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Abstract

Wireless communication networks are traditionally designed to operate at high spec-

tral efficiency with less emphasis on power consumption as it is assumed that endless

power supply is available through the power grid where the cells are connected to. As

new generations of mobile networks exhibit decreasing gains in spectral efficiency, the

mobile industry is forced to consider energy reform policies in order to sustain the

economic growth of itself and other industries relying on it. Consequently, the en-

ergy efficiency of conventional direct transmission cellular networks is being examined

while alternative green network architectures are also explored. The relay-aided cellu-

lar network is being considered as one of the potential network architecture for energy

efficient transmission. However, relaying transmission incurs multiplexing loss due to

its multi-hop protocol. This, in turn, reduces network spectral efficiency. Further-

more, interference is also expected to increase with the deployment of Relay Stations

(RSs) in the network. This thesis examines the power consumption of the conven-

tional direct transmission cellular network and contributes to the development of the

relay-aided cellular network.

Firstly, the power consumption of the direct transmission cellular network is inves-

tigated. While most work considered transmitter side strategies, the impact of the

receiver on the Base Station (BS) total power consumption is investigated here. Both

the zero-forcing and minimum mean square error weight optimisation approaches are

considered for both the conventional linear and successive interference cancellation

receivers. The power consumption model which includes both the radio frequency

transmit power and circuit power is described. The influence of the receiver inter-

ference cancellation techniques, the number of transceiver antennas, circuit power

consumption and inter-cell interference on the BS total power consumption is inves-

tigated.

Secondly, the spectral-energy efficiency trade-off in the relay-aided cellular network is

investigated. The signal forwarding and interference forwarding relaying paradigms

are considered with the direct transmission cellular network taken as the baseline.

This investigation serves to understand the dynamics in the performance trade-off.

To select a suitable balance point in the trade-off, the economic efficiency metric is

proposed whereby the spectral-energy efficiency pair which maximises the economic



profitability is found. Thus, the economic efficiency metric can be utilised as an alter-

native means to optimise the relay-aided cellular network while taking into account

the inherent spectral-energy efficiency trade-off.

Finally, the method of mitigating interference in the relay-aided cellular network is

demonstrated by means of the proposed relay cooperation scheme. In the proposed

scheme, both joint RS decoding and independent RS decoding approaches are con-

sidered during the broadcast phase while joint relay transmission is employed in the

relay phase. Two user selection schemes requiring global Channel State Information

(CSI) are considered. The partial semi-orthogonal user selection method with reduced

CSI requirement is then proposed. As the cooperative cost limits the practicality of

cooperative schemes, the cost incurred at the cooperative links between the RSs is

investigated for varying degrees of RS cooperation. The performance of the relay

cooperation scheme with different relay frequency reuse patterns is considered as well.

In a nutshell, the research presented in this thesis reveals the impact of the receiver on

the BS total power consumption in direct transmission cellular networks. The relay-

aided cellular network is then presented as an alternative architecture for energy

efficient transmission. The economic efficiency metric is proposed to maximise the

economic profitability of the relay network while taking into account the existing

spectral-energy efficiency trade-off. To mitigate the interference from the RSs, the

relay cooperation scheme for advanced relay-aided cellular networks is proposed.
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Chapter 1

Introduction

1.1 Problem Statement

Since the first successful transatlantic wireless transmission was demonstrated by Mar-

coni in 1901 [1], wireless communication has never ceased to evolve in scale and

complexity as it continues to transform the lives of many across the globe. Today,

wireless communication permeates in almost every aspect of modern technologies and

lifestyles, spanning from complex infrastructures like the satellite and deep space com-

munication systems to simple applications like the privately owned amateur radios and

Bluetooth enabled devices. In wireless mobile cellular network, the appetite for high

transmission rate grows rapidly from one generation of mobile network to the next

in order to cater for the increasingly demanding wireless applications that progress

from simple Short Message Service (SMS) to voice and multimedia content delivery.

Unfortunately, bandwidth resources are becoming scarce as more applications are in-

troduced to satisfy the demands for faster delivery of data which is increasingly rich

in multimedia content. Thus, wireless cellular networks are usually designed to have

high spectral efficiency.

However, mobile operators are now facing the fact that the incremental improvement

in spectral efficiency of each new generation of mobile network is becoming less obvi-

ous. This is worrying as traffic is expected to grow exponentially when the complete
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shift towards wireless internet services occurs. Besides that, the wireless infrastruc-

ture is now huge due to the widespread deployment of macro cells over the decades

as coverage and capacity are of paramount importance. These traditional macro cells

typically employ direct transmission schemes and may consume large amount of oper-

ational power. The energy problems of the mobile industry may be further aggravated

as it is expected to be an enabler of sustainable growth to other industries as they

begin incorporating wireless internet solutions into their business models to reduce

their own carbon footprint. Thus, there is a real chance that the mobile industry will

face an energy crisis in the foreseeable future [2]. In order for the mobile industry to

sustain its growth, a new paradigm shift towards energy efficient network design is

necessary.

Relaying transmission has been identified as one of the key technologies in future

wireless communication networks [3]. While conventional Direct Transmission Cellular

Networks (DTCNs) have large cell sizes, future networks will deploy progressively

smaller cells with lower transmission power due to an emphasis on energy efficiency.

This will create coverage holes where User Equipments (UEs) in those areas may

experience bad signal reception, resulting in high call drop rates. In this case, low

cost Relay Stations (RSs) are ideal infrastructures to guarantee that coverage is still

maintained especially in the affected areas. In fact, relaying transmission has already

been considered in the current Long Term Evolution–Advanced (LTE–A) standards.

Nevertheless, relaying transmission is not without its own issues. On one hand, the

Relay-Aided Cellular Network (RACN) is seen as one of the possible solutions to-

wards realising green communication architectures by assisting the transmission of

Base Stations (BSs) so that the latter can operate at reduced transmit power, thus

saving energy. On the other hand, the introduction of RSs into the network may

potentially increase the overall interference level. This is more profound in the urban

and suburban areas where cell sites are more densely deployed and RSs are expected

to be in greater number for each cell. Furthermore, the very nature of relay transmis-

sion introduces multiplexing loss which could affect the network spectral efficiency if

not properly managed.
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1.2 Motivation

While much research is on the spectral efficiency of direct transmission schemes, there

is a growing interest in the energy efficiency of such schemes in light of the increas-

ing awareness of the potential energy crisis faced by the mobile industry. However,

most work focus on transmitter side strategies and less attention is given towards

investigating the impact of receivers on the power consumption of direct transmission

schemes. A more holistic power consumption model which includes not only the Radio

Frequency (RF) transmission power of the Power Amplifier (PA) module but also the

circuit power of the Signal Processing (SP) module should be employed to reflect the

energy efficiency values more accurately.

There is also a growing interest towards incorporating relaying transmission into cellu-

lar networks which conventionally employ only direct transmission schemes in order to

improve energy efficiency. However, multiplexing loss is inherent in relaying transmis-

sion due to its multi-hop requirement. This affects negatively on the spectral efficiency

of the network as a whole. Consequently, there is a trade-off between spectral effi-

ciency and energy efficiency in a relay-aided cellular network. This Spectral-Energy

Efficiency Trade-off (SEET) warrants a careful study as it will impact on the opera-

tional feasibility of the network. Thus, a balance operating point along the SEET is

essential. As economic profitability is one of the key performance indicator in the op-

eration of the mobile network, the economic efficiency metric is introduced to decide

on the suitable operating point along the SEET that will maximise profitability.

Furthermore, the inevitable increase in interference due to the introduction of RSs

in RACNs must be mitigated in order to improve the network performance. This

is especially so if the RSs are to be deployed in urban and suburban areas where

the network performance is already interference limited. Therefore, advanced relay

transmission techniques should be devised to mitigate interference and to improve the

SEET in RACNs.
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1.3 Contributions

The key contributions of the thesis are summarised as follows:

• Investigating the power consumption of direct transmission cellular

networks:

The impact of the receiver on the BS total power consumption for downlink Mul-

tiple Input Multiple Output (MIMO) DTCNs is investigated. The conventional

linear and Successive Interference Cancellation (SIC) receivers are investigated,

with both Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) weight

optimisation approaches being considered for each of them. Besides the PA

module whose power consumption is determined by the required RF transmit

power, the circuit power consumption in the SP module is also considered when

characterising the total power consumption of the BS. Note that this power

consumption model is utilised throughout the thesis when calculating energy

efficiency. The influence of the SP module and inter-cell interference on the BS

total power consumption is also investigated.

• Analysing the SEET in RACNs:

The performance of the RACN is investigated by comparing both the sig-

nal forwarding and interference forwarding relaying paradigms. Each relaying

paradigm employs the adaptive MIMO relaying scheme that switches between

Decode-and-Forward (DF) and Amplify-and-Forward (AF) relaying. The spec-

tral and energy efficiency values are utilised as performance measures with the

MIMO direct transmission scheme taken as the baseline. It is demonstrated

that there is a trade-off between spectral and energy efficiency. The economic

efficiency metric is then proposed to find a balance in the trade-off to maximise

the profitability of the scheme. From that, it is demonstrated that operating

at optimum energy efficiency might not necessarily be economically profitable.

The performance of different frequency reuse schemes for both the BS and RS

is also examined.
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• Mitigating interference via relay cooperation in relay-aided cellular

networks:

A relay cooperation scheme for advanced RACNs is proposed with the intention

to mitigate interference at the individual sectors of the cells. Both the Joint

RS DECoding (JDEC) and Independent RS DECoding (IDEC) approaches are

considered during the broadcast phase of the relaying transmission. While, joint

relay transmission incorporating the proposed Partial Semi-orthogonal User Se-

lection (PSUS) method which requires partial Channel State Information (CSI)

knowledge is implemented during the relay phase of the relaying transmission.

Other user selection methods requiring global CSI knowledge are also being

compared. The spectral, energy and economic efficiency values of the relay co-

operation scheme are then evaluated. Furthermore, the cost incurred at the

cooperative link between the collaborating RSs is analysed for different relay

cooperation configurations. The performance of the proposed relay cooperation

scheme is also examined under different Relay Frequency Reuse (RFR) patterns.

The work presented in this thesis has led to the following publications:

Journals

1. I. Ku, C. -X. Wang, and J. S. Thompson, “Spectral-energy efficiency tradeoff

in relay-aided cellular networks,” IEEE Trans. Wireless Commun., submitted

for publication.

2. I. Ku, C. -X. Wang, and J. S. Thompson, “The spectral, energy and economic

efficiency of relay-aided cellular networks,” IET Commun., accepted for publi-

cation.

3. C. Han, T. Harrold, S. Armour, I. Krikidis, S. Videv, P. M. Grant, H. Haas,

J. S. Thompson, I. Ku, C. -X. Wang, T. A. Le, M. R. Nakhai, J. Zhang, and

L. Hanzo, “Green radio: Radio techniques to enable energy efficient wireless

networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 46–54, Jun. 2011.
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Conferences

1. I. Ku, C. -X. Wang, and J. S. Thompson, “Spectral-energy efficiency tradeoff

in multicell cellular networks with adaptive relay cooperation,” in Proc. IEEE

GLOBECOM’12, California, USA, Dec. 2012, pp. 4585–4590.

2. I. Ku, C. -X. Wang, J. S. Thompson, and P. M. Grant, “Impact of receiver

interference cancellation techniques on the base station power consumption in

MIMO systems with inter-cell interference,” in Proc. IEEE PIMRC’11, Toronto,

Canada, Sep. 2011, pp. 1798–1802.

3. I. Ku, C. -X. Wang, J. S. Thompson, and P. M. Grant, “Transmission energy

consumption in MIMO systems under inter-cell interference,” in Proc. IEEE

WiAd’11, London, UK, Jun. 2011, pp. 263–267.

Technical Reports

1. I. Ku, C. -X. Wang, and J. S. Thompson, “Spectral-energy efficiency tradeoff in

multicell cellular networks with adaptive relay cooperation,” Mobile VCE Tech.

Rep. TR-GR-0110, Feb. 2012.

2. I. Ku, C. -X. Wang, and J. S. Thompson, “Spectral-energy efficiency tradeoff

in relay-based cooperative communication systems with inter-cell interference,”

Mobile VCE Tech. Rep. TR-GR-0066, Feb. 2011.

3. I. Ku, C. -X. Wang, and J. S. Thompson, “A study on the influence of re-

ceiver interference cancellation techniques on base station transmission energy

in MIMO systems,” Mobile VCE Tech. Rep. TR-GR-0026, Jan. 2010.
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1.4 Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 begins by providing some historical background on the climate change issue

and the importance of reducing the carbon footprint of the industries. The challenges

of the mobile industry as an enabler of sustainable economic growth are described

next. Following that, the Mobile Virtual Center of Excellence (Mobile VCE) Green

Radio research program is introduced. Next, the spectral and energy efficiency metrics

utilised in this thesis are described. This is followed by an overview of the relaying

transmission use scenarios and its classification.

Chapter 3 investigates the impact of the receiver on the BS total power consumption.

It begins with the description of the DTCN. Next, both the conventional linear and

SIC receivers with the ZF and MMSE weight optimisation approaches are presented

together with their respective spectral efficiency and RF transmit power expressions.

The power consumption model which considers both the RF transmit power and

circuit power is then introduced to quantify the total power consumption. Analysis

on the power consumption for Single Input Multiple Output (SIMO) transmission and

for a large number of receive antennas are also given.

Chapter 4 focuses on the RACN where two relaying paradigms, namely, the signal

forwarding and interference forwarding relaying, are considered. The DTCN is taken

as a comparison. Firstly, the system model is presented whereby the employed network

setup and transmission protocol are explained. The power consumption model and

an analysis on the network interference are also given here. The Signal Forwarding

Relay (SFR) and Interference Forwarding Relay (IFR) are then described while the

formulation for energy efficiency optimisation is described next. Following that, the

proposed economic efficiency metric together with its optimisation formulation which

takes into consideration the SEET condition in the RACN are then presented.

Chapter 5 presents the method of mitigating interference in the RACN. Similarly,

it begins by introducing the employed system model where the transmission protocol

and power consumption model are given. Analysis on the network interference and the
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impact of various RFR patterns on the interference level is then presented. Both the

JDEC and IDEC techniques utilised during the broadcast phase are then discussed.

The proposed Cooperative Multi-Processing (CMP) relaying employed during the re-

lay phase is presented next. Other relaying strategies, for example, the Interference

Free (IF), Maximum ratio Transmit (MT) and Localised Precoding (LoP) relaying,

are also compared. Various user selection methods are then presented, with the PSUS

user selection method being the one proposed. The cooperative cost of the relay co-

operation scheme, which is associated with the exchange of cooperative information

through the cooperation link between the RSs, is also examined. Taking the cooper-

ative cost into consideration, the formulation for both energy efficiency and economic

efficiency optimisation is then described.

Finally, Chapter 6 concludes the thesis and gives some suggestions for future research

topics.
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Chapter 2

Background

2.1 Climate Change: The Price of Economic

Development

The introduction of the improved steam engine in 1769 by James Watt ushered in an

unprecedented growth in trade and commerce during the Industrial Revolution period

(1750 - 1850). The substitution of manual labour with steam powered machinery was

prevalent in new generation factories of the day and this, in turn, revolutionised the

production of many industries like textile, metallurgy and mining. Transportation also

greatly benefited from the invention of the steam engine as steam turbine-powered

ships and steam locomotives quickly replaced conventional transportation systems

that required the muscle power of both man and beast. The Industrial Revolution

which began in the United Kingdom (UK) quickly caught on in Europe, North Amer-

ica, Japan and subsequently permeated throughout the known world. As a result, the

social, cultural and economic conditions of the world population progressed in one

way or the other till the present time.

The rapid progress of industrialisation which started two centuries ago has left us

oblivious of our responsibilities to the environment. This is clearly illustrated in

Fig. 2.1 [4] which shows the CO2 concentration in the earth atmosphere for the past
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Figure 2.1: The atmospheric concentration of CO2 from year 1000 to 2004 [4].

1000 years. It is observed that a sharp increase in CO2 concentration occurred after

the start of the Industrial Revolution. The production of GreenHouse Gasses (GHG),

mainly CO2, from decades of fossil fuel burning to power the steam engines and later

the modern petrol engines let to the global warming threat whose magnitude we are

just coming to comprehend in the last decade [5]. Today, governments around the

world, not to mention the general public, begin to acknowledge the realities of global

warming and the devastating damage that it brings not only to the environment but

also to our very existence. The melting of the polar ice caps, mega storms, irregular

animal migration patterns, changing global temperatures and failing agricultural crops

causing widespread famine are just a few examples among the many physical evidences

of climate change due to global warming that can no longer be ignored.

Since the last decade, we have improved our understanding on the negative effects

of CO2 on global temperatures with studies by climatologists showing a necessity

for industrialised countries to decrease GHG emissions by as much as 80% from 1990

levels by 2050. Heeding this, the UK became the first country in the world to establish

legally binding domestic commitments [6] to achieve the GHG reduction target.

In response to the environmental law that formally encapsulates our legal obligations,

strategies to facilitate a major reduction in CO2 production are urgently needed.
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Putting our economic development to a complete standstill is not an option as contin-

uous economic growth is an integral part of the growing world population. Instead,

a sustainable growth which is characterised by an economy that is progressively less

dependent on fossil fuels must be sort after for energy security reasons and to reduce

the risk of an irreversible environmental disaster. One way to reduce our dependency

on fossil fuels is to seek out alternate green and renewable energy resources like solar

energy, geothermal energy, wind energy, wave energy and also the more controversial

nuclear fission energy. Since this precludes the necessity of inventing and perfecting

new technologies, the idea of efficiently harvesting and utilising these green energy

resources at large scales is a long term goal though much inroads have been made.

Closer to the present time, we observe that major industries across the world begin to

integrate into their cooperate mission a sense of corporate responsibility towards the

environment by adopting company policies, good practices and new business models

that are environmentally friendly. For example, employees are encouraged to minimise

their travelling whenever possible during the course of discharging their duties. In-

stead, teleconferencing and emails are recommended to reduce their carbon footprint.

For utility companies, smart metering systems are beginning to be the norm. These

systems periodically record energy consumption at target sites which is then reported

back daily to the central system through wireless communication. Remote monitoring

is also possible with these systems. Besides that, smart grid systems are also seen as

a potential solution to curb the rising energy crisis. A smart grid system, which smart

metering can be a component of, refers more to an intelligent network of power grid

that is able to automatically gather data ranging from fault locations to behaviour

of customers and suppliers to facilitate reliable and economical electricity generation

and distribution. From these examples, it is clear that the technological solutions

have one important common characteristic. To reduce carbon footprint, these tech-

nologies provide a more efficient means of gathering and manipulating information

flow in a network, be it administrative or technical in nature, through Information

and Communication Technology (ICT).
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2.2 Mobile Communication: Enabler of

Sustainable Economic Growth

While wireless communication of old was expensive and less functional, thus, was

only predominantly accessible to the military and major corporations, the debut of

the Global System for Mobile Communications (GSM) system in the early 1990s

started a global proliferation of mobile usage to the wider population due to cheaper

services to customers and low cost roll-outs. The role of the mobile industry of today

is very different from what it used to be a few decades ago.

Because of the widespread adoption at present time, the mobile industry is now a

force that could enable transformation of business models in other industries. This

vital role as an enabler of economic development was documented by International

Telecommunication Union (ITU) and World Bank studies since the 1980s and was

formally acknowledged by governments at the World Summit on the Information

Society in 2003 through a set of development targets to be achieved by 2015 [7]. The

articles in [8] further strengthened this perception by successfully documenting the

impact of mobile telephony on the economic landscape in Africa during late 2009

and its future role as the country experienced a shift from voice and text services

to wireless internet. This trend is also mirrored in other parts of the world where

migration from traditional wired lines to wireless means, mostly via mobile devices,

is fast taking place. This comes from the fact that the continuous development in

international businesses and the changing habits of private internet usage, like the

frequent updates of Facebook accounts wherever the user happens to be, necessitate

the global availability of the internet which can only be practically realised by wireless

technology.

By having a global economic presence, the mobile industry is well positioned to con-

tribute to the paradigm shift towards global economic sustainability which is happen-

ing now. Once seen as an enabler of economic development, the mobile industry is

also now seen as an enabler of sustainable economic growth. This is because as other

industries increasingly rely on the ICT sector to implement their energy efficient and
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environmentally friendly policies and business models to reduce their carbon foot-

prints, the mobile industry, which is a major player in the ICT sector, has the crucial

role of ascertaining that its communication infrastructures are well placed to support

the realisation of the commendable policies of these industries. The ability of wireless

technology to enable fast and reliable delivery of information any time and anywhere

helps other industries to coordinate transactions across different time zones at varied

geographical areas. Because business transactions can be executed efficiently without

the unnecessary need for travelling (thus, reducing carbon footprint), economy growth

which is sustainable can potentially be realised.

2.3 Challenges of the Mobile Industry

Being an enabler of sustainable economic growth for other industries is a double-edged

sword for the mobile industry. On the one hand, the mobile industry stands to prosper

as the number of industries that rely on it increases in the coming decades. On the

other hand, the growth of the mobile industry may be under threat if sustainability

from within its own domain is not ensured.

The inevitable transition from simple voice telephony to wireless internet means that

data circulation in a mobile network will increase significantly. Coupled with the fact

that a rapidly growing subscriber base is almost certain, the mobile network faces an

unprecedented surge in traffic not seen a couple of decades back as aptly illustrated in

Fig. 2.2 [9]. This huge strain to its infrastructure has to be mitigated well in order for it

to feasibly support the expected increase in demand for wireless access while ensuring

its own growth is sustainable. Generally, the two most important challenges that will

be encountered are the energy cost and carbon footprint of the mobile industry itself

as the demand for its services by other industries increases sharply in the near future.
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Figure 2.2: Mobile data traffic growth from 2012 to 2017 [9].

2.3.1 Energy Cost of the Mobile Industry

The rapid adoption of wireless internet is evident, for example, when Hutchison’s

High-Speed Downlink Packet Access (HSDPA) Universal Serial Bus (USB) dongles

were introduced to the mass market. Within a year, it was found that data traffic

exceeded voice traffic by a ratio of 47:3 in their UK networks [10]. Similar trends had

also been reported in [11] and [12].

Mobile operators can cope with the rise in traffic demand by increasing the capacity of

the network in several ways. Additional BSs can be deployed in areas that require more

traffic. Besides that, more carriers can be utilised to transmit data over the channel,

thus, requiring extra bandwidth. Last but not least, the spectral efficiency of existing

bandwidths can be improved to accommodate higher data rate per Hertz. Seeing that

the installation cost of each BS is high (0.15 million Great Britain Pounds (GBP)

per site [13]) and the procurement of additional bandwidth is also very costly (22

billion GBP in the UK for Third Generation (3G) licensed spectrum [14]), increasing

spectral efficiency of the existing bandwidth is the most viable option for almost all

mobile operators. However, increasing spectral efficiency usually comes at a cost
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of decreasing energy efficiency. While this trade-off is often overlooked in the past

as spectral efficiency is pushed to its limits, the same design mindset may not be

applicable today for several reasons.

Firstly, the surge in traffic due to the fast-paced transition to wireless internet will

undoubtedly cause the energy consumption of the network to quickly surpass that of its

present time rate where a network operator in the UK typically consumes around 40 -

50 MW of power [15], notwithstanding the power consumed at the mobile handsets. As

far as the network operator is concern, energy consumption has a positive correlation

to its OPerational EXpenditure (OPEX). An increase in energy consumption increases

its OPEX which, in turn, increases its perceived cost per bit to operate the network.

Therefore, if the traffic forecast in Fig. 2.2 is accurate, the cost per bit incurred by the

network operator due to energy consumption will escalate exponentially as wireless

internet penetrates to a greater extend into other parts of the developing world where

internet mobility is just about to make its impact felt. Thus, with the rising energy

cost of today, sacrificing energy efficiency while pursuing higher and higher spectral

efficiency is no longer economically attractive.

Secondly, statistics showed that the data revenue received by the network operator is

growing at a rate which lags behind the speed at which traffic is growing [16]. In fact,

it only grows linearly as traffic flow increases exponentially. This is a direct conse-

quence of the conventional billing scheme commonly employed by network operators.

Unlimited internet access packages for flat payment rates are offered by the network

operators as each of them hopes to attract as many users as possible to adopt its

mobile broadband service. This generates a perception among mobile users to expect

excellent quality of service at the lowest price possible from their network providers.

As a result, network operators of today are struggling to keep up with both the high

traffic demands of mobile users and increasing energy cost against a backdrop of an

almost stagnant growth in revenue. It is thus paramount that energy consumption is

decreased to restore the cost-revenue imbalance by increasing the energy efficiency of

the network.
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It is also worth noting that spectral efficiency improvement is diminishing as one

generation of mobile network migrates to another. As illustrated in Fig. 2.3 [17],

out of the 35% Compound Annual Growth Rate (CAGR) spectral efficiency gains

registered as the network migrates from General Packet Radio Services (GPRS) to

Long Term Evolution (LTE) 2 × 2 MIMO, only 12% CAGR is due to the so called

next generation mobile networks while the rest of the larger gains being contributed

by the Third Generation Partnership Project (3GPP) generation networks. As we

progress further to Forth Generation (4G) mobile networks and beyond, even tighter

gains in spectral efficiency are expected.

Thus, for a low priced wireless internet service to remain profitable, mobile operators

will have to improve the energy efficiency of their networks through advanced trans-

mission techniques and network architectures in order to deliver significant reduction

in the associated cost per bit. As profitability is one of the major concerns of mobile

operators, this motivates the design of the proposed economic efficiency metric in

Chapter 4 to measure the economic fitness of the transmission scheme under consid-

eration. The economic efficiency metric serves to complement the more conventional

Figure 2.3: The spectral efficiency improvement in various generation of mobile
networks [17].
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spectral and energy efficiency metrics which are also used to evaluate the performance

of the scheme under consideration.

2.3.2 Carbon Footprint of the Mobile Industry

At 34 billion tonnes of global CO2 emissions in 2011 [18], it was stated in [19] that the

ICT sector contributes around 2% of that total, of which 0.7% is due to the mobile

industry [20]. Although the percentage contributed by the mobile industry seems

unconcernedly small at present, this may not be the same reality in the near future

when traffic volume is expected to rise considerably.

In the mobile industry, it is widely accepted that the source of carbon emission is

largely due to either embodied energy or operation energy. Embodied energy relates

to the energy consumption during the production of the product or service. This

includes activities like raw material extraction, transportation, manufacture, assem-

bly and installation. At the end of its life cycle, embodied energy also includes the

energy spent during disposal activities like disassembling, deconstructing and finally

decomposing or recycling of the product or service. As such, embodied energy forms

part of the CAPital EXpenditure (CAPEX) of the mobile operators. On the other

hand, operation energy relates to the energy spent during the operational lifetime of

the product or service. It is the energy consumed by the various physical components

of the devices that make up the product or service while performing the designated

communication tasks. The operation energy contributes to the OPEX of the mobile

operators.

In Fig. 2.4 [11], the CO2 emissions per subscriber per year for both the BS and mobile

handset is shown. About 75% of the total 10.7 kg of CO2 emissions produced by

the mobile handset is due to embodied energy, making it the dominant source of its

carbon footprint. This is because these handsets are usually expected to have a short

product lifetime of around 1.5 to 2 years as product turnover rate is high. Moreover,

new generation batteries are very energy efficient and thus, drives the operation energy

of the mobile handset even lower.
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Figure 2.4: Comparison of CO2 emissions per subscriber per year between a BS
and a mobile handset in terms of embodied and operation energy [11].

On the other hand, a total of 13.3 kg of CO2 emissions per subscriber per year is

produced by the BS. While this total is greater than that of the mobile handset,

about 65% of it is due to the operation energy of the BS, making it the dominant

source of its carbon footprint. This is because of the long product lifetime of the

BS which is typically around 10 to 15 years. A BS in a 3G mobile network typically

consumes around 4.5 MWh of energy annually [21]. With around 12,000 BSs (200,000

BSs in developing markets like China) in a 3G network, this amounts to an energy

consumption of over 50 GWh per annum [22]. Consequently, the BS is identified as

the most energy consuming network component in a 3G mobile network [23] and thus,

having the largest carbon footprint. Since a large amount of CO2 emission resulting

from this energy consumption is due to the operation energy, it is imperative that

methods to increase the energy efficiency of the BS must be introduced.

Early Initiatives from the Mobile Industry

The mutual coupling between CO2 emissions and OPEX in wireless networks was

quickly realised by the mobile industry [24]. As a result, many mobile operators are

committed to deliver significant reduction in energy consumption and CO2 emissions
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as part of their business operation targets. Among the very first to declare their inten-

tions were Orange and Vodafone as stated in their year 2007 corporate responsibility

reports in [25] and [26], respectively.

As a simple first step to fulfil their declared commitments, mobile operators have

started purchasing energy from renewable resources in an effort to reduce their carbon

footprint from the very top of their operation hierarchy. Although commendable,

reducing carbon footprint through this method does not necessarily translate to a

reduction in OPEX which relates more to the operational aspects of the network.

In a bid to reduce the OPEX of the wireless network which are expected to rise

exponentially in the near future as seen in Section 2.3.1, we witness the reintroduction

of the metropolitan wireless local area network (WIFI) as part of the access network.

Furthermore, the novel concept of femto-cell deployment has also recently garnered

strong support from the mobile industry though many technical challenges have yet to

be resolved. These technologies are popular choices as they reduce the OPEX of the

wireless network by offloading parts of the data traffic to the wired network. Energy

consumption of the BSs in the wireless network can thus be reduced and this, in turn,

contributes to the reduction of CO2 emissions.

Perhaps the most important development which highlighted the early initiatives from

the mobile industry is the announcement of the ‘Green Manifesto’ in November 2009,

together with the Climate Group, during the Groupe Speciale Mobile Association

(GSMA) conference in Asia. The manifesto publicly declared the commitment of the

mobile industry as a whole towards reducing GHG emissions. This included recom-

mending policies for governments and the United Nations Climate Change Conference

in Copenhagen. The effectiveness of the 2009 ‘Green Manifesto’ in reducing the car-

bon footprint in wireless networks is closely monitored and positive results have been

documented in the recent report in [23].
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2.4 Mobile VCE: Green Radio

The importance in reducing OPEX and thus, carbon emissions, in wireless networks

to achieve sustainable growth in the mobile industry is now evident. In the UK, this

realisation has come to the attention of a group of mobile operators that had earlier

coalesced in a non-profitable organisation called Mobile VCE (www.mobilevce.com).

The primary goal of Mobile VCE is to address strategic research that can deliver sig-

nificant growth opportunities to its members. Since its inception during the late 1990s,

it has contributed positively to various innovative changes in the telecommunication

industry through its Core Programs.

In early 2007, discussions were held among the Mobile VCE members to identify

key drivers for its new research program that would strategically address the energy

crisis of the mobile industry. The term Green Radio was first coined within the

Mobile VCE community during these discussions, which prior to that only existed in

reference to the color of the military radios and the name given to a radio station

that broadcast environmental issues. The Mobile VCE Green Radio program, which

forms a part of its Core 5 Program, was formally launch in October 2008. Being

a pioneer in the field, the term Green Radio was quickly adopted by the rest of

the mobile industry and academics alike. It also inspired the establishment of other

like minded research initiatives around the world like EARTH (www.ict-earth.eu),

GreenTouch (www.greentouch.org), YorkZhejiangLab for Cognitive Radio and Green

Communications (www.yzlab.org), as well as GREEN (network.ee.tsinghua.edu.

cn/green973). Today, research in green communications has become a vibrant and

important field in its own, attracting many industrialists and academics.

2.4.1 Vision

The aspiration of the Mobile VCE Green Radio program is to design future wireless

networks that achieve an ambitious 100 fold energy consumption reduction over the

current networks. This target is to be reached without significantly compromising

the existing network Quality of Service (QoS). More importantly, a holistic view of
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energy consumption should be considered while the endeavour is undertaken. Thus,

not only the RF transmit power but other costs relating to the deployment, operation

and decommissioning of the wireless network should also be considered whenever it is

appropriate.

2.4.2 Research Methodology

The goal of reducing energy consumption in future wireless networks has been ad-

dressed by studying energy issues in the architecture and technique aspects of Green

Radio. While the research outcomes of Green Radio can be found in [27], some of the

research topics are highlighted next.

2.4.2.1 Architecture of Green Radio

The purpose of the architectural investigation is to propose alternative approaches to

the existing network topology that offer good trade-off between energy and spectral

efficiency. Promising architectures that have been considered include protocols that

enable delayed transmission (30% energy reduction) and BS sleep modes (90% energy

reduction for no load cases) in conventional cellular networks.

Besides that, future cell size is expected to decrease as the RF transmit power is

reduced in order to be more energy efficient. To maintain coverage, architectures

involving the deployment of femto-cells (38% to 52% energy reduction) and the use

of multi-hop relaying (58% energy reduction) have been considered. These two archi-

tectures enable the access network to be brought closer to the users. However, one

must be aware of the back-haul cost that is required to provide the additional control

signalling and connectivity to the core network as well as the increased interference

level resulting from a denser network topology. A few of these architectures have been

selected for further study by considering the wide area network, enterprise network

and home network deployment scenarios.
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2.4.2.2 Techniques Across the Protocol Stack

The proposed techniques which span across the protocol stack involve modification to

the physical and network layers as well as the redesigning of hardware components in

order to deliver improved energy efficiency.

Effective signal processing at the physical layer and radio resource management at

the network layer can reduce the RF transmit power while maintaining the required

QoS. At the physical layer, MIMO transmission techniques have been demonstrated to

achieve 72% energy reduction by incorporating Space Frequency Block Code (SFBC)

diversity techniques while novel radio resource management and scheduling techniques

at the network layer have shown to deliver 44% to 50% energy reduction. Besides

that, novel network coding techniques that also operate at the network layer have

been investigated and have shown to provide 16% to 25% energy reduction.

Besides that, modification to the hardware components that alter the functionality of

the transmission system can increase energy efficiency by reducing the total energy

consumption relative to the RF transmit power. For example, the proposed Class-J

Ultra Wide-Band (UWB) PA design has been shown to demonstrate a 70% drain

efficiency over a frequency range of 0.5 GHz to 1.8 GHz. While, investigation into an-

tenna design revealed that the minimisation of dielectric loss holds the key to improve

energy efficiency whereby a 95% energy saving has been demonstrated for an air gap

dielectric antenna operating at 2.1 GHz over a 300 MHz transmission bandwidth.

2.5 Performance Metrics

In this section, two performance metrics namely, the spectral and energy efficiency, are

described. These metrics are utilised to evaluate the performance of the transmission

schemes that will be described later in the work.
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2.5.1 Spectral Efficiency

Let us consider a point-to-point MIMO transmission as shown in Fig. 2.5 with node

X having Nb transmit antennas and node Y having Nu receive antennas. The channel

between them is described by a Nu × Nb complex channel matrix HX,Y ∈ C
Nu×Nb .

Also, let Bsys be the available bandwidth for transmission and PRF be the RF transmit

power of node X. The noise experienced by node Y is Gaussian distributed with zero

mean and power spectral density N0. Assuming error free transmission, the spectral

efficiency of the transmission link is defined as [28]

CX,Y = max
tr(RX)=Nb

log2 det

[

INu
+

PRF

NbN0Bsys

HX,YRXH
H
X,Y

]

(2.1)

where RX is the Nb × Nb signal covariance matrix. The spectral efficiency in (2.1)

has unit of bits/s/Hz.

If the channel is unknown to the transmitter, in this case, node X, the best transmit

strategy is to allocate equal power to all the Nb transmit antennas. Therefore, the

signal covariance matrix is an identity matrix given by

RX = INb
. (2.2)

On the other hand, if the CSI is known to node X, optimisation of RX can be done

to further maximise the link spectral efficiency of (2.1). By using the Singular Value

Decomposition (SVD) method [29], the channel matrix HX,Y can be decomposed into

Cooling 
module

SP 
module

Pin
PA 

module
Node Y 
(UE)

Channel 
matrix HX,Y

PRF

Node X (BS/RS)

�

Nb transmit 
antennas

�

Nu receive 
antennas

Transmission chain

Figure 2.5: MIMO transmission between node X and node Y .
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three components given by

HX,Y = UΓVH (2.3)

where U and V are the Nu×r left singular and Nb×r right singular unitary matrices,

respectively, with r being the rank of HX,Y . Besides that, Γ = diag {γi |i = 1, · · · , r}
where the scalar γi is the ith singular value of HX,Y . The signal covariance matrix

that maximises (2.1) thus takes the form of

RX = VΠVH (2.4)

where Π is the diagonal power loading matrix whose non-zero elements are the result

of applying the water filling algorithm on the channel gains ofHX,Y which are given by

the diagonal elements of Γ2. Furthermore, the values of Π must not violate the power

constraint given by tr (RX) 6 Nb. Typically, the spectral efficiency with channel

knowledge present at the transmitter is higher than the case where the channel is

unknown.

2.5.2 Energy Efficiency

2.5.2.1 Power Consumption Model

Again, let us consider the transmission setup as shown in Fig. 2.5. In the downlink

transmission of a RACN which the work here primarily focuses on, node X can be

the BS or RS while node Y is the UE. We will thus consider the operational power

consumption at node X only because the BS (as discussed in Section 2.3.1 and Sec-

tion 2.3.2) and, somewhat to a lesser extend, the RS consume the majority of the

power in such a network.

In Fig. 2.5, the transmission chain of node X includes the antennas, PA module, SP

module, cooling module and cables. The RF transmit power PRF is the sum power

radiated from the antennas of nodeX in order for it to transmit information to node Y .

The power consumption of the whole transmission chain of node X is considered while
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calculating the total operational power consumption Pop,total which incidentally, is also

the input power Pin. The linear power consumption model is utilised to encapsulate

the power consumption of the transmission chain and provide a linear relationship

between the input power Pin and the radiated RF power PRF [30]. Thus, we have the

total operational power defined as

Pop,total = Pin = αPRF + Pc (2.5)

where α is the aggregate effect of the cable losses and the antenna/amplifier efficiency

while Pc is the circuit power consumption of the SP module. Similar to [31], [32]

and [33], the circuit power consumption is modelled as being proportional to the

maximum RF transmit power. This is to represent future green BS (and RS) ar-

chitecture where the constant power should ideally be zero when no transmission is

occurring. Assuming PRF is the maximum RF power that node X can radiate, the

circuit power consumption is given as

Pc =
Pc,ref

Pref

PRF (2.6)

where Pc,ref is the circuit power consumption measured at the reference RF transmit

power Pref . In our work, we assume Pc,ref = 577 W at Pref = 40 W. This conforms

to the typical values found in the literature, for example, in [34] and [35].

2.5.2.2 Energy Consumption Ratio

In Green Radio, the energy efficiency of a system is measured by the Energy Con-

sumption Ratio (ECR) metric which is defined as the energy consumed per delivered

information bit [30]. Let Eop,total be the total energy consumed at node X while

transmitting Mbits information bits for a duration of time T . The ECR is thus

ECR =
Eop,total

Mbits

=
Pop,total

BsysCX,Y

(2.7)
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where the second expression of (2.7) is obtained by substituting the expression before

it with Eop,total = Pop,totalT and Mbits = BsysCX,Y T , while having CX,Y and Pop,total as

defined in (2.1) and (2.5), respectively. The ECR metric has unit of J/bit.

2.5.3 User Location and Average Performance Calculation

Unless otherwise specified, a number of users are uniformly dropped across the sector

during each numerical simulation. The users are served using either direct transmis-

sion or relay transmission, depending on which transmission scheme provides them

with higher spectral efficiency given their current locations. The average sector per-

formance is then calculated by summing the spectral and energy efficiency values

associated with the users and averaging it across many randomised user drops.

2.6 Relaying Transmission

Relaying transmission has been considered as one of the promising technical solutions

towards realising the vision of green communication networks in the future. In fact,

it is already considered in the LTE standard to enable network operating at lower

power consumption and it is also expected to be included in the International Mobile

Telecommunications–Advanced (IMT–A) and LTE–A standards [3].

2.6.1 Use Scenarios of Relaying Transmission

The purpose of utilising RSs in wireless networks very much depends on the deploy-

ment scenarios. We will now consider a few scenarios where relaying transmission

technology can be potentially beneficial to mobile operators [36].
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2.6.1.1 Rural Area

In this scenario, it is expected that the penetration of wireless mobile services in

rural areas is low (although this may change in the near future). Due to the low

uptake of mobile services, the user density in the rural area is characteristically low

and uniformly distributed. Deployment cost becomes an issue to mobile operators as

it is not economical to install many macro BSs just to provide services to the thin

distribution of users. As rural areas are usually wide, extensive coverage needs to be

provided by a small number of macro BSs. One conventional method to meet this

requirement is to increase the transmit power of the macro BSs. As the inter-site

distance is large, interference among cells may not be critical, although, this approach

may not be energy efficient.

Relaying transmission can fulfil the requirement of providing wide coverage at low

transmit power in rural areas as illustrated in Fig. 2.6. By using RSs to extend the

coverage area beyond that possible with a single macro BS transmitting at low power,

ubiquitous user coverage is attainable at an improved energy efficiency. Deployment

cost can be reduced too as it is cheaper and easier to deploy relays together with a few

macro BSs than to install many expensive macro BSs. However, to continue servicing

the users without having to deploy too many RSs, the coverage of each RS can be

extended to several kilometres by allowing it to transmit at relatively higher power.

The increase in interference as a result of this is tolerated as coverage is more crucial

than capacity gains in rural areas with low traffic. Site planning becomes important

as well since RSs transmitting at higher power tend to be deployed at fixed locations.

BS

RS1
UE1

RS2
UE2

UE3

Extended 
coverage

Extended 
coverage

Figure 2.6: Relaying transmission in rural area.
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2.6.1.2 Urban and Suburban Areas

Unlike rural areas, the user distribution in urban and suburban areas tend to be non-

homogeneous. Instead, users are distributed in clusters called hot spots. The user

density is also found to be higher than the rural area due to the higher penetration

of mobile services in these areas which are economically more developed. Due to the

densely deployed BS cell sites which are common in these areas, the RS coverage need

not be as wide as the rural area. Therefore, RSs with low transmit power are used.

As capacity is crucial in this scenario, multiple fixed location or nomadic RSs are

deployed within each BS coverage area to serve specific hot spots as shown in Fig. 2.7.

At hot spot A, the RS functions as an in-between for the BS and the UEs. Traffic

flow is reduced as the BS does not need to communicate with every UE at the hot

spot. Instead, the BS transmits all the data only once to the RS which will then com-

munication with the respective UEs. At hot spot B, traffic is offloaded seamlessly to

another cell site having idle resources via an RS that manages the handover signalling

overhead. In these two cases, the RS helps by decreasing the load of the busy BS so

that the remaining UEs can be served at a higher capacity.

Due to the dense deployment of both BS and RS sites, interference becomes a major

issue and has to be mitigated if any capacity gains from relaying transmission are to

be made. Thus, employing RSs with low transmit power is favoured as this helps in

RS1

RS2

BS1

BS2

Hot spot A
Hot spot B

UEs

Site with high 
traffic volume

Idle site

Figure 2.7: Relaying transmission in urban and suburban areas.
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reducing the aggregate interference to adjacent cells as well as being more energy and

cost efficient to deploy due to their compact size.

2.6.1.3 Blind Spots

As site planning is never easy especially on a terrain with many irregularities in forms,

it is common to find a BS having its transmit antennas being blocked by surrounding

objects like high-rise buildings and hills which are higher than the BS height. This

causes a blind spot to form behind the obstructing objects. The UEs in the blind

spot area would experience bad signal quality, often resulting in call dropping or no

reception at all. It is not feasible to relocate the BS in order to eradicate blind spots.

However, due to its compact size and flexibility, an RS can be easily deployed to a

suitable location where its role is to relay information from the BS to the UE which

is in the blind spot. This is illustrated in Fig. 2.8.

Blind spots can also happen indoors where coverage is poor due to both reflection

and refraction of the signals coming from the BS as they past through the walls and

into the interior hallways of the building. The affected indoor users may experience

prolonged deep fading, especially if they are at the end of a large building far away

from the BS. In this situation, throughput can again be improved by means of an

indoor RS as shown in Fig. 2.9. However, care must be taken when configuring

the indoor RS to ensure that the performance gain by using relaying transmission

is no less than that could be achieved through the outdoor-to-indoor BS–UE direct

BS

RS

UE

Obstruction

Blind spot

Figure 2.8: Relaying transmission for outdoor blind spots.
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Indoor RS

BS

Indoor coverage

Figure 2.9: Relaying transmission for indoor blind spots.

transmission. In order to avoid excessive penetration loss at the BS–RS back-haul

link, thus, compromising on performance, one RS may be placed preferably near an

opening of the building, for example, a window or on the roof. Another RS may be

deployed somewhere inside the building to provide the needed indoor coverage. The

two RSs can then communicate by using a separate bandwidth from the underlying

cellular system. One of the disadvantage is that site optimisation to improve the

performance of the back-haul link can be a challenge if the indoor RSs are installed

by the individual users rather than being planned by the mobile operators.

2.6.1.4 Emergency Ad-Hoc Network

During a state of emergency like the occurrence of natural disasters such as flooding

and earthquake or in the advent of a terrorist attack, there might not be a communi-

cation infrastructure in place at the disaster sites to coordinate humanitarian aid or

other crucial activities. In these cases, a temporary ad-hoc network must be quickly

rolled out to the affected areas in order to at least establish the basic fulfilment of a

functional communication system. This temporary network must also be easy to tear

down once its purpose is accomplished.

Relaying transmission can be one of the solutions to this scenario. As illustrated in

Fig. 2.10, one or a number of RSs can be quickly deployed in and around the disas-

ter areas to provide a communication link to the affected individuals, humanitarian

workers and military. The natural back-haul of the RS means that it can connect to
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Figure 2.10: Relaying transmission supporting emergency ad-hoc network setup.

the nearest functional cell site to relay information to a fully functional network that

will be utilised to process the main communication tasks.

2.6.1.5 Wireless Back-haul Assistance

When it is not economical or geographically difficult to install a wired back-haul, for

instance, between two BSs, the more flexible and cost effective wireless back-haul [37]

can be provided by the RS as shown in Fig. 2.11. In this case, the RS does not

communicate with any UEs as its sole purpose is to provide a reliable link between

the two BSs.

In order to achieve a high performance wireless link, the conventional point-to-point

microwave link may not be suitable as it succumbs easily to signal attenuation due

to its dependence on weather condition. This is unlike the cellular network spectrum

utilised by mobile operators which is generally more resilient to unfavourable weather

conditions. However, there must be idle resources available in the cellular network for

the RS to utilise. Because of that, the partial use of the cellular network spectrum by

the RSs for reliable wireless back-haul purposes is only suitable in places with very

low traffic flow, for example, in the rural areas where the spectrum is underutilised

most of the time. In this case, it may also be favourable for the RS to transmit at
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Figure 2.11: Relaying transmission providing wireless back-haul assistance.

higher power to further guarantee a high capacity wireless link as interference in rural

areas is not a major concern.

2.6.1.6 Group Mobility

Group mobility poses new communication challenges to the wireless network. Mobile

users on-board modern high-speed public transport often have low quality of service.

Data rates drop significantly and the lifespan of batteries is shortened. Furthermore,

voice calls are often harsh and discordant. These problems are due to several factors.

Firstly, the signal strength is decreased due to penetration loss as it passes through

the walls of the vehicles. Besides that, frequent transmission of control signals for

measurement and handover is needed by the group of on-board UEs as the high-speed

vehicle passes through quickly from one cell site to another. Additional power is

thus needed to overcome both the penetration loss and the frequent signalling. This

causes the batteries of the UEs to drain quickly. Furthermore, signal congestion often

happens as group mobility induces a large amount of concurrent handover signalling

from all the on-board UEs each time the vehicle passes through different cell sites.

The congestion ultimately forces connection to be broken, resulting in calls being

frequently dropped.

As depicted in Fig. 2.12, relaying transmission might again help to partially alleviate

the problem by installing a RS on top of the public transport. Handover signalling
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RS1
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Figure 2.12: Relaying transmission for group mobility.

is now managed by the RS instead of the many individual UEs on-board the public

transport. This reduces traffic congestion at the cell site. Besides that, the RS–UE

access link is usually good as the distances between the on-board UEs and the RS are

small. Its high quality link is also due to the fact that the UEs appear to be stationary

with respect to the RS. Therefore, the batteries on the UEs will last longer as lower

power is now needed for the transceivers. Nevertheless, the reliability of the BS–RS

back-haul link must be guaranteed to ensure an improved overall performance. This

is challenging as the back-haul link is exposed to fast fading environment due to the

high-speed vehicles.

2.6.1.7 Device to Device Communication

In a dense urban environment, BSs are deployed at locations that will maximise the

coverage of outdoor users. Consequently, indoor coverage can be poor, especially in

the centre of large buildings. Outdoor blind spots are also commonly occurring in

urban environment due to high-rise buildings. These coverage problems can be solved

with additional small cell deployments or with fixed relays as seen in Section 2.6.1.3.

However, this can be costly and sometimes impractical.

In the absence of fixed relay infrastructures, Device to Device (D2D) communication

provides an alternative approach to solving poor coverage conditions. As illustrated

in Fig. 2.13 for D2D communication, users with a strong signal would help nearby

users with a weak signal by relaying the desired information to the latter. This

greatly reduces coverage holes and restores service to users with a weak direct link
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Figure 2.13: Device to device communication.

signal. Besides improving the performance of the devices, D2D communication also

helps in offloading traffic from cellular networks, thus, improving energy efficiency.

However, D2D communication has its own set of technical challenges. Firstly, service

identification is important to determine which devices are suitable to participate in

the transmission. Methods for dynamic resource sharing between the cellular network

and D2D communication must also be designed.

2.6.2 Classification of Relaying Transmission

Since introduced by Meulen [38], relaying transmission has been widely researched

over the past decades, resulting in a rich body of work in the literature. This section

attempts to provide an overview of the many genres of relaying transmission by clas-

sifying them into several mutually exclusive categories as shown in Fig. 2.14. Thus,

existing relay transmission schemes can be identified by relating them to at least an

attribute in each category. In relaying transmission, at least two basic transmission

channels are involved in forming an information pipeline from the source to the desti-

nation. The spectral efficiency of different relaying transmission schemes is derived by

combining or comparing scaled versions of these basic transmission channels. As there

are many ways of doing this, a general spectral efficiency expression that consolidates

all relaying transmission schemes is impossible by far. However, each basic trans-

mission channel is typically a direct transmission channel having spectral efficiency

similar to (2.1).
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2.6.2.1 Relaying Transmission Mechanisms

In this section, four main types of relaying transmission mechanisms are described.

They are the DF, AF, Compress-and-Forward (CF) and hybrid relaying mechanisms.

Decode-and-Forward Relaying

In DF relaying, the RS will attempt to decode the received signal before forwarding

it to the UE. To guarantee successful decoding, the BS transmission rate must not

exceed the BS–RS link capacity. Additionally, it must not exceed the RS–UE link

capacity as well in order for the UE to be able to decode the relayed signal. The

duration of both the broadcast phase and relay phase can be further optimised, for

example, in [39]–[41], to improve performance.

Because the RS decodes the received signal before relaying it to the UE, there will be

no background noise present in the relayed signal itself. However, the disadvantage

is that the BS–RS link must always be reliable in order for the RS to constantly

perform successful decoding on the received signal. This is a challenging criteria to

meet especially when the RS is deployed in a fast fading environment. The RS also

must have prior knowledge regarding some of the system parameters, for example,

Mechanisms Architectures Paradigms

� DF

� AF

� CF

� Hybrid

� Two-hop

� Two-way

� Two-path

� Signal 
forwarding 

� Interference 
forwarding 

Relaying transmission

Modes

� Independent 
relaying

� Cooperative 
relaying 

Figure 2.14: Classification of relaying transmission.
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the modulation scheme and the transmission frame structure, to perform its decoding

tasks. Therefore, it is non-transparent to the underlying cellular network where it is

deployed.

Amplify-and-Forward Relaying

Unlike DF relaying, the RS adopting the AF mechanism does not attempt to decode

the received signal. Instead, it simply amplifies the received signal before relaying it

to the UE. If the RS amplifies the received signal with a scalar value, it is known

as a repeater. Repeaters are suitable in an environment where the noise present at

the RS is low or the RS–UE link quality is high. This is to ensure that some form

of Signal-to-Noise Ratio (SNR) gain is achieved at the UE when the amplified signal

plus noise is being relayed.

A more advanced version of AF relaying can be implemented if the RS has both the

broadcast phase and relay phase channel knowledge. In this case, an amplification

matrix can be designed in such a way as to completely decompose the end-to-end

channel which is between the BS and UE into several independent sub-channels, each

supporting one data stream. This results in an improved multiplexing gain. Examples

of this can be found in [42]. Since AF relaying does not require decoding of the received

signal, it is easier to implement as it does not need to know the operational parameters

of the underlying cellular network, that is, it can be deployed transparently.

Compress-and-Forward Relaying

The CF relaying mechanism is suitable if there is a BS–UE direct link and the RS

is closer to the UE than it is to the BS. In this case, the RS will relay to the UE

an observation of the signal it received during the broadcast phase. It does so by

quantising the received signal into a series of samples. Because of that, it is also known

in the literature as quantise-and-forward relaying. The samples are then compressed

into a string of discrete bits using source coding such as Wyner-Ziv coding [43], [44]

and Voronoi coding [45] to exploit the correlation between the received signals at
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both the RS and UE. Next, the compressed signal is relayed to the UE which then

will combine both observations it received from the RS and BS in order to reconstruct

the signal for data extraction.

In CF relaying, the noise amplification at the RS is not as severe as AF relaying.

Provided that the RS–UE link capacity is high enough, the duration of the relay

phase can be made relatively short, depending on the desired accuracy or the tolerated

distortion of the received observation samples at the UE.

Hybrid Relaying

In hybrid relaying, a combination/modification of the above relaying mechanisms can

be employed by the RS. For example, the conventional DF relaying is demanding as

it requires the RS to decode the whole coded message sent by the BS during the

broadcast phase before relaying the decoded message to the UE. If decoding error is

encountered, the RS may request for the entire message to be resent or remain silent

during the relay phase. Hybrid DF schemes are proposed to relax this stringent re-

quirement. In dynamic DF relaying [46], [47], the RS may start decoding the message

before the BS finishes transmitting it. The time it can start decoding depends on the

BS-RS link quality as it has to wait until the accumulated mutual information over

the BS–RS link is comparable to the BS transmission rate. Whereas in partial DF

relaying [48], [49], the RS is allowed to partially decode the message if it is unable

to perform full decoding of the entire message. This reduces noise amplification as

compared to AF relaying while not having the stringent requirement to decode the

entire message as compared to the conventional DF relaying.

Besides that, DF and CF relaying can be combined to achieve better performance as

investigated in [50] whereby the RS firstly decodes the message before compressing

and relaying it to the UE. In [51], [52], a scheme with two RSs was presented with

one RS employing DF relaying while the other CF relaying. While, the RS in [53] is

able to switch between DF relaying and AF relaying, depending on which providing

better throughput.
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2.6.2.2 Relaying Transmission Architectures

Relaying transmission can also be categorised according to its architecture which also

determines its signalling protocol. Three main types are presented here, namely, the

two-hop, two-way and two-path relaying architectures.

Two-Hop Relaying

In Fig. 2.15(a), the two-hop relaying architecture [54] is illustrated together with its

signalling protocol in Fig. 2.15(b). The RS usually operates in half-duplex mode, that

is, it cannot transmit and receive simultaneously on the same time and frequency.

During the broadcast phase, the BS occupies a certain duration of time to transmit

its signal while the RS listens. During the relay phase, the RS processes the received

signal from the BS according to one of the mechanisms in Section 2.6.2.1 and utilises

the remaining time duration to transmit the processed signal to the UE.

The two-hop relaying architecture incurs a certain amount of multiplexing loss as two

hops are needed for each information packet to reach the UE. As the number of hops

increases, for example, in a multi-hop relaying, both multiplexing loss and complexity

would increase. For that reason, the two-hop relaying provides the best trade-off

(a)

(b)

BS

RS
UE

RS ���� UEBS ���� RS

Broadcast phase Relay phase

Figure 2.15: (a) The two-hop relaying architecture for downlink transmission and
(b) its corresponding signalling protocol.
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between complexity and performance. In this relaying architecture, either uplink or

downlink transmission occurs at any given instance.

Two-Way Relaying

Unlike two-hop relaying, the two-way relaying architecture improves spectrum utilisa-

tion by allowing both uplink and downlink to occur simultaneously via the RS. This

is illustrated in Fig. 2.16(a) with its corresponding signalling protocol in Fig. 2.15(b).

During the first duration known as the access phase, both the BS and UE transmit

their signals to the RS. The combined signals are processed at the RS before it trans-

mits its version of the processed signals to both the BS and UE. At the destinations,

both the BS and UE recover the desired signals by utilising both the relayed signal

and the knowledge of their own transmitted signals during the access phase.

Many strategies can be employed for two-way relaying. In [55], the DF mechanism

is utilised at the RS to process the aggregated signals it received from the BS and

UE. While in [56], [57], the AF mechanism is employed instead. In the recent years,

network coding [58] and its physical layer counterpart known as physical network

coding [59], are being considered in the two-way relaying architecture. Other examples

that investigated hybrid solutions can be found in [60]–[63].

(a)

(b)

BS

RS
UE

RS ���� BS,UEBS,UE ���� RS

Access phase Relay phase

Figure 2.16: (a) The two-way relaying architecture and (b) its corresponding
signalling protocol.

39



Chapter 2: Background

Two-Path Relaying

As shown in Fig. 2.17(a), two RSs are required in the two-path relaying architecture.

Unlike the previous architectures where there is a dedicated relay slot for the relay

phase, the RSs in two-path relaying alternately transmit in every time slot as illus-

trated in Fig. 2.17(b). Specifically, RS1 will listen during the first time slot while both

the BS and RS2 transmit. During the second time slot, it is the turn for RS2 to listen

while both the BS and RS1 transmit. The UE will alternately listen to each RS as

they relay their signals during their respective time slots.

Multiplexing loss is recovered in two-path relaying as information packets are trans-

mitted by the BS during each time slot. Given the nature of the timing protocol, an

additional time slot is needed for the UE to completely receive all the transmitted

information packets. This is not a huge penalty as the number of information packets

is usually large. Some examples of two-path relaying are given in [64]–[67].

(a)

(b)

BS

RS2
UE

BS ���� RS2
RS1 ���� RS2,UE

BS ���� RS1
RS2 ���� RS1,UE

Even time slot Odd time slot

RS1

Figure 2.17: (a) The two-path relaying architecture and (b) its corresponding
signalling protocol.
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2.6.2.3 Relaying Transmission Modes

In this section, two possible relaying transmission modes are described. They are the

independent and cooperative relaying modes.

Independent Relaying

Independent relaying is the simplest mode of relaying whereby the RSs transmit their

signals in an uncoordinated manner as shown in Fig. 2.18(a). As a result, the received

signal at the UE is contaminated with interference from the undesired RSs which are

being allocated with the same network resource for relaying. This could be a major

problem especially for cellular networks operating in urban areas where RSs are more

densely deployed, thus, having overlapping coverage.

Employing frequency reuse planning schemes can mitigate potential interference of

nearby RSs [68]–[71]. This, however, may result in inefficient utilisation of valu-

able bandwidth resources. Other interference mitigation methods include cognitive

relaying [72], managing number of active RSs [73], interference neutralisation [74],

interference aware resource allocation [75], decode/amplify-and-cancel [76], as well as

rate splitting [77].

Cooperative Relaying

Cooperative relaying incorporates the principles of cooperative communication into

its relaying and, thus, enjoys the benefit of throughput enhancement. In cooperative

relaying, the RSs collaborate to perform joint transmission during the relay phase as

illustrated in Fig. 2.18(b). In other words, the RSs perform Cooperative Multi-Point

(CoMP) relaying towards the assigned UE group. Cross interference is mitigated as

the signals from the RSs are coherently transmitted to the UEs. With the absence of

interference from the cooperative RSs, the SNRs and, consequently, the throughput

of the UEs improve. Transmit power may also be reduced to achieve the targeted

QoS, leading to improved energy efficiency.
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(a) Independent relaying

RS1

UE1
RS2

UE2

BS1

Interference

RS-RS cooperative link

RS3

RS4

UE3
UE4

UE5

(b) Cooperative relaying

Figure 2.18: Relaying transmission modes: (a) Independent relaying and (b) co-
operative relaying.

However, the cost of cooperative relaying lies in the amount of cooperative information

that is required to facilitate joint transmission. Cooperative information may consist

of both the CSI and data. In order for the RSs the share cooperative information,

cooperative links are established between them. These links may borrow resources

from the underlying cellular network but since cooperative relaying is more likely to

be deployed in resource-constrained environment to enhance throughput, the more

practical alternative is for the cooperative links to utilise separate bandwidth found

in, for example, the microwave or UWB channels. Furthermore, cooperative relaying

schemes that require reasonable amount of cooperative information should be designed

and the frequency of access to this information should be kept low. Otherwise, the

cost of installing cooperative links that demand prohibitively high data rate and power

consumption would far outweigh the increase in performance that cooperative relaying

may bring to the cellular network.

2.6.2.4 Relaying Transmission Paradigms

Relaying transmission may also be broadly categorised into different paradigms ac-

cording to the purpose of the relayed signal. Two relaying transmission paradigms

can be found in the literature. They are either the SFR or IFR paradigms.
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Signal Forwarding Relaying

The idea behind SFR is to increase the received signal quality at the UE by relaying a

copy of the desired signal to it as shown in Fig. 2.19(a). The overall throughput may

be improved especially when the signal from the BS–UE direct link is weak. The UE

can have the option of optimally combining the received signal obtained during both

the broadcast and relay phases by using, for example, the Maximum Ratio Combiner

(MRC) method [78] to realise the diversity gain.

Interference Forwarding Relaying

On the other hand, a copy of the dominant (strongest) interference is relayed to the

UE in the IFR scheme [79]–[81]. This is illustrated in Fig. 2.19(b). The aim here

is to further increase the strength of the dominant interference so that the UE can

reliably detect and decode it. Upon successful decoding, the UE then subtracts it

from its direct link received signal. This improves the quality of the received signal.

Alternative, the UE can utilise the Interference Rejection Combining (IRC) method

[82] to detect the desired signal. The performance of the IRC method can be increased

if implemented together with IFR as the interference statistics can be estimated more

Desired BS

(b) Interference forwarding 
relaying

RS1

UE1

(a) Signal forwarding 
relaying

Interference

RS2

Interfering BS

UE2

Figure 2.19: Relaying transmission paradigms: (a) Signal forwarding relaying and
(b) interference forwarding relaying.
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accurately as a result of having two copies of the same interference source at the UE.

Therefore, the SNR at the UE is improved in the absence of the dominant interference.

2.7 Conclusions

In this chapter, some background knowledge on climate change is provided. It is

argued that a change in the traditional ways of business is necessary to provide a

sustainable economic growth in the future. To achieve this, many regard the ICT

sector, and more specifically the mobile industry, as a viable catalyst in initiating

the paradigm shift towards a greener economy by reducing the carbon footprint of

other industries. This increases the strain on the mobile networks and unless energy

efficient countermeasures are taken early, mobile operators are expecting to face an

imminent energy crisis as traffic load is anticipated to grow exponentially. Relay-

ing transmission has been presented as a promising technology to reduce the energy

consumption of a network by facilitating the reduction in transmission power. Some

possible use scenarios are given to illustrate the usefulness of relaying transmission

while a classification approach is also provided to systematically categorise the many

types of relaying transmission found in the literature. Based on this classification, the

work in this thesis will mainly focus on the DF and AF relaying mechanisms having

the two-hop relaying architecture with both the independent and cooperative relaying

modes and both the signal forwarding and interference forwarding relaying paradigms.
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Power Consumption of Direct Transmission

Cellular Networks

3.1 Introduction

It was reported in [23] that BSs consume the most operational power, typically around

60% of the total power in the mobile network infrastructure. Therefore, the reduction

of BS power consumption is key in reducing the overall carbon footprint of the mobile

industry in an effort to reduce the global carbon footprint which stands at 245 Mt

Carbon diOxide equivalent (CO2e) in 2009, a rise of 155 Mt CO2e since 2002.

MIMO communication system is being considered in emerging wireless communica-

tion standards such as the LTE–A to reduce BS power consumption during signal

transmission besides promising high data rates without increasing bandwidth utilisa-

tion [83]. However, MIMO suffers from complex signal processing, making practical

implementation a challenge. The development of the Vertical-Bell Laboratories Lay-

ered Space-Time (V-BLAST) receiver structure [84] provides a good trade-off between

performance and complexity. Since then, with the move to LTE–A, research has been

predominantly focused on further improving the receiver interference cancellation and

signal detection capabilities to better balance data rate and complexity [85]–[87].
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Efforts in reducing BS transmission energy are usually focused on transmission side

techniques. Examples here include power allocation [88]–[91], beamforming [92]–[96],

rate allocation [97]–[101] and antenna selection [102]–[105]. In [106], the authors pro-

posed a transmission mode switching scheme that switches between SIMO and MIMO

modes to save energy. In [107], a channel estimation scheme was proposed to minimise

both the transmitter and receiver energy consumption. While in [108], the energy ef-

ficiency of the Multiple Input Single Output (MISO) Orthogonal Frequency Division

Multiplexing (OFDM) transmission scheme with power and capacity constraints was

investigated. In [109], the energy efficiency of random network coding for LTE–A

networks was examined while in [110], energy efficiency improvement in both the PA

and SP modules was demonstrated through appropriate use of constellation modula-

tion techniques. The authors in [111] achieved transmit power reduction in OFDM

systems through a Peak to Average Power Ratio (PAPR) reduction scheme. In [112],

energy efficiency analysis was carried out on a point-to-point transmission system

without considering any receiver Interference Cancellation (IC) techniques. On the

other hand, several receiver IC techniques were considered in [113]–[116] to reduce the

complexity, and thus, energy consumption, at the receiver.

Little work has been presented to investigate the impact of receiver IC techniques

on the BS total power consumption that includes the energy consumption of both

the PA and SP modules. The authors in [117] attempted to address this but the

energy efficiency was limited to only the RF transmit power. Examples of BS power

consumption model can be found in [34] and [35].

The following list describes our contributions in order to address some of the short-

comings of the previous work.

1. We investigate the BS power consumption for the downlink of DTCNs.

2. We analyse the BS power consumption for both the conventional and SIC re-

ceivers. For each receiver, both the ZF and MMSE weight optimisation ap-

proaches are considered.
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3. We consider the circuit power consumption of the SP module when evaluating

the BS power consumption as it is well known that MIMO circuits require a

substantial amount of power to operate.

4. We demonstrate that depending on the number of transmit/receive antennas

and the type of receiver IC technique, different transmission power is needed to

achieve a targeted Signal-to-Interference-plus-Noise Ratio (SINR) value at the

receiver output.

5. We show that treating inter-cell interference from adjacent BSs as background

noise when detecting the desired signal is not an energy efficient approach.

The rest of the chapter is organised as follows. In Section 3.2, the system model

of the direct transmission scheme is described. Next, the receiver IC techniques are

presented in Section 3.3 while the power consumption model is given in Section 3.4.

The SIMO energy consumption and analysis for a large number of receive antennas are

given in Section 3.5 and Section 3.6, respectively. This is followed by some simulation

results and discussions in Section 3.7. Finally, the chapter concludes in Section 3.8.

3.2 System Model

Let us consider a MIMO communication system consisting of a BS with Nb transmit

antennas communicating to a receiver with Nu receive antennas. We label this BS

as BSA to differentiate it from other BSs. All the Nb transmit antennas are assumed

to transmit at an equal power. Furthermore, let us assume there are I adjacent BSs

as shown in Fig. 3.1 and the receiver is within their transmission range. Let BSi be

the ith adjacent BS having Li transmit antennas. Therefore, assuming a full spatial

multiplexing system, the complex signal vector received by the Nu receive antennas

at a particular time under the uncorrelated Rayleigh flat fading channel condition is

y =

Nb∑

m=1

hA
msm +

I∑

i=1

Li∑

l=1

hi
lx

i
l + z. (3.1)
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Desired signal

Inter-cell interference

Desired BS

Adjacent BSs

UE

BSA

BS1

BSI

BSi

Figure 3.1: Multicell MIMO cellular network topology.

Here, hA
m =

(
hA
1,m, · · · , hA

Nu,m

)T
is the channel vector from the mth (m = 1, · · · , Nb)

transmit antenna of BSA to the receiver. The complex coefficient hA
n,m in hA

m is a

complex random variable, the absolute value of which follows a Rayleigh distribution,

and represents the complex channel coefficient from the mth transmit antenna of BSA

to the nth (n = 1, · · · , Nu) receive antenna. The complex symbols to be transmitted

at time t from BSA and BSi are denoted by sm and xl, respectively. The second

term in (3.1) is the additive interference contributed by the I adjacent BSs with

hi
l =

(
hi
1,l, · · · , hi

Nu,l

)T
being the channel vector from the lth transmit antenna of

BSi to the receiver. Furthermore, the vector z = (z1, · · · , zNu
)T represents the noise

present at the receiver with its elements being independent and identically distributed

(i.i.d.) complex Additive White Gaussian Noise (AWGN) random variables having

zero mean and variance σ2. The average power of the mth transmitted symbol of BSA

is given by E {sms∗m} = pAm.

3.3 Receiver Interference Cancellation Techniques

3.3.1 The Conventional Linear Receiver

In the conventional linear receiver structure, the estimated symbol from the mth

transmit antenna of BSA is given by ŝm = wH
my, where wm = (w1,m, · · · , wNu,m)

T is

the complex weight vector for the mth symbol. Substituting (3.1) for y, we have the
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following expression

ŝm = wH
mh

A
msm

︸ ︷︷ ︸

desired signal

+
M∑

j 6=m

wH
mh

A
j sj

︸ ︷︷ ︸

intra - cell interference

+
I∑

i=1

Li∑

l=1

wH
mh

i
lx

i
l

︸ ︷︷ ︸

inter - cell interference

+ wH
mz

︸︷︷︸

noise

. (3.2)

The intra-cell interference refers only to the interference from different antennas of

BSA, the desired BS. While, the inter-cell interference is the interference from the I

adjacent BSs. The SINR at the output of the receiver for the mth symbol can be

expressed as

SINRm =

∣
∣wH

mh
A
m

∣
∣
2
pAm

M∑

j 6=m

∣
∣wH

mh
A
j

∣
∣
2
pAj +

I∑

i=1

Li∑

l=1

|wH
mh

i
l|
2
pil + σ2‖wm‖2

(3.3)

where pAj (j = 1, · · · , Nb) and pil (l = 1, · · · , Li) are the symbol power transmitted from

the jth and lth antennas of BSA and BSi, respectively. Since there is no CSI available

at the transmit side, equal power allocation is assumed at all transmit antennas of

the BSs, i.e., pA1 = · · · = pANb
= pAConv and pi1 = · · · = piLi

= pi. Thus, pAConv

represents the RF power per antenna allocated to each symbol transmitted from BSA

for the conventional linear receiver. Furthermore, we consider two weight optimisation

approaches [115] to calculate wm at the receiver. Let H = HA =
(
hA
1 , · · · ,hA

Nb

)
. In

the ZF weight optimisation approach, the weights are

WZF = (w1, · · · ,wNb
) =

(
HHH

)−1
H (3.4)

while in the MMSE weight optimisation approach, the weights are given as

WMMSE = (w1, · · · ,wNb
) =

(
HHH + σ2IN

)−1
H. (3.5)

We can further rewrite (3.3) into a more compact matrix form given by

[
DA −Q

(
RA −DA

)]
pA =

[

Q

I∑

i=1

Ripi + σ2Qu

]

, m∀Nb. (3.6)
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The matrix RA =
{ ∣
∣wH

mh
A
j

∣
∣
2
: 1 ≤ m, j ≤ Nb

}

=
∣
∣WHHA

∣
∣
2
, where W can be either

(3.4) or (3.5). Likewise, we define Ri =
{ ∣
∣wH

mh
i
l

∣
∣
2
: 1 ≤ m ≤ Nb, 1 ≤ l ≤ Li

}

=
∣
∣WHHi

∣
∣
2
, where Hi =

(
hi
1, · · · ,hi

Li

)
. The matrix DA is a Nb × Nb diagonal matrix

with its non-zero elements taken from the diagonal elements of RA. Furthermore, we

define Q = diag (SINR1, · · · , SINRNb
), u = (µ1, · · · , µNb

)T, pA =
(
pA1 , · · · , pANb

)T
and

pi =
(
pi1, · · · , piLi

)T
. Since equal power allocation for all transmit antennas within the

same BS is assumed, we have pA = cApAConv and pi = cipi, where cA and ci are Nb× 1

and Li × 1 unit column vectors, respectively. After some algebraic manipulation to

isolate pAConv, the expression in (3.6) can thus be rewritten as

pAConv =
[
DAcA −Q

(
RA −DA

)
cA
]−1

[

Q

I∑

i=1

Ricipi + σ2Qu

]

. (3.7)

Depending on the weight optimisation approach, the ZF-Conv and the MMSE-Conv

receivers are considered. Correspondingly, pAConv can be further classified to pAZF−Conv

and pAMMSE−Conv depending on whether the ZF-Conv or MMSE-Conv receiver is being

considered. The pAZF−Conv and pAMMSE−Conv values are calculated by averaging them

over a large number of channel realisations for a specified SINR and interference

power pi. Their values will then be used to calculate the power consumption of the

PA in the later section of this chapter.

From (3.2), we observe that Nu multiplications and Nu additions followed by one

decision operation are required to estimate each symbol in the conventional linear

receiver. Therefore, the processing complexity and hardware requirements at the

receiver scale with Nu.

3.3.2 The Successive Interference Cancellation Receiver

In a SIC receiver, which is utilised in V-BLAST, the intra-cell interference is recon-

structed from previous detected symbols transmitted from BSA and subtracted from

the received signal vector to improve detection of the current symbol. We assume a

SIC receiver without optimal sorting for simplicity, i.e., the symbols are detected in
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the same order as they were transmitted. Therefore, the SINR for the mth symbol

can be written as

SINRm =

∣
∣wH

mh
A
m

∣
∣
2
pAm

m−1∑

j=1

∣
∣wH

mh
A
j

∣
∣
2
pAj e

A
j +

M∑

j=m+1

∣
∣wH

mh
A
j

∣
∣
2
pAj +

I∑

i=1

Li∑

l=1

|wH
mh

i
l|
2
pil + σ2‖wm‖2

(3.8)

where eAj = βjE {|sj − s̃j|2} and βj is the detection error probability of the jth symbol.

Likewise, equal power allocation is assumed at all transmit antennas of the BSs, i.e.,

pA1 = · · · = pANb
= pASIC and pi1 = · · · = piLi

= pi.

Since an equal power allocation scheme is assumed, we can rewrite (3.8) into a form

similar to (3.7) for pASIC, the transmitted symbol power per antenna from BSA for the

SIC receiver. Thus, we have

pASIC =
[
DAcA −Q

(
RA

SLTG+RA
SUT

)
cA
]−1

[

Q

I∑

i=1

Ricipi + σ2Qu

]

(3.9)

where G = diag
(
0, eA1 , · · · , eAM−1

)
, while RA

SLT and RA
SUT are Nb × Nb strictly lower

triangular and strictly upper triangular matrices, respectively, with their non-zero

elements taken from the corresponding elements in RA.

The ZF and MMSE weight optimisation approaches are also considered here. There-

fore, depending on the weight optimisation approach, we have the ZF-SIC and MMSE-

SIC receivers. Correspondingly, pASIC can be further classified to pAZF−SIC and pAMMSE−SIC

depending on whether the ZF-SIC or MMSE-SIC receiver is being considered. Simi-

larly, the pAZF−SIC and pAMMSE−SIC values are calculated by averaging them over a large

number of channel realisations for a specified SINR and interference power pi and

will be used to calculate the power consumption of the PA in the later section of this

chapter.

Similar to the conventional linear receiver, Nu multiplications and Nu additions fol-

lowed by one decision operation are required to estimate each symbol. However, the

SIC receiver further requires the reconstruction of the received signal due to the esti-

mated symbol and subtracting it from the original composite received signal in (3.1).
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This additional step requires another Nu multiplication followed by Nu subtractions.

Therefore, the processing complexity of the SIC receiver is roughly twice that of the

linear conventional receiver. Both the processing complexity and hardware require-

ments of the SIC receiver also scale with Nu.

3.4 Power Consumption Model

In this work, we focus only on the BS power consumption as it was shown in [118] that

the CO2 emission due to operational energy consumption of the BS components is at

68% of its total CO2 emission while the mobile handset stood at 24%. Furthermore,

the typical size of the mobile handset will put an upper limit on the number of

receive antennas Nu that can be practically installed. Since the receiver processing

complexity and hardware requirements scale with Nu, the power consumption of the

mobile handset will also be limited by the number of receive antennas that can be

practically installed.

We are interested in the impact of different receiver IC techniques on the BS total

power consumption at different power consumption ratios between the SP and PA

modules. The SP module consists of circuits for the digital to analogue converter,

mixer, baseband digital signal processor, and so on. Each transmit antenna is assumed

to be attached to a SP module and a PA module. Let the power consumption per

antenna of the PA module be given as

Pamp =
PRF

ϑ
(3.10)

where PRF is the required RF transmit power per antenna corresponding to a par-

ticular receiver IC technique in order to obtain a targeted receiver output SINR. For

example, we have PRF = pAMMSE−SIC if a SIC receiver with MMSE weight optimisation

approach is considered. The efficiency of the PA is ϑ, where 0 ≤ ϑ ≤ 1. Thus, the

total power consumption of the PA module for Nb transmit antennas is given by

PTotal
amp = NbPamp. (3.11)
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On the other hand, the circuit power consumption of the SP module is modelled

as a proportion ̟ of the power consumed in the PA module of a reference system

employing a particular receiver IC technique. We choose the 4×4 MIMO configuration

as the reference system. Therefore, we have

Pc = ̟
P 4×4
RF

ϑ
(3.12)

where Pc and P 4×4
RF are the circuit power consumption per antenna of the SP module

and the RF transmit power per antenna of the 4× 4 MIMO reference system, respec-

tively. Thus, the total circuit power consumption of the SP module for Nb transmit

antennas is given as

PTotal
c = NbPc. (3.13)

By summing the expressions (3.11) and (3.13), the BS total power consumption is

given as

PTotal = PTotal
amp + PTotal

c

=
Nb

ϑ

(
PRF +̟P 4×4

RF

)
. (3.14)

The BS total power consumption model derived in (3.14) is similar to the existing

models, e.g. [34] and [35]. In these models, the total power consumption is usually

represented by the summation of two terms. The first term is related to the RF

power being transmitted and it scales with a certain quantity of interest. In our case,

it scales with the number of transmit antennas and is represented by PTotal
amp in (3.14).

The second term of these existing models is related to the constant power being

consumed by the BS. This is represented by PTotal
c in (3.14). In [34], the authors

defined PTotal
c = 412W for a macro site with PTotal

amp taking values of 226W, 452W

and 904W. In [35], examples were given for a GSM macro site with PTotal
c = 54.8W

and PTotal
amp = 114W and for a Universal Mobile Telecommunications System (UMTS)

macro site with PTotal
c = 73.5W and PTotal

amp = 267W.
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Energy Consumption Ratio

The ECR metric is utilised to measure the energy efficiency of a transmission scheme.

Here, it is defined as the ratio of the BS total power consumption to the transmis-

sion rate of the direct transmission scheme under consideration. By feeding back

each SINRm of sm to BSA so that the transmission rate of sm is always at most

log2 (1 + SINRm), we assume all Nb symbols can be detected. Under this assumption,

the transmission sum rate is given as

Rsum = Bsys

Nb∑

m=1

log2 (1 + SINRm) (3.15)

where Bsys is the bandwidth of the system and SINRm is defined in (3.3) and (3.8).

Therefore, the ECR is given as

ECR =
PTotal

Rsum

(3.16)

where PTotal is defined in (3.14). The ECR has a unit of Joules per bit (J/bit).

3.5 Single Input Multiple Output Power

Consumption

In the SIMO case, there is no intra-cell interference as only one transmit antenna is

used at BSA. Thus, the transmit power per antenna of (3.7) and (3.9) becomes

pAConv/SIC,SIMO = q

(
I∑

i=1

∣
∣
∣

(
hH
1 h1

)−1
hH
1 H

i
∣
∣
∣

2

cipi +σ2
∥
∥
∥

(
hH
1 h1

)−1
hH
1

∥
∥
∥

2
)

(3.17)

where q is a scalar representing the receiver output SINR for the one and only transmit

symbol. From (3.17), it is observed that in a SIMO system the same amount of

transmission power is consumed for both the conventional linear and SIC receivers,

regardless of the type of weight optimisation approach used. This is confirmed through

simulation when Nb = 1.
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3.6 Analysis for a Large Number of Receive

Antennas

To facilitate the analysis for a large number of receive antennas, we utilise the Lemma

presented in [106] which provides the following statement.

Lemma 3.1. Given a channel matrix H with variance γ, we have HHH = NuγINb

as Nu becomes large.

By applying Lemma 3.1 to the ZF parameters of the conventional receiver, we have

WH
ZF =

(
HHH

)−1
HH

=
HH

Nuγ
(3.18)

RA =
∣
∣WH

ZFH
∣
∣
2

=

∣
∣
∣
∣

HHH

Nuγ

∣
∣
∣
∣

2

= INb
(3.19)

u =
c

Nuγ
. (3.20)

Substituting (3.18), (3.19) and (3.20) into (3.7) and letting the receiver output SINR

for all Nb symbols be q, we have

pAZF−Conv

∣
∣
Nu→∞

=
(
cA
)−1

[

q

I∑

i=1

Ricipi +
σ2q

Nuγ
cA

]

. (3.21)

Similarly, by applying Lemma 3.1 to the following MMSE parameters of the conven-

tional receiver, we have

WH
MMSE =

(
HHH+ σ2INb

)−1
HH
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=
HH

Nuγ + σ2
(3.22)

RA =
∣
∣WH

MMSEH
∣
∣
2

=

∣
∣
∣
∣

HHH

Nuγ + σ2

∣
∣
∣
∣

2

=

(
Nuγ

Nuγ + σ2

)2

INb
(3.23)

u =
Nuγc

(Nuγ + σ2)2
. (3.24)

Likewise, substituting (3.22), (3.23) and (3.24) into (3.7) and letting the receiver

output SINR for all Nb symbols be q, we have

pAMMSE−Conv

∣
∣
Nu→∞

=
(
cA
)−1

[

q

I∑

i=1

Ricipi +
σ2q

Nuγ
cA

]

. (3.25)

We find that for large Nu, (3.21) is identical to (3.25), i.e., the required RF transmit

power per antenna is identical when both the ZF and MMSE weight optimisation

approaches are used for the conventional receiver. We do not analyse the case for

the SIC receiver as its non-linear receiver structure does not permit mathematical

tractability. However, we confirm through simulation that the SIC receiver mirrors

the conventional receiver analytic results for both ZF and MMSE weight optimisation

approaches.

By applying (3.16) to either (3.21) or (3.25), we can derive the minimum ECR that

all the receivers described here converges to when Nu is large. The minimum ECR is

given as

ECRmin =

Nb

(
(
cA
)−1
[

q
I∑

i=1

Ricipi + σ2q

Nuγ
cA
]

+̟P 4×4
RF

)

ϑBsyslog2 (1 + q)
. (3.26)

Therefore, for a given number of adjacent BSs I at a particular receiver output SINR

q, the energy consumption for all four types of receivers described here converges to
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ECRmin of (3.26) as the number of receive antennas Nu becomes large. This conver-

gence limit will be confirmed through simulation in Section 3.7.

3.7 Simulation Results and Discussions

During simulations, it is assumed that all the BSs are located equidistant d from the

targeted UE, that is, the cell edge performance of the UE is evaluated. The elements

of the BS–UE channel matrix are made up of coefficients which take into account the

effects of Rayleigh fast fading with unit variance, log-normal shadowing with standard

deviation of 10 dB and path loss given by 131.1 + 42.8log10 (d) dB with d = 2000 m.

These expressions are taken from pp. 61–64 of [3]. Monte Carlo simulations were

carried out and the average results of 50,000 runs were used to calculate the required

transmission power of BSA. The receiver knows only the CSI between BSA and itself.

This CSI is utilised to compute the ZF and MMSE weight vectors in order to detect

the desired signal. Furthermore, perfect symbol detection is assumed for the SIC

based receivers, i.e., eAj = 0. Practically, the probability of correct detection can be

increased with the help of channel coding. In the following figures, adj-BS denotes

an adjacent BS transmitting at RF power of 0.1W per antenna, thus, acting as an

inter-cell interference source to the receiver. We assume the noise variance σ2 = 1,

system bandwidth Bsys = 1 MHz and the receiver output SINR is fixed at 6 dB for

each symbol.

The influence of different receiver IC techniques on the required amount of transmis-

sion energy for a system with Nu = 4 receive antennas is illustrated in Fig. 3.2 for

different number of transmit antennas Nb. For a given number of adjacent BSs, it

is observed that ZF based receivers require higher ECR values than MMSE based

receivers when Nb ≥ 2. In the SIMO case (Nb = 1), it is observed that all receivers

require the same ECR as shown by (3.17). Thus, compared to a MIMO system, a

SIMO system requires less transmission energy but it does not offer any multiplex-

ing gain. As the number of transmit antennas increases (MIMO case), it is observed

that the the ECR begin to increase when ZF based receivers are considered while it

57



Chapter 3: Power Consumption of Direct Transmission Cellular Networks

1 2 3 4

10
0

10
1

Number of transmit antennas, Nb

E
C

R
 (µ

J/
b

it)

 

 

ZF-Conv
ZF-SIC
MMSE-Conv
MMSE-SIC

no adj-BS

3 adj-BSs

no adj-BS

3 adj-BSs

Figure 3.2: The ECR values of the desired BS (BSA) with different receiver IC
techniques v.s. the number of transmit antennas (Nu = 4).

remains fairly constant when the MMSE based receivers are considered. This could

be attributed to how the weights of the receivers are designed. In the ZF case, the

weights are designed in such a way that it will completely null out all interfering

intra-cell components, leaving only the desired signal to be detected. This, however,

will greatly amplify the AWGN noise and the inter-cell interference. As the number of

transmit antennas increases, so will the amplification of other undesired components

in the receive signal vector by the very same ZF weights used to suppress the intra-

cell interference. Therefore, the transmission energy from the desired BS has to be

increased in order to maintain the same level of SINR at the receiver output. On the

other hand, the MMSE receiver has its weights designed in such a way that it tries to

minimise the effect of both intra-cell interference and noise, effectively contributing

to a less severe amplification of the undesired components in the receive signal vector.

Consequently, MMSE receivers require much less transmission energy to maintain the

same receiver output SINR as the number of transmit antennas increases.

If the number of adjacent BS increases in Fig. 3.2, we observe that all receivers

require more transmission energy. This is due to the fact that the adjacent BSs

increase interference additively by a given factor and thus, the transmission energy
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level has to be increased by a factor proportional to it in order to maintain the same

receiver output SINR. On the whole, SIC receivers require less transmission energy

than the conventional linear receiver, with the MMSE-SIC receiver providing the best

performance in terms of energy savings at the BS.

In Fig. 3.3, the ideal ECR values with different receiver IC techniques are shown

for various number of receive antennas. The ECR values are ideal because we do

not consider the influence of circuit power consumption as we would like to clearly

illustrate the impact that the receiver IC techniques have on the BS transmission

energy alone. The inclusion of circuit power consumption will be considered in later

part of this section. From Fig. 3.3, it is observed that the ECR decreases as the number

of receive antennas Nu is steadily increased for a fixed number of transmit antennas

(Nb = 4). When Nu > Nb, it is observed that the ECR for all four types of receiver

decreases. This could be due to the increase in receive diversity gain. As the number

of available receive antennas increases, better signal quality can be derived as the

desired transmitted symbol energy arriving at the receiver can be optimally summed

and detected over a larger set of receive antennas. Therefore, less transmission energy

is required to maintain the same receiver output SINR. As the number of receive
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Figure 3.3: The ECR values of the desired BS (BSA) with different receiver IC
techniques versus the number of receive antennas (Nb = 4).
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antennas increases further, the ECR converges to ECRmin regardless of the type of

receiver used, thus, confirming the derivation of (3.26). This minimum energy is

needed to overcome the remaining inter-cell interference plus noise which is present

equally in all the receiver types. For the case without any adjacent base station, the

minimum transmission energy is only used to overcome the background noise.

We also observe in Fig. 3.3 that there is always an energy gap between the case

with no adjacent BS and with 3 adjacent BSs regardless of the number of receive

antennas being deployed. This shows that increasing the number of receive antennas

alone will not help in suppressing inter-cell interference as long as the receiver IC

techniques treat inter-cell interference as only background noise. Furthermore, only

a limited number of receive antennas can be installed in a mobile station due to its

processing power and size constraint. When the number of receive antennas Nu is

small, the choice of receiver IC techniques does make a difference in the required BS

transmission energy as evident from Fig. 3.3. Therefore, this serves to emphasise the

strong influence of receiver IC design on the BS transmission energy for a receiver

with limited number of receive antennas. Note that we acknowledge the fact that the

signal processing complexity, thus the energy consumption, of the receiver changes

with the number of receive antennas and the type of IC being considered. However,

in this work, we are only interested in the BS transmission energy consumption as it

was shown in Section 2.3.2 that the energy consumption in current communication

networks is largely attributed to the BSs.

In Fig. 3.4, the total power consumption of BSA with different receiver IC techniques

is illustrated for different number of receive antennas while considering the SP module

which is operating at low circuit power consumption relative to that of the PA (̟ =

0.1). It is observed that while receive diversity gain still contributes to the BS total

power reduction as the number of receive antennas in the MMSE based receivers

increases, the same advantage is not seen for the ZF based receivers. Specifically,

there is no further reduction in the BS total power consumption for Nu > 8 as the

power consumption of the SP module cancels out the transmission power savings
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Figure 3.4: Total power consumption of BSA with different receiver IC techniques
v.s. the number of receive antennas for ̟ = 0.1 (Nb = 4, ϑ = 0.4).

achieved through the ZF based receivers. This is contrary to the result obtained in

Fig. 3.3 when no circuit power consumption is considered.

For the following results, we take the MMSE-SIC receiver as a case study since it

delivers the most power savings among the receivers. In Fig. 3.5, the power consump-

tion of the SP module versus the PA module of BSA is illustrated at various ̟ values

for a system employing the MMSE-SIC receiver. It is observed that the power con-

sumption of the SP module at ̟ > 1 is always higher than that of the PA. Therefore,

any power savings obtained through the combined use of MMSE-SIC technique and

MIMO is very limited due to the high power consumption of the SP module. On the

other hand, if ̟ < 1, there will be a certain number of receive antennas where the

power consumption of both modules are equal, after which the power consumption of

the SP module will once again dominate that of the PA module. For example, when

̟ = 0.25, the number of receive antennas that results in equal power consumption

between the two modules is Nu = 14.

In Fig. 3.6, the total power consumption of BSA at various ̟ values is illustrated

for different number of receive antennas of the MMSE-SIC receiver. The ideal case

61



Chapter 3: Power Consumption of Direct Transmission Cellular Networks

4 12 20 28 36
10

0

10
1

10
2

Number of receive antennas, Nu

M
od

ul
e

 p
ow

e
r 

co
n

su
m

p
tio

n 
(W

)

 

 

Pc
 (ϖ = 1.5)

Pc
 (ϖ = 1)

Pc
 (ϖ = 0.25)

Pc
 (ϖ = 0.1)

Pamp
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Figure 3.6: Total power consumption of BSA at various̟ values v.s. the number
of receive antennas while considering the MMSE-SIC receiver (Nb = 4, ϑ = 0.4).

where there is no power consumption for the SP module is shown when ̟ = 0.

When ̟ increases, it is observed that increasing the number of receive antennas no

longer reduces the BS total power consumption. It is also observed that the BS

total power consumption without inter-cell interference but with dominant Pc (e.g.,
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̟ = 4) may even exceed that of the case with inter-cell interference but with lower

Pc (e.g., ̟ = 0.25). This shows that the power consumed at the SP module may

have a significant impact on the BS total power consumption as compared to the

additional transmission power needed to overcome the detrimental effects of inter-cell

interference to maintain the same SINR level.

3.8 Conclusions

The BS power consumption of the direct transmission scheme for a multicell cellular

network has been investigated. Both the conventional and SIC receivers have been

considered together with ZF and MMSE weight optimisation approaches. Besides the

number of antennas, it has been shown that different weight optimisation approaches

have an impact on the ECR of the BS. The ZF based receivers typically require up

to 9 times the BS total power consumption of the MMSE based receivers in order to

maintain the same SINR at the receiver output. Besides that, it has been demon-

strated that treating the interference from adjacent BSs as background noise is not

energy efficient as this requires roughly 4 times the transmission energy from the de-

sired BS to maintain the targeted SINR. The impact of the circuit power consumption

of the SP module on the BS total power consumption has also been investigated. In

some cases, the circuit power consumption may exceed the transmission power sav-

ings obtained from receive diversity gains and receiver IC techniques. It may also

contribute to the increase in the BS total power consumption more significantly than

the additional transmission power needed in the presence of inter-cell interference to

achieve the targeted SINR.
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Spectral-Energy Efficiency Trade-off in

Conventional Relay Transmission

4.1 Introduction

The relay channel was first described by Van der Meulen [38]. Its capacity was thor-

oughly examined under various channel conditions in [119] and [120]. Today, relaying

transmission has gained considerable attention and is envisaged to be a promising

technology in future communication infrastructures.

The two-hop relaying transmission has been of particular interest [121]–[124]. Dur-

ing the first hop (broadcast phase), the source transmits its signal to the relay and

sometimes the destination if it is near. The relay can then perform DF [125]–[128],

AF [129]–[132] or CF [133]–[136] on the desired signal before relaying it to the desti-

nation during the second hop (relay phase). Inter-cell interference occurs when two or

more sources at different cells simultaneously transmit, without cooperation, to their

intended destinations via relays. This interference relay channel was first studied

in [137] for a two-source one-relay two-destination configuration in a Gaussian chan-

nel where the achievable rate region was derived with rate splitting [138] performed

at the sources. In [77], two DF relays were considered instead, turning the channel

into a cascaded interference channel where the sources transmit to the relays via an
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interference channel in the first hop and the relays transmit to the destinations via

a subsequent interference channel in the second hop. The best transmission strategy

for the first hop was again to use rate splitting. The work in [77] was then extended

in [139] to include both DF and AF relaying with the RSs having the capability to

switch transmission to another destination, effectively converting a strong interfer-

ence channel to a weak one. A two-source two-relay two-destination configuration

was also considered in [140] but with focus on the second hop where the available side

information was utilised for partial relay cooperation strategies.

The performance of the relaying transmission can also be improved by applying some

form of precoding to the transmitted information, thus, giving rise to a class of relay-

ing schemes generally known as coded relay. Space-time coding is commonly applied

to the transmitted information to achieve transmit diversity. For example, a form of

space-time coding known as Distributed Time-Reversal Space-Time Block Code (D-

TR-STBC) was proposed in [141] to guarantee the orthogonality of the transmitted

codes at the destination. Both power gain and Symbol Error Rate (SER) improve-

ment were demonstrated at optimum diversity order. Later, the authors combined

transmit beamforming concepts with Distributed Orthogonal Space-Time Block Code

(DOSTBC) in [142] to achieve both diversity gain and SER improvement. In [143],

transmit beamforming concepts were also applied to the transmitted information in

order to demonstrate improved array gains, leading to enhanced capacity performance.

While in [144], relay selection method and turbo coding were utilised to improve the

overall spectral efficiency of the relay network.

A different relaying paradigm was proposed by Dabora et. al. in [79]–[81] and most

recently in [145]. In these works, the concept of interference forwarding was proposed.

The RSs were utilised to forward a copy of the interference so that it is strong enough

for the destination to cancel it. By doing so, the achievable rate region was able

to be increased. In [146], both the training signal and the arrival time interval of

the interference were utilised by the RS to assist in interference cancellation at the

destination, thus, improving transmit efficiency.
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The work thus far considered either the signal forwarding or the interference forward-

ing relaying paradigms, with direct transmission normally taken as the benchmark

when performance gains were demonstrated. Therefore, there is insufficient study in

comparing the two relaying paradigms. The authors in [147] attempted to address

this by evaluating the capacity of the signal forwarding and the interference forward-

ing elements of the interference relay channel by utilising a relay infrastructure that

transmits in orthogonal channels to the underlying interference channel with all nodes

having single antenna.

Recently, there is an increased interest in green communication techniques that aim

to design energy efficient communication networks. The concept of green communi-

cations encompasses the whole of wireless communication life cycle, including design

and manufacturing, deployment, operation and decommissioning of the network. Our

work focuses on the protocol design and operation cost of green communications,

specifically for relay transmission techniques. Relay-aided cooperative communica-

tion, which is under consideration in the LTE–A standard, is an attractive technique

towards realising the energy efficiency target. While energy efficiency was neglected in

the work discussed so far, the authors in [148] considered energy efficiency to maximise

the lifetime of a cooperative network through joint relay selection and power alloca-

tion strategies. The work was confined to AF relays without any source-destination

direct link. In [149], the additional energy cost of implementing the relay selection

schemes was considered and a strategy to minimise the corresponding cost was pro-

posed. In [150], dynamically allocated mobile relays were deployed to minimise the

energy consumption of a network of static nodes. A significant lifetime extension to

the network was being reported. Besides that, a scheme that minimised the energy

consumption of a DF relay network based on Bit Error Rate (BER) constraint was

proposed in [151] while in [152], a cooperative broadcasting method was proposed that

allowed destination nodes to accumulate signal energy from multiple source nodes to

improve signal detection and reduce energy consumption. The authors in [153] pro-

posed power allocation schemes that reduced the transmission power for several relay

network configurations. In both [152] and [153], the relays were constrained to per-

form either DF or AF on the signal. In addition, the majority of works from the
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aforementioned authors utilised either spectral efficiency or energy efficiency as a per-

formance metric. Although the authors in [154]–[157] attempted to jointly consider

them in their work, the trade-off between spectral efficiency and energy efficiency of

relay networks is yet to be completely understood. Furthermore, circuit power con-

sumption, a major power drain in MIMO systems, was not considered in [148]–[156]

when evaluating energy efficiency.

We intend to address some of the shortcomings of previous work in this chapter. Our

contributions are summarised as follows.

1. We investigate the performance of both the signal forwarding and interference

forwarding relaying paradigms in a RACN. For each relaying paradigm, an adap-

tive MIMO relaying scheme [53] is considered where the RSs are able to perform

both the DF and AF relaying mechanisms. The conventional DTCN scheme is

compared to the relaying schemes. Our purpose is not to propose spectral ef-

ficient relaying mechanisms (for example, dynamic DF) but to investigate the

signal forwarding and interference forwarding relaying paradigms incorporating

the adaptive MIMO relaying scheme.

2. We consider both the spectral and energy efficiency of the schemes. The energy

efficiency includes both the RF and circuit power consumption of the PA and

SP modules, respectively. We demonstrate that there is a trade-off between

spectral efficiency and energy efficiency of the relay schemes.

3. Inspired by [157], we propose the economic efficiency metric as a complementary

performance measure to spectral and energy efficiency. The economic efficiency

metric finds a point in the SEET region that provides maximum economic prof-

itability. We differentiate our metric from [158] which mainly utilised one-off

insertion and fixed costs as terms in their cost efficiency metric. These costs do

not reflect the crucial operational power consumption cost and thus, the metric

has limitation in representing the trade-off accurately.

4. Lastly, we also investigate the influence of the RS position on the spectral effi-

ciency, energy efficiency and economic efficiency of the relay scheme.
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The rest of the chapter is organised as follows. Section 4.2 describes the network

topology, channel assumptions, the transmission protocol and the power consump-

tion model of the RACN. In Section 4.3, the interference sources of the network are

identified. Next, the relaying mechanisms are explained in Section 4.4 while in Sec-

tion 4.5, the formulation for optimising energy efficiency is presented. In Section 4.6,

the economic efficiency metric is proposed and its optimisation formulation is de-

scribed. Following that, some numerical examples and discussions are presented in

Section 4.7. Finally, concluding remarks are given in Section 4.8.

4.2 System Model

4.2.1 Network Topology

Let us consider a multicell cellular network consisting of a 7-cell wrap-around hexag-

onal structure as illustrated in Fig. 4.1 with the set C = {1, · · · , 7} representing the

hexagonal cells of the network structure. Each cell has a BS at its centre and is further

divided into NSec sectors described by the set S = {1, · · · , NSec}. We assume M RSs

are located at each sector. These equally spaced RSs are located at dRS from the

cell centre and are denoted by set M = {1, · · · ,M}. A total of K UEs per sector

defined by the set K = {1, · · · , K} are selected to participate in the transmission.

Furthermore, the indexes b (i, j), r (i, j,m) and u (i, j, k) describe the BS from the ith

sector of the jth cell, the mth RS from the ith sector of the jth cell and the kth user

from ith sector of the jth cell, respectively. The performance of the base (centre)

cell is of primary focus in this work. Each BS has Nb antennas per sector while the

number of antennas of the RS and UE is Nr and Nu, respectively. Furthermore, we

denote the system bandwidth as Bsys.
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Sector
SubsectorBase cell

Cell radius, rcell

RS distance, dRS

Intersite distance , dISD

BS

RS

�b=1/3,  �r = 1/3 �b=1,  �r = 1/3

�b=1/3,  �r = 1/6 �b=1,  �r = 1/6

Bandwidth, Bsys

� = 1
� = 1/3
� = 1/6

Figure 4.1: The RACN with its different frequency planning modes for both the
broadcast and relay phases (M = 2).

4.2.2 Propagation Channel Model

Consider two nodes X and Y whereby X is transmitting data to Y . Let HX,Y ∈ C
A×B

be the channel matrix of size A × B between X and Y . The elements of HX,Y are

ha,b where 1 6 a 6 A and 1 6 b 6 B. These elements are modelled as

ha,b = GX ·GY · (LX,Y )
−1 · 10

ξX,Y

10 · µX,Y (4.1)

where GX and GY are the transmit antenna gain of X and the receive antenna gain

of Y , respectively. The path loss between X and Y is defined as LX,Y . The following

term is log-normal shadowing with ξX,Y being a Gaussian random variable having zero

mean and standard deviation, σs dB. The values for these terms depend on whether

X and Y are BS, RS or UE nodes. These are shown in Table 4.1 with parameters

selected from pp. 61–64 of [3]. Lastly, µX,Y denotes the complex Rayleigh fast fading

coefficient with unit variance.
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Table 4.1: Simulation parameters for the RACN.

Path loss model, LX,Y

(d in km)

BS–RS 125.2 + 36.3log10 (d) dB

BS–UE 131.1 + 42.8log10 (d) dB

RS–UE 145.4 + 37.5log10 (d) dB

Shadowing standard

deviation, σs

BS–RS 6 dB

BS–UE 10 dB

RS–UE 10 dB

Antenna pattern

(θ3dB = 70◦, Am = 20 dB)

BS ρ (θ) = −min

(

12
(

θ
θ3dB

)2

, Am

)

dB

RS–BS ρ (θ) = −min

(

12
(

θ
θ3dB

)2

, Am

)

dB

RS–UE Omni

UE Omni

Antenna gain (boresight)

BS 14 dBi (including cable losses)

RS–BS 7 dBi (including cable losses)

RS–UE 5 dBi (including cable losses)

UE 0 dBi

Noise power spectral density, N0 -174 dBm

Base service

data rate (voice), rbase
10 kbps

Revenue per bit, κr 1.54× 10−6 pence/bit [159]

Energy cost per Ws, κc 2.8× 10−6 pence/Ws [160]

4.2.3 Downlink Transmission Protocols

Let us consider the downlink transmission of a cellular mobile network. The trans-

mission protocol is described for the RACN over a single transmission frame interval.

The timeslot, T of each transmission frame is assumed to be shorter than the coher-

ence time of the channel. In the RACN, both the BSs and RSs participate in data

transmission. For practical reasons, a half-duplex transmission mode is assumed for

the RSs. The transmission protocol is depicted in Fig. 4.2. We assume a single user

scheduler to clearly demonstrate the benefit of relaying alone without any multiuser

diversity gains typically obtained from a multiuser scheduler. In this case, one UE per

subsector is selected to participate in the transmission while the corresponding RS at

that subsector is assigned to serve the selected UE, giving K = M . A full traffic load

is assumed so that there is at least one UE per subsector waiting to be served at any
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UE1 slot … UEk slot

T

… UEK slot

�dT

Direct transmission : BS�UEk

Relay phase : 
RSm�UEk

Broadcast phase : 
BS�RSm

�bc�dT �r�dT

OR
Relay transmission 

Figure 4.2: The downlink transmission protocol for the RACN.

given instant. In addition, the broadcast and relay channels are known to the RSs

and UEs, respectively.

The downlink transmission at each sector uses Time Division Multiple Access (TDMA)

whereby each of theK UEs is allocated equal fraction of the transmission frame times-

lot denoted by τdT , where τd = 1
K
. Within τdT , either a direct transmission or relay

transmission will be performed, depending on which returns a higher throughput.

While direct transmission utilises the whole τdT , relay transmission further subdi-

vides it into a broadcast phase and a relay phase having transmission duration τbcτdT

and τrτdT , respectively, given that τbc = 1− τr and 0 ≤ τbc ≤ 1. The mechanisms for

the relay transmission will be described in Section 4.4.

We also implement frequency reuse planning for the transmission of both the BSs

and RSs where the frequency reuse patterns are as illustrated in Fig. 4.1. For the BS

transmission, a frequency reuse factor of ηb indicates a frequency reuse at every 1/ηb

consecutive sectors in a cell while for the RS transmission, a frequency reuse factor of

ηr suggests a frequency reuse after every 1/ηr consecutive RSs in a cell.
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4.2.4 Power Consumption Model

In modelling the circuit power consumption, we adopt a methodology similar to [32].

The circuit power consumption of the BS and RSs is proportional to their allocated RF

transmit power Pb and Pr, respectively. Thus, there is no circuit power consumption

when no transmission is occurring. This is to emulate how future green BSs are

expected to operate [161] when the hardware efficiency is improved. Let Pc,ref be the

circuit power consumption at a given RF transmit power Pref . Therefore, the circuit

power consumption of the BS is given as

Pc,b =
PbPc,ref

Pref

(4.2)

while the circuit power consumption of the RS is written as

Pc,r =
PrPc,ref

Pref

. (4.3)

The operational power of the system includes both the RF transmit power and the

circuit power consumption. Considering the aggregate effects of the duplexer/feeder

losses and the efficiencies of the antenna/amplifier modules, let the effective opera-

tional efficiencies of the BS and RS be represented by αb and αr, respectively. There-

fore, the operational power utilised for transmission to the kth UE in a RACN is

written as

P (k)
op =







(1− τr) τdαbPb + τrτdαrPr + Pc,b/K +MPc,r/K if relay,

τdαbPb + Pc,b/K +MPc,r/K if direct.

(4.4)

The circuit power consumed by the RS is included in the second line of (4.4) even

though direct transmission is selected. This is because in a RACN, the RS circuitry

must be functioning at all times for fast response. We do not consider advanced meth-

ods like sleep modes, e.g., [162], where algorithms are designed mostly for green BSs to

switch off non-essential circuit components while being idle. As for the conventional
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DTCN which operates without employing RSs, the operational power is solely due to

the BSs and is given by τdαbPb + Pc,b/K.

Energy Consumption Ratio

As described in Section 2.5.2.2, the ECR is used to measure the energy efficiency of

the system. It is proportional to the ratio of the average operational power to the

average capacity of the system under consideration. The ECR per sector of the system

under consideration is, thus, given as

ECRsys =
E {Pop,sys}

Bsys · E {Csys}
(4.5)

where Csys is the spectral efficiency per sector of the system under consideration in

bits/s/Hz while the total operational power per sector of the system under consider-

ation is denoted as Pop,sys =
∑

k∈K

P
(k)
op , assuming that there are K UEs per sector as

represented by set K. Therefore, the ECR has units of Joules per bit (J/bit).

4.3 Interference Analysis

We will now briefly describe the interference sources of the RACN. Let s ∈ S be

the current sector under consideration in the base cell. Also, let fb(1,s) be the BS

transmitting frequency to the RSs and UEs at sector s of the base cell. The set

of interference sources X experienced by the RSs during the broadcast phase of the

relay transmission and by the UEs during direct transmission at sector s are from the

other BSs transmitting to other sectors at frequency fb(i,j) equals to fb(1,s). This is

illustrated in Fig. 4.3(a) for the case of ηb = 1 while considering sector s = 1 of the

base cell. Therefore, we have

X =
{
(i, j)

∣
∣(i, j) ∈ C × S, (i, j) 6= (1, s) , fb(i,j) = fb(1,s)

}
. (4.6)
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Thus, assuming the interference sources are independent, the interference covariance

matrix at the mth RS at sector s of the base cell is given as

R
r(1,s,m)
BC =

∑

(i,j)∈X

Pb

Nb

(
Hb(i,j),r(1,s,m)H

H
b(i,j),r(1,s,m)

)
(4.7)

Desired signal

Interference

Bsys

�r = 1/3

�b = 1

(b)

RS

Cell i = 2

Cell i = 1
(Base cell)

Relay phase

Cell i = 7

…

fu(1,1,k)

(a)

Cell i = 2
(interference
from all 3 sectors)

Cell i = 7
(interference
from all 3 sectors)

Cell i = 1
(Base cell)

…

Interference from 
sectors 2 & 3

BS

Broadcast phase

r(i,j,m)

b(i,j)

u(1,1,k)

r(1,1,m)

r(1,1,m)

u(1,1,k)

fb(1,1)

j = 1
j = 3

j = 2

fb(i,j)

fr(i,j,m)

Figure 4.3: Interference sources at sector s = 1 of the base cell from (a) other BSs
(transmitting to other sectors) experienced by the mth RS and kth UE during the
broadcast phase where fb(i,j) = fb(1,1) and (b) other RSs (located in other sectors) to
the kth UE during the relay phase where fr(i,j,m) = fu(1,1,k). The figure is illustrated

for BS and RS frequency reuse factors of ηb = 1 and ηr = 1/3, respectively.
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while for the kth UE at sector s of the base cell, the interference covariance matrix is

given as

R
u(1,s,k)
D =

∑

(i,j)∈X

Pb

Nb

(
Hb(i,j),u(1,s,k)H

H
b(i,j),u(1,s,k)

)
. (4.8)

From (4.6), the strongest interfering BS to the kth UE at sector s of the base cell is

identified as b (i0, j0) where

(i0, j0) = arg
(i,j)∈X

max
∥
∥Hb(i,j),u(1,s,k)

∥
∥
2

F
. (4.9)

Let X0 = X⊕(i0, j0) be the set of interfering BSs without the presence of the strongest

interfering BS. Subsequently, the interference covariance matrix for the kth UE at

sector s of the base cell without the strongest interfering BS is defined as

R̄
u(1,s,k)
D =

∑

(i,j)∈X0

Pb

Nb

(
Hb(i,j),u(1,s,k)H

H
b(i,j),u(1,s,k)

)
. (4.10)

Furthermore, let index r (i0, j0,m0) represent the RS that is designated to relay the

interference of b (i0, j0). Thus, the interference covariance matrix for r (i0, j0,m0)

during the broadcast phase is written as

R
r(i0,j0,m0)
BC =

∑

(i,j)∈X0∪(1,s)

Pb

Nb

(
Hb(i,j),r(i0,j0,m0)H

H
b(i,j),r(i0,j0,m0)

)
. (4.11)

When all the RSs are actively transmitting during the relay phase, the RSs interfer-

ing the kth UE with receiving frequency fu(1,s,k) at sector s of the base cell are the

surrounding RSs from other sectors that are relaying at frequency fr(i,j,m) = fu(1,s,k).

This is depicted in Fig. 4.3(b). The set of RSs interfering the kth UE at sector s of

the base cell is thus

Pu(1,s,k) =
{
(i, j,m)

∣
∣(i, j,m) ∈ C × S ×M, (i, j) 6= (1, s) , fr(i,j,m) = fu(1,s,k)

}
.

(4.12)
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Consequently, its interference covariance matrix is given by

R
u(1,s,k)
R =

∑

(i,j,m)∈Pu(1,s,k)

Pr

Nr

(
Hr(i,j,m),u(1,s,k)H

H
r(i,j,m),u(1,s,k)

)
(4.13)

while its interference covariance matrix in the absence of r (i0, j0,m0) is given by

R̄
u(1,s,k)
R = R

u(1,s,k)
R − Pr

Nr

(
Hr(i0,j0,m0),u(1,s,k)H

H
r(i0,j0,m0),u(1,s,k)

)
. (4.14)

The expressions presented in this section are utilised when describing the signal for-

warding and interference forwarding paradigms in Section 4.4.

4.4 Spectral Efficiency of the Relaying Schemes

In this section, we describe the relaying mechanisms for the SFR and IFR paradigms,

focusing on the kth UE and its assigned mth RS at sector s of the base cell. For

conciseness, indexes b (1, s), r (1, s,m) and u (1, s, k) are abbreviated to b̄, r̄ and ū,

respectively, in subsequent channel matrix notations. Furthermore, the index for the

strongest interfering BS, b (i0, j0), is abbreviated to b0 while the index r (i0, j0,m0),

representing the RS that is designated to relay the interference caused by b0, is abbre-

viated to r0. Also, the noise power is represented by σ2 = N0Bsys. The transmission

diagrams for the relaying schemes are shown in Fig. 4.4

4.4.1 Signal Forwarding Relaying

The main idea of the SFR scheme is to increase the reliability of the desired signal

at the destination by relaying a copy of it to the corresponding UE. The DF and AF

relaying mechanisms are considered whereby the designated signal forwarding RS,

r̄ will select either one of the two relaying mechanisms depending on the channel
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condition between b̄ and r̄. The received signal vector of r̄ is

yr̄ =

√

Pb

Nb

Hb̄,r̄sb̄ +
∑

(i,j)∈X

√

Pb

Nb

Hb(i,j),r̄sb(i,j) + nr̄ (4.15)

where the first term is the desired signal component while, the second and third

terms are the inter-cell interference and noise present at r̄, respectively. Assuming

that E
{
sis

H
i

}
= INb

, the maximum supported transmission rate is, therefore, given

by

Rb̄,r̄ = log2det

[

INr
+

Pb

Nb

Hb̄,r̄H
H
b̄,r̄

(
Rr̄

BC + ηbσ
2INr

)−1
]

. (4.16)

Given that the desired BS transmission rate is Rb̄, the DF relaying mechanism is

selected if Rb̄ ≤ Rb̄,r̄ in order for the signal to be decodable at the RS. At the des-

tination, the UE achieves diversity gain by utilising both the direct and relay link

signals. These signals are stacked before commencement of the decoding process.

The transmission rate achieved by the UE is thus

Rū,DF = log2det
[
I2Nu

+QSFR,DFW
−1
SFR,DF

]
. (4.17)

(a) (b)

Desired broadcasting

Desired relaying

Undesired broadcasting

Undesired relaying

Forwarded interference

Base cell

Signal forwarding RS

Interfering BSs

Interfering RSs

Desired BS

Interference 
forwarding RS

Desired BS

Interfering BSs

Interfering RSsBase cell

Strongest 
interfering BS

Figure 4.4: The transmission diagrams for (a) the SFR scheme, and (b) the IFR
scheme.
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Assuming the signal and interference sources are mutually independent, the covariance

matrices QSFR,DF and WSFR,DF in (4.17) can be defined as

QSFR,DF =





Pb

Nb
Hb̄,ūH

H
b̄,ū

0

0 Pr

Nr
Hr̄,ūH

H
r̄,ū



 (4.18)

and

WSFR,DF =




Rū

D + ηbσ
2INu

0

0 Rū
R + ηrσ

2INu



 . (4.19)

If Rb̄ > Rb̄,r̄, the RS is unable to decode the incoming signal. Hence, the AF relaying

mechanism is selected whereby the RS will just amplify the signal before relaying it

to the UE. The amplification factor is given as

gr̄ =
Pr

∥
∥
∥

Pb

Nb
Hb̄,r̄H

H
b̄,r̄

∥
∥
∥

2

F
+ ηbσ2Nr

. (4.20)

Hence, the transmission rate achieved by the UE is

Rū,AF = log2det
[
I2Nu

+QSFR,AFW
−1
SFR,AF

]
(4.21)

where the covariance matrices QSFR,AF and WSFR,AF are defined as

QSFR,AF =





Pb

Nb
Hb̄,ūH

H
b̄,ū

0

0 gr
Pb

Nb
Hr̄,ūHb̄,r̄H

H
b̄,r̄
HH

r̄,ū



 (4.22)

and

WSFR,AF =




Rū

D + ηbσ
2INu

0

0 grHr̄,ū (R
r̄
BC + ηbσ

2)HH
r̄,ū +Rū

R + ηrσ
2INu



 . (4.23)
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The spectral efficiency of the kth UE for the SFR scheme is, thus, given as

C
(k)
SFR =







τd min
{
ηbτbcRb̄,r̄, ηrτrRū,DF

}
if Rb̄ ≤ Rb̄,r̄,

ηrτrτdRū,AF otherwise.

(4.24)

If the quality of the BS-UE direct link is high, e.g., when the UE is near the BS,

it is desirable to perform direct transmission throughout the τdT transmission time

duration that is allocated to the kth UE. The direct transmission spectral efficiency

for the kth UE is given as

C
(k)
Direct = ηbτdlog2det

[

INu
+

Pb

Nb

Hb̄,ūH
H
b̄,ū

(
Rū

D + ηbσ
2INu

)−1
]

. (4.25)

Therefore, the SFR scheme adapts its transmission mode between direct and relay

transmission according to the current channel conditions. Assuming there are K UEs

per sector as represented by set K, the system spectral efficiency per sector of the

SFR scheme is, thus, given by

Csys,SFR =
∑

k∈K

max
{

C
(k)
SFR, C

(k)
Direct

}

. (4.26)

We observe that the SFR scheme offers improvement to the Signal-to-Interference

Ratio (SIR) by enhancing the strength of the desired signal. This increases the success

rate of reliably detecting the desired signal in the presence of interference.

4.4.2 Interference Forwarding Relaying

The tenet behind the IFR scheme is to increase the received power of the strongest

interfering signal at the UE so that it can be reliably detected and cancelled before

the UE decodes the desired signal. This helps in improving the overall quality of

the desired signal in the absence of the strongest interfering signal. Similarly, the

designated interference forwarding RS, r0 will select either the DF or AF relaying

mechanism when forwarding a copy of the interfering signal to the UE. The received
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signal vector of r0 is

yr0 =

√

Pb

Nb

Hb0,r0sb0 +
∑

(i,j)∈X0∪(1,s)

√

Pb

Nb

Hb(i,j),r0sb(i,j) + nr0 (4.27)

where the first term is the desired interfering signal to be forwarded by r0 while, the

second and third terms are the undesired inter-cell interference and noise present at

r0, respectively. Therefore, the maximum supported transmission rate between b0 and

r0 is given as

Rb0,r0 = log2det

[

INr
+

Pb

Nb

Hb0,r0H
H
b0,r0

(
RR0

BC + ηbσ
2INr

)−1
]

(4.28)

while the transmission rate of b0 itself be given as Rb0 . The RS will select the DF

relaying mechanism if Rb0 ≤ Rb0,r0 else the AF relaying mechanism will be selected

instead.

At the destination, the UE will attempt to decode the interfering signal with the

assistance of the relayed copy. The interfering signals received by the UE from both

the direct and relay links are stacked before the decoding process is attempted. For

successful interference decoding, the transmission rate, Rb0 must further satisfy

Rb0 ≤ log2det
[
I2Nd

+QIFRW
−1
IFR

]
(4.29)

where QIFR and WIFR are the covariance matrices of the stacked signals representing

the desired interfering signal and other residual interference, respectively. The expres-

sions for these covariance matrices will depend on the type of relaying mechanism that

the RS employed when performing interference forwarding and are given as

QIFR =












Pb

Nb
Hb0,ūH

H
b0,ū

0

0 Pr

Nr
Hr0,ūH

H
r0,ū




 if DF,






Pb

Nb
Hb0,ūH

H
b0,ū

0

0 gr0
Pb

Nb
Ĥr0Ĥ

H
r0




 otherwise

(4.30)
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where Ĥr0 = Hr0,ūHb0,r0 and

WIFR =












Pb
Nb

Hb̄,ūH
H
b̄,ū

+R̄ū
D+ηbσ

2INu

0

0 R̄ū
R + ηrσ

2INu




 if DF,






Pb
Nb

Hb̄,ūH
H
b̄,ū

+R̄ū
D+ηbσ

2INu

0

0
gr0Hr0,ūR̂BCHH

r0,ū

+R̄ū
R+ηrσ

2INu




 otherwise

(4.31)

where R̂BC = Rr0
BC + ηbσ

2INu
.

If the condition in (4.29) is not satisfied, the interference is not decodable. Instead, the

UE will calculate a scaled version of the relayed interference signal. After detection by

either decoding or scaling, the desired interfering signal will then be reconstructed to

match the one originally received by the UE during the broadcast phase. Subsequently,

the reconstructed interference is subtracted from that originally received signal.

We observe that there are 4 outcomes that can transpire, each contributing to a

different spectral efficiency of the IFR scheme. The observed outcomes are

1. RS r0 does DF interference relaying while UE ū successfully decodes it.

2. RS r0 does DF interference relaying while UE ū is unsuccessful in decoding it.

3. RS r0 does AF interference relaying while UE ū successfully decodes it.

4. RS r0 does AF interference relaying while UE ū is unsuccessful in decoding it.

Specifically, these 4 outcomes determine the final amount of residual interference

and therefore, influence the interference covariance matrix embedded in the spectral

efficiency expression of the IFR scheme. The general spectral efficiency expression of

the kth UE for the IFR scheme that encompasses the 4 outcomes is, thus, given as

C
(k)
IFR = ηbτdτbclog2det

[

INu
+

Pb

Nb

Hb̄,ūH
H
b̄,ūW

−1
0

]

(4.32)

where W0 is the said interference covariance matrix. Its elements are shown in Ta-

ble 4.2 for the 4 different outcomes. Likewise, the IFR scheme adapts its transmission
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Table 4.2: Interference covariance matrix, W0, of the IFR scheme.

Outcome:
RS r0 relaying mechanism

DF AF

Is UE ū able

to decode?

Yes R̄ū
D + ηbσ

2INu
R̄ū

D + ηbσ
2INu

No
PbNr

PrNb
V
(
R̄ū

R + ηrσ
2INu

)
VH

+R̄ū
D + ηbσ

2INu

F (Rr0
BC + ηbσ

2INu
)FH

+ 1
gr0

G
(
R̄ū

R + ηrσ
2INu

)
GH

+R̄ū
D + ηbσ

2INu

Definitions: V = Hb0,ūH
†
r0,ū, F = Hb0,ūH

†
b0,r0

, G = Hb0,ū(Hr0,ūHb0,r0)
†

mode between direct and relay transmissions according to the current channel con-

ditions. Assuming we have K UEs per sector as given in set K, the system spectral

efficiency per sector of the IFR scheme is

Csys,IFR =
∑

k∈K

max
{

C
(k)
IFR, C

(k)
Direct

}

(4.33)

where C
(k)
Direct is the direct transmission spectral efficiency for the kth UE as defined

in (4.25). Contrary to the SFR scheme, the IFR scheme does not offer SIR gains by

increasing the desired signal strength but rather by removing the strongest interfering

signal to improve the reliability of the received signal for successful detection.

The conventional DTCN employs only direct transmission throughout its operation.

Its system spectral efficiency per sector is given as

Csys,DIRECT =
∑

k∈K

C
(k)
Direct. (4.34)

4.5 Energy Efficiency Optimisation

In this section, we present the formulation to optimise the energy efficiency of a given

relay scheme, ℘, with a targeted spectral efficiency identical to that achieved by the

DIRECT scheme which is taken as the baseline. With the ECRsys being defined in
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(4.5), the energy efficiency optimisation problem is formulated as

minimise
{Pb,Pr}

ECRsys,℘

subject to Csys,℘ = Csys,DIRECT

Pb +MPr ≤ P0

Pb,DIRECT = P0

Pb, Pr > 0

(4.35)

where Pb and Pr are the transmit powers for the BS and RS of the relay scheme, ℘,

respectively, while Pb,DIRECT is the transmit power for the BS of the DIRECT scheme,

given that the available transmit power is P0. We perform an exhaustive search for

the values of the {Pb, Pr} pair that will minimise ECRsys,℘ as our objective is not to

implement the optimisation algorithm but rather to investigate the interplay between

spectral efficiency and energy efficiency. We symbolise the minimised ECRsys,℘ of the

relay scheme, ℘, as Ω0,℘.

4.6 Economic Efficiency

As there is a trade-off between spectral and energy efficiency, neither quantity may

be optimised without constricting the other. A system that solely relies on one of

them as a performance measure may not yield the best overall network performance.

Motivated by the idea first introduced in [157], the economic efficiency metric is

proposed as a possible complementary measure to the spectral efficiency and energy

efficiency performance metrics.

The economic efficiency metric was also proposed in [158]. However, the authors

in [158] did not consider the potential revenue generated from the spectral efficiency

provided by the investigated scheme as a viable source to mitigate costs. Furthermore,

the CAPEX and OPEX costs in the proposed cost efficiency metric shown in (12)

of [158] were mostly decoupled from the spectral and energy efficiency metrics. While

the CAPEX cost was a one-off insertion cost to initially set up the network, most of
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the utilised OPEX costs were fixed rental costs which have little to do with the cost

incurred due to the operational power consumption. This decreases the effectiveness

of the proposed cost efficiency metric to represent the trade-off between spectral and

energy efficiency.

The spectral efficiency and energy efficiency can be sufficiently characterised by both

Csys and Pop,sys. By jointly considering both parameters, a suitable SEET point that

will deliver the maximum economic profitability can be found. We define the economic

efficiency metric as

Usys = κrrbase log2

(

1 +
BsysCsys

rbase

)

− κcPop,sys (4.36)

where rbase is the base service data rate which refers to the essential service expected

by every mobile user, while κr and κc are the revenue per bit and energy cost per

Watt-second (Ws), respectively. Both revenue and cost are measured in the same

monetary unit (m.u.), e.g., in pence. We do not consider the CAPEX costs, e.g.,

planning, equipment and installation costs, as they are usually one off insertion costs

in setting up the network. Also, we do not consider the OPEX costs that are related to

the rental costs, e.g., cell site and back-haul rentals as they are fixed costs. However,

our cost is related to the electricity cost component of the OPEX as it is due to the

operational power consumption of the scheme under investigation. Therefore, unlike

the CAPEX costs and the fixed rental costs of the OPEX, the electricity cost in the

OPEX is variable as it depends on the performance of the network and thus, provides

the opportunity for further optimisation.

Taking a closer look at the economic efficiency metric, we see that the first term

on the Right Hand Side (RHS) of (4.36) represents the revenue attainable with that

scheme in the chosen m.u. per second (m.u./s). Based on the observation in [157], a

user is only willing to pay a small additive premium on top of the basic service for a

multiplicative increase in the attainable data rate. Thus, the attainable revenue grows

incrementally with every new service enabled by the scheme rather than following the

multiplicative growth in data rate attainable by such a scheme. This economic trend

is known as the law of diminishing returns and this leads to a logarithmic relationship
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between the attainable revenue and attainable data rate. The second term on the

RHS of (4.36) represents the operational cost, also in m.u./s, incurred by the scheme

and unlike the revenue growth, is linearly proportional to Pop,sys. The values used for

the economic efficiency parameters are shown in Table 4.1.

Although the proposed economic efficiency metric is illustrated for the relay-aided

cellular network, its framework can also be employed as a practical engineering tool to

optimise the economic profitability of any network architecture. Another advantage of

the parameterised economic efficiency metric is that it is applicable to different mobile

standards and economic conditions. The mobile operators only need to assign different

parameter values in order to represent that particular change. For example, rbase

may change from voice to multimedia in future standards as the complete migration

towards wireless internet access occurs [10]. Furthermore, κr and κc may also be

adapted to reflect the change in future electric tariffs.

4.6.1 Economic Efficiency Optimisation

In this section, we present the formulation for the optimisation of the economic ef-

ficiency metric which takes into account the SEET. This approach differs from the

optimisation presented in (4.35) which attempts to maximise energy efficiency by

minimising the ECR, given a targeted spectral efficiency value. In contrast, the spec-

tral efficiency and ECR are now left as variables to be suitably chosen to maximise

the economic profitability of the network. Therefore, the economic efficiency metric

can be utilised as a common reference point to compare the performance of schemes

with different spectral and energy efficiency values. The optimisation of the economic

efficiency metric of (4.36) for a given relay scheme ℘, can be written as

maximise
{Pb,Pr}

Usys,℘

subject to Pb +MPr ≤ P0

Pb, Pr > 0.

(4.37)
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As we are interested to investigate the interplay of these metrics rather than to im-

plement an actual optimisation algorithm in real time, we choose to solve (4.37) by

performing an exhaustive search for the values of the {Pb, Pr} pair to find one that

maximises Usys,℘. We symbolise the maximum of Usys,℘ as ζ0,℘.

4.7 Simulation Results and Discussions

We now present some numerical results of the relaying schemes for downlink transmis-

sion. The link level and system level performance in terms of spectral efficiency, ECR

and economic efficiency are evaluated for these schemes. We assume a cell radius of

rcell = 2000 m and inter-site distance of dISD =
√
3rcell Furthermore, we set τr = 1/2,

Bsys = 10 MHz, αb = αr = 2.84 and Pc,ref = 577 W at Pref = 40 W. The rest of the

simulation parameters are listed in Table 4.1.

4.7.1 Link Level Performance

We begin by evaluating the link level performance of the relaying schemes. This is to

initially demonstrate the advantage of one scheme over the other in a simple setting.

The link level depiction can also loosely represent the network topology of Fig. 4.1

with frequency planning having parameters of ηb = ηr = 1/2.

In Fig. 4.5, the maximum spectral efficiency for the SFR and IFR schemes are il-

lustrated at various normalised relay distances, dRS, as compared to the DIRECT

scheme. The maximum spectral efficiency refers to the highest possible spectral ef-

ficiency attainable by each scheme regardless of its energy consumption. The IFR

scheme maintains a fairly constant maximum spectral efficiency at 0.1 ≤ dRS ≤ 0.4

when the chances of the UE in decoding the interference source are fairly high but

it begins to drop at dRS > 0.4 as the performance is now constrained by relay phase

when the RS is positioned farther away from the UE. It is also observed that the

spectral efficiency of the IFR scheme never exceeds that of the DIRECT scheme. The
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Figure 4.5: The maximum spectral efficiency of the SFR and IFR schemes v.s.
the normalised relay distance with the DIRECT scheme taken as the baseline.

SIR improvement of the IFR scheme over the DIRECT scheme, whenever the inter-

ference is successfully removed, is unfortunately not enough to compensate for the

multiplexing loss due to the necessary two-hop relaying protocol. In contrast, the SIR

improvement of the SFR scheme outweighs the multiplexing loss and thus, it is able

to deliver higher spectral efficiency than both the IFR and DIRECT schemes. This

shows that SIR improvement through the desired signal enhancement is more effec-

tive than trying to remove interference from the received signal at the UE designated

for relay transmission. The SFR scheme is able to obtain roughly a 67% spectral

efficiency improvement over the DIRECT scheme at dRS = 0.5.

Next, the relation between spectral efficiency and energy efficiency (represented by

ECR) is shown in Fig. 4.6 for the SFR and IFR schemes at dRS = 0.5. The SEET

region is formed for both schemes when different combinations of {Pb, Pr} pairs sat-

isfying the constraints in (4.35) are considered. Each {Pb, Pr} pair maps to a unique

point in the region of a given relay scheme. For the DIRECT scheme, there is only

one point in the figure since only one transmit power value, Pb,DIRECT = P0, is con-

sidered. We observe that the IFR SEET region is confined to the left, covering a wide

ECR range, while the SFR SEET region elongates narrowly to the right with its ECR

having smaller range and values. This suggests that the SFR scheme is generally able
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to attain higher spectral efficiency at lower energy consumption than the IFR scheme

which is unable to deliver spectral efficiency in excess of 3.3 bits/s/Hz. Furthermore,

the DIRECT scheme point is outside the IFR SEET region, indicating that the IFR

scheme also performs poorly in comparison to the DIRECT scheme.

A trade-off between spectral efficiency and energy efficiency is illustrated with the

SEET curves in the inset of Fig. 4.6 for both the SFR and IFR schemes at Pb = 2W. It

is observed that initially the ECR does not change much when spectral efficiency gains

are registered. However, the ECR begins to increase with each marginal improvement

in spectral efficiency. This quickly culminates to an accelerated growth in ECR beyond

the knee of the curves which is at around 4.5 bits/s/Hz and 1.75 bits/s/Hz for the

SFR and IFR schemes, respectively. Past this, very negligible spectral efficiency gains

are observed for a large increase in ECR. The SEET curve for the SFR scheme is also

more favourable than the IFR scheme.

It is interesting to note that there is a clear trade-off between spectral and energy ef-

ficiency if one parameter in {Pb, Pr} is fixed while the other is varied, thus, producing

a particular SEET curve. However, if the network is flexible enough so that both Pb

and Pr can be freely tuned, it is then possible for the SFR or IFR scheme to operate
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Figure 4.6: The SEET region for the SFR and IFR schemes with the inset il-
lustrating a specific trade-off at Pb = 2 W. The DIRECT scheme is shown for

comparison.
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along the three boundaries of its SEET region in Fig. 4.6. The three boundaries are

essentially SEET curves, each representing a distinct trade-off characteristic. While

they are labelled as A, B and C for the IFR scheme, the same labelling sequence can

be applied correspondingly to the SFR scheme. For SEET curve A, a hard trade-off

is observed whereby the ECR increases sharply with almost no increase in spectral

efficiency. Thus, it is a highly undesirable operation mode. For SEET curve B, the

ECR decreases as spectral efficiency increases, indicating that energy efficiency actu-

ally improves with spectral efficiency. Although this seems to be desirable initially,

a closer inspection shows that the ECR values are at the highest given a particular

spectral efficiency. Therefore, while the energy efficiency does improve with spectral

efficiency, the network consumes more energy under this operation mode. A lower

energy consumption is achievable given a particular spectral efficiency where its mini-

mum value is represented along the line of SEET curve C. Under this operation mode,

a soft trade-off is observed whereby the ECR gently increases as spectral efficiency

increases. Therefore, this is the most desirable operation mode for the network and, as

we shall see later, this is where we would expect to find {Pb, Pr} pairs that maximise

energy efficiency and economic efficiency.

As the SFR scheme is more superior than the IFR scheme, it is selected for further

investigation in the results that follow. In Fig. 4.7, the spectral efficiency and ECR

values of the SFR scheme are given for several {Pb, Pr} pairs. For clarity of illustration,
only key {Pb, Pr} pairs are shown although a much wider range were simulated. It is

observed that the minimum ECR, corresponding to the maximum energy efficiency, is

obtained at Ω0 = 0.44µJ/bit where it consumes 3.7 times less energy than the Direct

scheme. Again due to the inherent trade-off, lower ECR than Ω0 is attainable but

with loss incurred to its spectral efficiency.

The economic efficiency metric in (4.36) is employed to measure the economic prof-

itability of the SFR scheme in Fig. 4.8. The same set of {Pb, Pr} pairs used to generate

Fig. 4.6 is used to produce the economic efficiency region of Fig. 4.8. For comparison,

the economic profitability of the SFR scheme when operating at maximum energy effi-

ciency of Ω0 is also shown with its corresponding economic efficiency of 0.179 pence/s.

89



Chapter 4: SEET in Conventional Relay Transmission

3

3.1

3.2

3.3

S
p

ec
tr

al
 e

ffi
ci

en
cy

  
  

  
  

 
  

  
(b

its
/s

/H
z)

  
  

  
  

  
  

  
 

 

 

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

0.44

0.46

0.48

0.5
E

C
R

 (µ
J/

b
it)

RS transmit power, P
r
 (dB)

Pb = 0.9W

Pb = 1.1W

Pb = 1.3W

P
b
 = 1.5W

Pb = 1.7W

Pb = 1.9W

Pb = 3.2W

DIRECT

min. ECR, Ω
0

Figure 4.7: The spectral efficiency and ECR of the SFR scheme at various {Pb, Pr}
pairs. The min. ECR of the SFR scheme with the same spectral efficiency as the

DIRECT scheme is shown as Ω0 (dRS = 0.5).

0 2 4 6 8 10
0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

E
co

n
o

m
ic

 e
ffi

ci
en

cy
 (

p
en

ce
/s

)

ECR (µJ/bit)

3 3.5 4 4.5 5
0

2

4

6

Capacity (bits/s/Hz)

E
C

R
 ( µ

J/
b

it)

ζ
0

Ω
0

Ω
0

ζ
0

DIRECT

Economic efficiency region

SFR SEET region

Figure 4.8: The economic efficiency v.s. ECR of the SFR scheme at various
{Pb, Pr} pairs. The min. ECR Ω0 and max. economic efficiency ζ0 are shown with

the inset indicating their corresponding locations in the SEET region.

Immediately, we see that operating at Ω0 is not economically optimum. The maxi-

mum economic efficiency, ζ0 is obtained at 0.188 pence/s with the corresponding ECR

and spectral efficiency of around 1.55µJ/bit and 5.35 bits/s/Hz, respectively. Moving

from Ω0 to ζ0 in the SEET region as shown in the inset of Fig. 4.8 maximises the

economic efficiency but, due to the trade-off, incurs a 3.5 times increase in ECR while
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the spectral efficiency improves by 1.7 times. Therefore by tolerating a decrease in

energy efficiency, the SFR scheme stands to gain further in terms of economic effi-

ciency and spectral efficiency. In Fig. 4.9, the maximum economic efficiency and its

corresponding ECR is investigated for the SFR scheme at various normalised relay

distances. The optimum economic profitability is obtained when dRS = 0.4.

4.7.2 System Level Performance

We further study the performance of the SFR scheme under more realistic conditions

of a RACN. In Fig. 4.10, the spectral efficiency of the SFR scheme while employing

frequency reuse planning modes ηb and ηr for the BS and RS transmission, respectively,

is illustrated at different BS transmit power, Pb. It is observed that the SFR scheme

with full BS frequency reuse (ηb = 1) delivers higher spectral efficiency than partial

BS frequency reuse (ηb = 1/3) as the system bandwidth is utilised more efficiently

in the former. However, as the BS transmit power increases, the SFR scheme with

ηb = 1/3 is able to obtain larger improvement in spectral efficiency as compared

to ηb = 1 as the performance of full BS frequency reuse is interference limited. A

similar observation is made while investigating the RS frequency planning modes, ηr

for a given ηb. The more bandwidth efficient RS frequency reuse mode of ηr = 1/3
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phases. The DIRECT scheme is taken as the baseline.

delivers higher system spectral efficiency than the ηr = 1/6 mode which is designed

to avoid RS interference during the relay phase. However, further spectral efficiency

improvement is determined by the type of BS frequency planning mode during the

broadcast phase. In all cases, the DIRECT scheme underperforms the SFR scheme

but even here, we see that the ηb = 1 mode provides better spectral efficiency than

the ηb = 1/3 mode.

Next, we investigate the economic profitability of the SFR scheme versus its energy

efficiency as depicted in Fig. 4.11 while considering both the BS and RS frequency

reuse planning modes. The energy efficiency corresponds to the spectral efficiency

spanned in Fig. 4.10. From Fig. 4.11, the SFR scheme with ηb = 1 generally has

higher economic efficiency than with ηb = 1/3 as more bandwidth is being translated

to spectral efficiency for revenue generation. However, as ηb = 1 is interference limited

during the broadcast phase, the spectral efficiency improves only slightly even though

more energy is expended per bit. As a result, the economic efficiency increases slightly

until reaching ECR of around 1.5µJ/bit and 1.6µJ/bit for ηr = 1/3 and ηr = 1/6,

respectively, before declining as the operational power consumption cost escalates

further while revenue remains almost stagnant.
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Conversely, regardless of the RS frequency planning mode, the economic efficiency

increases sharply for the SFR scheme with ηb = 1/3, though at lower values, than that

of ηb = 1 as the system has less interference during the broadcast phase. However,

the marginal gains quickly decrease as the ECR continues to increase to a point where

profitability is now limited by the operational power consumption cost. We now look

at the influence of the RS frequency planning mode. Unlike operating at ηb = 1 during

the broadcast phase where the relay phase having ηr = 1/3 performs consistently

better than ηr = 1/6, it is observed that the economic efficiency is separated into

two distinct ECR regimes for ηr = 1/3 and ηr = 1/6 when the SFR scheme adopts

ηb = 1/3. At the lower ECR regime, the relay phase with ηr = 1/6 requires less energy

per bit than the relay phase with ηr = 1/3 to achieve the same economic efficiency

as the former has a lower RS interference level. When the SFR scheme migrates to

the higher ECR regime where the operational power consumption cost becomes more

significant, it is more essential for the SFR scheme to operate at higher bandwidth

efficiency in order to deliver higher spectral efficiency to be generated as revenue to

compensate the increased cost. Thus, the more aggressive bandwidth use of ηr = 1/3

performs better than ηr = 1/6 in the higher ECR regime.
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4.8 Conclusions

The signal forwarding and interference forwarding relaying paradigms of a RACN have

been compared. Both relaying paradigms utilised the adaptive MIMO relay scheme.

The spectral, energy and economic efficiency values have been considered. Both the

RF and circuit power consumption values have been included in the energy efficiency.

Simulation results have shown that the SFR scheme outperforms the IFR scheme.

Specifically, the SFR scheme has been shown to deliver a 1.6 times improvement in

spectral efficiency over the IFR scheme when both schemes are having optimum relay

locations. This indicates that enhancing the desired signal strength is more favourable

than attempting to remove the interference from the received signal. Furthermore,

the SFR scheme has been shown to achieve up to 3.7 times of energy reduction over

the direct transmission scheme for the same spectral efficiency. Next, the economic

efficiency metric has been proposed to select a balance point in the SEET in order

to maximise the economic profitability. It has been demonstrated that operating the

SFR scheme at maximum energy efficiency may not be economically optimum. Due

to the trade-off, it has been shown that maximising economic efficiency requires a

3.5 times decrease in energy efficiency while the spectral efficiency is increased by

1.7 times. Investigation into frequency reuse planning modes of the SFR scheme has

shown that full bandwidth utilisation delivers higher performance than bandwidth

allocation strategies that avoid interference with results demonstrating a 41% and 16%

spectral efficiency improvements at low and high BS transmit power, respectively.
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Relay Cooperation for Improved

Spectral-Energy Efficiency Trade-off

5.1 Introduction

For a network with more RSs, relay spectrum planning [68]–[71] is essential to avoid

relay interference. Although this improves the link level performance, limited gain is

observed at the system level as orthogonal frequency reuse schemes do not efficiently

utilise the scarce radio resources. Sharing of relay slots can improve resource utilisation

but introduces relay interference that has to be mitigated [72]–[77].

Relay interference arises because conventional RSs transmit independently. Recent

research in cooperative communication shows that significant throughput improve-

ment is possible when network nodes cooperate with each other [163]. While CoMP

for cooperation among BSs has been widely investigated [164], the attractive idea

of relay cooperation still remains largely unexplored. In relay cooperation, the RSs

share cooperative information to perform joint relay transmission to the UEs. We

differentiate this concept from those commonly referenced in the literature where re-

lay cooperation often means that both the direct and relay transmissions are used

by the UE for reliable signal decoding, i.e., receive diversity [165]–[167]. In [168],

the authors proposed an inter-cell relay cooperation scheme to form the uplink joint
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precoders. The transmission rate of such a scheme was then evaluated in a linear

three-cell topology. Here, a linear topology means that the communication nodes are

arranged in a straight line. The authors in [169] evaluated the spectral efficiency of

a single-cell topology for a flexible downlink resource management scheme whereby

the RSs cooperate to meet a minimum QoS requirement at the UE. Fractional coded

relay cooperation was proposed in [170] whereby each RS offers a fraction of its ra-

dio resources to relay the data from its neighboring RSs. The BER performance of

the scheme was then evaluated for a linear topology. The cooperating RSs have also

been shown to utilise the interference alignment [171]–[175] and block diagonalisa-

tion [176]–[178] methods to decompose the relay channel into several parallel streams

for improved multiplexing gains. In [179], relay cooperation was achieved through

the implementation of network coding techniques derived from eXclusive OR (XOR)

coding or Reed Solomon coding. The outage probability and the BLock Error Rate

(BLER) performance were then evaluated for a linear topology. In [180], the authors

proposed a scheme to select the best transmit antennas distributed across multiple

RSs for simultaneous relay transmissions. The outage capacity of this scheme was

evaluated for a linear topology. Again, a linear topology with two BSs, two RSs and

two UEs was considered in [181] where relay cooperation was implemented between

the two RSs. Different levels of relay cooperation in terms of different degrees of RS

decoding in the broadcast phase were explored. During the relay phase, it was as-

sumed that the RSs have access to global CSI of all relay channels and are thus able

to jointly design the precoders for joint relay transmission.

Until recently, most works in relay cooperation focused on the spectral efficiency or

throughput performance of a system while others solely focused on energy efficiency.

For example in [149], energy efficiency improvement was shown by combining relay

selection with cooperative relay beamforming for a linear topology. However, given

the significance of energy efficiency for future mobile networks [118] where both power

and bandwidth constrict the achievable gains, a joint spectral-energy efficiency per-

formance evaluation, e.g., [155], [156], [182], is imperative. However, [155], [156], [182]

evaluated the spectral-energy efficiency performance of their proposed relay coopera-

tion schemes using only the RF transmit power. Circuit power, especially in MIMO
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systems, drains a considerable amount of the input power and this necessitates its

adoption in energy efficiency evaluation, e.g., [31]–[33], to provide realistic results. In

this chapter, we propose a relay cooperation scheme for downlink multicell MIMO

cellular networks to address some of the shortcomings of the previous schemes. The

following summarises our contributions.

1. Different cooperation levels among the RSs are investigated in our proposed

scheme. We consider different RS decoding strategies for the broadcast phase

and joint relay transmission with different degrees of CSI sharing for the relay

phase. This is different from [181] which only considered several RS decoding

strategies for the broadcast phase.

2. We extend the work in [33] and [181] to include multiuser diversity gain by

proposing a low complexity norm-based user selection method for the relay co-

operation scheme. It is designed to operate without excessively loading the

cooperative links as it is well-known that this is a major limitation for coop-

erative systems [42]. To the best of our knowledge, our user selection method

is new as none of the existing relay cooperation work addressed this issue and

most existing methods were designed for the point-to-point multiuser MIMO

systems, e.g. [183]–[185], with the intention of maximising capacity.

3. We consider both the spectral and energy efficiency performance of the schemes.

The operational power is utilised to measure the system energy efficiency. In

calculating the operational power, we take into account the RF transmit power

and the circuit power consumption of the PA and SP modules, respectively.

4. We quantify the cost of different cooperation levels in terms of the bit rate needed

at the cooperative links to sustain the performance gains that these cooperative

strategies provide. The average power consumption of the cooperative links is

also given to further emphasise the cooperative costs involved.

The rest of the chapter is organised as follows. Section 5.2 describes the system model

of the multicell cellular network. In Section 5.3, the interference sources of the network
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are identified. A description of the relaying schemes is then presented in Section 5.4,

while the user selection methods for relay cooperation are outlined in Section 5.5.

In Section 5.6, the cooperative cost of the RS cooperation link is quantified and

incorporated into the formulation to optimise energy efficiency in Section 5.7. Next,

the economic efficiency of the schemes is presented in Section 5.8. Its optimisation

formulation is also described while considering the cooperative cost. Some simulation

results and discussions are presented in Section 5.9. Finally, concluding remarks are

given in Section 5.10.

5.2 System Model

Let us consider a multicell cellular network shown in Fig. 5.1 with a 7-cell wrap-

around hexagonal structure represented by the set C = {1, · · · , 7}. Each cell is divided

into NSec sectors denoted by the set S = {1, · · · , NSec}. In each sector, M equally

spaced RSs are positioned at a distance dRS from the cell centre, thus forming an arc.

The relay set is denoted as M = {1, · · · ,M}. A total of K UEs given by the set

K = {1, · · · , K} are uniformly distributed in each sector. We define indexes b (i, j),

BS

RS

Cell Sector

Base sector

Cell radius, rcell

RS distance , dRS

Intersite distance , dISD

Figure 5.1: Topology of the multicell MIMO cellular network with M = 2 RSs
per sector.
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r (i, j,m) and u (i, j, k) to represent the BS of the jth cell serving the ith sector, the

mth RS from the ith sector of the jth cell and the kth user from the ith sector of the

jth cell, respectively. It is sufficient to focus on one sector of the central cell as the

performance of other sectors is identical on average. We assign (i, j) = (1, 1) as the

base sector being in focus. Each BS has Nb antennas per sector while the number of

antennas at the RSs and UEs are Nr and Nu, respectively. The system bandwidth is

given as Bsys.

Let HX,Y ∈ C
A×B be the A×B channel matrix between nodes X and Y , where A and

B are the number of antennas at X and Y , respectively. The elements of HX,Y are

ha,b = GX · GY · (LX,Y )
−1 · 10

ξX,Y

10 · µX,Y , (1 6 a 6 A, 1 6 b 6 B), where GX and GY

are the transmit antenna gain of X and the receive antenna gain of Y , respectively.

The path loss between X and Y is LX,Y . Next is the log-normal shadowing term with

ξX,Y being a Gaussian distributed random variable having zero mean and standard

deviation, σs dB. The values for these terms depend on whether X and Y are BS, RS

or UE nodes. These are shown in Table 5.1 with parameters selected from pp. 61–64

of [3]. Lastly, µX,Y denotes the complex Rayleigh fast fading coefficient with unit

variance.

5.2.1 Downlink Transmission Protocols

5.2.1.1 Relay-Aided Cellular Network

For practical reasons, a half-duplex transmission mode is assumed for the RSs since

they typically cannot transmit and receive simultaneously on the same time and fre-

quency. Before transmission, the K UEs are assigned into either the direct trans-

mission group denoted by set GDirect or the relay transmission group denoted by set

GRelay based on whether direct transmission or relay transmission (using a single RS

with the best channel condition) provides better throughput (Fig. 5.2(a)).

In actual relay cooperation transmission using a group of RSs, a user might benefit

more from relay transmission rather than direct transmission even though its relay

99



Chapter 5: Relay Cooperation for Improved SEET

Table 5.1: Simulation parameters for CMP relaying.

Path loss, LX,Y

(d in km)

BS–RS [125.2 + 36.3log10 (d)] dB

BS–UE [131.1 + 42.8log10 (d)] dB

RS–UE [145.4 + 37.5log10 (d)] dB

RS–RS [125.2 + 36.3log10 (d)] dB

Shadowing standard

deviation, σs

BS–RS 6 dB

BS–UE 10 dB

RS–UE 10 dB

RS–RS 16.4 dB shadow margin at σs = 10 dB

Antenna pattern

(θ3dB = 70◦, Am = 20 dB)

BS ρ (θ) = −min

(

12
(

θ
θ3dB

)2

, Am

)

dB

RS–BS ρ (θ) = −min

(

12
(

θ
θ3dB

)2

, Am

)

dB

RS–UE Omni

UE Omni

Antenna gain (boresight)

BS 14 dBi (including cable losses)

RS–BS 7 dBi (including cable losses)

RS–UE 5 dBi (including cable losses)

UE 0 dBi

Noise power spectral density, N0 -174 dBm

Relay time fraction, τr 1/2

Transmit time interval, TTTI 1 ms

Cooperative time fraction, τcoop 0.1

Quantisation bits, θ 4 bits per sample

transmission with single RS performs worse than direct transmission. Nevertheless,

the single RS approach is used to avoid the high complexity of sharing the CSIs of all

the K UEs among all the M RSs. Thus, we introduce the relay confidence parameter

βR (0 ≤ βR ≤ 1) in the transmission group assignment stage to take into account the

potential gain of relay cooperation while using the relay transmission with single RS

approach. This is achieved by multiplying the direct transmission throughput with a

penalising factor of (1− βR) before comparing it to the relay transmission throughput.

By varying βR, this allows the performance of conservative and aggressive strategies

for allocating users to relay transmission to be studied.

The TDMA protocol is utilised for the UEs in GDirect over tDT (0 ≤ tD ≤ 1) dura-

tion where T is the transmission frame interval (Fig. 5.2(b)). As for the GRelay UEs,
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the two-hop relay transmission protocol is employed as it provides a good trade-off

between performance and complexity. Relay transmission occurs over the remaining

time interval tRT = T − tDT with 0 ≤ tR ≤ 1. We select L UEs from GRelay for

transmission where L is defined in Section 5.4. The relay transmission time period

tRT is further divided into two time durations. During the first τbctRT (0 ≤ τbc ≤ 1)

duration (broadcast phase), the BS broadcasts the information packets of the L se-

lected UEs to all the M RSs. During the second τrtRT (0 ≤ τr ≤ 1) duration (relay

phase), the RSs then relay these packets to the UEs. Here, we define τbc = 1− τr and

tR = L
|GDirect|+L

where |GDirect|+ L is the the total number of UEs actually selected

for transmission during time interval T .

5.2.1.2 Direct Transmission Cellular Network

Here, only the BSs participate in data transmission. The BS will transmit directly to

the K UEs of each sector in a TDMA arrangement whereby each UE is allocated a

BS signal
RS signal

RS–RS cooperative link

BS

(a)

RS1

RS2

(b) BsysRelay transmissionDirect transmission

tDT

Relay phase

RS1, RS2�

UE1,...,UEL

… BS�RS1, RS2, 
UEL

Broadcast phase

BS�RS1, RS2, 
UE1

BS�UE1
… BS�UE

TDMA direct transmission

tRT

(1 – �r)tRT �rtRT

L

Direct� Relay�

Figure 5.2: (a) The relaying structure and (b) the transmission protocol of a
RACN employing relay cooperation with M = 2 RSs per sector.
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transmission duration of T
K
.

5.2.2 Power Consumption Model

Let PBS be the RF transmit power allocated to the BS in each cell. Assuming that

PBS is equally allocated among the sectors and the BSs utilise full bandwidth to

transmit, the effective RF transmit power at each sector is Pb =
PBS

NSec
. Full bandwidth

is employed during BS transmission as it was shown in Section 4.7.2 to deliver better

performance. Also, let PRS be the RF transmit power allocated to each RS. We

assume that equal power is assigned to each sub-channel during relay transmission.

Consequently, each RS will utilise a fraction, ηr (0 ≤ ηr ≤ 1), of its allocated RF

transmit power for relaying in its designated sub-channel(s). Thus, the effective RF

transmit power of each RS is Pr = ηrPRS.

In modelling the circuit power consumption, we assume that the circuit power con-

sumption of the BS and RSs is proportional to Pb and Pr, respectively, as described

in Section 2.5.2.1. Let Pc,ref be the circuit power consumption at a given RF transmit

power Pref . Therefore, the circuit power consumption of the BS and RS is defined as

Pc,b =
PbPc,ref

Pref
and Pc,r =

PrPc,ref

Pref
, respectively.

When measuring total power consumption, we consider the operational power of the

system which includes both the RF transmit power and the circuit power consumption

of the PA and SP modules, respectively. Considering the aggregate effect of the

duplexer/feeder losses and the efficiency of the antenna/amplifier modules, let the

effective operational efficiency of the BS and RS be given as αb and αr, respectively.

Therefore, the operational power per sector of a relay transmission is

Pop,relay = (1− τr)αbPb +MτrαrPr + Pc,b +MPc,r (5.1)

while the operational power per sector of a direct transmission is given as

Pop,direct = αbPb + Pc,b. (5.2)
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A RACN consists of both direct and relay transmissions. Thus, the total operational

power per sector of the RACN is

PRelay
op,total = tD (Pop,direct +MPc,r) + tRPop,relay (5.3)

while that of the DTCN is given as

PDirect
op,total = Pop,direct. (5.4)

From (5.1) and (5.3), we observe that in a relay transmission the circuit power con-

sumption of the M RSs is the additional power cost that must be accommodated.

This additional power cost can quickly become substantial in a network architecture

that employs many transmission nodes.

Energy Consumption Ratio

As described in Section 2.5.2.2, the ECR is used as a performance metric for the energy

efficiency of a system. It is proportional to the ratio of the average total operational

power to the average capacity of the system under consideration. Thus, the ECR is

ECRsys =
E
{
P sys
op,total

}

Bsys · E {Csys}
(5.5)

where P sys
op,total can be either (5.3) or (5.4) and Csys is the spectral efficiency of the

system under consideration in bits/s/Hz. Therefore, the ECR has units of J/bit.

5.3 Interference Analysis

When all BSs are actively transmitting at full bandwidth, the set of interference

sources X experienced by the RSs during the broadcast phase of the relay transmission

and by the UEs during direct transmission are from the BSs transmitting to all sectors

of all cells except the base sector, that is, X = {(i, j) |(i, j) ∈ C × S, (i, j) 6= (1, 1)}.
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Assuming the interference sources are independent, the interference covariance matrix

for JDEC is a block diagonal matrix given as

RJDEC
BC = diag (Um |m = 1, · · · ,M ) (5.6)

where Um =
∑

(i,j)∈X

Pb

Nb

(

Hb(i,j),r(1,1,m)H
H
b(i,j),r(1,1,m)

)

. For IDEC, the interference co-

variance matrix at the mth RS is given as

R
(m)
BC = Um (5.7)

while for the kth UE, the interference covariance matrix is given as

R
(k)
D =

∑

(i,j)∈X

Pb

Nb

(
Hb(i,j),u(1,1,k)H

H
b(i,j),u(1,1,k)

)
. (5.8)

When all the RSs are actively transmitting, the interference at the kth UE which is

receiving at frequency fu(1,1,k) is from the surrounding RSs, other than the base sector,

that are relaying at frequency fr(i,j,m) = fu(1,1,k). Thus, the set of RSs interfering the

kth UE is Pu(1,1,k) =
{
(i, j,m)

∣
∣(i, j,m) ∈ X ×M, fr(i,j,m) = fu(1,1,k)

}
. Following that,

the interference covariance matrix at the kth UE is given by

R
(k)
R =

∑

(i,j,m)∈Pu(1,1,k)

Pr

Nr

(
Hr(i,j,m),u(1,1,k)H

H
r(i,j,m),u(1,1,k)

)
. (5.9)

5.3.1 Relay Frequency Reuse Pattern Analysis

As the RSs’ antennas are usually omni-directional, careful RFR planning is essential to

mitigate interference in the relay phase. Three types of RFR patterns are investigated.

We introduce the ηr = 1/3 RFR pattern of Fig. 5.3(a) (Type I) to work with the

proposed relay cooperation scheme. The ηr = 1/3 RFR pattern of Fig. 5.3(b) (Type

II) is commonly utilised by conventional independent relaying and will be used for

comparison purposes. We are also interested in the performance of ηr = 1 RFR pattern

of Fig. 5.3(c) (Type III) whereby the RSs utilise the full bandwidth for relaying. The
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transmission protocol of Type I RFR pattern is illustrated in Fig. 5.3(d) while that

of Type III is shown in Fig. 5.2(b).

Firstly, we consider the Type I RFR pattern used in the relay cooperation scheme.

With this RFR pattern, inter-cell interference coming from the immediately adjacent

sectors around the the base cell can be avoided. The intra-cell interference in each

sector due to co-location of the same frequency band is further eliminated through

the proposed relay cooperation scheme which also simultaneously provides additional

diversity gain through cooperative relaying. The only interference sources are those

coming from the surrounding cells with distances of at least one sector away from the

(a) (b) (c)

RS

RS–RS cooperative link

Strong interference

System bandwidth , Bsys

� = 1

� = 1/3

BS

RS1, RS2�UE1,...,UELBsys

tRT

… BS�RS1, RS2, UELBS�RS1, RS2, UE1

(d)

Base sector

Figure 5.3: (a) Type I RFR pattern for the relay cooperation scheme, (b) Type II
RFR pattern for the conventional independent relaying scheme and (c) Type III
RFR pattern for both schemes, while (d) shows the transmission protocol of the

relay cooperation scheme for Type I RFR pattern (M = 2 RSs per sector).
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base sector. Given the finite exponent decay of path loss, the outer inter-cell inter-

ference sources are usually weak. In contrast, the Type II RFR pattern is adopted

by conventional relaying to minimise (but not completely eradicate) intra-cell inter-

ference when the RSs independently transmit their signals during the relay phase.

However, it is not able to avoid inter-cell interference from the immediately adjacent

cell sites when a system level perspective is considered as illustrated in Fig. 5.3(b).

Thus, the accumulated interference power in (5.9) is smaller for the Type I RFR pat-

tern as compared to the Type II RFR pattern. As for the Type III RFR pattern,

all the RSs are using the same frequency and time slot for transmission. Because

of this, it has the highest efficiency in bandwidth utilisation but incurs the highest

accumulated interference power. Therefore, we have

∥
∥Rk

R,Type I

∥
∥
2

F
<
∥
∥Rk

R,Type II

∥
∥
2

F
<
∥
∥Rk

R,Type III

∥
∥
2

F
. (5.10)

To avoid an excessive level of interference, conventional independent relaying schemes

do not usually use the Type III RFR pattern. Nevertheless, the benefit of full band-

width utilisation in Type III RFR pattern can be exploited in the proposed relay

cooperation scheme as it is able to remove interference from within its own sector.

5.4 Spectral Efficiency of the Relaying Techniques

We now describe the relaying functions at both the broadcast and relay phases. We

utilise the DF mechanism whereby the RSs will attempt to decode the received signals

before relaying them to the selected UEs. The focus is largely at the relay phase where

our proposed relay cooperation technique is implemented. Two other key relaying

techniques with contrasting packet forwarding paradigms are also described. For

clarity, the index (i, j) = (1, 1) is dropped henceforth. Each RS is assumed to only

know the CSIs between itself and all the UEs in GRelay. All other forms of CSIs

information must be exchanged with other RSs.
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5.4.1 Broadcast Phase: Relay Decoding Techniques

5.4.1.1 Joint RS Decoding

In the JDEC strategy, each RS will share its received signals and CSI with all the other

RSs through the cooperative links so that they are able to perform joint decoding for

all the L selected UE signals. The expressions for L will be defined in Section 5.4.2

and Section 5.4.3. The cooperative link between the RSs can be a reliable wireless

conference channel that utilises a different bandwidth to the underlying cellular net-

work. The cooperative cost of this strategy will be addressed in Section 5.6. Let us

define the concatenated broadcast channel matrix, G =
[

HT
b,r(1) · · ·HT

b,r(M)

]T

. As-

suming that the CSI does not change during one transmission frame, the achievable

spectral efficiency at the source-relay link for the JDEC strategy is given as

CBC,JDEC =(1− τr) tR log2 det

[

IMNr
+

Pb

Nb

(
GGH

RJDEC
BC +N0BsysIMNr

)]

(5.11)

where the interference covariance matrix RJDEC
BC is defined in (5.6).

5.4.1.2 Independent RS Decoding

In the IDEC strategy, the RSs will not share their received signals and CSI values to

keep complexity low. However, they will still attempt to decode the signals of all the

L selected UEs. For successful decoding, the transmission rate of each received signal

will be constrained to the minimum spectral efficiency among all M RSs that attempt

to decode it. Thus, the achievable spectral efficiency at the source-relay link for the

IDEC strategy is

Call
BC,IDEC = min

{

(1− τr) tRlog2det

[

INr
+

Pb

Nb

(

Hb,r(m)H
H
b,r(m)

R
(m)
BC +N0BsysINr

)]

; ∀m ∈ M
}

(5.12)

where the interference covariance matrix R
(m)
BC is defined in (5.7).

On the other hand, each RS can choose to only decode the signals of the selected

UEs that it is assigned to. Let Lm be the number of selected UEs for the mth RS
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where
M∑

m=1

Lm = L. The achievable spectral efficiency at the source-relay link is,

alternatively, given as

Cselect
BC,IDEC =

1

L

M∑

m=1

Lm (1− τr) tRlog2det

[

INr
+

Pb

Nb

(

Hb,r(m)H
H
b,r(m)

R
(m)
BC +N0BsysINr

)]

. (5.13)

5.4.2 Relay Phase: Cooperative Multi-Processing Relaying

In this section, we describe our proposed relay cooperation technique which is an

improvement over existing relaying techniques. Here, the RSs will occupy the same

relay slot and cooperatively relay the signals received during the broadcast phase to

achieve higher spatial multiplexing gain while mitigating multiuser interference, thus,

providing higher spectral efficiency improvement over other relaying techniques. Let

LC be the number of UEs than can be supported in CMP relaying. The RSs will

design the precoder matrix of the lth UE so that its signal is relayed in the null spaces

of the remaining LC − 1 UEs. Thus, the total spatial dimensions of any LC − 1 UEs

must be less than that of the RSs, that is,

(LC − 1)Nu < MNr ⇒ LC <
MNr

Nu

+ 1 (5.14)

⇒ L∗
C =

⌈
MNr

Nu

⌉

(5.15)

where L∗
C denotes the smallest integer not less than MNr

Nu
and satisfies the inequality

in (5.14). Considering the actual UEs in GRelay that are available to participate in the

transmission, the effective LCMP UEs are selected based on the minimum between L∗
C

and |GRelay|, that is,

LCMP = min {L∗
C , |GRelay|} . (5.16)

From (5.14), we see that each RS selects the total UEs based on the assumption that

MNr antennas are available for cooperative relaying, thus, increasing the number of

UEs that can be served at a time. The user selection methods for the LCMP UEs will

be presented in Section 5.5.
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Let UCMP = {u (l) |u (l) ∈ GRelay, l = 1, · · · , LCMP } be the set of LCMP selected UEs.

Their CSI between each RS are shared among all the RSs. The cooperative cost in-

curred from this step is investigated in Section 5.6. Also define the concatenated relay

channel matrix as seen by the lth UE of set UCMP as Fu(l) =
[
Hr(1),u(l) . . .Hr(M),u(l)

]
.

The RSs jointly calculate the precoder matrix Wu(l) for l = 1, · · · , LCMP , to maximise

the relay-destination link spectral efficiency of

CR,CMP = max
∑

u(l)∈UCMP

τ̄ log2det

[

INu
+MPr

(

Fu(l)Wu(l)W
H
u(l)F

H
u(l)

R
u(l)
R +N0BsysINu

)]

(5.17)

where τ̄ = τrtR and R
u(l)
R is defined in (5.9). To ensure no multiuser interference, we

must have Fu(k)Wu(l) = 0 for all k = 1, · · · , LCMP where k 6= l. The solution for

Wu(l) that will maximise the spectral efficiency of (5.17) and simultaneously suppress

multiuser interference is obtained through a combination of the SVD and water-filling

approaches. Define F̃u(l) =
[

FT
u(1) · · ·FT

u(l−1)F
T
u(l+1) · · ·FT

u(LCMP )

]T

. First, we obtain

the right singular null space vectors of F̃u(l), denoted by the column vectors of matrix

Ṽnull
u(l) . Next, the r singular values of

(

Fu(l)Ṽ
null
u(l)

)

are extracted and represented as

the diagonals of the r × r diagonal matrix, Γu(l). Here, r is the rank of
(

Fu(l)Ṽ
null
u(l)

)

.

The right singular vectors corresponding to the r singular values are then found and

denoted as the column vectors of matrix Vbase
u(l) . Next, water-filling is carried out based

on Γu(l) to obtain the diagonal power loading matrix Πu(l). Finally, the precoder

matrix for the lth UE is given as Wu(l) = Ṽnull
u(l)V

base
u(l)

(
Πu(l)

) 1
2 . Thus, the overall

spectral efficiency of the relay cooperation is given as

CCMP =







min {CBC,JDEC , CR,CMP} if JDEC,

min
{
Call

BC,IDEC , CR,CMP

}
if IDEC.

(5.18)

In theory, CMP relaying is designed to operate with an arbitrary number of M RSs.

However, in practice, the value of M has to be restricted to a small integer as the

number of RS cooperative links, which is given as M(M−1)
2

, increases rapidly with M .

Thus, the complexity for cooperative information sharing among the RSs does not
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scale linearly with M . For this reason, a topology with M = 2 is selected which, inci-

dentally, also coincides with the ones commonly found in the literature, for example,

in [71], [72], [186].

5.4.3 Other Relay Phase Techniques

5.4.3.1 Interference Free Relaying

The “cause no harm” altruistic policy is the principle of this relaying technique. Dur-

ing relay transmission, each RS transmits to its UE group while nulling its trans-

mission towards the other UE groups of the other RSs [187]. Therefore, cooperative

information relating to the currently served members in each UE group needs to be

exchanged among the RSs. Define Km as the number of UEs assigned to the mth RS

where
M∑

m=1

Km = |GRelay|. Furthermore, let LI be the number of UEs that each RS can

support in IF relaying. Each RS must reserve (M − 1)LINu of its spatial dimensions

to null interference towards the other UE groups. The remaining Nr − (M − 1)LINu

spatial dimensions are used to transmit interference free information to its intended

LI UEs. To achieve this, the total spatial dimensions of any LI − 1 intended UEs

must be less than the available total spatial dimensions. Thus,

(LI − 1)Nu < Nr − (M − 1)LINu ⇒ LI <
Nr +Nu

MNu

(5.19)

⇒ L∗
I =

⌈
Nr +Nu

MNu

⌉

− 1 (5.20)

where L∗
I denotes the smallest integer not less than Nr+Nu

MNu
minus one and satisfies the

inequality in (5.19). Considering the actual Km UEs that are available to participate

in the transmission, the LIF,m UEs that are effectively selected by the mth RS is given

by the minimum between L∗
I and Km, that is,

LIF,m = min {L∗
I , Km} . (5.21)
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As each RS must have sufficient spatial dimensions to null interference towards other

UEs while still being able to relay useful information to its own UEs, the total num-

ber of UEs served by all the M RSs will be less than that of the proposed CMP

relaying technique in Section 5.4.2. Let the set of LIF,m selected UEs by the mth

RS be U IF
m = {u (l) |u (l) ∈ GRelay, l = 1, · · · , LIF,m}. Thus, the relay-destination link

spectral efficiency of this relay technique is written as

CR,IF =
∑

m∈M

∑

u(l)∈UIF
m

τ̄ log2det

[

INu
+

Pr

LIF,m

(

Hr(m),u(l)Wu(l),mW
H
u(l),mH

H
r(m),u(l)

R
u(l)
R +N0BsysINu

)]

(5.22)

where Wu(l),m is the mth RS precoder of the lth UE. The design of Wu(l),m was

given in [187] for a MISO system. We extend it here to a MIMO system as fol-

lows. Let us define the group of other UEs not served by the mth RS as the

set given as Ū IF
m =

{
∪U IF

n |n 6= m,n ∈ M
}

=
{
ū (1) , · · · , ū

(∣
∣Ū IF

m

∣
∣
)}

. By using

SVD, the right singular null space vectors of the vertically stacked channel ma-

trix

[

HT
r(m),ū(1) · · ·HT

r(m),ū(|ŪIF
m |)

]T

between the mth RS and the UEs in set Ū IF
m

is obtained as the column vectors of matrix Ṽnull
ŪIF
m
. Next, the concatenated chan-

nel between the mth RS and the intended UEs in set U IF
m is obtained as Jm =

[

HT
r(m),u(1) · · ·HT

r(m),u(LIF,m)

]T

. A similar procedure as in Section 5.4.2 is then applied

to the product of JmṼ
null
ŪIF
m

for the mth RS instead of jointly for all the M RSs to

obtain Ṽnull
u(l),m, V

base
u(l),m and

(
Πu(l),m

) 1
2 . Therefore, the precoder matrix of the mth

RS for the lth UE is Wu(l),m = Ṽnull
ŪIF
m
Ṽnull

u(l),mV
base
u(l),m

(
Πu(l),m

) 1
2 . The overall spectral

efficiency of IF relaying is

CIF = min
{
Cselect

BC,IDEC , CR,IF

}
. (5.23)

5.4.3.2 Maximum Ratio Transmit Relaying

In contrast, each RS in this technique selfishly relays to its associated UE group

independent of the other RSs [187]. Each RS performs a maximum ratio transmit

precoding on its signals before relaying them to its designated UEs to maximise its
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own spectral efficiency and to remove multiuser interference from its own UE group.

Since it is not coordinated with the other RSs, the receive signal of its UE group

will be interfered with by the transmission of the other RSs. Let LM be the number

of UEs that each RS can support in MT relaying. As the RSs do not need to null

interference to other UE groups, all spatial dimensions can be used to transmit to their

own UE groups. Each RS designs the precoder matrix of the lth UE so that its signal

is relayed in the null spaces of the remaining LM − 1 UEs in its group. Therefore, the

total spatial dimensions of any LM − 1 UEs must be less than the available spatial

dimensions of the RS. Thus,

(LM − 1)Nu < Nr ⇒ LM <
Nr

Nu

+ 1 (5.24)

⇒ L∗
M =

⌈
Nr

Nu

⌉

(5.25)

where L∗
M denotes the smallest integer not less than Nr

Nu
and satisfies the inequality in

(5.24). Considering the actual Km UEs (defined above) that are available to partici-

pate in the transmission, the LMT,m UEs effectively selected by the mth RS is given

by the minimum between L∗
M and Km, that is,

LMT,m = min {L∗
M , Km} . (5.26)

From (5.19) and (5.24), we observe that L∗
M > L∗

I as the RSs in the MT relaying

technique do not need to reserve some of their spatial dimensions for interference

suppression but by doing so, incur an interference penalty to the other UEs not in

its own relay group. From (5.14) and (5.24), we see that ML∗
M = L∗

C but the CMP

relaying has a further advantage of being able to transmit without interference to the

other UEs. Let the set UMT
m = {u (l) |u (l) ∈ GRelay, l = 1, · · · , LMT,m} be the selected

LMT,m UEs of the mth RS. The relay-destination link spectral efficiency is thus

CR,MT =
∑

m∈M

∑

u(l)∈UMT
m

τ̄ log2det




INu

+
Pr

LMT,m

112



Chapter 5: Relay Cooperation for Improved SEET

×






Hr(m),u(l)Wu(l),mW
H
u(l),mH

H
r(m),u(l)

∑

n∈M,n 6=m

Ru(l),n +R
u(l)
R +N0BsysINu









 (5.27)

where Wu(l),m is the mth RS precoder of the lth UE and
∑

n∈M,n 6=m

Ru(l),n is the inter-

ference covariance matrix of the other RSs to the lth UE of the mth RS. Likewise,

the design of Wu(l) is described in [187] for a MISO system while we extend it here

to a MIMO system. The mth RS calculates the precoder matrix by performing the

SVD on the concatenated channel matrix Jm as defined in Section 5.4.3.1 but with

u (l) ∈ UMT
m instead. Likewise, a similar procedure as in Section 5.4.2 is then applied

to Jm to obtain Ṽnull
u(l),m, Vbase

u(l),m and
(
Πu(l),m

) 1
2 for the mth RS instead of jointly

for all the M RSs. The precoder matrix of the mth RS for the lth UE is thus

Wu(l),m = Ṽnull
u(l),mV

base
u(l),m

(
Πu(l),m

) 1
2 . The overall spectral efficiency of MT relaying is

CMT = min
{
Cselect

BC,IDEC , CR,MT

}
. (5.28)

5.4.3.3 Localised Precoding Relaying

A variant of CMP relaying, referred to as LoP relaying, is also compared. Similar to

CMP relaying, the RSs in LoP relaying cooperate to select common UEs for transmis-

sion. Unlike CMP relaying, the RSs in LoP relaying then transmit data independently

to these UEs. Therefore, LoP relaying has limited RS cooperation and is used to illus-

trate the intermediate change in performance as one evolves from MT relaying with

no RS cooperation to full RS cooperation techniques like the IF and CMP relaying.

System Capacities

So far, we have described the capacities of the various types of relay transmission

techniques for the UEs in GRelay of the RACN. As for the UEs in GDirect, the TDMA

transmission technique is used to transmit information to them. Letting L̄ = |GDirect|,
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the achievable spectral efficiency for the UEs in GDirect is

CD =
∑

u(l)∈GDirect

tD
L̄
log2det

[

INr
+

Pb

Nb

(

Hb,u(l)H
H
b,u(l)

R
u(l)
D +N0BsysINr

)]

(5.29)

where the interference covariance matrix R
u(l)
D is defined in (5.8). Therefore, the

system spectral efficiency for the RACN is give by

Crelay = CD + CΘ,∆ (5.30)

where CΘ,∆ is either (5.18), (5.23) or (5.28) with Θ = {CMP, IF, MT} while ∆ are

the user selection methods to be described in Section 5.5.

In contrast, all K UEs of the set K in the DTCN will be served using the TDMA

transmission approach. Its system spectral efficiency is thus

Cdirect =
∑

u(l)∈K

tD
K

log2det

[

INr
+

Pb

Nb

(

Hb,u(l)H
H
b,u(l)

R
u(l)
D +N0BsysINr

)]

. (5.31)

The DTCN will be used as a baseline comparison to the various relaying techniques

of the RACN.

5.4.4 Degrees of Freedom

Let us assume there are L UEs participating in the relay transmission. As defined

earlier, let Lm be the total UEs assigned to the mth RS for transmission, where
M∑

m=1

Lm = L. This is applicable to IF and MT relaying where each RS is assigned

to a group of UEs. The total degrees of freedom for CMP, IF and MT relaying can

be derived from (5.14), (5.19) and (5.24), respectively, while that of LoP relaying is

similar to CMP relaying but without M as the RSs transmit independently. Thus,

the total degrees of freedom of the various relaying techniques is given as

ΦCMP = L ·min {MNr − (L− 1)Nu, Nu, Nb} , L 6 L∗
C (5.32)
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ΦIF = L ·min {Nr − (L− 1)Nu, Nu, Nb} , L 6 ML∗
I (5.33)

ΦMT =
M∑

m=1

min {Nr − (Lm − 1)Nu, Nu, Nb}, Lm 6 L∗
M (5.34)

ΦLoP = L ·min {Nr − (L− 1)Nu, Nu, Nb} , L 6 L∗
M (5.35)

where L∗
C , L

∗
I and L∗

M are defined in (5.14), (5.19) and (5.24), respectively.

5.5 User Selection Methods for Relay Cooperation

5.5.1 Optimum User Selection

In the Optimum User Selection (OUS) method, all possible combinations of LCMP UEs

in GRelay is evaluated and the combination that returns the highest relay-destination

link spectral efficiency is selected. The number of combinations is given as

Q =




|GRelay|
LCMP



 =
|GRelay|!

LCMP ! (|GRelay| − LCMP )!
. (5.36)

Let set L = {ζq |q = 1, · · · , Q; |ζq| = LCMP } contain all the Q possible permutations

of the LCMP UEs, each represented by ζq. Assuming global CSI is available at the

RSs, the optimum set of UEs is the one that maximises (5.17) and is given as

UOpt = arg
ζq∈L

maxCR,CMP . (5.37)

The disadvantage of the OUS method is the cost of exchanging the global CSI and

the rapidly increasing cost of computing the Q values of CR,CMP as |GRelay| increases.

5.5.2 Full Semi-Orthogonal User Selection

The OUS method is prohibitive in terms of computational complexity. Given the

global CSI, the Semi-orthogonal User Selection (SUS) method [183] does not need

to evaluate all Q permutations. Instead, the UEs are selected sequentially with each
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newly added UE being as orthogonal as possible to the selected UEs before it. Thus,

computational complexity is reduced albeit some tolerable performance loss. The SUS

idea is incorporated into the Full Semi-orthogonal User Selection (FSUS) method with

the following execution steps.

1. Each RS shares its CSI with all the other RSs.

2. Each RS invokes the SUS algorithm (Fig. 5.4) using the global CSI in Step 1 as

its input. The SUS algorithm is as follows:

(a) Firstly, the UE with the highest sum eigenvalues of its RS–UE channel H

is chosen.

(b) Next, the UEs that are closely orthogonal to the already selected set of

UEs are identified among the remaining UEs.

(c) From these UEs, the one with the highest sum eigenvalues is chosen and

included into the set of selected UEs.

(d) Repeat from Step (b) until LCMP UEs are selected.

As the global CSI is available, the LCMP selected UEs by each RS will be the same.

The disadvantage of the FSUS method is again the cost of exchanging the global CSI.

5.5.3 Partial Semi-Orthogonal User Selection

The OUS and FSUS methods suffer from costly exchanges of global CSI among the

RSs and thus putting a high toll on the cooperative link. Although it is imperative

that the RSs must know the CSI for cooperative relaying, the strain on the cooperative

link can be decreased by avoiding premature CSI exchange of all the UEs among the

RSs. This is the motivation behind the proposed PSUS method.

The key idea behind the PSUS method is that all RSs will firstly select their own set

of UEs based upon their local CSI. Consequently, the selected UEs may differ from

one RS to the other. A negotiation phase among the RSs will follow next to decide
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Figure 5.4: The SUS algorithm.

on a common set of UEs that is agreed upon by all RSs. Finally, only then will the

global CSI of this common set of UEs be exchanged among the RSs. The following

details the execution steps of the PSUS method.

1. Each RS independently selects LCMP UEs by invoking the SUS algorithm using
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its local CSI as input. Consequently, the initially selected UEs may differ from

one RS to the other.

2. The mth RS then shares the user index representing its initially selected set of

UEs Tm and their corresponding channel norms Λm.

3. Using the information at Step 2, each RS invokes the Norm-based User Negoti-

ation (NUN) algorithm (Fig. 5.5):

(a) The UEs in the first entries of each set Tm (1) are initially selected to

include UEs with high channel norms (UEs are arranged in descending

channel norm values).

(b) Subsequent UEs in each set are sequentially compared across all sets. The

UE with the highest channel norm is identified.

(c) Include this UE into the set of selected UEs if it is not already selected in

the previous selection round.

(d) Increment the sequence counter of the selected UE’s set.

(e) Repeat from Step (b) until LCMP UEs are selected.

4. The CSI of only these LCMP UEs which all RSs agree to transmit to are then

shared.

The PSUS method reduces the signalling overhead of the cooperative link as it avoids

the high cost of communicating the CSI of all the UEs in set GRelay to all RSs.

5.6 Cooperative Cost

We assume that the cooperative link has a separate bandwidth Bcoop from the under-

lying cellular system. Let the transmit time interval be TTTI and the fraction of time

for cooperative transmission be τcoop (0 ≤ τcoop ≤ 1). At each RS, the cooperative in-

formation will initially be sampled and quantised at a resolution of θ bits per sample

before broadcasting it through the cooperative link to the other RSs.
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5.6.1 Joint RS Decoding Cost

There are two costs associated with the JDEC strategy during the broadcast phase.

Firstly, all RSs need to know the CSIs of the other RSs. As we assume that the

channel states do not change during one transmission frame, so the CSI needs to

Figure 5.5: The NUN algorithm for negotiation of users between RSs.
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be exchanged only once. The second and more costly cooperative information to be

frequently exchanged among the RSs are the received signals. All the M RSs must

know the other (M − 1) RSs received signals each time the BS broadcasts them. We

now quantify these two costs.

5.6.1.1 RS Received Signal Exchange Cost

For each channel use, the BS transmits a signal vector of length Nb. Due to the

broadcast nature of the BS, each RS will receive a version of this transmit signal as a

vector of length Nr. Since the elements of the received vector are complex numbers

with real and imaginary parts, each vector will consist of 2Nr separate values to be

sampled and transmitted through the cooperative link. Assume that the BS will

transmit at a rate of Bsys channel uses per second during the broadcast phase, the

minimum bit rate that the cooperative link has to support for RS received vector

exchanges is given as

RJDEC,vec = 2NrθMBsys. (5.38)

Only the CMP relaying technique incurs this cost if it performs JDEC as given in

(5.11) but is exempted from it if IDEC is employed as in (5.12).

5.6.1.2 Broadcast Phase CSI Exchange Cost

The total elements of the channel matrix between the BS and each RS is NrNb. Since

the channel matrix elements are complex, there are 2NrNb separate values to be sam-

pled and transmitted through the cooperative link. We assume that the information

exchange happens in a fraction τcoop of one TTTI duration. Thus, the minimum bit rate

that the cooperative link has to support for CSI exchanges during broadcast phase is

RJDEC,CSI =
2NrNbθM

τcoopTTTI

. (5.39)
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Similarly, only the CMP relaying technique incurs this cost if it performs JDEC as

given in (5.11) but is exempted from it if IDEC is employed as in (5.12).

5.6.2 User Selection Cost

The CSI exchange which is necessary for the user selection methods occurs once per

transmission frame as it is assumed that the channel does not change during that

period. Since the user selection methods differ in the extent of the CSI that must be

shared, so will the associated costs vary. We will now quantify the cost for the three

user selection methods.

5.6.2.1 OUS and FSUS Cooperative Cost

The total elements of the channel matrix between the mth RS and the lth UE is

NuNr. Since each channel matrix consists of complex elements, there will be 2NuNr

separate values to be sampled and transmitted through the cooperative link for each

UE of every RS. In the OUS and FSUS methods, each RS must obtain from the other

(M − 1) RSs the CSI of all K UEs for its selection mechanism. Thus, assuming that

the information is exchanged in a fraction τcoop of one TTTI duration, the minimum

bit rate that the cooperative link has to support for the OUS and FSUS methods is

ROUS = RFSUS =
2NuNrKθM

τcoopTTTI

. (5.40)

5.6.2.2 PSUS Cooperative Cost

Each of the two stages in the PSUS method has an associated cost. After indepen-

dently selecting the LCMP UEs, each RS broadcasts the channel norms of its selected

UEs and an index representing the selected UE sequence. This requires (LCMP + 1)

separate values to be sampled and transmitted through the cooperative link for each

RS. Next, each RS is required to share the channel matrix between itself and the

reselected LCMP common UEs. As the elements of each channel matrix are complex
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numbers, this requires 2NuNr separate values to be sampled and transmitted through

the cooperative link for each reselected UE of every RS. Thus assuming that the in-

formation is exchanged in τcoop fraction of one TTI duration, the minimum bit rate

that the cooperative link has to support for the PSUS method is

RPSUS =
(LCMP + 1 + 2NuNrLCMP ) θM

τcoopTTTI

. (5.41)

5.6.2.3 Cooperative Cost Comparison

In order for PSUS to operate at a bit rate that is lower than FSUS, we have

RPSUS < RFSUS (5.42)

which, after some algebraic manipulation, gives

LCMP <
2NuNrK − 1

2NuNr + 1
⇒ L̂CMP =

⌈
2NuNr (K − 1)− 2

2NuNr + 1

⌉

(5.43)

where L̂CMP is the largest integer satisfying the inequality in (5.43). Therefore, while

the LCMP in (5.16) is necessary due to the dimensional constraint, the L̂CMP in (5.43)

provides a constraint in which PSUS would perform better than FSUS.

5.7 Energy Efficiency Optimisation

We begin by modifying the ECR expression in (5.5) to include the power consumption

of the RS cooperative link. This is given as

ECRmodified
sys =

E
{
P sys
op,total + P coop

op,total

}

Bsys · E {Csys}
(5.44)

where P coop
op,total is the total operational power consumption of the RS cooperation link

in order to achieve the necessary bit rate of (5.38)–(5.41) for cooperative information

exchange so that the system could achieve the spectral efficiency of Csys. Taking CMP
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relaying as an example, we formulate the following problem to minimise (5.44):

minimise
Nr

ECRmodified
sys,CMP

subject to: trace
(
Wu(l)W

H
u(l)

)
6 1, l = 1, · · · , LCMP

Pb, Pr > 0

min {MNr − (LCMP − 1)Nu, Nu} > 0.

(5.45)

The objective of this constrained optimisation problem is to find the optimum number

of RS antennas Nr in order to minimise the ECR while considering the cooperative

cost. The first constraint ensures that the RS precoder matrixWu(l) for user u (l) does

not violate the power constraint of the RS. The second constraint ensures that the

transmit power is always positive. Lastly, the third constraint is the spatial degrees

of freedom constraint for cooperative relaying among the M RSs.

5.8 Economic Efficiency

The economic efficiency metric has been defined in (4.36) of Section 4.6. It is modified

here to include the cooperative cost of the RS cooperation link. Thus, the modified

economic efficiency metric is given as

Umodified
sys = κrrbase log2

(

1 +
BsysCsys

rbase

)

− κc

(
P sys
op,total + P coop

op,total

)
(5.46)

where rbase is the base service data rate which refers to the essential service expected

by every mobile user, while κr and κc are the revenue per bit and energy cost per Ws,

respectively. Both revenue and cost are measured in the same m.u., e.g., in pence.

The total operational power consumption of the system and RS cooperation link is

denoted as P sys
op,total and P coop

op,total, respectively. The definition of P coop
op,total is as given in

Section 5.7. Furthermore, the spectral efficiency and bandwidth of the system are

represented by Csys and Bsys, respectively.
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5.8.1 Economic Efficiency Optimisation

In this section, we present the formulation for the optimisation of the modified eco-

nomic efficiency metric in (5.46) which takes into consideration both the SEET and

the cooperative cost of the RS cooperation link. Taking CMP relaying as an example,

the following problem is formulated to maximise (5.46):

maximise
Nr

Umodified
sys

subject to: trace
(
Wu(l)W

H
u(l)

)
6 1, l = 1, · · · , LCMP

Pb, Pr > 0

min {MNr − (LCMP − 1)Nu, Nu} > 0.

(5.47)

Similar to (5.45), the first constraint ensures that the RS precoder matrix Wu(l) for

user u (l) does not violate the power constraint of the RS. The second constraint

ensures that the transmit power is always positive. Lastly, the third constraint is the

spatial degrees of freedom constraint for cooperative relaying among the M RSs.

5.9 Simulation Results and Discussions

We present some numerical results for the downlink transmission of a suburban macro-

cell scenario. This scenario with a moderately large cell size and medium to heavy

traffic load was found to provide the most benefit for relaying techniques. We set

dISD = 1300 m while rcell = dISD
/√

3, dRS = 0.7rcell and NSec = 3. Also, Pb = 40 W,

Pr = 2 W and Pc,ref = 577 W at Pref = 40 W. Furthermore, we set αb = αr = 2.84

and Bsys = Bcoop = 10 MHz. The rest of the simulation parameters are in Table 5.1.

The link level performance of the CMP, IF, MT and LoP relaying techniques will be

evaluated first. This is followed by the system level performance evaluation of CMP

relaying for different RFR patterns. Subsequently, the performance of CMP relaying

with various combinations of both the JDEC and IDEC strategies with the OUS,

FSUS and PSUS user selection methods will be investigated.
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5.9.1 Link Level Performance

The CMP, IF and MT relaying techniques have different capabilities. For example,

both CMP and IF relaying are capable of joint RS decoding during the broadcast

phase while MT relaying is not as there is no cooperative link among its RSs. Since

the focus of this section is to evaluate the effectiveness of relay phase techniques, IDEC

is assumed for all relaying techniques during the broadcast phase. Furthermore, in this

subsection, the interference covariance matrix representing the external interference

surrounding the base sector is set to zero, leaving only the interference from within the

base sector. This setup is to clearly measure the effectiveness of the various relaying

techniques in mitigating the interference that is expected from within its own (base)

sector. Besides that, the optimum OUS user selection method is employed for all the

relaying techniques. This is to ascertain that the performance evaluated is solely on

account of the relaying mechanisms during the relay phase alone.

In Fig. 5.6, the link level spectral efficiency of the relaying techniques is illustrated

both with and without the OUS user selection method while direct transmission is

taken as the baseline. When no user selection is employed (Fig. 5.6(a)), the IF re-

laying performs only slightly better than MT relaying. This is because it has to

sacrifice some spatial multiplexing gains for interference free relaying. However, nei-

ther performs any better than direct transmission. By contrast, the average spectral

efficiency of CMP relaying at 16.5 bits/s/Hz/sector is 5% better than direct trans-

mission although its spectral efficiency at 10% outage probability is lower. Despite

having access to more spatial dimensions for data transmission, we observe that LoP

relaying performs only marginally better than IF relaying which sacrifices some spa-

tial dimension for interference cancellation. The performance loss is due to the signals

arriving incoherently at the destinations, resulting in the loss in signal strength.

When user selection is employed in Fig. 5.6(b), the spectral efficiency of the relaying

techniques generally improves due to multiuser diversity. Both MT and IF relaying

are now marginally better than direct transmission at higher Cumulative Distribution

Function (CDF) values. A clear advantage of IF relaying over MT relaying is now

observed. As user selection guarantees that the UEs with the best channel conditions
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Figure 5.6: Link level spectral efficiency of various relaying techniques: (a) with-
out user selection and (b) with the OUS method (Nb = 8, Nr = 4, Nu = 2, M = 2,

K = 10).

are selected for relay transmission, the channel gain from this outweighs the reduction

in spatial multiplexing capability incurred in IF relaying. However, the loss due to

incoherent transmission in LoP relaying means that it is not able to benefit from user

selection even if the best UEs are selected, resulting in its performance now being

poorer than IF relaying. Nevertheless, the benefit of joint relaying transmission in

CMP relaying ensures that its spectral efficiency significantly outperforms both the

direct transmission and other relaying techniques.

Next, the spectral efficiency of CMP and MT relaying techniques with identical degrees

of freedom is compared in Fig. 5.7. The maximum number of users is when CMP and

MT relaying are serving L∗
C and ML∗

M UEs, respectively. Going from two users to the

maximum number of users, the total degrees of freedom of both CMP and MT relaying

increases from 4 to 8. As the RSs in CMP relaying cooperatively transmit across all

spatial dimensions, its spectral efficiency doubles as ΦCMP doubles. However, as ΦMT

doubles, the spectral efficiency of MT relaying increases by a lesser amount. This is

due to the presence of interference at each group of UEs as the RSs in MT relaying

transmit independently of one another.
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Figure 5.7: The spectral efficiency of CMP and MT relaying with two users
(L = 2) where ΦCMP = ΦMT = 4 and with the maximum number of users where

ΦCMP = ΦMT = 8 (Nb = 8, Nr = 4, Nu = 2,M = 2).

5.9.2 System Level Performance

We further investigate the performance of CMP relaying at the system level for a

RACN where we have both direct and relay transmission present. The effect of ex-

ternal interference surrounding the base sector is considered in this subsection. In

Fig. 5.8, the impact of different RFR patterns on the 10% outage capacity of CMP

relaying is illustrated with the Adaptive Relaying (AR) scheme taken as a compari-

son. The AR scheme switches between direct and relay transmission, depending on

which provides better throughput to the group of UEs currently being served. The

MT relaying technique described in Section 5.4.3.2 is employed by the RSs of the AR

scheme. At PRS = 2 W, CMP relaying outperforms the AR scheme by 4% and 10%

for ηr = 1/3 and ηr = 1, respectively. As ηr goes from 1/3 to 1, the outage capacity

of CMP relaying improves by 22% while the AR scheme achieves a lower improve-

ment of 16%. Therefore, CMP relaying is better at suppressing intra-cell and strong

inter-cell interference through its Type I RFR pattern with relay cooperation. The

aggressive full bandwidth Type III RFR pattern is also exploited by CMP relaying

by mitigating intra-cell interference through relay cooperation. The benefit of CMP
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Figure 5.8: Outage capacity v.s. PBS of CMP relaying and the AR scheme with
their corresponding ηr = 1/3 (Type I,II) and ηr = 1 (Type III) RFR patterns at

PRS of 2 W and 6 W (figures share common y-axis).

relaying over the AR scheme is observed again at PRS = 6 W albeit a 2% reduction in

gains due to stronger interference. Increasing PRS from 2 W to 6 W while maintaining

the RFR patterns achieves only marginal outage improvement. Thus, adopting a full

bandwidth RFR pattern provides higher gains than increasing relay transmit power,

especially at low PRS.

Next, the average sector spectral efficiency and ECR of CMP relaying and the AR

scheme are shown in Fig. 5.9 at different RFR patterns. For PRS = 2 W, the spec-

tral efficiency of the AR scheme saturates at 2.51 bits/s/Hz/sector with an ECR of

9.8 µJ/bit/sector while CMP relaying achieves the same spectral efficiency at 3.6

µJ/bit/sector when ηr = 1/3. At ηr = 1, the spectral efficiency of the AR scheme

saturates at 2.63 bits/s/Hz/sector with an ECR of 10.8 µJ/bit/sector while CMP re-

laying requires 2.7 µJ/bit/sector for the same spectral efficiency. Furthermore, at 3.6

µJ/bit/sector the spectral efficiency of CMP relaying improves by 11% as it switches

from ηr = 1/3 to ηr = 1 while the AR scheme gains only 3%. Thus, while CMP

relaying is more energy efficient than the AR scheme at ηr = 1/3, further spectral

and energy efficiency gains are achieved for ηr = 1. At PRS = 6 W, we see the same
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Figure 5.9: ECR v.s. average sector spectral efficiency of CMP relaying and the
AR scheme with their corresponding ηr = 1/3 (Type I,II) and ηr = 1 (Type III)

RFR patterns at PRS of 2 W and 6 W (figures share common y-axis).

energy saving trend but at higher energy per bit values. An overall loss in energy

efficiency is observed when going from PRS = 2 W to PRS = 6 W for the same RFR

pattern due to the increase in interference from the surrounding RSs as higher energy

per bit is necessary at PRS = 6 W to achieve the same spectral efficiency as when

PRS = 2 W for both ηr = 1/3 and ηr = 1. The overall results indicate that utilis-

ing full bandwidth RFR pattern (ηr = 1) is more energy efficient at low PRS while

partial bandwidth RFR pattern (ηr = 1/3) is favoured at high PRS though at lower

energy efficiency. Therefore, the rest of the CMP relaying simulation results assume

PRS = 2 W and ηr = 1 (Type III RFR pattern).

In Fig. 5.10, the influence of βR on the the ECR performance and percentage of

unserved UEs is shown for CMP relaying. At low βR (low relay confidence), all UEs

will be served by direct transmission (0% unserved UEs) regardless of their distances

from the BS. This results in poor energy efficiency as evident from the high ECR

values. As βR increases (higher relay confidence), more UEs will be assigned to the

relay transmission group, especially those further away from the BS. This improves

energy efficiency and thus the ECR values decrease. However, due to having the user
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Figure 5.10: Average sector ECR and percentage of unserved UEs v.s. relay
confidence of CMP relaying in a RACN (Nb = 8, Nr = 4, Nu = 2, M = 2, K = 10).

selection methods, not all of the assigned UEs are selected for relaying and thus the

percentage of unserved UEs begins to increase. At βR = 1, all UEs will be assigned

to the relay transmission group. From (5.16), at most LCMP = 4 UEs will be selected

during each cooperative relay transmission, resulting in a maximum of 60% unserved

UEs. To achieve user coverage of around 90%, we therefore select βR = 0.7 as the

value for simulation.

In Fig. 5.11, the spectral efficiency and ECR performance of CMP relaying is evaluated

with various BS transmit antennas and different cooperation levels. When JDEC is

employed, the broadcast phase is effectively a full spatial multiplexing system with

up to min (Nb,MNr) parallel data streams available between the BS and RSs. Thus,

with Nr = 4 and M = 2, the CMP relaying spectral efficiency in Fig. 5.11(a) increases

as Nb increases up to MNr = 8 antennas. Because Pb and Pr are fixed, a decrease

in ECR is registered in Fig. 5.11(b) for the same Nb range. For Nb > 8, the gains of

CMP relaying with JDEC begin to saturate as the number of data streams remains

the same. In IDEC, each RS has only its own antennas for decoding, thus, supporting

min (Nb, Nr) parallel data streams between the BS and each RS. This limits the gains
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Figure 5.11: (a) Spectral efficiency and (b) ECR v.s. the number of BS antennas
for CMP relaying in a RACN (βR = 70%, Nr = 4, Nu = 2, M = 2, K = 10).

when Nb > 4. A performance gap of around 1.3 bit/s/Hz/sector for spectral efficiency

and 3.1 µJ/bit/sector for ECR is typically observed between JDEC and IDEC.

The impact of various user selection methods on the CMP relaying system perfor-

mance is also evident in Fig. 5.11. As expected, OUS performs the best while FSUS

performs slightly better than PSUS. The performance gap between OUS and PSUS

is more significant when JDEC, rather than IDEC, is considered. This is because

the performance of CMP relaying with JDEC is limited by the relay phase. Thus,

the type of user selection method will influence the overall system performance more

profoundly as it is implemented at the relay phase. This is less significant in CMP

relaying with IDEC where the bottleneck is at the broadcast phase.

In Fig. 5.12, the average sector ECR of CMP relaying at different cooperation levels is

illustrated as the BS transmit power per sector Pb varies. The ECR generally increases

with Pb for all schemes as more power is consumed by the system. At low Pb, it is

observed that the DTCN is more energy efficient as it registers lower ECR values.

This is because the network interference at low Pb is not too severe. In that situation,

direct transmission is able to offer better spectral efficiency than relay transmission
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which incurs multiplexing loss due to its two-hop relaying protocol. This results in a

lower energy consumed per bit for the DTCN as compared to the RACN. However,

the RACN outperforms the DTCN when Pb is in excess of 10 dB and 13 dB for CMP

relaying with JDEC and IDEC, respectively. At higher Pb, the network interference

is now increased. The interference mitigation property of CMP relaying employed

in the RACN results in better spectral efficiency performance as compared to the

DTCN which is interference limited. Thus, at high Pb regime, the RACN requires

lower energy per bit than the DTCN during transmission. For the RACN, we observe

that CMP relaying with JDEC performs better than with IDEC by a difference of

0.8µJ/bit/sector. However, the superior performance of JDEC requires a prohibitively

high cooperative cost.

The cooperative costs of CMP relaying for different cooperative levels are tabulated

in Table 5.2. It is established that CMP relaying with JDEC performs better than

IDEC both in terms of spectral efficiency and energy efficiency. To realise such gains,

the cooperative links between the RSs must be able to at least support a bit rate of

640 Mbits/s to share all the signals received during the broadcast phase. This bit
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Table 5.2: Cooperative Cost.

Strategies

Broadcast phase:

Joint RS decoding (JDEC)

Relay phase:

User selection method

Signal sharing CSI sharing OUS FSUS PSUS

Bit rate (Mbits/s) 640 5.12 12.8 12.8 5.52

RF transmit power (mW) very high 58.2 164.6 164.6 63.2

Operational power (W) very high 1.0 2.8 2.8 1.1

rate is an order of magnitude higher than that can be delivered by the underlying

RACN system. Besides that, CSI sharing requires a further bit rate of at least 5.12

Mbits/s. Needless to say, the power consumption to operate the cooperative link will

be excessively high. Therefore, the performance gain of CMP relaying with JDEC

must be traded off against a very large increase in cooperative signalling costs.

From Table 5.2, both the OUS and FSUS methods require a cooperative link with

a bit rate of 12.8 Mbits/s. Assuming an Nr × Nr MIMO cooperative link with a

shadow margin of 16.4 dB (corresponding to σs = 10 dB) for 90% link reliability, the

RF transmit power and operational power are 164 mW and 2.8 W, respectively. The

operational power is calculated using (5.2) as direct transmission is assumed for the

cooperative links. As for the PSUS method, the cooperative link has to support a

bit rate of just 5.52 Mbits/s and operational power of 1.1 W. Although the PSUS

method has slightly lower gains as compared to the OUS and FSUS methods in terms

of system performances, this shortcoming is more than compensated by being able to

operate at less than half the cooperative cost of the other two methods.

In Fig. 5.13, the ECR of (5.44) is numerically optimised for IDEC-PSUS and IDEC-

FSUS relay cooperation schemes while considering the cooperative cost of two dif-

ferent user selection methods. The ECR of (5.5) is also evaluated to illustrate the

performance when the cooperative cost is not considered. For both IDEC-PSUS and

IDEC-FSUS, the ECR with no cooperative cost decreases monotonically with Nr.

Furthermore, for a given Nb, the ECR performance of PSUS without cooperative cost

is slightly worse than FSUS.
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Figure 5.13: The average sector ECR v.s. the number of RS antennas of the
IDEC-PSUS and IDEC-FSUS relay cooperation schemes for both with and without

the cooperative cost for Nb = 2 and Nb = 8.

When the cooperative cost is considered, the minimum ECR is achieved for both

schemes when Nr = 7 and Nr = 8 for Nb = 2 and Nb = 8, respectively. It is

also observed that PSUS outperforms FSUS by registering lower ECR values when

cooperative cost is included. For Nr > 8, the operational power consumption at the

RS cooperation link becomes excessively large as the required bit rate for the exchange

of cooperative information becomes prohibitively high. This increases the ECR values

which, in turn, reduces the energy efficiency.

For Nr ≥ 10, the performance of PSUS begins to degrade as compared to FSUS. This

is because at higher Nr values, the number of UEs supported for joint transmission,

which is given by (5.16), surpasses the threshold in (5.43), i.e., LCMP > L̂CMP for

Nr ≥ 10. For example, at Nr = 11, we have LCMP = 11 while L̂CMP = 9, resulting in

PSUS having a higher ECR value than FSUS.

Finally, the economic efficiency metric of (5.46) is optimised in Fig. 5.14 for IDEC-

PSUS and IDEC-FSUS relay cooperation schemes while taking into account the co-

operative cost of the RS cooperation link. For Nr ≤ 9, we see that relay cooperation

incorporating PSUS registers higher economic efficiency values than those employing
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the cooperative cost of the RS cooperation link.

FSUS. As PSUS consumes significantly less power than FSUS for the operation of

the RS cooperation link, the OPEX of IDEC-PSUS is reduced, resulting in it having

higher profitability than IDEC-FSUS. The maximum economic efficiency is achieved

for both schemes when Nr = 7 and Nr = 8 for Nb = 2 and Nb = 8, respectively.

For Nr ≥ 10, FSUS begins to demonstrate improved performance over PSUS as the

threshold given in (5.43) is, once again, surpassed at higher Nr values.

5.10 Conclusions

A relay cooperation scheme has been proposed for downlink multicell MIMO cellular

networks. Different RS decoding strategies (JDEC and IDEC) for the broadcast

phase and joint relay transmission with different degrees of CSI sharing for the relay

phase have been investigated. It has been demonstrated that compared with direct

transmission, relay cooperation can achieve energy reductions of up to 36% with JDEC

and up to 19% with IDEC. However, JDEC requires a cooperative link with a bit rate

of an order of magnitude greater than that achievable by the relay network. We have
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also proposed the PSUS user selection method for relay phase joint transmission which

enables the cooperative link to operate at 39% of the cooperative cost incurred by

competing methods that require global CSI. This significant cost reduction more than

compensates for the 4% to 5% degradation caused by the PSUS method to the system

spectral efficiency. When the cooperative cost of the RS cooperation link is taken into

consideration, it is demonstrated that the PSUS method is 10% more energy efficient

at minimum ECR, and thus more economically profitable, than the FSUS method.

5.10.1 The Applicability of Relay Cooperation for Uplink

Transmission

The relay cooperation technique is developed so that the RSs can cooperatively trans-

mit to the destinations during the relay phase. Since the relay phase is essentially the

same for downlink or uplink transmission with the destination being the UEs and BS,

respectively, the relay cooperation technique can be implemented for both of these

transmission scenarios. However, some modifications may be needed during the first

hop of the utilised relaying protocol. This first hop is referred to as the broadcast

phase for downlink transmission. As for the uplink transmission, it is called the access

phase. While only one node (the BS) is communicating with the RSs in the broadcast

phase of the downlink transmission, multiple nodes (the UEs) will be communicat-

ing with the RSs in the access phase of the uplink transmission. Therefore, different

decoding approaches have to be considered in the access phase as compared to the

broadcast phase described in Section 5.4.1.1 and Section 5.4.1.2. Typically, the RS

decoding for the access phase will be more complex than the broadcast phase if the

number of supported UEs is large.
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Conclusions and Future Work

Relaying transmission has been identified as one of the key technologies in future

wireless networks to facilitate green communications as the power consumption of a

RACN is expected to be reduced. However, relaying may incur multiplexing loss due

to its multi-hop nature which, in turn, may lead to a decrease in spectral efficiency.

As a result, there exists an inherent spectral-energy efficiency trade-off that must be

considered. Furthermore, the deployment of RSs may increase the cellular network

interference, especially in the urban and suburban areas where the cell density is

high. Therefore, innovative relaying methods to mitigate interference is necessary

to improve the spectral-energy efficiency of the RACN. In this concluding chapter,

we summarise the key findings of the chapters and suggest several interesting future

research directions.

6.1 Summary of Results

Firstly, the BS power consumption of the DTCN in the presence of inter-cell inter-

ference is investigated in Chapter 3 with different IC techniques being considered at

the receiver. The power consumption model includes the power consumed at both

the RF power amplifier and signal processing modules with its energy efficiency mea-

sure in ECR. It is shown that the number of transceiver antennas and the receiver
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weight optimisation approach influence the ECR of the BS. The BS power consump-

tion is reduced when MMSE based receivers are employed, as opposed to ZF based

receivers, for the same targeted SINR at the receiver output. Specifically, the MMSE-

SIC receiver facilitates the highest reduction in BS power consumption. Besides that,

treating inter-cell interference as background noise has been shown not to be an en-

ergy efficient approach as this requires the desired BS to transmit at higher power in

order to maintain the targeted SINR. This, in turn, may cause interference level to

rise even further if all adjacent BSs opt for the same transmitting strategy. Results

also indicate that the impact of the circuit power consumption at the signal processing

module may be substantial in some cases. It may erase off the transmission power

savings obtained through receive diversity gains and receiver IC techniques if it is too

high. Because of this, power consumption at the signal processing module may be

more detrimental than the effects of inter-cell interference in causing the increase in

BS power consumption.

In Chapter 4, the performance of the RACN has been investigated with the DTCN

taken as the baseline. Two types of relaying paradigms, namely, the SFR relaying and

IFR relaying, have been considered with each of them employing the adaptive MIMO

relaying scheme. The spectral-energy-economic efficiency values of the transmission

schemes have been investigated. Both the RF and circuit power consumption values

have been considered in the energy efficiency calculation. From the simulation results,

it has been established that the RACN with SFR is more energy efficient than the

DTCN. The SFR scheme also outperforms the IFR scheme by a considerable margin,

suggesting that increasing the received signal reliability by enhancing the strength of

the desired signal is more favourable than suppressing the interference found in the re-

ceived signal. However, an inherent spectral-energy efficiency trade-off has been found

to exist in the scheme. Due to this trade-off, it is demonstrated that it may no longer

be beneficial to optimise energy efficiency alone. The economic efficiency metric has

been proposed as an alternate performance metric to decide the best balance in the

spectral-energy efficiency trade-off in order to maximise profitability, a factor which is

most important to mobile operators as can be seen in Section 2.3.1. Furthermore, in-

vestigation results on the various frequency reuse planning modes of the SFR scheme
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have indicated that aggressive bandwidth utilisation is favoured over bandwidth al-

location strategies that avoid interference. This suggests that efficient bandwidth

utilisation is important towards improving network performance. Nevertheless, meth-

ods to mitigate interference must be devised to further enhance the performance of

interference-limited networks if full bandwidth utilisation is to be employed.

In Chapter 5, an advanced RACN incorporating relay cooperation concepts has been

proposed to reduce interference while employing full bandwidth utilisation. The

scheme is named CMP relaying. During the broadcast phase, both the JDEC and

IDEC decoding strategies at the RSs have been investigated. During the relay phase,

user selection methods with various degrees of CSI sharing for joint relay transmission

have been considered. A cooperative link between the RSs that provides a channel

to share cooperative information is employed. It has been demonstrated that CMP

relaying with JDEC outperforms CMP relaying with IDEC due to the increased mul-

tiplexing gains in JDEC by means of sharing antennas in a virtual MIMO setting.

However, due to the fact that the RSs in JDEC are also required to share both data

and CSI to perform joint decoding, a cooperative link with a bit rate of an order

of magnitude greater than that achievable by the relay network is required. Next,

the PSUS method has been proposed to be incorporated into CMP relaying. It is a

user selection method designed specifically for relay cooperation, requiring only par-

tial sharing of the network CSI. It has been demonstrated that the proposed PSUS

method is able to operate at almost half of the cooperative cost incurred by the com-

peting OUS and FSUS methods that require global CSI. This significant cost reduction

more than compensates for the slight degradation caused by the PSUS method to the

underlying system performance. As a result of the reduced energy requirement, it is

shown that relay cooperation incorporating the PSUS method is also more economi-

cally profitable than those employing the FSUS method. In a word, the work in this

chapter establishes that relay cooperation is beneficial to interference-limited networks

employing relaying transmission. However, the cost incurred at the cooperative links

should be considered in a practical relay cooperation system.

Overall, the studies in Chapter 3 through Chapter 5 have demonstrated how the BS
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power consumption of DTCNs is influenced by certain factors, how relay transmission

is able to improve the energy efficiency of DTCNs, how the optimal spectral-energy

efficiency trade-off point is obtained to maximise the profitability of RACNs and

how to further improve their performance through relay cooperation. The research

conducted in this thesis are of great practical significance in assisting the deployment

of relaying networks in future green wireless communication systems.

6.2 Future Research Topics

For the investigation on the BS power consumption in DTCNs, inter-cell interference

has been considered as background noise as this is customary in current real world

implementation. However, it is worth expanding the investigation to include more

sophisticated receiver interference cancellation techniques that are interference-aware.

In investigating such techniques, the cost in obtaining the necessary information from

adjacent cells to facilitate inter-cell interference mitigation should be considered.

For the work in spectral-energy efficiency trade-off, it is demonstrated that communi-

cation systems cannot be optimised only for energy efficiency. Instead, a right balance

between spectral and energy efficiency could be more beneficial. The economic effi-

ciency metric is presented in this thesis to obtain a suitable balance point that max-

imises profitability, a key performance indicator for mobile operators. Besides solely

depending on the trade-off, this metric can be further developed to take into account

the variability of traffic load in the network. While higher spectral efficiency would

be desirable during peak hours, switching to operating modes that prioritise energy

efficiency during off-peak hours is more favourable. The economic implication may be

different in these two operating modes. Thus, the economic efficiency metric which

tracks traffic load variability is able to maximise economic profitability by selecting

the appropriate balance point as the loading factor changes.

For the work on relay cooperation, this thesis considers interference mitigation in in-

dividual sectors of the cell. A possible future research direction would be to extend
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the work to enable intra-sector relay cooperation for more extensive interference miti-

gation in each cell. Here, the nearest RSs from adjacent sectors belonging to the same

cell would be transmitting cooperatively. The CSI can be efficiently shared between

the RSs by utilising the proposed PSUS method. However, the RSs may not be able to

intercept the data transmitted in each other’s sector during the broadcast phase. This

is due to the weak received signal strength as the BS employs antennas with beams

directed only to individual sectors. Thus, data has to be shared between the RSs of

different sectors. Sharing of data through the RS cooperative links is not feasible as

it is shown in Section 5.9.2 that the cooperative cost involved would be prohibitively

high. A possible solution is to distribute the data to the RSs via the common BS. It

is anticipated that further reduction in energy consumption may be possible with this

research extension.

Furthermore, the work in this thesis assumes that the required CSI is obtained in a

timely manner whereby there is negligible delay in the feedback channel. Therefore,

the CSI which is fed back to the BS and RSs is assumed to accurately represent the

channel condition during subsequent data transmission. In practice, however, there

may be delay in the feedback channel causing the received CSI to be outdated. As the

outdated CSI is being utilised in the precoders of the BS and RSs, interference may

not be perfectly cancelled as the precoding matrix no longer matches the transmission

channel. Consequently, the presence of residue interference at the received signals

will cause degradation to the system performance. As a future research direction, the

effects of outdated CSI on the performance of relay cooperation in RACNs can be

investigated. Improved protocols and transmission techniques which are less sensitive

towards outdated CSI can then be devised to further robustify the proposed relay

cooperation scheme.
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