
Journal of Mathematical Sciences, Vol. 268, No. 4, December, 2022

SPECTRAL ESTIMATES AND ASYMPTOTICS FOR
INTEGRAL OPERATORS ON SINGULAR SETS

G. Rozenblum∗

Chalmers University of Technology and University of Gothenburg
Gothenburg S-412 96, Sweden

The Euler International Mathematical Institute
10, Pesochnaya nab. St. Petersburg 197022, Russia
grigori@chalmers.se

G. Tashchiyan

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
22, Bol’shevikov pr., Saint-Petersburg 193232, Russia
gt 47@mail.ru UDC 517.9

For singular numbers of integral operators of the form

u(x) �→
∫

F1(X)K(X,Y,X − Y )F2(Y )u(Y )μ(dY )

with a measure μ singular with respect to the Lebesgue measure in R
N we obtain order-

sharp estimates for the counting function. The kernel K(X,Y, Z) is assumed to be

smooth in X, Y , Z �= 0 and to admit an asymptotic expansion in homogeneous functions

in the Z variable as Z → 0. The order in the estimates is determined by the leading

homogeneity order in the kernel and geometric properties of the measure μ and involves

integral norms of the weight functions F1 and F2. In the selfadjoint case, we obtain

asymptotics of the eigenvalues of this integral operator provided that μ is the surface

measure on a Lipschitz surface of some positive codimension d. Bibliography: 16 titles.

To Volodya Maz’ya with admiration

1 Introduction

Since the pathbreaking papers [1]–[3] by Birman and Solomyak published in the 1960s and

1970s it became a general wisdom that order-sharp eigenvalue and singular number estimates

for operators of various kinds under weakest regularity conditions in terms of integral norms of

coefficients open up the possibility of studying fine characteristics of the spectrum, in particular,
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the spectral asymptotics. This approach has been demonstrated many times, including the most

recent developments [4, 5]. However, there are certain types of problems where such estimates

are not yet known. The present paper is devoted to one of such missing cases. We consider

integral operators with weak diagonal polarity of the kernel, acting in the L2 space with a

measure μ singular with respect to the Lebesgue measure in R
N and containing integrable

weight functions. Our main results are new spectral estimates for such operators. They are

closely related to recent developments in the topic of spectral estimates for pseudodifferential

operators with singular measures (see [4]–[7]), but the regularity conditions imposed in the cited

papers can be reduced owing to specifics of integral operators. In the selfadjoint case, when μ

is the surface measure on a compact Lipschitz surface of a certain codimension d � 1 in R
N, we

find the eigenvalue asymptotics.

Our approach to operators involving singular measures follows [7] and [5], is based upon the

fundamental trace and embedding theorems due to Maz’ya [8].

1.1. Setting. Let K(X,Y, Z), X,Y ∈ R
N, Z ∈ R

N \ 0, be an integral kernel of potential

type, smooth in X, Y , and in Z with Z �= 0. The kernel is supposed to be polyhomogeneous,

which means that K(X,Y, Z) can be expanded in the asymptotic series

K(X,Y, Z) ∼
∑

Kj(X,Y, Z), j = 0, . . . , Z → 0. (1.1)

The function Kj(X,Y, Z) is positively homogeneous in Z of degree θ+ j, and the leading order

is θ > −N, so the kernel possesses a weak singularity. If θ + j is an even nonnegative number,

the symbol Kj can contain, in addition to the above homogeneous function denoted by K
(hom)
j ,

a term K
(log)
j (X,Y, Z) of the form Qj(X,Y, Z) log |Z|, where Qj(X,Y, Z) is a homogeneous

polynomial of degree θ+ j in Z and smooth in other variables. We note that the representation

(1.1) for a given kernel is not unique since it can be changed by making the Taylor expansion

in the X − Y variable at the point X or Y and regrouping the resulting terms. We denote by

K the integral operator with kernel K.

Let μ be a compactly supported Borel measure on R
N, without point masses, with sup-

port (the smallest closed set of full μ-measure) M , and let F1(X) and F2(X) be μ-measurable

functions on M . (It is sometimes convenient to assume that Fι vanish almost everywhere with

respect to the measure μ.)

Under these conditions, we consider the integral operator T = T[μ,K, F1, F2] in L2,μ,

(Tu)(X) =

∫

M

F1(X)K(X,Y,X − Y )F2(Y )u(Y )μ(dY ), (1.2)

or, formally,

(Tu) = (F1μ)K((F2μ)u).

The more general matrix case can be considered, where K(X,Y, Z) is a k × k matrix-valued

function subject to the above conditions and F1(X), F2(X) are μ-measurable k×kmatrix-valued

functions. Here, the operator T[μ,K, F1, F2] formally acts as (1.2), but now u is a measurable

k-component vector-valued function on M . Below, we specify the conditions on μ, K, F1, and

F2 granting the boundedness of T in L2,μ. It is also possible to consider the even more general

setting where K, F1, F2 are rectangular matrix-valued functions of proper size, so that the

product in (1.2) makes sense, but this case does not involve any new ideas and we leave it to

the interested reader)
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Of special interest is the formally Hermitian case, where the kernel K(X,Y, Z) is symmetric

in the sense

K(X,Y, Z) = K(Y,X,−Z)∗,

the symbol ∗ denotes the (complex or matrix) conjugation operation and F1(X) = F2(X)∗.
Under these conditions, the operator T is considered in the space L2,μ. This operator is formally

selfadjoint, and if it happens to be bounded, it is selfadjoint in L2,μ.

There are two alternative ways to present results on properties of integral operators of

potential type. On one hand, we can fix a measure μ and describe how nice the kernel and

weight functions should be. We take a somewhat different course of action. We fix a kernel and

determine properties of the measure and the weight functions guaranteeing the boundedness of

the integral operator and the required spectral estimates.

Let the operator (1.2) be selfadjoint and bounded. In this case, for λ > 0 we denote by

n±(λ,T) the total multiplicity of the spectrum of ±T in (λ,∞). If there are infinitely many

such eigenvalues or there are some points of the essential spectrum in this interval, then we

set n±(λ,T) = ∞. In the general, not necessarily selfadjoint, case we study estimates for the

singular numbers of the operator T, i.e., the counting function

n(λ,T) := n+(λ
2,T∗T).

We are interested in finding estimates and, if possible, asymptotics of these counting functions

as λ → 0 in terms of integral characteristics of the weights F1(X) and F2(X), geometric char-

acteristics of the singular measure μ, and properties of the kernel K.

We restrict ourselves to the case of a compactly supported measure μ. By the standard

localization procedure, this problem reduces to a problem for operators acting on a set in a

smooth compact Riemannian manifold, for example, on the torus TN with standard metric. In

this case, it is assumed that the homogeneity condition on the kernel holds for Z = X −Y close

to zero, i.e., near the diagonal X = Y, while the kernel is smooth away from the diagonal. The

case of a noncompactly supported measure μ presents certain complications, which we skip in

this paper in order to avoid excessive technicalities.

1.2. Relation to earlier results. Spectral problems for weighted weakly polar integral

operators were considered in [1, 3, 9, 10], where the main interest was in finding the weakest

possible conditions on the kernel and weights such that the singular numbers admit estimates of

the same order as for the nonweighted operator. In [1, 3, 9, 10], μ is the Lebesgue measure on

R
N restricted to the set M . Moreover, an additional factor Φ(X,Y ), a multiplier, in the kernel

of the operator T was subject to certain milder regularity restrictions. In this setting, spectral

estimates and asymptotics for T were established with an order depending on the dimension

N and the homogeneity order θ. For some values of parameters one weight or both weights

could be incorporated in the measure, so μ could be any finite Borel measure, not necessarily

absolutely continuous with respect to the Lebesgue measure. However, the above-mentioned

spectral estimates have the same order for all admissible weights and measures, and this order

depends only on the homogeneity order of the kernel and the dimension N of the space.

However, certain applications require sharp eigenvalue estimates for a more general singular

measure μ. For example, μ can be the Hausdorff measure on a fractal set or the surface measure

on a nonsmooth surface. In these cases, the classical results in the above-mentioned papers give,

if applicable, only o-small and, consequently, not sharp estimates compared with the absolutely

continuous case, so they are not applicable, at least directly.
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1.3. Specifics of the new approach and the main results. In the recent papers [4]–[7],

an approach was developed for obtaining spectral estimates for a class of weighted pseudodiffer-

ential operators involving singular measures, the so-called Birman–Schwinger type operators. In

some cases, in particular, for μ being the surface measure on a Lipschitz surface of some positive

codimension in R
N, as well as for the Hausdorff measure on a uniformly rectifiable set, these

estimates are order-sharp, which is confirmed by the eigenvalue asymptotic formulas obtained

there. To prove these spectral estimates, we use the classical variational approach based upon

piecewise polynomial approximations, initiated by Birman and Solomyak more than 50 years

ago and adapted to our singular measure setting. Asymptotic formulas were derived by using

perturbation ideas coming back to Birman and Solomyak as well and, for Lipschitz surfaces,

arguments based on the results of the authors [11, 12]. One of crucial steps is a reduction of the

spectral problem for a pseudodifferential operator with singular weight to an integral operator

with singular measure.

In the present paper, we apply this relation to studying the spectrum of integral operators

with (poly)homogeneous kernel, thus using the above reduction in the backwards direction. The

conditions imposed on the measure μ similarly to [5], are formulated in terms of inequalities for

the μ-measure of balls in R
N. For 0 < α < N we consider three classes of measures without

point masses

μ ∈ Pα
+, μ(B(X, r)) � A (μ)rα, r > 0, (1.3)

μ ∈ Pα
−, μ(B(X, r)) � B(μ)rα, 0 < r < diam M , (1.4)

μ ∈ Pα, B(μ)rα � μ(B(X, r)) � A (μ)rα, 0 < r < diam M ; (1.5)

here, B(X, r) is the (open) ball with radius r and center X.

Depending on the homogeneity order of the kernel and properties of the singular measure

μ, we obtain estimates for the singular numbers involving certain integral norms of the weight

functions. Unlike the case of absolutely continuous measures, considered in [9, 10, 1], where the

order of estimates is determined only by the dimension N and the leading homogeneity order

θ of the kernel, in our case, the order (the power of λ) of the eigenvalue estimate also depends

on the exponent α in the characteristic (1.3), (1.4), or (1.5). The choice of which of these

conditions is present in the corresponding formulations is determined by the relation between

the dimension N and the order of singularity θ. We note that, when the two-sided condition

(1.5) is imposed, a rather special case of the homogeneity degree θ = 0 is covered. Here, the

leading term in the kernel K(X,Y, Z) is the sum of two terms, one of which, Khom
0 , is zero order

positively homogeneous in Z for small Z and the other, K log
0 , has the form Q0(X,Y ) log |Z| with

smooth function Q0. In this case, the order of eigenvalue estimates (and asymptotics, when it

is proved) equals −1 and does not depend on α in (1.5), the effect noticed earlier in [7] for the

corresponding spectral problem for pseudodifferential operators (see also the discussion in [4]

concerning the noncommutative integration with respect to singular measures).

A special feature of the reduction to a pseudodifferential problem is the need for smoothness

requirements, inherent to the pseudodifferential analysis. For integral operators considered in the

paper, such smoothness requirements turn out to be excessive and they are considerably relaxed

by means of introduction of Schur multipliers, similar to how this was done in the classical papers

by Birman and Solomyak for absolutely continuous measures. In proving spectral estimates and

asymptotics, we use the additional flexibility provided by the presence of weight functions.
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When smooth, they can be incorporated in the kernel K(X,Y,X − Y ), while, in the opposite,

a nonsmooth factor in the kernel can be incorporated in the weight functions F1 and F2. All

this enables us to establish the eigenvalue estimates and asymptotics under somewhat milder

regularity conditions than in [5] in the pseudodifferential setting.

2 Pseudodifferential and Integral Operators: Reduction

2.1. Initial definitions. It is known that an integral operator with homogeneous kernel

which is smooth away from the diagonal can be understood as a pseudodifferential operator,

and vice versa (see, for example, [3, 11, 13] and the references therein).

For a polyhomogeneous classical symbol k(X,Ξ) of order −l < 0 admitting the expansion in

homogeneous functions

k(X,Ξ) ∼
∞∑
j=0

kj(X,Ξ), Ξ → ∞, X ∈ R
N, Ξ ∈ R

N \ {0},

with positively homogeneous terms kj(X, tΞ) = t−l−jkj(X,Ξ), t > 0, the pseudodifferential

operator K(X,DX) with this symbol is defined by the usual local formula

(K(X,DX)u)(X) = F−1
Ξ→Xk(X,Ξ)FY→Ξu(Y ),

where F is the Fourier transform. This operator can be equivalently represented as an integral

operator with kernel K(X,Y,X − Y ) admitting the asymptotic expansion

K(X,Y,X − Y ) ∼
∞∑
j=0

Kj(X,X − Y ), X − Y → 0, (2.1)

in homogeneous or log-homogeneous functions. The kernel Kj(X, (X − Y )) is the properly

regularized Fourier transform of the symbol kj(X,Ξ) in Ξ (see [11, 13] for details and further

references). We again note that the representation (2.1) is not uniquely defined: expanding the

kernel K(X,Y,X − Y ) at the point Y = X in the X − Y variable and further regrouping the

resulting terms, we arrive at a different composition of the kernel. This relation goes through

without complications as long as the symbol and kernel are infinitely smooth. There is an

extensive, rather technically advanced literature devoted to the treatment of the case of symbols

with finite smoothness (see [14, 15] and the references therein). Our approach based upon the

study of finitely smooth integral kernels is more elementary.

The point of our interest is operators of the form T = T[μ,K, F1, F2] formally described as

T = (F1μ)K(F2μ), where μ is a singular measure and F1, F2 are μ-measurable functions. We

need to explain how such operators are rigorously defined. The definition will be based upon a

fixed factorization of K as K = K1K2, where Kι are pseudodifferential operators of order −γι < 0,

γ1 + γ2 = l. The case of our special interest is the case where the pseudodifferential operator K

is selfadjoint nonnegative and has the form K = LL∗, where L is a pseudodifferential operator

of order −γ = −l/2 < 0.

2.2. Definition of operators. Following [5, 7], we distinguish three cases, where the con-

ditions on the measure μ and weights Fι are formulated in different ways. These cases are

determined by the relation between the order γ and dimension N.

• Subcritical : 2γι < N. The measure μ is supposed to belong to Pα
+ with α > N− 2γι.
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• Critical : 2γι = N. The measure μ is supposed to belong to Pα with some α, 0 < α < N.

• Supercritical : 2γι > N. The measure μ is supposed to belong to Pα− with some α > 0.

Since K is, in fact, an integral operator with polyhomogeneous kernel K(X,Y,X − Y ), T

can be formally described as the integral operator

(Tu)(X) = (T[μ,K, F1, F2]u)(X) = F1(X)

∫
K(X,Y,X − Y )u(Y )F2(Y )μ(dY ). (2.2)

Now, we explain how this operator is rigorously defined. In the next section, we find conditions

for the boundedness of this operator. Our reasoning follows the natural rule: if all objects

are rigorously defined, the resulting construction coincides with the one obtained by formal

manipulations.

First, let the pseudodifferential operator K be factorized as K = K1K2, where K1 and K2 are

pseudodifferential operators of negative orders −γι < 0 and γ1 + γ2 = l respectively.

Suppose that we have defined bounded operators T1 = F1tMK1 : L2(T
N) → L2,μ and

T2 = F2
∗tMK∗

2 : L2(T
N) → L2,μ, where tM is the restriction operator of functions in Hγι(TN)

to M . Then the operator T in L2,μ is defined by

T[μ,K, F1, F2] = T1T
∗
2.

Once we have found some estimates for the singular numbers of the operator Tι, we can apply

the Ky Fan inequality

n(λ1λ2,T1T
∗
2) � n(λ1,T1) + n(λ2,T2) (2.3)

with conveniently chosen λ1, λ2, λ1λ2 = λ, to find estimates for the singular numbers of T.

Thus, we are reduced to the task of defining bounded operators Tι, ι = 1, 2, and proving

estimates for their singular numbers. This topic was already covered by the considerations in

[8] and further in [7] and [5]. In fact, the boundedness of Tι is equivalent to the boundedness of

the operator Sι = T∗
ιTι in L2(T

N). The latter operator has the quadratic form

(Sιf, f)L2(TN) = (T∗
ιTιf, f)L2(TN) = (Tιf,Tιf)L2,μ =

∫
|Fι(X)|2|(Kιf)(X)|2μ(dX). (2.4)

Operators of this type were considered in [7] and [5], where conditions were established

for the boundedness of the quadratic form (2.4), thus justifying the reasoning above and the

spectral estimates for the corresponding operators. To understand the action of the operator

Tι, we consider its sesquilinear form for u ∈ L2(T
N), v ∈ L2,μ,

(Tιu, v)L2,μ = (FιtMKιu, v)L2,μ = (tMKιu, F
∗
ι v)L2,μ . (2.5)

For u ∈ L2(T
N) the function Kιu belongs to the Sobolev space Hγι(TN). So, to assign sense to

the expression in (2.5), we need to understand F ∗
ι v as an element in the adjoint space H−γι(TN)

of distributions. In the supercritical case 2γι > N, the space Hγι(TN) is embedded in C(TN).

Therefore, for F ∗
γ ∈ L2,μ the product F ∗

ι v belongs to L1,μ and such a function defines a continuous

functional on C(TN), which means that it is an element of C(TN)′ ⊂ H−γι(TN). In the subcritical

case 2γι < N, there is no embedding of the Sobolev space Hγι(TN) into C(TN), so the restriction

of f = Kιu to the support of μ does not make immediate sense. However, for the measure μ in
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Pα
+ with some α > N − 2γι and for F ∗

ι ∈ L2σι with 2σι =
α

2γι−N+α , for any fixed v ∈ L2,μ the

functional

ψ
F ∗
ι v(X)μ

(f) =

∫
f(X)(F ∗

ι (X)v(X))μ(dX) (2.6)

defined initially on Hγι(TN) ∩ C(TN) is continuous in the Hγι(TN)-norm by Theorem 11.8 in

[8] and thus can be extended by continuity to the whole space Hγι(TN).

A similar reasoning goes through in the critical case 2γι = N. If μ belongs to Pα
+ with some

α > 0, then the functional (2.6) defined first on continuous functions in Hγι(TN) extends to

a continuous functional on Hγι(TN) as soon as |F ∗
ι |2 belongs to the Orlicz space L logL(μ),

again by Theorem 11.8 and Corollary 11.8 (2) in [8]. In both latter cases, by duality, for a

fixed f ∈ Hγι(TN) the expression (2.6) defines a continuous antilinear functional of v ∈ L2,μ.

Therefore, FιtM f is an element in L2,μ.

In all three cases, the operator Tι can be represented by the diagram

Tι : L2(T
N)

Kι−→ Hγι(TN)
FιtM−−−−→ L2,μ

with all arrows determining continuous operators. Therefore, T = T1T
∗
2 is a bounded operator

in L2,μ.

3 Estimates for Singular Numbers

3.1. Estimates for singular numbers of the operator Tι. We use the fact that the

singular numbers of the operator Tι, i.e., the eigenvalues of the operator (TιT
∗
ι )

1/2 in L2,μ

coincide with the eigenvalues of the operator (T∗
ιTι)

1/2 in L2(T
N). The latter operators were

considered in [7, 5]. According to the results of [7], the order λ−2σι of the spectral estimates for

the operator Tι = T[μ,Kι, Fι] is determined by the parameters γi, N, α as follows:

σι =
α

2γι −N+ α
.

Hence σι > 1 in the subcritical case, σι = 1 in the critical case, and σι < 1 in the supercriti-

cal case.

The assertion to follow is the combination of Theorem 2.3 in [7] (in the critical case) and

Theorems 3.3 and 3.8 in [5] (in the noncritical cases.) Namely, the operator T∗
ιTι, of the form

((Fιμ)tMKι)
∗((Fιμ)tMKι),

thus defined in L2(T
N) by the quadratic form (2.4), exactly fits in the setting of these theorems,

with V = |Fι|2. We collect the corresponding results.

Theorem 3.1. Let the measure μ satisfy the conditions (1.3), (1.4), or (1.5). Suppose that

for the weight function Fι the function |Fι|2 belongs to the space Lσι,μ in the subcritical case, the

space L1,μ in the supercritical case, and the Orlicz class LΨ,μ, Ψ(t) = (1 + t) log(1 + t) − t, in

the critical case. Then the operator Tι = T[μ,Kι, Fι] is bounded as acting from L2(T
N) to L2,μ

and the following estimates hold for the singular numbers of Tι :

n(λ,Tι) ≡ n(λ2,T∗
ιTι) � Csub(μ,Kι, Fι)λ

−2σι ,

Csub(μ,Kι, Fι) = Cι‖|Fι|2‖σι
Lσι,μ

, σι > 1,
(3.1)
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n(λ,Tι) � Ccrit(μ,Kι, Fι)λ
−2,

Ccrit(μ,Kι, Fι) = Cι‖|Fι|2‖(Ψ,μ,av), σι = 1,
(3.2)

n(λ,Tι) � Csup(μ,Kι, Fι)λ
−2σι ,

Csup(μ,Kι, Fι) = Cι‖|Fι|2‖σι
L1,μ

μ(M )2−2σιλ−2σι , σι < 1.
(3.3)

Here, a(λ) � b(λ) means lim sup
λ→0

a(λ)b(λ)−1 � 1 and ‖ · · · ‖(Ψ,μ,av) in (3.2) is the averaged

Ψ-Orlicz norm with respect to the measure μ (see the definition in [7, formula (2.1)]). The

constant Cι in (3.1)–(3.3) depends on the dimension N, the orders −γι of operators Kι, the

characteristic α of the measure μ, and the constants A (μ), B(μ) in (1.3), (1.4), (1.5) as well

as on the operator Kι, but not on the weight function Fι.

3.2. Spectral estimates for the operator T. Having the weighted integral operator

T = T[μ,K, F1, F2] with polyhomogeneous kernel of order −θ > −N or, which is equivalent,

with the pseudodifferential operator K of order −l = −N + θ < 0, and given weight functions

F1, F2 and measure μ, we are free to choose a factorization of the pseudodifferential operator

K = K1K2. For K1 we can take K1 = (1−Δ)−γ1/2. Therefore, K2 = (1−Δ)γ1/2K, where Δ is the

Laplacian on the torus TN . This is equivalent to factorizing the integral operator K in the form

K = K1K2 with orders θ1 = −N+γ1 and θ2 = −N+γ2. If the factorization, namely, the choice

of the orders γ1 and γ2, γ1 + γ2 = γ, is made, this determines the required properties of μ, F1,

F2, to be described later on. We arrive at the factorization of the operator T = T[μ,K, F1, F1]

T = T1T
∗
2, Tι = T[μ,Kι, Fι], ι = 1, 2.

By the inequality (2.3) for the singular numbers of the product of operators, the estimates

(3.1)–(3.3) imply the estimate for the singular numbers of the operator T. To obtain this esti-

mate, we set in (2.3)

λ1 = aλ
σ2

σ1+σ2 , λ2 = a−1λ
σ1

σ1+σ2 , λ1λ2 = λ,

with a = (C∗(μ,K1, F1)C∗(μ,K2, F2)
−1)1/(σ1+σ2). Applying the Ky Fan inequality, we find

n(λ,T) � C(μ,K1,K2, F1, F2)λ
−2σ, (3.4)

C(μ,K1,K2, F1, F2) = C�(μ,K1, F1)
σ2

σ1+σ2 C�(μ,K2, F2)
σ1

σ1+σ2 , (3.5)

where � stands for the proper subscript in (3.1)–(3.3).

From the expression for σ1, σ2 we see that the exponent −2σ = −2 σ1σ2
σ1+σ2

in (3.4) equals,

in fact, − 2α
l+2α , which means that the order in the estimates for the singular numbers does not

depend on the way how the factorization of K is chosen. This choice, however, determines the

conditions imposed on the measure μ and weight functions F1 and F2.

In the following assertion, we collect possible combinations of orders in factorization and

describe the corresponding conditions on μ and F1, F2.

Theorem 3.2. Let K be a pseudodifferential operator of order −l < 0 factorized as K = K1K2,

where Kι, ι = 1, 2 are pseudodifferential operators of order −γι < 0, ι = 1, 2, γ1 + γ2 = l. Then

for the operator T = T[μ,K, F1, F1] the estimate (3.4) with (3.5) holds provided that μ and Fι

satisfy the following conditions:

500



(1) if 2γ1, 2γ2 < N, then μ ∈ Pα
+, 2α > N− 2γι, Fι ∈ L2σi,μ, σι =

α
2γi−N+2α ,

(2) if 2γ1 < N, 2γ2 = N, then μ ∈ Pα, 2α > N− 2γ1, F1 ∈ L2σ1,μ,

σ1 =
α

2γ1−N+2α , |F2|2 ∈ LΨ,μ,

(3) if 2γ1 < N, 2γ2 > N, then μ ∈ Pα, 2α > N− 2γ1 F1 ∈ L2σ1,μ, F2 ∈ L2,μ,

(4) if 2γ1 = N, 2γ2 = N, then μ ∈ Pα, α > 0, |Fι|2 ∈ LΨ,μ, ι = 1, 2,

(5) if 2γ1 = N, 2γ2 > N, then μ ∈ Pα, α > 0 |F1|2 ∈ LΨ,μ, F2 ∈ L2,μ,

(6) if 2γ1, 2γ2 > N, then μ ∈ Pα−, α > 0 Fι ∈ L2,μ, ι = 1, 2.

3.3. Estimates for lower order operators. In our analysis, we need estimates for singular

numbers in the case where the pseudodifferential operator K is replaced by an operator of a lower

order.

For weights F1 and F2 satisfying the assumptions of Theorem 3.1 with a factorization as in

Theorem 3.2 for certain fixed measure μ and order −l < 0, we replace the pseudodifferential

operator K of order −l by another operator K′ of order −l′ < −l. It is natural to expect that the

singular numbers of the operator T′ = T[μ,K′, F1, F2] decay faster than the singular numbers

of the operator T = T[μ,K, F1, F2]. This property is not quite trivial since it can happen that

while T (or some of its factors) belongs to the subcritical case, the operator T′ can get into the

critical or supercritical case, so the conditions imposed on the measure μ and weights F1 and F2

might change. The following assertion states that, probably, not sharp, spectral estimates hold

without changing the conditions on the measure μ.

Corollary 3.1. Let the assumptions of Theorems 3.1 and 3.2 be satisfied for some factor-

ization of K and μ, F1, F2, K. Let K′ be a pseudodifferential operator of order −l′ < −l. Then

n(λ,T′) = o(λ−2σ), λ → 0, T′ = T[μ,K′, F1, F2]. (3.6)

Proof. Let K = K1K2 be the factorization presented in Theorem 3.1 with operators K1 and

K2 of order −γ1,−γ2 respectively and γ1 + γ2 = l so that μ, F1, F2 satisfy the assumptions of

Theorem 3.1. We factorize K′ in the following way:

K′ = K′
1K

′
3K

′
2, (3.7)

where

K′
1 = (1−Δ)−γ1/2, K′

2 = (1−Δ)−γ2/2, K′
3 = (1−Δ)γ1/2K′(1−Δ)γ2/2.

The factorization (3.7) leads to the factorization of the operator T′:

T′ = T1K
′
3T

∗
2, T1 = F1K

′
1, T2 = F ∗

2K
′
2.

The estimates for the singular numbers of the operators T1 and T2 are the same as in Theorem

3.2, while K′
3 is a pseudodifferential operator on T

N of negative order (l− l′) < 0 having decaying

singular numbers, n(λ,K′
3) = O(λ(l−l′)/N). By the Ky Fan inequality, (3.6) holds.

Remark 3.1. One can consider a more general setting, namely, an operator of the form

(2.2), but acting from L2,μ to L2,μ′ , where μ′ is a different (possibly, singular) measure. Here,

extensive complications arise since the spectral estimate depends not only on properties of μ

and μ′ taken separately, but also on their relative position in R
N.
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4 Schur Multipliers and Spectral Estimates

In their works, Birman and Solomyak have studied properties of transformations in Schat-

ten classes of integral operators generated by Schur multipliers. We recall that for a function

Φ(X,Y ) the Schur multiplier transformation M[Φ] associates with an integral operator with

kernel K(X,Y ) the integral operator with kernel Φ(X,Y )K(X,Y ). Explicit analytic conditions

on Φ granting that M[Φ] transforms any integral operator in a certain Schatten class to an

operator in the same class (or in some other prescribed Schatten class) have been found. In

particular, the results of [9] on multipliers in weak Schatten classes were used to obtain esti-

mates for eigenvalues of operators with kernel of the form Φ(X,Y )K(X,Y,X − Y ), where K is

an integral kernel with weak singularity as X − Y → 0. More general results were obtained in

[10, Sections 8 and 10] and [16] for operators in L2 spaces with measure. For kernels with a rel-

atively strong singularity (of order −θ � −N/2) on the diagonal, these measures were supposed

to be absolutely continuous with respect to the Lebesgue measure, with prescribed properties of

densities, while for a weaker singularity the results on singular number estimates hold for any

finite measures, thus admitting singular measures. Simultaneously, the weaker is the polarity of

kernels of integral operators on the diagonal, the more smoothness is required for the multiplier

Φ(X,Y ) to generate a transformation in the proper Schatten class. The conditions imposed

on Φ(X,Y ) in [10, 16] are expressed in rather complicated terms. We give a simplified version

sufficient for our needs.

Proposition 4.1. Let Φ(X,Y ) be a function on Q × Q, where Q is a cube in R
N. Then

there exists m(N, q) such that for m > m(N, q) any function Φ(X,Y ) possessing continuous

partial derivatives of order up to m in all the variables is a Schur multiplier in the space of

integral operators T : L2(Q, μ2) → L2(Q, μ1) in the weak Schatten class Σq (of operators with

singular numbers satisfying n(λ, T ) = O(λ
− 1

q )) for any finite measures μ1 and μ2.

We also use the fact that for any finite measures μ1 and μ2 operators with smooth kernel

have arbitrarily rapid eigenvalue decay rate as soon as the smoothness is sufficiently high. This

statement is a particular case of Proposition 2.1 in [10], where more complicated, but less

restrictive conditions are imposed.

Proposition 4.2. Let μ1 and μ2 be finite Borel measures on a cube Q ⊂ R
N. Suppose that

U(X,Y ) ∈ Cm(Q×Q) and m > 2N. Then the operator U : L2,μ2 → L2,μ1

(Uu)(X) =

∫
U(X,Y )u(Y )μ2(dY )

has singular numbers satisfying n(λ,U) = O(λ−1/q), where q =
N+ 2m

2N
.

It is clear that these results automatically hold for operators defined on the torus TN instead

of a cube. In our applications, the role of μ1 and μ2 are played by F1μ and F2μ, where μ

is a singular measure satisfying one of the conditions in (3.1)–(3.3) and F1 and F2 are weight

functions. Thus, using Proposition 4.2, we arrive at our result on multipliers in the set of

operators with singular measures.

We denote by K [N, θ, α] the space of integral operators satisfying one of the assumptions

of Theorem 3.1.
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Theorem 4.1. Let K be an integral operator in K [N, θ, α] with some weakly polar kernel

K(X,Y,X − Y ) with the singularity order −θ at the diagonal and the measure μ and weight

functions F1 and F2 as above. Suppose that Φ is a function on T
N×T

N belonging to C2m(TN×
T
N), m > m(N, 2σ). Then for the integral operator H with the same measure μ and weight

functions and the kernel H(X,Y ) = Φ(X,Y )K(X,Y,X − Y ) the following estimate for the

singular numbers holds:

n(λ,H) � C(Φ)C(μ,K1,K2, F1, F2)λ
−2σ,

where the constant C(μ,K1,K2, F1, F2) is determined by the parameters in Theorem 3.2, thus

depending on the factorization of the operator K, the parameter of the measure μ, and the proper

integral norms of the weight functions F1 and F2, whereas C(F ) depends on the bounds of the

derivatives of Φ.

Proof. For every fixed X ∈ M we consider the starting fragment of the Taylor expansion

of the function Φ(X,Y ) at the point (X,X) in powers of Y −X:

Φ(X,Y ) =
∑

|n|<m

(n!)−1∂n
Y Φ(X,X)(Y −X)n +Φ(m)(X,Y )

≡
∑

|n|<m

Φn(X)(Y −X)n +Φ(m)(X,Y ). (4.1)

We first consider the leading term in H corresponding to the first term in (4.1), n = 0,

H0(X,Y,X − Y ) = Φ(X,X)K(X,Y,X − Y ) ≡ Φ0(X)K(X,Y,X − Y ).

For given F1 and F2 the integral operator H0 with kernel H0(X,Y,X − Y ) acts as

(H0u)(X) =

∫
F1(X)Φ(X,X)K(X,Y,X − Y )u(Y )F2(Y )μ(dY ).

This operator is of the same kind as the initial one, but with the weight function F1 replaced

by the weight function F1(X)Φ(X,X). We also note that Φ(X,X) is a bounded function and,

consequently, F1(X)Φ(X,X) belongs to the same space of weights as F1, the space required by

Theorems 3.1 and 3.2. Therefore, incorporating Φ(X,X) into the weight function, we obtain

the same estimate for the singular numbers of the operator H0.

Next, we consider the operator Hn corresponding to some term in (4.1) with |n| > 0. The

kernel Hn(X,Y,X − Y ) = K(X,Y,X − Y )(X − Y )n is smooth for X �= Y and has homogeneity

of order θ + |n| in X − Y , so it is larger than the homogeneity order which K has. Since the

function Φn(X) is bounded, the weight function F1(X)Φn(X) belongs to the same space of

weights as F1. By Corollary 3.1, this gives us the spectral estimate

n(λ,Hn) = o(λ− 2α
2l−N+2α ).

Finally, we consider the remainder term for H; namely,

H(m)(X,Y,X − Y ) = Φ(m)(X,Y )K(X,Y,X − Y )

in (4.1). By our assumptions, the function Φ(m) is Cm smooth outside the diagonal X = Y .

Therefore, the same is valid for the product Φ(m)K. As for the diagonal X = Y, the function
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Φ(m)(X,Y ) has zero of order m as X → Y . Therefore, the product H(m) = Φ(m)K has zero of

order not less than N+ |θ|, and Proposition 4.2 gives the required singular number estimate as

soon as m is taken large enough.

In the matrix case, we can consider both left and right multipliers:

M[Φ�,Φr]K = Φ�(X,Y )K(X,Y,X − Y )Φr(X,Y ),

with matrix functions Φ�(X,Y ) and Φr(X,Y ) of proper size. The reasoning above carries over

to this case automatically.

Here, we used the arbitrariness in the choice of weights in the proof above: we could incor-

porate a not sufficiently smooth factor in the kernel into the weight function. We return to this

pattern below, when we consider multipliers in asymptotic formulas.

5 Eigenvalue Asymptotics

Following the basic strategy of using perturbation approach, we can establish asymptotic

formulas. We consider the selfadjoint case, so the entries in the operator K in (1.2) satisfy the

following conditions:

K(X,Y,X − Y ) = K(Y,X, Y −X)∗, F1(X) = F2(X)∗,

where the symbol ∗ denotes the complex conjugation in the scalar case and the matrix conjuga-

tion in the vector case.

We suppose that the Hermitian kernel K(X,Y,X −Y ) is smooth for Y �= X and admits the

asymptotic expansion in homogeneous functions as in Section 2 with the leading homogeneity

order −θ > −N. Let Γ ⊂ T
N be a Lipschitz surface in T

N of dimension d < N and codimension

d = N − d. For a measure μ we take the Hausdorff measure H d on the surface Γ, so M = Γ.

We assume that the surface is locally described by the equation y = ϕ(x) in the coordinates

X = (x, y), where x ∈ U ⊂ R
d, y ∈ R

d, and ϕ is a vector-valued function with d components.

In the coordinates X = (x, y), the measure μ is described by

μ(dx) = det(111 + (∇ϕ)∗(∇ϕ))1/2dx.

The measure μ belongs to Pα, α = d with constants A (μ) and B(μ) determined by the

surface Γ globally. We suppose that the kernel K(X,Y,X − Y ) with leading homogeneity

order −θ satisfies the assumptions of Theorems 3.1. We also suppose that the weight function

F = F1 = F ∗
2 satisfies the assumptions of Theorem 3.2 under some factorization as well.

To write asymptotic formulas for eigenvalues, it is convenient to use the pseudodifferential

representation: the integral operator with kernel K(X,Y,X − Y ) in R
N is a pseudodifferential

operator K of order −l = −N + θ. Following [5], we suppose that l > d. The principal symbol

of K, k0(X,Ξ), is the regularized Fourier transform of the leading term K0(X,X,X − Y ) of the

kernel in the last variable (see details in [3, 10, 11] and Section 2).

We recall the expression for the coefficient in the asymptotic formula (see [12, 5]). By the

Rademacher theorem, at H d-almost all points X on Γ, there exists the tangent d-dimensional

space TXΓ. We identify TXΓ with the cotangent space T∗
XΓ. Similarly, NXΓ denotes the normal
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d-dimensional space to Γ (identified with the conormal one). For such points X we define the

symbol of order −l + d < 0 on Γ

r0(X, ξ) = (2π)−d

∫

NXΓ

k0(X; ξ, η)dη, (X, ξ) ∈ T∗
XΓ,

and the density

ρ±K (X) =

∫

SXΓ

|F (X)|2σr0(X, ξ)σ±dξ, σ =
d

l − d
, (5.1)

where r0(X, ξ)± are the positive and, respectively, negative parts of the symbol r0(X, ξ),

r0(X, ξ)± =
1

2
(|r0(X, ξ)| ± r0(X, ξ)).

The eigenvalue asymptotics result for a smooth kernel is the following.

Theorem 5.1. Under the above conditions, for the eigenvalues of T = T[μ,K, F, F ∗] the
following asymptotic formulas hold:

n±(λ,T) ∼ λ−2σA±, λ → 0, (5.2)

with coefficient

A± =
1

d(2π)d−1

∫

Γ

ρ±K (X)μ(dX). (5.3)

Proof. The proof is similar to that of Theorem 6.2 in [5] or Theorem 6.4 in [12]. We explain

the main steps, not going into technical details.

We first suppose that the weight function F is the restriction to Γ of a function F̃ defined

and smooth in T
N. Then we can incorporate F and F ∗ into the kernel K, keeping it smooth.

Then the result is contained in [12, Theorem 6.4]. Further, for a general weight F satisfying the

assumptions of the theorem, we can approximate it in the proper integral norm on Γ (namely,

L2σ,μ, L
2Ψ,μ, L2,μ depending on the case in Theorem 3.2) by a function F(ε) admitting an exten-

sion as a smooth function in T
N. The construction of such an approximation is described in [7,

Lemma 6.1]. By Theorem 3.1, this approximation leads to the smallness of the coefficient in

the asymptotic eigenvalue estimates for the difference T[μ,K, F, F ∗]−T[μ,K, F(ε), F
∗
(ε)]. By the

standard application of the asymptotic perturbation lemma (see, for example, Theorem 4.1 in

[2] or Lemma 6.1 in [12]), we pass to the limit in the eigenvalue asymptotic formula for F(ε) as

ε → 0, which gives (5.1).

Remark 5.1. One might be tempted to refer directly to the eigenvalue asymptotics results

in [5]. However, the situation is not that simple. The eigenvalue asymptotics in [5] was proved

for operators of the form A∗(V μ)A, where A is a negative order pseudodifferential operator and

μ is a singular measure. Passing to integral operators, as in the present paper, we arrive at the

study of eigenvalues for (V 1/2μ)AA∗(V 1/2μ). Here, K = AA∗ is a nonnegative pseudodifferential

operator. Therefore, the analysis of the operator (V 1/2μ)K(V 1/2μ) when K is not sign-definite

does not pass through. Therefore, we need to refer to the results in [12] and perform an additional

approximation.
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Remark 5.2. The approach we use in Theorem 5.1 can be applied to operators acting

in the spaces of vector-valued functions. Formally, the required results in [11, 12, 5] are not

presented in the vector case, but they automatically follow without additional consideration.

What is important here is that the basic results on the eigenvalue asymptotics for negative order

pseudodifferential operators are stated and proved in [10] in the vector case. The asymptotic

formulas in the vector case coincide with (5.2), but the expressions (5.3) for the asymptotic

coefficients A± should be replaced with their matrix versions. Namely, in the matrix case, the

expression for the density in (5.1) should be replaced with

ρ±K (X) =

∫

SXΓ

Tr{[F (X)r0(X, ξ)F ∗(X)]σ±}dξ, (5.4)

with further calculation of the coefficients A± by means of (5.3). In (5.4), the subscript ±
means the positive (respectively, negative) part of the corresponding matrix, so the expression

on the right-hand side means that the proper (positive or negative) part of the Hermitian matrix

F (X)r0(X, ξ)F ∗(X) is first found, then it is raised to the power σ, and then the trace of the

resulting matrix is calculated to be further integrated over the cotangent sphere SXΓ.

6 Multipliers in Eigenvalue Asymptotics

In Section 5, the conditions imposed on the kernel K(X,Y,X −Y ) require it to be infinitely

smooth for X �= Y . The following reasoning involving multipliers allows us to reduce these

smoothness conditions. Our results are not optimal since the regularity conditions imposed on

the multiplier Φ may be weakened by using the full strength of multiplier theory due to Birman

and Solomyak. We restrict ourselves to a rather technically simple setting to keep the paper

more elementary.

Let K(X,Y,X − Y ) be a polyhomogeneous kernel of order −θ > −N, smooth for X �= Y .

Suppose that Γ is a Lipschitz surface in T
N of dimension d � 1 and codimension d � 1 with

surface measure μ. Let F (X), X ∈ Γ be a weight function satisfying the assumptions of Theorem

5.1. We assume that the multiplier Φ(X,Y ) is a function of class C2m in a neighborhood of

Γ× Γ, 2m > 2m+ |θ|. We consider the transformed Hermitian kernel

KΦ(X,Y,X − Y ) = Φ(X,Y )K(X,Y,X − Y )Φ(Y,X)∗.
Theorem 6.1. Under the above conditions, for the integral operator

KΦ : u(X) �→
∫

Γ

F (X)KΦ(X,Y,X − Y )F (Y )∗u(Y )μ(dY )

the eigenvalue asymptotics (5.2) holds with the coefficient A± calculated by means of (5.3) with

F (X) replaced by F (X)Φ(X,X).

Proof. The reasoning follows the pattern used in Theorem 4.1. We consider the starting

fragment of the Taylor expansion of the multiplier Φ(X,Y ) in X − Y at the point Y = X

Φ(X,Y ) = Φ(X,X) +
∑

1�|nY |�m

(nX !)−1Φ
(nY )
Y (X,X)(Y −X)nY +Φ(m)(X,Y ), (6.1)
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where the remainder Φ(m)(X,Y ) is a function in Cm satisfying Φ(N)(X,Y ) = o(|X − Y |m+|θ|),
as X − Y → 0. Similarly, Φ(Y,X)∗ is expanded as

Φ(Y,X)∗ = Φ(Y, Y )∗ +
∑

1�|nX |�m

(nX !)−1Φ
(nX)
X (Y, Y )∗(X − Y )nX +Φ(m)(Y,X)∗. (6.2)

Using (6.1) and (6.2), we represent KΦ(X,Y,X − Y ) as the sum of three terms

KΦ(X,Y,X − Y ) = Φ(X,X)K(X,Y,X − Y )Φ(Y, Y )∗ +K
(m)
Φ +

˜
K

(m)
Φ , (6.3)

where

K
(m)
Φ (X,Y,X − Y )

=
∑

|nX |,|nY |�m,

|nX |+|nY |>0

1

nX !

1

nY !
Φ
(nY )
Y (X,X)(Y −X)nY K(X,Y,X − Y )(Φ∗)(nX )

X (Y, Y )(Y −X)nX (6.4)

and
˜
K

(m)
Φ contains the remainder terms in the expansions (6.1) and (6.2). The first term in

(6.4), the product F (X)Φ(X,X)K(X,Y,X − Y )Φ(Y, Y )∗F ∗(Y ) can be regrouped as

(F (X)Φ(X,X))K(X,Y,X − Y )(Φ(Y, Y )∗F (Y )∗).

This means that the corresponding integral operator can be considered as the one with the same

smooth kernel K(X,Y,X − Y ), but with a different weight function F (X)Φ(X,X) instead of

F (X). Since the function Φ(X,X) is bounded, the new weight F (X)Φ(X,X) belongs to the

same space of integrable functions as F (X). Therefore, the eigenvalue asymptotics theorem can

be applied to the integral operator under consideration, which gives the declared expression for

the asymptotic coefficients.

In the second term in (6.3), a single summand has up to a constant the form

Φ
(nY )
Y (X,X)(Y −X)nY K(X,Y,X − Y )(Φ∗)(nX )

X (Y, Y )(X − Y )nX . (6.5)

Here, the product K(X,Y,X − Y )(Y − X)nX+nY is smooth for X �= Y and has a weaker

singularity thanK asX−Y → 0. The derivatives Φ
(nY )
Y (X,X) and Φ

(nX)
X (Y, Y ) are bounded and

can be incorporated in the weight functions F (X) and F ∗(Y ). Therefore, for the corresponding

integral operator, by Corollary 3.1, the singular number estimate holds with a faster eigenvalue

decay rate.

Finally, in the third term in (6.3), in each summand, the remainder in the Taylor expansion

of the multiplier Φ is present. Such a remainder has zero of high order at X = Y, together with

derivatives. Therefore, the product ofK(X,Y,X−Y ) with such a remainder has bounded deriva-

tives of sufficiently high order and, by Proposition 4.2, the corresponding operator has arbitrarily

fast decaying singular numbers as soon as the order of the derivatives is sufficiently high.

Remark 6.1. Similar to Remark 5.2, the above result on the multipliers in eigenvalue

asymptotics can be automatically extended to the vector case. Here, the multiplier Φ(X,Y ) is

a k× k matrix and the transformed kernel has the form

KΦ(X,Y,X − Y ) = Φ(X,Y )K(X,Y,X − Y )Φ(Y,X)∗. (6.6)

The reasoning in proving the asymptotic formula for eigenvalues is the same as in Theorem 6.1.
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