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Abstract. In general, entropy gives us a measure of the number of bits required to represent
some information. When applied to probability mass function (PMF), entropy can also be used
to measure the “peakiness” of a distribution. In this paper, we propose using the entropy of short
time Fourier transform spectrum, normalised as PMF, as an additional feature for automatic
speech recognition (ASR). It is indeed expected that a peaky spectrum, representation of clear
formant structure in the case of voiced sounds, will have low entropy, while a flatter spectrum
corresponding to non-speech or noisy regions will have higher entropy. Extending this reasoning
further, we introduce the idea of multi-band /multi-resolution entropy feature where we divide the
spectrum into equal size sub-bands and compute entropy in each sub-band. The results presented
in this paper show that multi-band entropy features used in conjunction with normal cepstral
features improve the performance of ASR system.
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1 Introduction

Most of the state-of-the-art automatic speech recognition (ASR) systems use cepstral features derived
from short time Fourier transform (STFT) spectrum of speech signal. The most common features
used are MFCC [1], PLP [2] and RASTA [3] or some of their variants. Some recently proposed cepstral
features like MCMS [4] and PAC [5] have also shown good performance. While cepstral features are
fairly good representation, they capture the absolute energy response of the spectrum. Further, we
are not sure that all the information present in the STFT spectrum is captured by them. In this
paper we suggest to capture further information from the spectrum by computing its entropy.

Entropy plays a central role in information theory as a measure of information, choice and uncer-
tainty (page 11 of [6]). The same entropy can be used to measure the “peakiness” of a spectrum if we
convert the spectrum into a probability mass function (PMF). For voiced sounds, spectra have clear
formants and entropies of such spectra will be low. On the other hand spectra of unvoiced sounds
are flatter and their entropies should be higher. Therefore, entropy of a spectrum can be used as
an estimate for voicing/unvoicing decision. In this paper, we extend the idea further and introduce
multi-band /multi-resolution entropy feature. Depending upon the phoneme, entropy of the sub-bands
where a formant is present will be low and the sub-bands which are flatter will have higher entropy.
The important thing is even if the formant is slightly displaced from its position in noisy speech, its
entropy will not be affected much. We expect this new feature to capture the “peakiness” of the
spectrum and to be different from the usual cepstral features derived from spectral energies.

The remaining paper is arranged as follows: In the next section we introduce the spectral entropy
feature and its computation for the present setup. In Section 3 we explain the database used and the
experimental setup. Section 4 contains the results followed by conclusions in Section 5.

2 Spectral Entropy Feature

2.1 Motivation

Entropy can be used to capture the “peakiness” of a PMF. A PMF with sharp peaks will have low
entropy while a PMF with flat distribution will have high entropy. For this reason entropy is generally
associated with a classifier’s output posteriors distribution and gives us a measure of the classifier’s
confidence. In previous work [7], it has been shown that entropy of the posteriors distribution at the
output of a classifier can be used for weighting different streams in multi-stream combination.

In this paper, the aim is entirely different and we want to explore the peak capturing property
of the entropy to capture peaks (also called as formants) of a spectrum. In case of STFT spectra of
speech, we observe distinct peaks and the position of these peaks in the spectra are dependent on the
phoneme under consideration. These formants are the one which characterise a sound. The central
idea while using entropy as a feature is to capture the peaks of the spectrum and their location. The
problem with computing entropy of a spectrum is that spectrum is not a PMF (the area under the
spectrum doesn’t sum upto 1). In order to convert the spectrum into a PMF like function we divided
the individual frequency components of the spectrum by sum of all the components.

Zij\il Xi

T

fori=1to N (1)

where X is the energy of i'" frequency component of the spectrum, x = (z1,--- ,zy) is the PMF of
the spectrum and N is the number of points in the spectrum (order of STFT). This ensured that the
area under the normalised spectra summed to 1 and this normalised spectra can be treated as a PMF
for the purpose of computing entropy. For each frame the entropy was computed from x by:

N

H:fozwlogQ:ci (2)
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Fig. 1(b) shows the contours of the entropy computed on the full-band spectrum. From the figure
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Figure 1: Entropy computed from the full-band spectrum. (a) Clean speech wave form, (b) Entropy
contour for clean speech, (c¢) Speech corrupted with factory noise at 6 dB SNR, and (d) Entropy contour
for speech corrupted with factory noise at 6 dB SNR.

we observe that entropy computed on full-band can be used as an estimate of voicing/unvoicing
decision. Also, we know that in presence of noise the formants are the one which are least affected
as compared to the other parts of the spectrum. So intuitively we can assume that entropy of the
spectrum if used for voicing/unvoicing decision will be robust to noise, and indeed it is true as shown
in Fig. 1(d). Though the dynamic range of the entropy contour is squeezed in presence of noise, it
retains its discriminatory property.

2.2 Multi-band /Multi-resolution entropy

We realized that entropy of the full-band spectrum is not a strong feature on its own if we want to
capture the formants of the spectrum as well as their location. The reason for this is that entropy of
the full-band spectrum cannot resolve the formants location as it captures only the gross peakiness of
the spectrum.

To capture the location of the formants we introduced the idea of multi-band entropy features.
To extract multi-band entropy features we divide the full-band spectrum into J non-overlapping sub-
bands of equal size. Entropy is computed for each sub-band and we obtain one entropy value for
each sub-band. These sub-band entropy values indicate the presence or absence of formants in that
sub-band. The way full-band spectrum was converted into a PMF, each sub-band spectrum should be
converted into a sub-band PMF. Using (1) and (2) we separately compute entropy for each sub-band
PMF.

When J =1, we work with the full-band spectrum and obtain one entropy value. When there
are two sub-bands (J = 2) we obtain two entropy values, one from each sub-band, and so on. In
our experiments we changed the parameter J from 1 to 5 and obtained the entropy value from each
sub-bands. All the entropy values obtained by varying J were appended to form a 15(= 14+2+344+5)-
dimensional entropy feature vector.

Figure 2 shows the contours of 4" and 5" component of the entropy feature vector. Different
components of the entropy feature vector have different dynamic ranges and have different activation
points depending upon whether a formant is present in a particular sub-band or not.

Instead of working on the raw spectra, which contain pitch information also, we worked on spectra
smoothed by filter bank.
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Figure 2: (a) and (b) are contour of the 4™ and 5" component of the entropy feature vector, respec-
tively, for speech corrupted by 6 dB SNR factory noise.

3 Experimental Setup

In the experiments reported in this paper, Numbers95 database of US English connected digits tele-
phone speech [8] is used. There are 30 words in the database represented by 27 phonemes. Training
is performed on clean speech utterances and testing data, which is different from the training data, is
corrupted by factory noise from Noisex92 database [9] added at different signal-to-noise-ratios (SNRs)
to Numbers95 database. We ran the baseline experiments using PLP [3] features. There were 3330
utterances for training and 1143 utterances were used for testing the system.

We have used Hidden Markov Model (HMM) /Artificial Neural Network (ANN) hybrid system [10]
for performing the experiments. The ANNs used were a single layer multi-layer perceptron (MLP) and
the number of units in the hidden layer of an MLP were proportional to the dimension of the input
feature vector stream fed to that MLP. The baseline PLP feature vectors used in our system were:
12-dimensional raw cepstral coefficients (0" coefficient is not used) appended with 13-dimensional
delta and 13-dimensional delta-delta cepstral coefficients. The input layer was fed by 9 consecutive
data frames.

The HMM used for decoding had fixed state transition probabilities of 0.5. Each phoneme had
a 1 state monophone model for which emission likelihoods were supplied as scaled posteriors [10].
Many standard techniques like tri-phone modelling and state-tying, which are used in state-of-the-art
GMM/HMM systems are not possible in HMM/ANN systems, but HMM/ANN systems don’t need
any conditioning of the new features as ANN learns the correlation on its own without the need of
any fine tuning. The minimum duration for each phoneme is modelled by forcing 1 to 3 repetitions
of the same state for each phoneme. Phone deletion penalty parameter was empirically optimised for
clean speech test database and then it was kept constant for all the experiments.

4 Results

The results in terms of word-error-rates (WERs) of the entropy features alone are shown in Table 1.
For example, "Two-bands Entropy’ feature is obtained by dividing the full-band into two equal sub-
bands and obtaining one entropy value from each sub-band. The two entropy values thus obtained
are appended to form a 2-dimensional entropy feature vector used for training and testing the system.
Entropy feature vectors are obtained for upto 5 sub-bands and their results are shown in the table
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| Word-Error-Rates for entropy features alone |

Feature Feature Dimension (J) | WER
Full-band Entropy 1 88.8%
Two-bands Entropy 2 68.4%

Three-bands Entropy 3 57.8%
Four-bands Entropy 4 54.4%
Five-bands Entropy 5 52.3%
Entropies Appended 1424+34+4+5=15 23.7%

Table 1: Word-Error-Rates (WERs) for clean speech for multi-band entropy features alone. The last
row result is obtained when all the entropy features (J =1 to 5) are appended to form a 15-dimensional
entropy feature vector.

(Table 1). WER results indicate as the number of sub-bands are increased, the performance improves
and sort of starts levelling down. We stopped at 5 sub-bands to keep reasonable number of points in
each sub-band for reliable entropy computation. So going from full-band entropy feature to multi-band
entropy feature pays rich dividends.

The next experiment was to see how the system performs when these individual multi-band entropy
feature vectors from different sub-bands are appended and a big multi-band entropy feature vector
is formed. In Fig 3 we show the results when all the 15 entropy vectors obtained above (Table 1)
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Figure 3: WERs for Entropy features, PLP features and PLP features appended with ent ropy features
at different SNRs. Clean speech is represented by 'SNR 30 dB’.

are appended to form a 15-dimensional entropy feature vector. WER results are shown for clean and
noisy speech. Noise used was factory noise from Noisex92 database added at different SNRs. The last
row of Table 1 is same as the entropy feature performance for clean speech in Fig. 3. The entropy
feature when used alone doesn’t compete with the usual PLP cepstral features used for ASR but the
good thing is that it doesn’t degrade rapidly in presence of noise. Moreover, in presence of noise,
when the entropy feature is appended to the PLP cepstral features, noticeable improvement in the
performance of the system is observed. These multi-band entropy features improve the robustness of
the baseline system. The relative improvement in performance is 1.0%, 14.2%, 20.7% and 23.7% for



clean, SNR 12, SNR 6 and SNR 0, respectively. This result indicates that entropy feature brings more
improvement as the noise level increases.

In the last, though the number of parameters of the MLP are more when higher dimensional feature
vector (PLP + Entropy Feature = 53-dimension) is used, it has been verified through experiments
that the performance of the individual features alone do not change considerably with the increase in
number of parameters of their respective MLP models.

5 Discussion and Conclusion

In search of new features having complementary information, this paper investigated the use of entropy
of the spectrum as an additional feature. It has been shown that entropy of the full-band spectrum
can be used as an estimate of voicing/unvoicing. Going one step further we suggested dividing
the spectrum into equal sub-bands and obtaining entropy from each sub-band and using that as an
additional feature for ASR. Good improvement in performance is obtained when multi-band entropy
feature is appended to the usual PLP cepstral features, specially in case of noise. The new feature
though doesn’t compete with the cepstral features in absolute sense, it seems to be quite robust to
noise. The reason for robustness can be attributed to the fact that multi-band entropy feature tries
to capture the location of the formants and formant are less affected by noise.

The next step could be to divide the full-band into unequal parts depending upon the a-priori
knowledge about the formants in the basic spectra obtained from the phonemes. Also, to automatically
find the optimal sub-band boundaries every 10 ms based on minimising the combined entropies of the
sub-bands holds promise.
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