 s

2007 Nov 24/40356 Spitzer/IRAC 5.8, 8 μm 1000 s

PSO J167.6415–13.4960 2017 Aug 11/14876 HST/WFC3 F140W 2612 s

2017 Apr 13/13066 Spitzer/IRAC 3.6, 4.5 μm 7200 s

PSO J231.6576–20.8335 2017 Jul 2/099.A-0682 VLT/MUSE 0.465–0.93 μm 10,656 s

2016 Mar 15 Magellan/FIRE 0.82–2.49 μm 4788 s

2017 Apr 1/14876 HST/WFC3 F140W 2612 s

2016 Nov 25/13066 Spitzer/IRAC 3.6, 4.5 μm 7200 s

CFHQS J2100–1715 2016 Aug 25/26/297.A-5054 VLT/MUSE 0.465–0.93 μm 7956 s

2016 Sep 18/19/334041 LBT/LUCI J 10,440 s

2017 May 4/14876 HST/WFC3 F140W 2612 s

2017 Jan 14/13066 Spitzer/IRAC 3.6, 4.5 μm 7200 s

VIK J2211–3206 2017 Apr 28/14876 HST/WFC3 F140W 2612 s

2017 Jan 29/13066 Spitzer/IRAC 3.6, 4.5 μm 7200 s

Note. Observations of the dust-continuum detected source close to the quasar VIK J2211–3206 are described in Appendix A.
a
Archival Spitzer/IRAC [5.8], [8.0] and HST/WFC3 F105W data are taken from Leipski et al. (2014).

14
http://www.astronomy.ohio-state.edu/MODS/Software/modsCCDRed/
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where err is the error vector, and N is the number of pixels in

within a velocity window of (rest frame) 200 km s−1
(i.e., the

typical line width measured in LAEs, e.g., Ouchi et al. 2008)

around the supposed location of the Lyα emission line (as

obtained from the ALMA [C II] observations). Finally, Δλ=
λi+1−λi in the considered wavelength interval. Moreover, we

calculated the limits on the underlying continuum emission as:

( )å= ´s
=

F 3 err , 2
i

N

icont,3

1

2

where we consider here the spectral coverage at hands,

excluding noisy regions at the edges. All the estimated values

are reported in Table 3.
We note that the emission from the Lyα line in z∼6–7 LAEs

can be redshifted by ∼100–200 km s−1 with respect to the [C II]
line, and/or it can originate from slightly different spatial locations
(e.g., Pentericci et al. 2016). Here, the limits we measure by

shifting the center of the Lyα emission by ±150 km s−1 are
consistent with the fiducial values reported in Table 3, i.e., we do
not significantly detect a blue/redshifted line.

2.2. IR Photometry

We list here the observations and data reduction of the
imaging follow-up data, obtained with ground- and space-
based instruments.

2.2.1. LUCI/LBT

We imaged the field of J2100 in the J band (λc=1.247 μm
and Δλ=0.305 μm) with the Utility Camera in the Infrared
(LUCI1 and LUCI2; Seifert et al. 2003) at the LBT, in
binocular mode. We reduced the data following standard
techniques, i.e., we subtracted the master dark, divided by the
master flat field, and median-combined the frames after
subtracting the contribution from the background and after
aligning them using field stars. The final astrometric solution

Figure 1. Spectra at the locations of the companions to PJ231, J2100, and J0842, acquired with the FIRE and MODS spectrographs, and extracted from the MUSE
data cubes. We highlight the spectral regions where the flux calibration is less reliable with gray shaded areas. Dashed blue lines highlight the expected positions of the
respective Lyα emission lines, established from the observations of the narrow [C II] emission with ALMA. The surrounding regions of ±100 km s−1

(rest frame),
used to estimate limits on the Lyα emission line in the companion galaxies, are also shown with light blue shaded areas.

Table 3

Measurements of the Strength of Lyα Emission Line and of the Underlying Rest-frame UV Continuum from the Spectroscopic Observations of the Companion
Galaxies to J0842, PJ231, and J2100, Obtained with VLT/MUSE, Magellan/FIRE, and LBT/MODS

Name
VLT/MUSE LBT/MODS Magellan/FIRE

FLyα Fcont FLyα Fcont FLyα Fcont
(erg s−1 cm−2

) (erg s−1 cm−2 Å−1
) (erg s−1 cm−2

) (erg s−1 cm−2 Å−1
) (erg s−1 cm−2

) (erg s−1 cm−2 Å−1
)

SDSS J0842+1218 L <4.5e−17 <3.0e−16 <2.7e−16 <8.5e−16

PSO J231.6576–20.8335 <2.1e−16 <1.4e−15 L <1.8e−16 <8.5e−16

CFHQS J2100−1715 <8.3e−17 <3.5e−15 L L

Note. Limits are at 3σ significance and obtained as described in Section 2.1.

4
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used the Gaia Data Release 1 catalog15 (DR1; Gaia
Collaboration et al. 2016a, 2016b) as reference. We flux-
calibrated the image with respect to the 2MASS Point Source
Catalog. The seeing of the reduced image is 0 98. We
calculated the depth of the image by distributing circular
regions with radius equal to half of the seeing over the frame, in
areas with no sources. The 1σ error of our image is the standard
deviation of the Gaussian distribution of the fluxes calculated in
these apertures. We do not detect, at signal-to-noise ratio (S/
N)>3, any emission at the location of the companion, after
performing forced photometry in a circular aperture whose
diameter is corresponding to the seeing (see Figure 2). The 3σ
limit magnitude that we will use in the following analysis is
J=26.24 (FJ=0.116 μJy; see Table 4).

2.2.2. WFC3/HST

We obtained new observations of all the targets studied here
with the Wide Field Camera 3 (WFC3), on board the Hubble
Space Telescope (HST), using the F140W filter (λc=1.3923 μm
andΔλ=0.384μm; Program ID:14876, PI:E. Bañados). For the
quasar J0842, previous WFC3 observations in the F105W filter
(λc=1.0552 nm and Δλ=0.265 nm) were also retrieved from
the Hubble Legacy Archive16 (Program ID:12184, PI: X. Fan).
We refer to Table 2 for further details on this data set. We
analyzed both the archival and new observations in a consistent
way. We considered the reduced data produced by the HST
pipeline, and we took the zero-point photometry from the
WFC3 Handbook.17 We recalibrated the astrometry using the
Gaia DR1 catalog (see also Section 2.2.1). We calculated the
depth of the images in an analogous way as in Section 2.2.1,
considering here circular areas of 0 4 radius (containing the
84% of the flux from a point source18). We performed aperture
photometry using this aperture radius at the positions of the
companions. The companion sources of J0842, J2100, and
PJ231 were not detected in the F140W filter, and J0842c was

also not detected in the F105W image. We report all the 3σ limit
fluxes in Table 4. We show the observations of all the fields
studied in this work in the F140W filter in Figure 3, and the
F105W image of J0842 in Figure 4. In the case of PJ167, the
companion is located at a projected distance of only 0 9, and it is
blended with the quasar emission. In order to recover meaningful
constraints on the brightness of PJ167c, it is necessary to subtract
the quasar contribution by modeling the image PSF. We used the
bright star 2MASS J11103221–1330007, in the proximity of
PJ167, in order to create an empirical PSF model from the same
image. This source is located at a distance of only 30″ from the
quasar, limiting the errors due to the changes in the PSF over
the field. Its J and H magnitudes from the 2MASS Point Source
Catalog are 15.249 and 15.105, respectively. The corresponding
J−H color of 0.144 is therefore close to that of the quasar
(J−H=0.216). We shifted, scaled, and subtracted the PSF
model from the quasar emission using the software GALFIT

(version 3.0.5; Peng et al. 2002, 2010). In Figure 5 we show the
native HST image, the PSF star model, and the residual frame, in
which the bright quasar emission has been subtracted. The
companion galaxy is well isolated, and its F140W PSF magnitude,
measured with GALFIT, is equal to 25.48±0.17 ( =FF140W

m-
+0.23 Jy0.03
0.04 ). Diffuse emission extending from the companion to

the quasar is also tentatively recovered. Additional, high-resolution
imaging and spectroscopy are needed to securely confirm and
characterize such emission.

2.2.3. IRAC/Spitzer

The fields of all the objects in our sample were observed in
the [3.6] (λc=3.550 μm and Δλ=0.750 μm) and [4.5]
(λc=4.493 μm and Δλ=1.015 μm) filters with the InfraRed
Array Camera (IRAC; Fazio et al. 2004; Program ID:13066, PI:
C. Mazzucchelli; see Table 2). We also use archival data of
J0842 (Program ID:40356, PI: X. Fan), covering the IRAC
filters [5.8] (λc=5.731 μm and Δλ=1.425 μm) and [8.0]
(λc=7.872 μm and Δλ=2.905 μm; see Table 2).
We adopt the reduced data from the Spitzer pipeline, and the

photometric calibration (i.e., photometric zero-point and aperture
correction values) specified in the IRAC Instrument Notebook.19

As in the case of the HST/WFC3 observations, we refine the
astrometric solution using the recent Gaia DR1 catalog. Given
the limited spatial sampling of the IRAC camera (0 6 pixel−1

)

and the depth of our [3.6] and [4.5] images, the companion
galaxies studied here are blended either with the much brighter
quasar, or with foreground sources (see Figure 3). Hence, one
needs to properly model and remove these sources. In order to
model the PSF, which is undersampled in the IRAC data, we
resample the native images over a grid of 0 12 pixel−1

resolution, using the IRAF task magnify. In each magnified
image, we select a collection of stars identified as such in the
HST/WFC3 data within 1′×1′of the quasar. We obtain the
final PSF model for each image by shifting, aligning, scaling,
and combining the images of the selected stars. The number of
stars used in each field ranges between 4 and 9. We use
GALFIT to sample the PSF image to the original resolution
(0 6 pixel−1

), and to model and subtract the emission from the
quasar and any foreground objects. In Figure 3, we show the
postage stamps of the IRAC [3.6] and [4.5] images, and the
corresponding images of the residuals. No clear emission from

Figure 2. Postage stamp (20″×20″) of the field around the quasar J2100,
imaged in the J filter with the LUCI1 and LUCI2 cameras at the LBT (see
Section 2.2.1 and Table 2). We place a limit of J>26.24 (at 3σ) on the
emission from the companion galaxy (magenta circle).

15
https://www.cosmos.esa.int/web/gaia/dr1

16
https://hla.stsci.edu/

17
http://www.stsci.edu/hst/wfc3/analysis/ir_phot_zpt

18
http://www.stsci.edu/hst/wfc3/analysis/ir_ee

19
http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/

iracinstrumenthandbook/IRAC_Instrument_Handbook.pdf
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the companion galaxies is detected in any of the residual
images. We quantify the limits on the photometry of the
companions as follows. For each image, we run GALFIT

subtracting a source at the exact position of the companion
modeled as a PSF and scaled to a fixed magnitude, which we
vary between 21 and 25, in steps of 0.01 mag. When adopting
magnitudes smaller (i.e., brighter fluxes) than the limit flux to
which our image is sensitive, the subtraction will leave a
negative residual. We perform aperture photometry in the
residual image at the companion position in an aperture of 2 4
radius, and we compare the measured flux with the image 3σ
flux limit. The adopted flux limit was measured on the same
area used for the forced photometry, and by evaluating the
background rms in an annulus of radius 14″ and width of 10″
centered on the companion. We assume that the 3σ limit
magnitude is the value at which the measured absolute flux in
the residual image is equal to the 3σ flux limit. We report these
values in Table 4.

Finally, we analyze the archival J0842 Spitzer/IRAC
observations (see Figure 4), which are much shallower (see
Table 2), because they were designed only to detect the bright
quasar. No foreground objects overlap the companion location,
and we therefore perform aperture photometry on the native
images, using the same aperture as in the observations in the
[3.6] and [4.5] channels. We do not detect any source at S/
N>3. We report the corresponding flux limits in Table 4.

3. Analysis

In this section, we characterize the SEDs of four companions
to z∼6 quasars, by comparing them with a few examples of
local galaxies and by modeling their emission with an SED
fitting code. We estimate (or set upper limits to) their
unobscured/obscured star formation activity observed in the
rest-frame UV/IR range. Finally, we place our measurements
in the context of observations of star-forming galaxies and
starbursts at similar redshift.

3.1. Spectral Energy Distribution

We first compare the SEDs of our companions with those of
prototypical galaxies in the local universe. We consider the SEDs
of normal star-forming spiral galaxies (M51 and NGC6946),
starbursts (M82), and ultraluminous infrared galaxies (ULIRGs;
Arp 220), from Silva et al. (1998). M51 is a nearby (D=9.6Mpc)
spiral (Sbc) interacting galaxy, which has been studied in detail
over a wide range of wavelength and physical scales (e.g., Leroy
et al. 2017). NGC6946, found at a distance of 6.72Mpc, is an
intermediate (Scd) spiral galaxy (Degioia-Eastwood et al. 1984).
Its size is approximately a third of that of our Galaxy and it
hosts roughly half of the stellar mass (e.g., Engargiola 1991). M82

is a prototypical edge-on starburst (with a galaxy-wide SFR∼
10–30Me yr−1; Forster Schreiber et al. 2003), whose intense
activity has been most probably triggered by a past interaction with
the neighboring galaxy M81 (e.g., Yun et al. 1994). Arp 220 is one
of the closest (77Mpc) and best studied ULIRGs, with a total
infrared luminosity of LIR=1.91×10

12Me (Armus et al. 2009).
It is thought to be the result of a merger that happened ∼3–5Myr
ago (e.g., Joseph &Wright 1985; Baan & Haschick 1995; Scoville
et al. 1998; Downes & Eckart 2007), and has extreme conditions
in its nucleus (e.g., with an attenuation of AV=2×10

5mag;
Scoville et al. 2017)
Here, we shift the observed SEDs of these local galaxies to

the redshifts of the companions, and we scale them to match the
1.2 mm flux retrieved in the ALMA observations. We plot the
SEDs, together with the photometry of the companions
presented here, in Figure 6.
The limits on rest-frame UV/optical brightness of PJ231c,

J2100c, and J0842c rule out all the galaxy templates considered
here, with the exception of Arp 220. These companions have
infrared luminosities in the range of (ultra-)luminous galaxies
(e.g., (0.9–5)×1012 Le; Decarli et al. 2017). On the other
hand, the rest-frame UV emission of PJ167c is detected in our
HST/WFC3 observations (see Section 2). Its UV-to-submilli-
meter ratio is comparable to that of the star-forming galaxy
NGC6946, while the limits from our Spitzer/IRAC data
suggest that it has lower stellar content.
We compute the star formation rates for PJ231c, J2100c, and

J0842c assuming that their SEDs are equivalent to that of Arp
220, shifted in redshift and scaled as in Figure 6. We derive
their star formation rates from the dust emission in the rest-
frame infrared region (SFRIR), assuming that the nonobscured
SFR is negligible (see Section 3.2). We calculate the total IR
luminosity by integrating the emission from 3 to 1100 μm, and
we measure the SFR as SFR=1.49×10−10LIR (Kennicutt &
Evans 2012). The obtained values range between 120 and
700Me yr−1. We note that, if we had instead assumed a
modified blackbody model, ( )nµn n

bf B Td , and adopted
typical parameters for high-redshift galaxies (Td=47 K and
β=1.6; e.g., Beelen et al. 2006; Venemans et al. 2016), we
would have derived comparable star formation rate values
(∼140–800Me yr−1; see also Decarli et al. 2017).
We can obtain conservative upper limits on the companion

stellar masses by subtracting their gas mass (Mgas) from their
dynamical mass (Mdyn). The latter can be obtained from the
widths of the [C II]emission line observed with ALMA (see
Decarli et al. 2017). We note, however, that these estimates are
based on a number of important assumptions on the
companions geometry and dynamics (i.e., they are virialized
systems), and that they are obtained from data with a relatively
modest resolution of ∼1″. We list all dynamical masses in

Table 4

Photometric Measurement of the Companion Galaxies to z∼6 Quasars Studied in This Work (See Section 2)

Name FJ FF105W FF140W F3.6 μm F4.5 μm F5.8 μm F8.0 μm F1.2 mm

(μJy) (μJy) (μJy) (μJy) (μJy) (μJy) (μJy) (mJy)

SDSS J0842+1218c L <0.154 <0.061 <0.78 <1.06 <9.54 <12.6 0.36±0.12

PSO J167.6415–13.4960c L L 0.230.03
0.04

<0.78 <1.28 L L 0.16±0.03a

PSO J231.6576–20.8335c L L <0.053 <0.64 <2.79 L L 1.73±0.16
CFHQS J2100−1715c <0.116 L <0.083 <0.53 <1.07 L L 2.05±0.27

Note. The limits provided are at 3σ significance.
a
This flux measurement comes from recent 0 35, i.e., ∼2 pkpc at z∼6.5, ALMA observations (Neeleman et al. 2019).
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Table 5. On the other hand, we can estimate Mgas from the dust
content (Mdust). We take these values from Decarli et al. (2017):
Mdust are measured following the prescription by Downes et al.
(1992), while Mgas are obtained assuming a typical gas-to-dust
ratio of ∼100 (e.g., Berta et al. 2016). We obtain upper limits
on the stellar content ranging between ∼16 and 21×1010Me.
In the following analysis, we utilize the latter values as upper
limits on the stellar masses of the companions (see Table 5 and
Figures 7 and 8).

Alternatively, we can compare our photometric measurements
with synthetic galaxy templates. We use the SED fitting code
MAGPHYS (Da Cunha et al. 2008), which uses an energy balance
argument to combine simultaneously the radiation from the stellar
component, the dust attenuation, and the re-emission in the rest-
frame IR wavelength range. We consider here the MAPGPHYS-
high-z extension (Da Cunha et al. 2015), which was specifically
designed to characterize a sample of SMGs at 3<z<6 (see also
Section 3.3). In particular, this version included younger galaxy
templates, with higher dust extinction and a wider choice of star
formation histories. Nevertheless, fitting the photometry of the
companion galaxies presented here with any code is hard, due to
the few (and most of the time only one) broadband detections for
each source. This is reflected in strong parameter degeneracies in
the fit. Another issue is represented by the potentially inappropriate

coverage of the parameter space considered in the fitting machine,

which might not be modeling the properties of the peculiar

galaxies considered here. Therefore we choose to fit only the

companion of PJ167, whose emission is retrieved in more than one

broad band. In Figure 6, we show the best-fit template from

MAGPHYS-high-z for this galaxy. We take the 50th and 16th/84th
percentiles of the marginalized probability distributions as the best-

fit values and uncertainties of its SFR and stellar mass. The SED of

PJ167c is consistent with that of a star-forming galaxy, =SFR

-
+53 19
27 Me yr−1, with a stellar mass of = ´-

+M 0.84 100.40
0.64 10

*
Me, a moderate dust extinction ( = -

+A 0.66V 0.25
0.35mag) and a dust

content of = ´-
+M 4.7 10d 1.7
3.7 7 Me.

Finally, we note that, given the close spatial/velocity
separation of the companions and the quasar hosts, they are

very likely found in physical connection. In particular, PJ167c

is located at only 5 pkpc/140 km s−1 away from PJ167, and

emission linking these systems is observed both in the dust

continuum and the [C II] line (with a smooth velocity gradient;

Decarli et al. 2017; Neeleman et al. 2019) and, tentatively, in

the rest-frame UV (see Figure 5). This evidence, together with

a measured high velocity dispersion of the cool gas

(∼150 km s−1; Neeleman et al. 2019) may suggest that these

galaxies have already entered an advanced merging stage.

Figure 3. Postage stamps (20″×20″) of the four fields (quasar+companion) considered in this study. We also report the residual IRAC images after removing the
emission from the quasar and nearby foreground sources (see Section 2.2.3). The positions of the companions and of the quasars are highlighted with magenta circles
(of 1″ radius) and red crosses, respectively.
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3.2. SFRUV versus SFRIR

The rest-frame UV emission of galaxies directly traces
young stars, i.e., 10–200Myr old. It is thus an excellent probe
of recent star formation, but it is also heavily affected by dust
attenuation. The energy of the UV photons is absorbed by the
dust, and re-emitted in the IR. Therefore, there also exists a
natural correlation between star formation rate and IR emission
(see Kennicutt & Evans 2012 for a review).

We here first consider the contribution from the obscured
star formation activity, as observed in the rest-frame IR range
(SFRIR). For J2100c, J0842c, and PJ231c, we use the values
obtained from the Arp 220 SED (see Section 3.1 and Table 5).
In the case of PJ167c, we follow the method described in
Section 3.1 to derive its SFRIR, but, instead of Arp 220, we use
the best SED from the MAGPHYS-high-z fit (see Figure 6 and
Table 5). An alternative way of computing the star formation
rate is through the luminosity of the [C II] emission line (L[C II];
e.g., De Looze et al. 2011, 2014; Sargsyan et al. 2012; Herrera-
Camus et al. 2015). Here, we take the values of SFR[C II]

reported in Decarli et al. (2017), ranging from ∼260 to
∼730Me yr−1, i.e., of the same order of magnitude as those
measured from the dust continuum. For PJ167c, we consider
the measurement of the [C II] line from recent high-resolution
ALMA observations, i.e., F[C II]=1.24±0.09 Jy km s−1

(Neeleman et al. 2019). We measured the corresponding
[C II] luminosity and star formation rate following Carilli &
Walter (2013) and De Looze et al. (2014), respectively. In
Table 5 we report all the SFR[C II] values.

On the other hand, we can obtain measurements of (or limits
on) the unobscured contribution to the SFR in the companions,
using our HST/WFC3 sensitive observations in the F140W
filter. We consider the conversion between far-UV (0.155 μm)

luminosity (LFUV) and SFRUV provided by Kennicutt & Evans
(2012):

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ ( )


= -

- -M

L
Clog

SFR

yr
log

erg s
3

UV

1

FUV

1 FUV

with CFUV=43.35. We report in Table 5 the estimated SFRUV

values. The limits achieved by our data are very sensitive,

down to a few Me yr−1. PJ167c, the only companion detected

in the rest-frame UV, has an inferred unobscured star formation

rate of ∼11Me yr−1. We note that the central wavelength of

the broadband filter used here (F140W) corresponds to

λrest∼0.18–0.2 μm for z∼6–6.6, i.e., in between the

classically defined FUV and near-UV (NUV; 0.230 μm). In

order to check how this impacts our results, we repeat our star

formation rate estimates considering the calibration for the

NUV (CNUV=43.17; Kennicutt & Evans 2012). In this case,

we measure SFR values only ∼1.5×larger. We also consider

the best SED fit from MAGPHYS-high-z for PJ167c, and we

calculate the star formation rate in the exact FUV range. We

obtain SFRUV∼8Me yr−1, consistent, within the errors, with

the one measured directly from our HST data.
With the exception of PJ167c, the SFRs measured in the IR

in the companions studied here are ∼two orders of magnitude
larger than the limits we set for the companions rest-frame UV
emission. The contribution of SFRUV to the total star formation
budget is therefore negligible. In the case of PJ167c, the
unobscured star formation rate is instead only ∼6×lower than
the obscured one. Another way of performing this comparison
is by looking at the fraction of obscured star formation, defined
as = +f SFR SFRobscured IR IR UV. Whitaker et al. (2017)
reported a tight correlation between this quantity and the
stellar mass, irrespective of redshift (up to z < 2.5), in a large
sample of star-forming galaxies from CANDELS and SDSS.
We calculate (limits on) fobscured for the galaxies presented here.
We report these values in Table 5, and we show them in the
context of previous observations in Figure 7. Again, the star
formation rate of the companions is highly dominated by
SFRIR, with obscured fractions ranging between 0.74 and 0.99.
In particular, taking into account the large uncertainties on M*
and fobscured, PJ167c is consistent with the expectations from
lower-redshift studies. The remaining sources seem to also
follow the z<2.5 trend (with the caution that we are here only
able to set upper limits on their stellar masses).

3.3. SFR versus Stellar Mass

A large number of studies has found a correlation between the
SFR and the stellar mass of star-forming galaxies (“main
sequence,” MS) over a wide redshift range (0z6; e.g.,
Brinchmann et al. 2004; Noeske et al. 2007; Rodighiero et al.
2011; Whitaker et al. 2011; for an in-depth analysis of the
literature, see Speagle et al. 2014). The tightness (∼0.3−0.2 dex
scatter) of this relation has been interpreted as evidence that
“regular” star-forming galaxies have smooth star formation
histories, in which the majority of the mass is assembled via

Figure 4. Archival observations (20″×20″) of the field around the quasar J0842. The left panel shows the image obtained from the HST/WFC3 instrument in the
F105W filter, while the other two panels show observations acquired with the Spitzer/IRAC camera, in the [5.8] and [8.0] channels (see Section 2.2.3 and Table 2 for
references). The quasar is identified with a red cross, while the companion position is highlighted with a magenta circle. These observations were acquired with the
aim of studying the bright quasar emission; therefore, the flux limits at the companion position are shallower than the newly obtained images (see Table 4).
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steady accretion of cool gas from the intergalactic medium on

long timescales (e.g., Daddi et al. 2007; Steinhardt et al. 2014). On

the other hand, highly starbursting galaxies, which lie above the

MS, are also observed, and are thought to grow mainly via

efficient, merger-triggered star formation events (e.g., Santini et al.

2014). The MS normalization is observed to evolve with redshift,

and this trend suggests that higher specific star formation rates are

common at early cosmic times (e.g., Whitaker et al. 2014).

We compare the properties of the companion galaxies

considered here with those of typical star-forming galaxies and

SMGs at similar redshifts (see Figure 8). We consider the

observed MS relation at z∼6 provided by Salmon et al.

(2015) and Speagle et al. (2014), together with predictions from

semianalytical models by Somerville et al. (2008, 2012).

Salmon et al. (2015) examine 3.5�z�6.5 galaxies in the

GOODS-S field: we take here SFR and M* values of their

Figure 5. HST/WFC3 image in the F140W filter of the quasar PJ167. Left panel: native postage stamp (5″×5″). Central panel: empirical PSF model obtained from a
bright star in the field (see Section 2.2.2). Right panel: residual image after the subtraction of the empirical PSF from the data. The companion galaxy observed in the
ALMA image is detected and well resolved in the latter frame (white circle, of radius 0 4). Additional residual flux, located between the center of the bright quasar
and the adjacent galaxy is also tentatively detected.

Figure 6. Spectral energy distribution of four companion galaxies adjacent to z∼6 quasars. The measurements from our photometric observations (Table 4) are
reported with down-pointing arrows (limits at 3σ significance) and filled black points. As a comparison, we show representative SEDs of various local star-forming
galaxies (NGC 6946, blue; M51, green) and starbursts/ULIRG (M82, orange; Arp 220, red line; Silva et al. 1998), normalized to the ALMA 1.2 mm measurement.
The best-fit template (gray line) of the SED of PJ167c, obtained with the code MAPGPHYS-high-z (Da Cunha et al. 2015), is also reported. The SEDs of J2100c,
J0842c, and PJ231c are consistent with being Arp 220-like galaxies, i.e., intensely forming stars and highly dust obscured, at z∼6. The HST/WFC3 measurement of
the rest-frame UV emission of PJ167c suggests that this source is more similar to a “regular” star-forming galaxy (e.g., NGC6964), with a lower stellar mass.

9

The Astrophysical Journal, 881:163 (15pp), 2019 August 20 Mazzucchelli et al.



∼200 z∼6 galaxies. Speagle et al. (2014) assemble a
comprehensive compilation of 25 studies of the MS at
0z6. After a careful recalibration of the various data
sets, they obtain a robust SFR–M* relation as a function of the
age of the universe (t, here in Gyr):

[ ] ( )

( ) ( )

= - ´
- - ´

M t t M

t

logSFR , 0.84 0.026 log

6.51 0.11 . 4
* *

They also find a scatter around the MS of ∼0.2 dex, irrespective

of redshift. We show this relation, calculated at z=6 with the

representative 0.2 dex scatter, in Figure 8. We consider the

semianalytical model by Somerville et al. (2012), who use N-body

simulations and several feedback/accretion recipes to specifically

reproduce the GOODS-S field. In particular, we consider the MS

relation for this model at z∼6, as provided by Salmon et al.

(2015; see their Table 4). In addition, we report observed SMGs at

4.5<z<6.1 from Da Cunha et al. (2015), whose redshifts and

physical parameters were obtained with MAGPHYS-high-z, and at

z∼4.5 from Gomez-Guijarro et al. (2018), for which recent

ALMA millimeter observations and secure spectroscopic redshifts

are available. Finally, we show the massive, extremely starburst-

ing galaxies at z>6 discovered by Riechers et al. (2013) and

Marrone et al. (2018; see Section 1), and z∼5.5 LBGs (Capak

et al. 2015).
We show in Figure 8 the SFR and M* values obtained with

MAGPHYS-high-z for PJ167c. This galaxy lies on the MS at
z∼6. For the remaining galaxies, i.e., J2100c, J0842c, and
PJ231c, we only consider the obscured star formation rates and
the upper limits on the stellar masses (see Section 3.1). These

Table 5

Physical Properties of the Companion Galaxies to z∼6 Quasars Studied in This Work

Name SFRUV SFRIR SFR[C II] fobscured= Mdyn M*

(Me yr−1
) (Me yr−1

) (Me yr−1
) SFRIR/SFRUV+IR (×1010 Me) (×1010 Me)

SDSS J0842+1218c <2 124±54 260±40 >0.98 12±5 <11

PSO J167.6415–13.4960c 11±3 32±4 182±16 0.74±0.20 L -
+0.84 0.40
0.64

PSO J231.6576–20.8335c <3 709±157 730±100 >0.99 22±8 <16.8

CFHQS J2100−1715c <3 573±73 360±70 >0.99 27±13 <21.5

Note.We report the unobscured (rest-frame UV) SFRs calculated from our HST/WFC3 observations (Section 3.2), and the obscured (rest-frame IR) contribution from

our ALMA data (Sections 3.1 and 3.2). Finally, the dynamical mass estimates and upper limits on the stellar masses are also listed. In the case of PJ167c, the reported

stellar mass is that derived from MAGPHYS-high-z (see Section 3.1). We note that the SFR[C II] values have an additional uncertainty of 0.5 dex due to the scatter

around the relationship from De Looze et al. (2014).

Figure 7. Fraction of obscured star formation as a function of stellar mass. A
tight correlation is observed at lower redshifts (0<z<2.5; dashed black line,
Whitaker et al. 2017). We show the location of z>6 SMGs observed by
Marrone et al. (2018; big diamond) and Riechers et al. (2013; pentagon),
together with z∼5.5 LBGs from Capak et al. (2015; blue diamond). The
galaxies studied in this work are reported with red (PJ167c, whose physical
properties were obtained with the code MAGPHYS-high-z) and yellow circles
(J2100c, PJ231c, J0842c; see Section 3.1). In the latter case, only limits for the
unobscured SFR could be derived (see Section 3.2). The star formation of
companions to high-z quasars is dominated by the obscured component.

Figure 8. Star formation rate as a function of stellar mass for a compilation of
sources at z∼6. We report observations of the galaxy main sequence (MS)

from Salmon et al. (2015; empty black squares), the empirically derived MS
relation by Speagle et al. (2014; dashed line and gray region), and the MS
location predicted by semianalytical models (Somerville et al. 2012; light blue
region). The Speagle et al. relation is based on observations with
M*<1010.5 Me, and extrapolated linearly at higher masses. We show further
examples of submillimeter galaxies, from z∼4.5–6.1 sources (Da Cunha
et al. 2015, triangles, and Gomez-Guijarro et al. 2018, small diamonds) to the
extreme starbursts observed at z=6.3 (Riechers et al. 2013; pentagon) and at
z=6.9 (Marrone et al. 2018; big diamond), and z∼5.5 LBGs from Capak
et al. (2015, blue diamonds). We note that the SFR of the galaxies taken from
the literature are derived with different methods (see Section 3.3). The
companion galaxies reported in this work are shown with red and yellow
circles (labels analogous to Figure 7). Finally, we show the loci of constant
sSFRs (gray dotted lines). The companion galaxies are consistent with lying on
the MS at z∼6. Deeper observations, particularly in the rest-frame optical
region, are necessary to securely characterize the properties of these sources.
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highly conservative constraints place the companions on or
above the MS relation.

Future, deeper observations in the IR regime, together with
further development of current fitting machines ,will be needed
to constrain these galaxies’ SEDs and stellar masses.

4. Conclusions

In this work, we present sensitive follow-up optical and NIR
imaging and spectroscopy of companion galaxies adjacent (i.e.,
<60 kpc and <450 km s−1

) to four z∼6 quasars, initially
discovered by their bright [C II] and far-infrared emission with
ALMA (Decarli et al. 2017; Willott et al. 2017).

The data reported here have been acquired with several
ground- and space-based facilities (i.e., VLT/MUSE, MODS,
and LUCI at the LBT, Magellan/FIRE, Spitzer/IRAC, and
HST/WFC3), and are aimed at probing the galaxies’ stellar
content, recovered in the rest-frame UV/optical regime. We
perform aperture photometry at the location of the galaxies (as
measured by ALMA), after accounting for both the bright,
point-like, nonthermal quasar radiation and any foreground
objects. We detect no rest-frame 5000–7000Å stellar emission
(at >3σ significance level) from the companions, observed at
3–5 μm. In addition, no light from young stars, probed at
λobs∼1.4 μm by HST/WFC3, is detected in three of the four
sources examined, i.e., J2100c, J0842c, and PJ231c. However,
the companion galaxy of the quasar PJ167 is detected in our
HST observations at 6.4σ.

From a comparison with SEDs of various local galaxies, we
find that the companions PJ231c, J2100c, and J0842c are
consistent with an Arp 220-like galaxy at z∼6. These objects
are heavily dust-obscured and/or they harbor a modest stellar
mass. The source PJ167c resembles, instead, a less extreme
star-forming galaxy. We compute SFRs and M* with the SED
fitting code MAGPHYS-high-z for this galaxy, whose emission
is detected in more than one broad band. We derive the
obscured SFR of PJ231c, J0842c, and J2100c by assuming the
SED of Arp 220 scaled at the observed fluxes. We place upper
limits on their stellar masses by subtracting their gas masses,
estimated from the dust content, from their total dynamical
masses, derived from the [C II] emission line widths. We also
derive tight constraints on their unobscured star formation rate,
as obtained from the sensitive HST/WFC3 data. We observe
SFRFUV3Me yr−1, i.e., more than two orders of magnitude
lower than SFRIR, with the exception of PJ167c, whose
obscured star formation component is only ∼6×larger than the
unobscured value. Finally, we find that the companions
examined here are consistent with being on the main sequence
of star-forming galaxies at z∼6. However, our constraints/
limits, in particular on the stellar masses, are still coarse. This is
mainly due to the lack of detections in the bluer bands.

In the near future, deep observations with upcoming
instruments, e.g., the NIRCAM and NIRSPEC cameras on
board the James Webb Space Telescope, will enable us to
uncover the emission and dynamics of the stellar content of
these galaxies, and, together with updated fitting techniques, to
place strong constraints on their SEDs.
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Appendix A
Dust-continuum Emitting Source Adjacent to the Quasar

VIK J2211–3206

We detect emission from the dust continuum, but not from
the [C II] emission line, from a source in the field of the quasar

11

The Astrophysical Journal, 881:163 (15pp), 2019 August 20 Mazzucchelli et al.

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium
http://www.astropy.org


J2211 (QSO R.A. 22:11:12.39; decl. −32:06:12.9), at redshift
zquasar=6.3394±0.001 (Decarli et al. 2018). No secure
redshift value is measured for this neighboring source (here-
after J2211c). Note that the detection of an object with flux
density comparable to J2211c over the area covered in the
ALMA survey (Decarli et al. 2018) is expected from a

comparison with the number counts of 1.2 mm bright sources
observed in blank fields (e.g., Aravena et al. 2016). Indeed, if
one integrates the luminosity function of 1.2 mm detected-
sources provided by Fujimoto et al. (2016) down to the flux of
J2211c (see Table 6), one expects ∼2.4 sources in 1 arcmin2.
This amounts to ∼9.8 sources in the effective area spanned by

our ALMA Survey (i.e., ∼4 arcmin2). This number is
consistent with that of sources with similar brightness as
J2211c (10) found in the sample recently compiled by
Champagne et al. (2018).

We acquired new observations of this field as part of our

follow-up campaign of [C II]-bright companions to high-redshift
quasars, using HST/WFC3 and Spitzer/IRAC (see Table 2 for
details of the observations). We reduced and analyzed the data
following the procedures reported in Section 2. In what follows,
we assume that J2211c is located at the redshift of the quasar. No
emission from the stellar population in the rest-frame optical
regime is measured (at 3σ significance) in the Spitzer/IRAC
images. However, we tentatively measure (S/N=2.1) emission
in the F140W filter with the HST/WFC3 camera. We report our
photometric measurements/3σ limits in Table 6, where we also
list the galactic properties (coordinates and millimeter flux)
obtained from ALMA data (Decarli et al. 2017; Champagne et al.
2018). In Figure 9 we show the postage stamps of our follow-up

observations.
In analogy with the companions discussed in the main body

of the paper, we compare the SED of J2211c with those of local
galaxies, and we fit our photometric data with MAGPHYS-high-
z (see Figure 9). From the latter, we find that the SED of J2211c

is better reproduced by a galaxy model in between Arp 220 and

M82 (i.e., a powerful local ULIRG and a starburst), with

M*∼3×1010Me and SFR∼130Me yr−1. We further

measure the obscured/unobscured SFR ratio of J2211c,

following the procedure used for PJ167c (see Section 3.2).

The star formation rate is dominated by the obscured

contribution (SFRUV∼2 Me yr−1 and fobscured∼0.99). We

report all these estimates in Table 6. The lack of a secure

redshift confirmation prevents us from drawing further

conclusions on the nature of this source, or from placing it in

the context of previous observations.

Table 6

Information on VIK J2211–3206c, a Source Adjacent to the Quasar J2211
Detected Only via Its Dust Continuum Emission

VIK J2211–3206c

R.A. (J2000) 22:11:12.11

Decl. (J2000) −32:06:16.19

Δrprojected (kpc) 26.8

F140W (mag) 27.39±0.52

F3.6 μm (μJy) <3.42

F4.5 μm (μJy) <1.80

Fmm (mJy) 0.64±0.06

SFRIR (Me yr−1
) 257±36

SFRUV (Me yr−1
) 2±2

fobscured 0.99±0.14

SFRmagphys (Me yr−1
) -

+132 59
120

M*,magphys (Me) ´-
+2.75 101.47
3.13 10

Note. Given the lack of any redshift measurement, we are not able to securely

identify this galaxy as physically interacting with the quasar, and place it in the

context of the analysis of the companions. We report here its coordinates and

projected spatial separation to the quasar, obtained from ALMA data

(Champagne et al. 2018; Decarli et al. 2018), and our HST/WFC3 and

Spitzer/IRAC follow-up photometric measurements/limits (see Figure 9). We

also list our constraints on its physical properties, given the assumption that

J2211c lies at the quasar redshift.
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Appendix B
Quasar Photometry

In the framework of our study of companion galaxies, we

also perform forced photometry at the position of the quasars

in the Spitzer/IRAC and HST/WFC3 images (see Section 2

for methodology). In Table 7 we report the derived quasars’

photometry. In Figure 10, we show the quasars SEDs.

The fluxes measured in our follow-up data are consistent

with those expected from the observed optical/NIR spectra,

when available, and/or from a lower-z quasar template

(Selsing et al. 2016) rescaled to match the observed J band

magnitude.

Figure 9. Source adjacent to the quasar J2211, detected solely in the dust-continuum emission, i.e., with no secure redshift measure. Top: postage stamps (20″×20″)
of our follow-up observations; labels are as in Figure 3. Bottom: spectral energy distribution of J2211c. We assume that the source is located at the same redshift of the
quasar. We report our photometric measurements/limits and, for comparison, various templates of local galaxies and the best SED fit from MAGPHYS-high-z. The
labels and templates are as in Figure 6. J2211c SED results to be intermediate between the low-z ULIRG Arp220 and the starbursting galaxy M82 (see Section 3.1).
On the basis of our follow-up observations, and considering the predicted density of millimeter-sources, we are not able to exclude that this source is a fore/
background (see the text for details, and Champagne et al. 2018).
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Table 7

Photometric Measurements of the Quasars Studied in This Work (see Section 2)

Name FyP1 FJ FF140W F3.6 μm F4.5 μm F1.2 mm References J

(mJy) (mJy) (mJy) (mJy) (mJy) (mJy)

SDSS J0842+1218 -
+40.55 2.2
2.3 44.46±1.2 50.19±0.02 76.29±0.22 93.33±0.25 0.87±0.18 (1)

PSO J167.6415–13.4960 -
+23.12 2.2
2.5 11.91±1.0 20.89±0.02 30.56±0.23 34.32±0.17 0.87±0.05 (2)

PSO J231.6576–20.8335 -
+36.31 2.6
2.8

-
+49.66 2.2
2.3 49.13±0.02 66.95±0.22 67.91±0.22 4.41±0.16 (3)

CFHQS J2100–1715 -
+10.86 1.9
2.3 9.82±0.9 19.95±0.02 31.65±0.25 34.76±0.26 1.20±0.15 (4)

SDSS J2211–3206 L -
+51.52 4.5
5.0 57.93±0.02 116.05±0.23 131.45±0.19 0.57±0.05 (5)

Note. The measurements in the yP1 band are from the PS1 PV3 catalog, while the J band values are from (1) Jiang et al. (2015), (2) Venemans et al. (2015b), (3)

Mazzucchelli et al. (2017b), (4) Willott et al. (2010), and (5) B. Venemans et al. (2019, in preparation).

Figure 10. Spectral energy distribution of the quasars in our sample. The observed photometric measurements (filled points) are obtained from our new follow-up data
and from the literature (see Table 7; the filter responses are reported in the lower right panel). We also show the available optical/NIR spectra (light gray; see also
Mazzucchelli et al. 2017b), and a lower-redshift composite template shifted at the redshift of the quasar (black solid line; Selsing et al. 2016). The location of the Lyα
line is highlighted with a light blue dashed line.
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