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In this paper we consider a continuous-time autoregressive moving average (CARMA) pro-
cess driven by either a symmetric α-stable Lévy process with α ∈ (0,2) or a symmetric Lévy
process with finite second moments. In the asymptotic framework of high-frequency data
within a long time interval, we establish a consistent estimate for the normalized power trans-
fer function by applying a smoothing filter to the periodogram of the CARMA process. We use
this result to propose an estimator for the parameters of the CARMA process and exemplify
the estimation procedure by a simulation study.
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1 Introduction

In this paper we investigate continuous-time ARMA (CARMA) processes Y = (Yt)t∈R in the spectral do-
main and propose an estimator for the model parameters. For an overview and a comprehensive list of
references on CARMA processes and their applications in several fields such as signal processing and con-
trol, econometrics and financial mathematics, we refer to [2, 9, 13]. The driving force of a CARMA process
is a Lévy process (Lt)t∈R. A Lévy process (Lt)t≥0 is defined (cf. [28]) to satisfy L0 = 0 a.s., (Lt)t≥0 has
independent and stationary increments and the paths of (Lt)t≥0 are stochastically continuous. An extension
of a Lévy process (Lt)t≥0 from the positive to the hole real line is given by Lt := Lt1{t≥0}− L̃−t−1{t<0}
for t ∈ R, where (L̃t)t≥0 is an independent copy of (Lt)t≥0. Prominent examples are Brownian motions
and stable Lévy processes. In this paper we restrict our attention to symmetric stable Lévy processes and
symmetric Lévy processes with finite second moments. Then a CARMA process can be interpreted (its
formal definition is given in Section 2) as a solution to the p-th order stochastic differential equation

a(D)Yt = c(D)DLt , t ∈ R, (1.1)

where D denotes the differential operator with respect to t and

a(z) := zp +a1zp−1 + . . .+ap and c(z) := c0zq + c1zq−1 + . . .+ cq
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are the autoregressive and the moving average polynomial, respectively. Hence, CARMA processes can be
seen as the continuous-time analog of (discrete-time) ARMA processes. From a statistical point of view,
the so-called power transfer function

Ψ(ω) :=
|c(iω)|2

|a(iω)|2
, ω ∈ R, (1.2)

which corresponds (up to a constant) to the classical spectral density in the finite-variance case, is of
central interest since it determines the model completely. The zeros of Ψ contain the zeros of c(i ·), and
hence, provided that the sign of the real part of any zero of c(·) is supposed to be known, one can identify
uniquely the coefficients of the moving average polynomial from the power transfer function Ψ. Likewise
the zeros of Ψ−1 characterize completely the coefficients of the autoregressive polynomial if one assumes
to know the sign of the real parts of the zeros of a(·). From this it is obvious that, under causality and
invertibility assumptions on the CARMA process, estimators for the power transfer function can be used to
construct estimators for the coefficients of a and c.

The empirical version of the power transfer function (spectral density) is in the finite second moment case
the periodogram. In [15] we have investigated the limit behavior of normalized and self-normalized ver-
sions of the periodogram of high-frequency sampled symmetric α-stable CARMA processes. In this paper
we assume again that we observe the CARMA process Y only at equidistant time points {0, ∆n, 2∆n, . . . , n∆n}
where ∆n > 0 is small, as used for modelling high-frequency data appearing in turbulence and finance (cf.
[7, 13]), and n ∈ N is the total number of observations. More precisely, our asymptotic results hold under

Assumption 1. We suppose that simultaneously ∆n→ 0 and n∆n→ ∞ as n→ ∞.

The normalized periodogram of the sampled sequence Y ∆n := (Yk∆n)k∈Z at frequency ω ∈ [−π,π] is
given by

In,Y ∆n (ω) =
∣∣∣n−1/α

n

∑
k=1

Yk∆n e−iωk
∣∣∣2, (1.3)

where for finite-variance CARMA processes we have α = 2 and for α-stable CARMA processes α is the
index of stability. A self-normalized alternative, no longer depending on α , is given for ω ∈ [−π,π] by

În,Y ∆n (ω) =
In,Y ∆n (ω)

n−2/α
∑

n
k=1 Y 2

k∆n

=

∣∣∣∑n
k=1 Yk∆n e−iωk

∣∣∣2
∑

n
k=1 Y 2

k∆n

. (1.4)

As stated in [15, Theorems 3.5 and 3.10], both the normalized as well as the self-normalized periodogram
are not consistent estimators for the power transfer function if the Lévy process is α-stable, α ∈ (0,2].
The limit distribution is a function of an α-stable random vector which reduces in the finite-variance case
to an exponential distribution. We will generalize these results to finite-variance CARMA processes and
to a very general high-frequency grid distance ∆n. The limit results for high-frequency sampled finite-
variance CARMA processes are analog to the results for finite-variance CARMA processes sampled at an
equidistant time grid as derived in [14].

However, by applying linear smoothing filters to the periodogram consistent estimators for the (normal-
ized) power transfer function can be constructed which is the main topic of this paper. We will consider the
class of estimators of the form

Tn,Y ∆n (ω) = ∑
|k|≤mn

Wn(k) In,Y ∆n (ωk) (1.5)

and
T̂n,Y ∆n (ω) = ∑

|k|≤mn

Wn(k) În,Y ∆n (ωk) (1.6)

where
ωk = ω +

k
n
, |k| ≤ mn, (1.7)
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and (mn)n∈N is a sequence in N satisfying

Assumption 2. We suppose that simultaneously mn→ ∞ and mn
n∆n
→ 0 as n→ ∞.

The sequence of weight functions Wn : Z→ R is specified by

Wn(k) =Wn(−k), Wn(k)≥ 0, ∀k ∈ N, (1.8a)

∑
|k|≤mn

Wn(k) = 1, ∀n ∈ N, (1.8b)

max
|k|≤mn

W 2
n (k) = o

(
1

mn

)
as n→ ∞. (1.8c)

On the one hand, we will show that the sequence of smoothed self-normalized periodograms ∆n T̂n,Y ∆n (ω∆n)
is a consistent estimator for the normalized power transfer function. This result is in analogy to the one for
ARMA models in discrete time obtained by Klüppelberg and Mikosch in [22]. On the other hand, for
finite-variance CARMA processes the smoothed normalized periodograms ∆n Tn,Y ∆n (ω∆n) provide consis-
tent estimators for the 2π-multiple of the spectral density, as well.

Thereafter, these results are used to develop an estimator for the parameters of the CARMA process.
Our heuristic will basically consist of a constrained nonlinear least squares problem where the constraints
come from the (necessary) additional assumption of causality and invertibility of the CARMA process.
The estimator is then given as the best, in terms of least squares, (normalized) rational approximation
for the smoothed periodogram values. It is an alternative to the ones presented in [4, 5, 18] working for
both finite-variance and stable CARMA processes with infinite second moments. The Gaussian quasi-
maximum-likelihood estimation has been derived in [5, 29] for Lévy-driven (multivariate) CARMA pro-
cesses with finite second moments. In [18] a heuristic study of the estimation of stable CARMA(2,1) pro-
cesses is presented. A nonparametric estimator for the kernel function of a CARMA process is proposed
in [6], and for Ornstein-Uhlenbeck processes, which are CARMA(1,0) processes, an efficient estimator
for the mean reversion parameter of the Ornstein-Uhlenbeck model has been obtained in [4, 19] by using
methods of [11]. Compared to the other estimators the new contribution of this paper is that the estimator
performs well for both finite-variance and infinite-variance models and we are able to estimate both the
autoregressive and the moving average polynomial.

The paper is structured in the following way. In Section 2 we recall the formal definition of a Lévy-driven
CARMA process and present some assumptions and notations of the paper. The main results are stated in
Section 3. These include the asymptotic behavior of the different smoothed periodogram versions and of
the periodogram itself. The topic of Section 4 is then the statistical inference for the model parameters of a
CARMA process, illustrated by a simulation study for a CARMA(2,1) process. Finally, Section 5 contains
the proofs.

Notation

We use N∗ and R∗ for the natural and real numbers, respectively, excluding zero and Z for the integers.
For the minimum of two real numbers a, b ∈R we write shortly a∧b and for the maximum a∨b. The real
and imaginary part of a complex number z ∈ C is written as ℜ(z) and ℑ(z), respectively, and its complex
conjugate as z. For two sequences (an)n∈N and (bn)n∈N we say an ∼ bn as n→ ∞ if limn→∞ an/bn = 1. The
transpose of a matrix M is written as MT and the m-dimensional identity matrix shall be denoted by Im. On
K ∈ {R,C} the Euclidean norm is denoted by | · | whereas on Km it will be usually written as ‖ · ‖. For two

random variables X and Y the notation X D
= Y means equality in distribution. If we consider a sequence of

random variables (Xn)n∈N, we denote convergence in probability to some random variable X by Xn
P→ X as

n→ ∞ and convergence in distribution by Xn
D→ X as n→ ∞.
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2 Preliminaries

2.1 Lévy-driven CARMA Processes

We recall the definition of an α-stable random variable and then present the notation which we use through-
out the paper for the underlying driving Lévy process.

Definition 2.1. A real-valued random variable Z is called symmetric α-stable (SαS) with index of stability
α ∈ (0,2], if its characteristic function is of the form

ΦZ(u) = E [exp{iuZ}] = exp
{
−σ

α |u|α
}
, u ∈ R,

for some σ ≥ 0. The parameter σ is called scale parameter. A symmetric α-stable Lévy process (Lt)t∈R
with scale parameter σL is a Lévy process where L1 is SαS with scale parameter σL.

In particular a S2S random variable is normally distributed and a 2-stable Lévy process is a Brownian
motion. For the driving Lévy process we use the following notation.

Definition 2.2. Let α ∈ (0,2] and σL ≥ 0. By L(α, σL) we denote a symmetric Lévy process that is either

(i) α-stable with scale parameter σL if α ∈ (0,2), or

(ii) satisfies E
[
L2

1
]
= σ2

L if α = 2.

A CARMA process driven by L(α, σL) is then defined as follows. Assume that we have given p, q ∈
N, p > q, and a1, . . . , ap, c0, . . . , cq ∈ R, ap, c0 6= 0, let

A :=


0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
−ap −ap−1 . . . . . . −a1

 ∈ Rp×p

and let (Xt)t∈R be a strictly stationary solution to the stochastic differential equation

dXt = AXt dt + ep dLt , t ∈ R, (2.1a)

where ep denotes the p-th unit vector in Rp. Then the process

Yt := cT Xt , t ∈ R, (2.1b)

with c= (cq, cq−1, . . . , cq−p+1)
T (where we use the convention c j = 0 for j < 0) is said to be a CARMA pro-

cess of order (p, q). Necessary and sufficient conditions for the existence of a strictly stationary CARMA
process are given in [8]. In this paper we will suppose

Assumption 3. The eigenvalues λ1, . . . , λp of A are distinct and possess strictly negative real parts.

Under this assumption, the solution for the state process in (2.1a) is unique, strictly stationary, causal
and can be written as

Xt =
∫ t

−∞

e(t−s)Aep dLs, t ∈ R. (2.2a)

Hence, the CARMA process Y can also be expressed as a Lévy-driven moving average process Yt =∫
∞

−∞
g(t− s)dLs, t ∈ R, with kernel function

g(t) = cT etAep1[0,∞)(t). (2.2b)

Notably the CARMA process can be interpreted as solution of the stochastic differential equation given in
(1.1).
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2.2 Decomposition of the Smoothed (Self-Normalized) Periodogram

Before stating the main results, we derive a series representation of the sampled sequence Y ∆n driven by
a Lévy process L(α,σL) as in Definition 2.2. We use this representation for a suitable decomposition of
the Fourier transform of Y ∆n and its associated smoothed (self-normalized) periodogram. Recall that the
discrete Fourier transform is given by Fn,Y ∆n (ω) := n−1/α

∑
n
k=1 Yk∆n e−iωk for any ω ∈ [−π,π].

It is well known that every solution to (2.1a) satisfies

Xt = e(t−s)AXs +
∫ t

s
e(t−u)Aep dLu, ∀s, t ∈ R, s < t.

Then, under Assumption 3, we have by iteration that the state process X at time point k∆n can be written in
the series representation

Xk∆n =
∞

∑
j=0

e j∆nA
ξ
∗
n,k− j ep, k ∈ Z, (2.3)

with the Rp×p-valued noise sequence

ξ
∗
n,k :=

∫ k∆n

(k−1)∆n

e(k∆n−s)AdLs, n ∈ N, k ∈ Z. (2.4)

We define, for any ω ∈ [−π,π],

Un, j(ω) :=
n− j

∑
k=1− j

ξ
∗
n,k e−iωk−

n

∑
k=1

ξ
∗
n,k e−iωk,

Kn,∆n(ω) :=
∞

∑
j=0

e j(∆nA−iωIp)Un, j(ω),

Mn,∆n(ω) :=
(

Ip− e−iω · e∆nA
)−1 n

∑
k=1

ξ
∗
n,k e−iωk, (2.5)

Jn,∆n
(ω) := cT Mn,∆n(ω)ep and

Rn,∆n(ω) := Jn,∆n
(ω) · cT Kn,∆n(ω)ep + cT Kn,∆n(ω)ep · Jn,∆n

(ω)+
∣∣cT Kn,∆n(ω)ep

∣∣2 .
The series representation of the state process X in Eq. (2.3) then immediately yields the following decom-
position for the Fourier transform of the sampled sequence Y ∆n

n
1
α Fn,Y ∆n (ω) =

n

∑
k=1

Yk∆n e−iωk = cT

(
n

∑
k=1

∞

∑
j=0

e j∆nA
ξ
∗
n,k− j e−iωk

)
ep

= cT

(
∞

∑
j=0

e j(∆nA−iωIp)
n

∑
k=1

ξ
∗
n,k e−iωk

)
ep + cT

(
∞

∑
j=0

e j(∆nA−iωIp)Un, j(ω)

)
ep

= cT Mn,∆n(ω)ep + cT Kn,∆n(ω)ep = Jn,∆n
(ω)+ cT Kn,∆n(ω)ep (2.6)

and hence, we may split the smoothed (self-normalized) periodogram in a main, limit-determining, part
and a vanishing rest term (cf. upcoming Propositions 3.3 and 3.4):

T̂n,Y ∆n (ω) = ∑
|k|≤mn

Wn(k)

∣∣∣∑n
u=1 Yu∆n e−iωku

∣∣∣2
∑

n
u=1 Y 2

u∆n

(2.6)
= ∑
|k|≤mn

Wn(k)

∣∣∣Jn,∆n
(ωk)+ cT Kn,∆n(ωk)ep

∣∣∣2
∑

n
u=1 Y 2

u∆n

= ∑
|k|≤mn

Wn(k)

∣∣∣Jn,∆n
(ωk)

∣∣∣2
∑

n
u=1 Y 2

u∆n

+ ∑
|k|≤mn

Wn(k)
Rn,∆n(ωk)

∑
n
u=1 Y 2

u∆n

. (2.7)
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3 Limit Behavior of the Smoothed Periodogram

Our main limit theorem is the following:

Theorem 3.1. Suppose α ∈ (0,2], σL > 0 and let Y ∆n = (Yk∆n)k∈Z denote the sampled sequence of a
non-trivial CARMA(p,q) process driven by the Lévy process L(α, σL) as in Definition 2.2. Moreover, As-
sumptions 1 to 3 may hold, and assume that the weight functions Wn satisfy (1.8). Then the smoothed
self-normalized periodogram as in Eq. (1.6) satisfies for any ω ∈ R∗,

∆n T̂n,Y ∆n (ω∆n)
P→ |c(iω)|2∫

∞

0 g2(s)ds · |a(iω)|2
as n→ ∞,

where g is the kernel function of the CARMA process (see (2.2b)), i.e., the smoothed self-normalized peri-
odogram is a weakly consistent estimator for the normalized power transfer function.

For α = 2 the normalization n−1
∑

n
k=1 Y 2

k∆n
converges in probability, as n→ ∞, to

∫
∞

0 g2(s)ds ·σ2
L (cf.

[13, Theorem 5.5(a)]) such that a direct conclusion is

Corollary 3.2. Under the same assumptions as in Theorem 3.1, suppose in addition that α = 2. Then the
smoothed normalized periodogram as in Eq. (1.5) satisfies for any ω ∈ R∗,

∆n Tn,Y ∆n (ω∆n)
P→ σ

2
L ·
|c(iω)|2

|a(iω)|2
as n→ ∞,

i.e., the smoothed normalized periodogram is a weakly consistent estimator for the 2π-multiple of the
spectral density.

The proof of Theorem 3.1 will be divided into two parts. The first one shows that the main part in (2.7)
converges to the normalized power transfer function as n→ ∞.

Proposition 3.3. Under the same assumptions as in Theorem 3.1 we have for any ω ∈ R∗,

∆n ∑
|k|≤mn

Wn(k)

∣∣∣Jn,∆n
((ω∆n)k)

∣∣∣2
∑

n
u=1 Y 2

u∆n

P→ |c(iω)|2∫
∞

0 g2(s)ds · |a(iω)|2
as n→ ∞,

where Jn,∆n
( · ) has been defined in (2.5).

The second part shows that the rest term in (2.7) vanishes as n→ ∞.

Proposition 3.4. Suppose α ∈ (0,2], σL > 0 and let Y ∆n = (Yk∆n)k∈Z denote the sampled sequence of
a non-trivial CARMA(p,q) process driven by the Lévy process L(α, σL) as in Definition 2.2. Moreover,
Assumptions 1 to 3 may hold, and assume that the weight functions Wn satisfy (1.8a) and (1.8b). Then we
have for any ω ∈ R∗,

∆n ∑
|k|≤mn

Wn(k)
Rn,∆n((ω∆n)k)

∑
n
u=1 Y 2

u∆n

P→ 0 as n→ ∞,

where Rn,∆n( · ) has been defined in (2.5).

In Theorem 3.1 we have shown that the smoothed self-normalized periodogram provides consistent
estimates for the (normalized) power transfer function of symmetric α-stable as well as finite-variance
CARMA processes. Recall that normalized and self-normalized periodogram versions have been investi-
gated in [15] under more restrictive assumptions on ∆n than here. Moreover, in that paper only the Gaussian
case has been studied but not the general finite-variance setting. Therefore, the following theorem should
be seen as an extension of the results in [15]. It concerns the limit behavior of the normalized periodogram
including finite-variance CARMA processes.
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Theorem 3.5. Suppose α ∈ (0,2], σL > 0 and let Y ∆n = (Yk∆n)k∈Z denote the sampled sequence of a
non-trivial CARMA(p,q) process driven by the Lévy process L(α, σL) as in Definition 2.2. Moreover, As-
sumptions 1 and 3 may hold. Then the periodogram as in (1.3) satisfies for any ω ∈ R∗,

∆
2− 2

α
n In,Y ∆n (ω∆n)

D→ |c(iω)|2

|a(iω)|2
·
∣∣∣∣∫

[0,1)
e2πi s dL∗s

∣∣∣∣2 as n→ ∞,

where (L∗t )t≥0 is a symmetric α-stable Lévy process with scale parameter σL if α ∈ (0,2) and for α = 2 it
is a symmetric Brownian motion with Var(L∗1) = σ2

L .

A direct conclusion is the asymptotic behavior of the periodogram for finite-variance CARMA processes.

Corollary 3.6. Let the assumptions of Theorem 3.5 hold and suppose α = 2. Then the normalized peri-
odogram as in (1.3) satisfies for any ω ∈ R∗,

∆n In,Y ∆n (ω∆n)
D→ σ

2
L ·
|c(iω)|2

|a(iω)|2
·
(

N2
1

2
+

N2
2

2

)
as n→ ∞,

where N1 and N2 are i.i.d. standard normal random variables, and the self-normalized periodgram as in
(1.4) satisfies for any ω ∈ R∗,

∆n În,Y ∆n (ω∆n)
D→ |c(iω)|2∫

∞

0 g2(s)ds · |a(iω)|2
·
(

N2
1

2
+

N2
2

2

)
as n→ ∞,

where g is the kernel function of the CARMA process (see (2.2b)).

From Proposition 3.4 we know already that the rest term in (2.7) with Wn(0)= 1 and Wn(k)=Wn(−k)= 0
for k ∈ N vanishes. These weights do not satisfy (1.8c), but obviously (1.8a) and (1.8b). The next proposi-
tion investigates the main part.

Proposition 3.7. Under the same assumptions as in Theorem 3.5 we have for any ω ∈ R∗,

∆
2− 2

α
n n−

2
α

∣∣∣Jn,∆n
(ω∆n)

∣∣∣2 P→ |c(iω)|2

|a(iω)|2
·
∣∣∣∣∫

[0,1)
e2πi s dL∗s

∣∣∣∣2 as n→ ∞,

where Jn,∆n
( · ) has been defined in (2.5) and (L∗t )t≥0 is as in Theorem 3.5.

Remark 3.8.

(i) As already mentioned above, in [15] the general finite-variance case has not been considered. In this
spirit, Theorem 3.5 and Corollary 3.6 should be seen as an extension of [15, Theorems 3.5 and 3.10],
although we have stated only the univariate limit distributions for the normalized and self-normalized
periodogram here. However, it seems to be possible to derive also the limit behavior for different
frequencies. In this case, the limit depends again on the dependence structure of those frequencies if
α < 2, cf. [15, Section 2.2]. As in the Gaussian case (cf. [15, Remark 3.6(ii)]) different periodogram
ordinates of finite-variance CARMA models are asymptotically independent.

(ii) Theorem 3.5 (and its proof) confirms our conjecture in [15, Remark 3.7], namely that the assump-
tion n∆

β
n → ∞ with β = max{1+δ ,α(p−1)+max{0,1−α}} for some δ > 0 is not necessary

for the limit results of normalized and self-normalized periodogram versions of symmetric α-stable
CARMA processes. Instead, supposing n∆n → ∞ as n→ ∞ is already sufficient. Note that, anyway,
the partition of the periodogram used in [15] provides deeper insight into structural properties of
CARMA processes in the frequency domain and therein lay the necessity for the stronger condition
on the observation grid (cf. also [15, Proof of Proposition 3.2 and Remark 3.7]).

(iii) We want to compare the limit results for the high-frequency sampled finite-variance CARMA process
Y ∆n with the results for a finite-variance CARMA process sampled at an equidistant time grid Y ∆ =
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(Yk∆)k∈Z for some ∆ > 0 fixed. For that, let fY ∆n denote the spectral density of Y ∆n , fY ∆ the spectral
density of Y ∆ and finally

fY (ω) =
σ2

L
2π

|c(iω)|2

|a(iω)|2
, ω ∈ R,

the spectral density of the continuous-time process Y . Moreover, the periodogram of the sampled
sequence Y ∆ is denoted by In,Y ∆(ω) =

∣∣n−1/2
∑

n
k=1 Yk∆ e−iωk

∣∣2 for ω ∈ [−π,π]. A conclusion of [14,
Theorem 3.1] for the equidistant sampling is that for any ω ∈ (−π/∆,0)∪ (0,π/∆),

In,Y ∆(ω∆)

fY ∆(ω∆)

D→ 2π

(
N2

1
2

+
N2

2
2

)
as n→ ∞,

and of Corollary 3.6 and [15, Eq. (1.5)] for the high-frequency time sampling that for any ω ∈ R∗,

In,Y ∆n (ω∆n)

fY ∆n (ω∆n)

D→ 2π

(
N2

1
2

+
N2

2
2

)
as n→ ∞.

Surprisingly the structure of the limit results is the same and will be of advantage for statistical infer-
ence. The similarities suggest that the rate of convergence of ∆n has no influence on the asymptotic
behavior. �

4 Estimation of the CARMA Parameters

In this section we propose a (spectral) estimation procedure for the autoregressive (AR) and moving average
(MA) parameters of a CARMA process, based on Theorem 3.1 and Corollary 3.2. We will exemplify our
method by a simulation study for the CARMA(2,1) case.

Let α ∈ (0,2], σL > 0 and Y ∆n = (Yk∆n)k∈Z be the sampled sequence of a non-trivial CARMA(p,q)
process driven by the Lévy process L(α, σL) as in Definition 2.2. W.l.o.g. we assume in the following
that c0 = 1 (note that multiplying the MA polynomial by constants is equivalent to multiplying the scale
parameter σL of the underlying Lévy process by the same factor). Thus its MA and AR polynomials are
given by

c(z) := zq + c1zq−1 + . . .+ cq =
q

∏
k=1

(z−µk) and a(z) := zp +a1zp−1 + . . .+ap =
p

∏
j=1

(z−λ j) ,

where µ1, . . . ,µq denote the zeros of c and λ1, . . . ,λp, as usual, the zeros of a. The corresponding normalized
power transfer function (cf. (1.2)) can be written as

C ·Ψ(ω) =C · ∏
q
k=1

(
ω2−2ℑ(µk)ω + |µk|2

)
∏

p
j=1 (ω

2−2ℑ(λ j)ω + |λ j|2)
=C · ∏

q
k=1 (ω + i µk)(ω− i µk)

∏
p
j=1 (ω + iλ j)(ω− iλ j)

, ω ∈ R,

with C−1 =
∫

∞

0 g2(s)ds (where g is as in (2.2b)).
The following example illustrates this relationship in the case of a CARMA(2,1) process.

Example 4.1 (CARMA(2,1) process). Consider a CARMA(2,1) process which is the strictly stationary
solution to (

D2 +a1D+a2
)

Yt = (D+µ)DLt , t ∈ R,

i.e. c(z) = z+µ and a(z) = z2 +a1z+a2 = (z−λ1)(z−λ2). In this case the kernel g in (2.2b) is given by

g(t) =
λ1 +µ

λ1−λ2
etλ1 +

λ2 +µ

λ2−λ1
etλ2 , t ≥ 0,
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and the normalized power transfer function can be written as

Ψ(ω)∫
∞

0 g2(s)ds
=

|c(iω)|2∫
∞

0 g2(s)ds · |a(iω)|2
=C(a1,a2,µ) ·

ω2 +µ2

ω4 +(a2
1−2a2)ω2 +a2

2
, ω ∈ R,

with C(a1,a2,µ) =
(∫

∞

0 g2(s)ds
)−1

=−2λ1λ2
λ1+λ2

µ2+λ1λ2
= 2 a1a2

µ2+a2
. �

Hence, we observe that the zeros of

Ψ̃(ω) :=C ·Ψ(−iω) =C · (−1)p−q ∏
q
k=1 (ω−µk)(ω +µk)

∏
p
j=1 (ω−λ j)(ω +λ j)

are given by µk and −µk, k ∈ {1, . . . ,q}, and the poles of Ψ̃ (i.e. the zeros of Ψ̃−1) are λ j and −λ j,
j ∈ {1, . . . , p}. Consequently, we will have to suppose

Assumption 4. The zeros µ1, . . . ,µq of the moving average and the zeros λ1, . . . , λp of the autoregressive
polynomial are all distinct and possess strictly negative real parts

in order to be able to identify the parameters of the CARMA process from its normalized power transfer
function.

Remark 4.2. Note that Assumption 3 is included in Assumption 4. Moreover, requiring that the AR zeros
λ1, . . . , λp possess strictly negative real parts is a standard assumption that ensures causality of the CARMA
process. The analog condition on the MA zeros guarantees invertibility. �

It is clear that Assumption 4 will lead to a constraint for the parameter vector θ := (a1, . . . , ap, c1, . . . , cq)
T ,

i.e. θ has to be an element of some subset Θ⊆Rp+q. The power transfer function is henceforth denoted by
Ψθ and its normalization by Cθ .

Our estimation heuristic is the following. Suppose we have observed the CARMA(p,q) process on the
time grid {∆n, . . . , n∆n} and let m ∈ N∗. Then we choose m different frequencies ω j ∈ (0,π/∆n), j =
1, . . . , m, and solve the constrained nonlinear least squares problem

θ̂ := argmin
θ∈Θ

m

∑
j=1

∣∣∣log
(
Cθ ·Ψθ (ω j)

)
− log

(
∆n T̂n,Y ∆n (ω j∆n)

)∣∣∣2 . (4.1)

Remark 4.3. Under the additional assumption of a finite fourth moment of the driving Lévy process, the
asymptotic behavior of the variance of the smoothed periodogram for ARMA models in discrete time [3,
Theorem 10.4.1] and the proof of Theorem 3.5 suggest that for ω ∈ R∗,

lim
n→∞

E
[
∆n In,Y ∆n (ω∆n)

]
= σ

2
L Ψ(ω) and (4.2)

lim
n→∞

(
∑
|k|≤mn

Wn(k)2

)−1

∆
2
n Var(Tn,Y ∆n (ω∆n)) = σ

4
L Ψ

2(ω). (4.3)

Eq. (4.3) implies that the variance of the smoothed periodogram is higher for frequencies with a high and
lower for frequencies with a low power transfer function, respectively. Together with (4.2) this suggests
to use the logarithmic transformation as a variance stabilizing technique (see also [26, Sections 2.9.1 and
6.2.4]). We have observed in our simulation study that also in the α-stable case, this transformation made
the results more reliable. �

Methods for constrained optimization and (non)linear least squares problems are discussed, for instance,
in the monographs [1, 16, 25]. We have decided to use the solver MINOS and as interface the modeling
language AMPL (see [17, 24] for the MINOS user’s guide and a general introduction to AMPL, respec-
tively). In the presence of linear constraints (which will be the case in our setting) MINOS solves (4.1)
using a reduced-gradient algorithm combined with a quasi-Newton algorithm that is described in [23].

In our example of a CARMA(2,1) process, the optimization problem (4.1) becomes the following.

9



Example 4.4 (CARMA(2,1) process). We consider again the CARMA(2,1) process as in Example 4.1.
Assumption 4 yields immediately that a1, a2, µ > 0 must hold. Hence, the (unknown) parameter vector
θ = (a1, a2, µ)T is an element of Θ := (0,∞)3. The optimization problem in (4.1) then becomesâ1

â2
µ̂

= argmin
(a1,a2,µ)

T∈(0,∞)3

m

∑
j=1

∣∣∣∣∣log
(

2a1a2

µ2 +a2

)
+ log

(
ω2

j +µ2

ω4
j +(a2

1−2a2)ω
2
j +a2

2

)
− log

(
∆n T̂n,Y ∆n (ω j∆n)

)∣∣∣∣∣
2

. (4.4)

�

Simulation Study

As announced at the beginning of this section, we will carry out a simulation study for a CARMA(2,1)
process in order to show how the estimation heuristic (4.4) performs in the finite-variance as well as in the
stable case. Our simulation study should be compared to the one in [18, Chapter 4]. Therefore, we have
chosen not only similar values of α but also comparable CARMA parameters.

For each α taking on the values 2, 1.8, 1.6, 1.4 and 1.25, we have simulated 250 different sample paths
of an α-stable CARMA(2,1) process with parameters a1 = 2, a2 = 0.1 and µ = 0.2. In the Gaussian case
(i.e. α = 2) we have chosen the standard deviation of the underlying Lévy process to be σL = 1.5 and in the
other scenarios we have fixed the same value as the scale parameter for the driving process. Every CARMA
sample path is simulated by means of an Euler approximation of the corresponding SDE in its state space
representation (cf. (2.1)). The mesh of the simulation time grid has been set to 0.01 and the number of
total time steps is equal to 150000. The observed CARMA sample, however, is chosen to be only every
10th simulated value, i.e. the CARMA process has been observed at time points {∆n, 2∆n, . . . , n∆n} with
∆n = 0.1 and n = 15000.

Note that in the Gaussian case, we can easily reformulate (4.4) as
σ̂L
â1
â2
µ̂

= argmin
(σL,a1,a2,µ)

T∈(0,∞)4

m

∑
j=1

∣∣∣∣∣2log(σL)+ log

(
ω2

j +µ2

ω4
j +(a2

1−2a2)ω2
j +a2

2

)
− log

(
∆n Tn,Y ∆n (ω j∆n)

)∣∣∣∣∣
2

by virtue of Corollary 3.2. Thus, by using the normalized smoothed periodogram in the Gaussian case, we
shall get an estimate for the standard deviation σL of the underlying Lévy process on top.

For each realized time series, we computed then smoothed periodogram values for 300 equidistant fre-
quencies ω j in the interval [0.005, 2π], i.e. ω j = 0.005+( j− 1)/299 · (2π − 0.005), j = 1, . . . , 300. Our
smoothing filter has mn = b

√
n∆nc = 38 nodes with equal weights Wn(k) = 1/(2mn + 1) = 1/77 for any

|k| ≤ mn = 38. Concerning several aspects of these (necessary) specifications in practice, we refer the
reader, for instance, to [26, Chapter 7].

Our results are reported in Table 1. As in [18], we observe that the estimates of the CARMA parameters
become better in terms of the standard deviation when α decreases. However, in terms of the bias no evident
relationship is visible. In Figure 1, we plotted smoothed periodogram values for some selected time series
in order to show the effect of the logarithmic transformation we have used (cf. also Remark 4.3).

5 Proofs

We start with three lemmata that we will need for the proofs of our main results. The third one is the
“Ornstein-Uhlenbeck version” of Proposition 3.4.

Lemma 5.1. Under the same assumptions as in Theorem 3.1 we have for any ω ∈ R∗,

1
∆n

∑
|k|≤mn

Wn(k)

∣∣∣J(1)n,∆n
((ω∆n)k)

∣∣∣2
∑

n
u=1 Y 2

u∆n

P→ |c(iω)|2∫
∞

0 g2(s)ds · |a(iω)|2
as n→ ∞,
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σL a1 a2 µ

True 1.5 2.0 0.1 0.2

α = 2
Mean 1.5127 2.0859 0.1182 0.2159
Bias 0.0127 0.0859 0.0182 0.0159

Std. dev. 0.0392 0.1204 0.0358 0.0366

α = 1.8
Mean - 2.0580 0.1108 0.2185
Bias - 0.0580 0.0108 0.0185

Std. dev. - 0.1240 0.0372 0.0378

α = 1.6
Mean - 2.0626 0.1079 0.2127
Bias - 0.0626 0.0079 0.0127

Std. dev. - 0.1130 0.0315 0.0361

α = 1.4
Mean - 2.0659 0.1101 0.2129
Bias - 0.0659 0.0101 0.0129

Std. dev. - 0.1151 0.0311 0.0329

α = 1.25
Mean - 2.0776 0.1140 0.2149
Bias - 0.0776 0.0140 0.0149

Std. dev. - 0.0928 0.0286 0.0307

Table 1: Simulation study for different values of α , based on 250 sample paths each: mean, bias and stan-
dard deviation of the estimates for the CARMA parameters.

where J(1)n,∆n
((ω∆n)k) := cT (iωIp−A)−1ep

(
∑

n
u=1 ∆L(u∆n)e−i(ω∆n)ku

)
with ∆L(u∆n) := Lu∆n−L(u−1)∆n for

any u ∈ {1, . . . ,n} and n ∈ N.

Proof. First, we note from [10, Lemma 3.1] that cT (iωIp−A)−1ep = c(iω)a(iω)−1 for any ω ∈ R and
from [15, Proposition 3.8(ii)] we obtain

n

∑
u=1

Y 2
u∆n

=
∞

∑
j=0

g2( j∆n) ·
n

∑
u=1

∆L(u∆n)
2 +oP

(
∆
−1
n (n∆n)

2
α

)
as n→ ∞.

Thus, we deduce

1
∆n

∑
|k|≤mn

Wn(k)

∣∣∣J(1)n,∆n
((ω∆n)k)

∣∣∣2
∑

n
u=1 Y 2

u∆n

=
|c(iω)|2∫

∞

0 g2(s)ds · |a(iω)|2 ∑
|k|≤mn

Wn(k)

∣∣∣∑n
u=1 ∆L(u∆n)e−i(ω∆n)ku

∣∣∣2
∑

n
u=1 ∆L(u∆n)2 ·(1+oP(1))

and it is sufficient to show that

∑
|k|≤mn

Wn(k)

∣∣∣∑n
u=1 ∆L(u∆n)e−i(ω∆n)ku

∣∣∣2
∑

n
u=1 ∆L(u∆n)2

P→ 1 as n→ ∞. (5.1)

Define Zn,u := ∆
−1/α
n ∆L(u∆n) for any n ∈ N, u ∈ Z. If α ∈ (0,2), (Zn,u)u∈Z is a sequence of i.i.d. sym-

metric α-stable random variables with scale parameter σL, and in the case α = 2 they are symmetric
satisfying E[Z2

n,u] = σ2
L for any n ∈ N, u ∈ Z. Then we write as in the proof of [21, Lemma 6.1]

∑
|k|≤mn

Wn(k)

∣∣∣∑n
u=1 ∆L(u∆n)e−i(ω∆n)ku

∣∣∣2
∑

n
u=1 ∆L(u∆n)2 = ∑

|k|≤mn

Wn(k)

∣∣∣∑n
u=1 Zn,u e−i(ω∆n)ku

∣∣∣2
∑

n
u=1 Z2

n,u

(1.8b)
= 1+ ∑

1≤u 6=s≤n

Zn,u Zn,s

∑
n
r=1 Z2

n,r
∑
|k|≤mn

Wn(k) cos((ω∆n)k(u− s))
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Figure 1: Smoothed periodogram values plotted against frequencies for five selected time series (pluses) in
the Gaussian case (on top) and the 1.6-stable case (below). The true spectral density and normal-
ized power transfer function is plotted as a solid line, respectively. The two graphs on the RHS
are the left ones on a log-log scale.

=: 1+ ∑
1≤u6=s≤n

aus(ω∆n) ·
Zn,u Zn,s

∑
n
r=1 Z2

n,r
.

Now,

E

( ∑
1≤u 6=s≤n

aus(ω∆n) ·
Zn,u Zn,s

∑
n
r=1 Z2

n,r

)2
 = 2E

[
Z2

n,1 Z2
n,2(

∑
n
u=1 Z 2

n,u
)2

]
∑

1≤u6=s≤n
a2

us(ω∆n)

= O

(
n−2

∑
1≤u6=s≤n

a2
us(ω∆n)

)

as n→ ∞, where for the first inequality we used that (Zn,u)u∈Z is a sequence of i.i.d. symmetric random
variables. The second equality follows from [21, Lemma 5.8] if α ∈ (0,2) and from the SLLN together
with the Dominated Convergence Theorem if α = 2, respectively. Hence, in order to show (5.1), it remains
to prove that for any ω ∈ R∗,

∑
1≤u6=s≤n

a2
us(ω∆n) = o(n2) as n→ ∞. (5.2)

By virtue of [21, Lemma 5.9(iv)] and Eq. (1.7) we obtain for some C > 0

∑
1≤u6=s≤n

a2
us(ω∆n) = ∑

|k1|, |k2|≤mn

Wn(k1)Wn(k2) ∑
1≤u6=s≤n

cos
(
(ω∆n)k1(u− s)

)
· cos

(
(ω∆n)k2(u− s)

)

=
1
2 ∑
−mn≤k1 6=k2≤mn

Wn(k1)Wn(k2)

 sin2
(

k1−k2
2

)
sin2

(
k1−k2

2n

) +
sin2

(
k1+k2

2 +ωn∆n

)
sin2

(
k1+k2

2n +ω∆n

) −2n


+

1
2

mn

∑
k=−mn

W 2
n (k)

{
n2 +

sin2(ωn∆n + k)
sin2(ω∆n +

k
n )
−2n

}
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≤C ·n2

{
∑

−mn≤k1 6=k2≤mn

Wn(k1)Wn(k2)
[
(k1− k2)

−2 +(2ωn∆n + k1 + k2)
−2]

+
mn

∑
k=−mn

W 2
n (k)

[
1+(ωn∆n + k)−2]},

if n is only sufficiently large. Since mn→ ∞ and n∆n m−1
n → ∞ as n→ ∞ (see Assumption 2), we deduce

that, for any k1 6= k2 ∈ {−mn, . . . , mn} and ω ∈ R∗, the term (2ωn∆n + k1 + k2)
−2 can be bounded by

(k1− k2)
−2 and (ωn∆n + k)−2, |k| ≤ mn, can be bounded by 1, respectively, for all sufficiently large n.

Hence, we have

n−2
∑

1≤u6=s≤n
a2

us(ω∆n)≤ 2C · max
|k|≤mn

W 2
n (k) ·

[
2

2mn

∑
j=1

(2mn− j+1)
1
j2 +O(mn)

]
= 2C · max

|k|≤mn
W 2

n (k) ·O(mn)

(1.8c)
= o(1) as n→ ∞,

which completes the proof of the lemma.

Remark 5.2. If we assume only (1.8a) and (1.8b) on the weight functions Wn, Eq. (5.2) is no longer valid.
However, a slight modification of the proof above shows that ∑1≤u6=s≤n a2

us(ω∆n) = O(n2) as n→ ∞ in this
case. Hence, we still have, as n→ ∞,

∑
|k|≤mn

Wn(k)

∣∣∣∑n
u=1 ∆L(u∆n)e−i(ω∆n)ku

∣∣∣2
∑

n
u=1 ∆L(u∆n)2 = 1+OP(1) (5.3)

and consequently also

1
∆n

∑
|k|≤mn

Wn(k)

∣∣∣J(1)n,∆n
((ω∆n)k)

∣∣∣2
∑

n
u=1 Y 2

u∆n

=
|c(iω)|2∫

∞

0 g2(s)ds · |a(iω)|2
· (1+OP(1)) (5.4)

as n→ ∞, if we drop assumption (1.8c) on the weight functions. We will use these facts in the upcoming
proofs of Lemmata 5.3 and 5.4 and Proposition 3.4. �

Lemma 5.3. Under the same assumptions as in Proposition 3.4 we have for any ω ∈ R∗,

∆
− 2

α
n ∑
|k|≤mn

Wn(k)
∣∣∣∣ ∆n

n1/α
Jn,∆n

((ω∆n)k)−
1

n1/α
J(1)n,∆n

((ω∆n)k)

∣∣∣∣2 P→ 0 as n→ ∞,

where J(1)n,∆n
( · ) is as in Lemma 5.1.

Proof. We split the proof in two parts. First, we will establish

(n∆n)
− 2

α ∑
|k|≤mn

Wn(k)
∣∣∣J(2)n,∆n

((ω∆n)k)− J(1)n,∆n
((ω∆n)k)

∣∣∣2 P→ 0 as n→ ∞, (5.5)

where J(2)n,∆n
((ω∆n)k) := cT (iωIp−A)−1

(
∑

n
u=1 ξ ∗n,u e−i(ω∆n)ku

)
ep and ξ ∗n,u is as in Eq. (2.4). Thereafter, we

will show that also

∆
− 2

α
n ∑
|k|≤mn

Wn(k)
∣∣∣∣ ∆n

n1/α
Jn,∆n

((ω∆n)k)−
1

n1/α
J(2)n,∆n

((ω∆n)k)

∣∣∣∣2 P→ 0 as n→ ∞. (5.6)

Note that Equations (5.5) and (5.6) together imply the claim of the lemma.
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As to (5.5), we observe first that, due to Assumption 3, the eigenvalues of A are supposed to be distinct.
Hence, there exists an invertible matrix D ∈ Cp×p such that A = Ddiag(λ1, . . . , λp)D−1 and thus,

eA = Ddiag
(

eλ1 , . . . , eλp
)

D−1. (5.7)

Setting

ξ̂n,u := D−1
ξ
∗
n,u D

(5.7)
= diag

(∫ u∆n

(u−1)∆n

e(u∆n−s)λ1dLs, . . . ,
∫ u∆n

(u−1)∆n

e(u∆n−s)λpdLs

)
, (5.8)

we obtain

J(2)n,∆n
((ω∆n)k)− J(1)n,∆n

((ω∆n)k) = cT (iωIp−A)−1
n

∑
u=1

(
ξ
∗
n,u−∆L(u∆n) Ip

)
e−i(ω∆n)ku ep

(5.8)
= cT (iωIp−A)−1 D

[
n

∑
u=1

(
ξ̂n,u−∆L(u∆n) Ip

)
e−i(ω∆n)ku

]
D−1 ep

and hence, for some C > 0,

(n∆n)
− 2

α ∑
|k|≤mn

Wn(k)
∣∣∣J(2)n,∆n

((ω∆n)k)− J(1)n,∆n
((ω∆n)k)

∣∣∣2
≤C (n∆n)

− 2
α

p

∑
j=1

∑
|k|≤mn

Wn(k)

∣∣∣∣∣ n

∑
u=1

e−i(ω∆n)ku
∫ u∆n

(u−1)∆n

(
e(u∆n−s)λ j −1

)
dLs

∣∣∣∣∣
2

≤ 2C (n∆n)
− 2

α

p

∑
j=1

∑
|k|≤mn

Wn(k)

[∣∣∣∣∣ n

∑
u=1

e−i(ω∆n)ku
∫ u∆n

(u−1)∆n

(
e(u∆n−s)ℜ(λ j) cos((u∆n− s)ℑ(λ j))−1

)
dLs

∣∣∣∣∣
2

+

∣∣∣∣∣ n

∑
u=1

e−i(ω∆n)ku
∫ u∆n

(u−1)∆n

e(u∆n−s)ℜ(λ j) sin((u∆n− s)ℑ(λ j))dLs

∣∣∣∣∣
2]

=: 2C (n∆n)
− 2

α

p

∑
j=1

I( j)
1 + I( j)

2 . (5.9)

Again we define Zn,u := ∆
−1/α
n ∆L(u∆n) for any n ∈ N, u ∈ Z, and for any j ∈ {1, . . . , p}, we set

d( j)
∆n

:=
(∫

∆n

0

∣∣∣esℜ(λ j) cos(sℑ(λ j))−1
∣∣∣α ds

)1/α

and f ( j)
∆n

:=
(∫

∆n

0

∣∣∣esℜ(λ j) sin(sℑ(λ j))
∣∣∣α ds

)1/α

.

We will use that limn→∞ ∆
−1/α
n d( j)

∆n
= limn→∞ ∆

−1/α
n f ( j)

∆n
= 0 for any j ∈ {1, . . . , p} (cf. the proof of [15,

Lemma 2.1(ii)]). Now, for any j ∈ {1, . . . , p},

(n∆n)
− 2

α I( j)
1

D
= ∆

− 2
α

n

(
d( j)

∆n

)2
· ∑
|k|≤mn

Wn(k)

∣∣∣∣∣n− 1
α

n

∑
u=1

Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2

and

(n∆n)
− 2

α I( j)
2

D
= ∆

− 2
α

n

(
f ( j)
∆n

)2
· ∑
|k|≤mn

Wn(k)

∣∣∣∣∣n− 1
α

n

∑
u=1

Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2

.

Since n−2/α
∑

n
u=1 Z2

n,u converges weakly as n→ ∞, respectively, to a (positive) α/2-stable random variable

if α ∈ (0,2) and to σ2
L if α = 2, we deduce from (5.3) that both (n∆n)

−2/α I( j)
1 and (n∆n)

−2/α I( j)
2 converge

to 0 in probability as n→ ∞ for any j ∈ {1, . . . , p}. This implies that the right-hand side of (5.9) converges
to 0 in probability and completes the proof of Eq. (5.5).
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As to (5.6), for any k ∈ {−mn, . . . , mn} and n sufficiently large, the inequality∥∥∥∥∆n

(
Ip− e∆n(A−i(ω+ k

n∆n )Ip)
)−1
− (iωIp−A)−1

∥∥∥∥
≤
∥∥∥∥∆n

(
Ip− e∆n(A−i(ω+ k

n∆n )Ip)
)−1

∥∥∥∥ ·∥∥(iωIp−A)−1∥∥ ·∥∥∥iωIp−A−∆
−1
n

(
Ip− e∆n(A−i(ω+ k

n∆n )Ip)
)∥∥∥

(5.7)
≤ const. ·

p

∑
j=1

∆n

∣∣∣1− e∆n(λ j−i(ω+ k
n∆n ))

∣∣∣−1
·

[∥∥∥iωIp−A−∆
−1
n

(
Ip− e∆n(A−iωIp)

)∥∥∥
+
∥∥∥∆
−1
n

(
Ip− e∆n(A−iωIp)

)∥∥∥ · ∣∣∣1− e−i k
n

∣∣∣]

≤ const. ·
p

∑
j=1

2
∣∣∣∣λ j− i

(
ω +

k
n∆n

)∣∣∣∣−1

· e∆n‖A−iωIp‖ ·

[
∆n

2

∥∥A− iωIp
∥∥2

+
∥∥A− iωIp

∥∥ · ∣∣∣1− e−i k
n

∣∣∣]

≤ const. ·
p

∑
j=1

(∣∣λ j− iω
∣∣− mn

n∆n

)−1

· e∆n‖A−iωIp‖ ·

[
∆n

2

∥∥A− iωIp
∥∥2

+
∥∥A− iωIp

∥∥ · mn

n

]
n→∞→ 0

holds, where the last convergence result follows from Assumptions 1 to 3. Thus, define

εn := max
|k|≤mn

∥∥∥∥∆n

(
Ip− e∆n(A−i(ω+ k

n∆n )Ip)
)−1
− (iωIp−A)−1

∥∥∥∥ ,
where, for any ω ∈ R∗, we have εn↘ 0 as n→ ∞. Then, for some C > 0,

∆
− 2

α
n ∑
|k|≤mn

Wn(k)
∣∣∣∣ ∆n

n1/α
Jn,∆n

((ω∆n)k)−
1

n1/α
J(2)n,∆n

((ω∆n)k)

∣∣∣∣2

= ∆
− 2

α
n ∑
|k|≤mn

Wn(k)

∣∣∣∣∣cT
[

∆n

(
Ip− e∆n(A−i(ω+ k

n∆n )Ip)
)−1
− (iωIp−A)−1

]
n−

1
α

(
n

∑
u=1

ξ
∗
n,u e−i(ω∆n)ku

)
ep

∣∣∣∣∣
2

(5.8)
≤ C εn

p

∑
j=1

∆
− 2

α
n ∑
|k|≤mn

Wn(k)

∣∣∣∣∣n− 1
α

n

∑
u=1

e−i(ω∆n)ku
∫ u∆n

(u−1)∆n

e(u∆n−s)λ j dLs

∣∣∣∣∣
2

≤ 2C εn

p

∑
j=1

∆
− 2

α
n ∑
|k|≤mn

Wn(k)

[∣∣∣∣∣n− 1
α

n

∑
u=1

e−i(ω∆n)ku
∫ u∆n

(u−1)∆n

(
e(u∆n−s)λ j −1

)
dLs

∣∣∣∣∣
2

+

∣∣∣∣∣n− 1
α

n

∑
u=1

∆L(u∆n)e−i(ω∆n)ku

∣∣∣∣∣
2]

. (5.10)

Now, having in mind that εn ↘ 0 as n→ ∞, the same arguments as used above give that the right-hand
side of (5.10) converges to 0 in probability as n→ ∞. This completes the proof of Eq. (5.6) and hence,
Lemma 5.3 is shown.

Lemma 5.4. Suppose α ∈ (0,2], σL > 0 and define a family of sequences of i.i.d. random variables
(Zn,u)u∈Z such that, if α ∈ (0,2), (Zn,u)u∈Z = (Su)u∈Z for all n ∈ N with independent symmetric α-stable
random variables Su each with scale parameter σL and in the case α = 2 the random variables Zn,u are
symmetric and satisfy E

[
Z2

n,u
]
= σ2

L for any n ∈ N and u ∈ Z. Moreover, Assumptions 1 to 3 may hold,
and assume that the weight functions Wn satisfy (1.8a) and (1.8b). Then we have for any ω ∈ R∗ and
r ∈ {1, . . . , p},

∆2
n

n2/α ∑
|k|≤mn

Wn(k)

∣∣∣∣∣ ∞

∑
j=0

e j(∆nλr−i(ω∆n)k)

[
n− j

∑
u=1− j

−
n

∑
u=1

]
Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2

P→ 0 as n→ ∞.
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Proof. We follow along the lines of [21, Lemmata 6.2 and 6.3]. Setting

UZ
n, j(ω) :=

n− j

∑
u=1− j

Zn,u e−iωu−
n

∑
u=1

Zn,u e−iωu

we first observe that

n−
2
α

∣∣∣∣∣ ∞

∑
j=0

e j(∆nλr−i(ω∆n)k)

[
n− j

∑
u=1− j

−
n

∑
u=1

]
Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2

≤ 2

∣∣∣∣∣n− 1
α

∞

∑
j=n+1

e j(∆nλr−i(ω∆n)k)UZ
n, j((ω∆n)k)

∣∣∣∣∣
2

+

∣∣∣∣∣n− 1
α

n

∑
j=0

e j(∆nλr−i(ω∆n)k)UZ
n, j((ω∆n)k)

∣∣∣∣∣
2


=: 2
(

A(1)
n,∆n

((ω∆n)k)+A(2)
n,∆n

((ω∆n)k)
)
.

We start with the proof of

∆
2
n ∑
|k|≤mn

Wn(k)A(1)
n,∆n

((ω∆n)k)
P→ 0 as n→ ∞. (5.11)

We have

∑
|k|≤mn

Wn(k)A(1)
n,∆n

((ω∆n)k)≤ 2n−
2
α

{
∑
|k|≤mn

Wn(k)

∣∣∣∣∣ ∞

∑
j=n+1

e j∆nλr−i j(ω∆n)k
n− j

∑
u=1− j

Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2

+ ∑
|k|≤mn

Wn(k)

∣∣∣∣∣ ∞

∑
j=n+1

e j∆nλr−i j(ω∆n)k

∣∣∣∣∣
2

·

∣∣∣∣∣ n

∑
u=1

Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2}

=: 2n−
2
α (V1 +V2)

and

∆
2
n n−

2
α V2 ≤ ∆

2
n

(
∞

∑
j=n+1

e j∆nℜ(λr)

)2

· ∑
|k|≤mn

Wn(k)

∣∣∣∑n
u=1 Zn,u e−i(ω∆n)ku

∣∣∣2
∑

n
u=1 Z2

n,u
·n−

2
α

n

∑
u=1

Z2
n,u

where the second term is equal to 1+OP(1) as n→ ∞ (this is a simple consequence of Eq. (5.3)). The
third term converges, if α ∈ (0,2), weakly to a positive α/2-stable random variable (see, for instance, [27,

Theorem 7.1]) and for α = 2 we know due to the WLLN that n−1
∑

n
u=1 Z 2

n,u
P→ σ2

L as n→∞. The first term
satisfies

∆n

∞

∑
j=n+1

e j∆nℜ(λr) = ∆n
e(n+1)∆nℜ(λr)

1− e∆nℜ(λr)

n→∞∼ − 1
ℜ(λr)

en∆nℜ(λr)→ 0 as n→ ∞ (5.12)

by virtue of Assumptions 1 and 3 and hence, ∆2
n n−2/α V2

P→ 0.
As to V1, we get

V1 ≤ 2

{
∑
|k|≤mn

Wn(k)

∣∣∣∣∣ −1

∑
u=−n

Zn,u e−i(ω∆n)ku
n−u

∑
j=n+1

e j∆nλr−i j(ω∆n)k

∣∣∣∣∣
2

+ ∑
|k|≤mn

Wn(k)

∣∣∣∣∣−n−1

∑
u=−∞

Zn,u e−i(ω∆n)ku
n−u

∑
j=1−u

e j∆nλr−i j(ω∆n)k

∣∣∣∣∣
2}

=: 2(V11 +V12)
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and

V11 =
−1

∑
u=−n

Z2
n,u ∑
|k|≤mn

Wn(k)

∣∣∣∣∣ n−u

∑
j=n+1

e j∆nλr−i j(ω∆n)k

∣∣∣∣∣
2

+ ∑
−n≤u1 6=u2≤−1

Zn,u1 Zn,u2 ∑
|k|≤mn

Wn(k)
n−u1

∑
j1=n+1

n−u2

∑
j2=n+1

e j1∆nλr+ j2∆nλr−i(ω∆n)k·(u1−u2+ j1− j2)

=: V111 +V112.

As above, we know that n−2/α
∑
−1
u=−n Z 2

n,u converges in distribution as n→ ∞. Together with (5.12) this
yields

∆
2
n n−

2
α V111 ≤ n−

2
α

−1

∑
u=−n

Z2
n,u · ∑

|k|≤mn

Wn(k)︸ ︷︷ ︸
(1.8b)
= 1

·

(
∆n

∞

∑
j=n+1

e j∆nℜ(λr)

)2
P→ 0 as n→ ∞. (5.13)

For any ε > 0 a conditional application of Bonami’s inequality (cf. [21, Section 5.2]) yields a C(ε)> 0
such that

P
(

∆
2
n n−

2
α |V112|> ε

)
≤ E

[
exp

{
−C(ε)ε ∆

−2
n n

2
α

[
∑

−n≤u1 6=u2≤−1
Z2

n,u1
Z2

n,u2

(
∑
|k|≤mn

Wn(k)

n−u1

∑
j1=n+1

n−u2

∑
j2=n+1

ℜ

(
e j1∆nλr+ j2∆nλr−i(ω∆n)k·(u1−u2+ j1− j2)

))2]−1/2}]
(1.8b)
≤ E

[
exp

{
−C(ε)ε ∆

−2
n n

2
α

[
∑

−n≤u1 6=u2≤−1
Z2

n,u1
Z2

n,u2

(
∞

∑
j=n+1

e j∆nℜ(λr)

)4]−1/2}]

≤ E

[
exp

{
−C(ε)ε

(
n−

2
α

−1

∑
u=−n

Z2
n,u

)−1(
∆n

∞

∑
j=n+1

e j∆nℜ(λr)

)−2}]

and the right-hand side converges to 0 as n→ ∞ by virtue of Eq. (5.13) and Lebesgue dominated conver-
gence.

Hence, ∆2
n n−2/α V11

P→ 0 as n→ ∞ is shown. Concerning V12 we proceed similarly. We write

V12 =
−n−1

∑
u=−∞

Z2
n,u ∑
|k|≤mn

Wn(k)

∣∣∣∣∣ n−u

∑
j=1−u

e j∆nλr−i j(ω∆n)k

∣∣∣∣∣
2

+ ∑
−∞≤u1 6=u2≤−n−1

Zn,u1 Zn,u2 ∑
|k|≤mn

Wn(k)
n−u1

∑
j1=1−u1

n−u2

∑
j2=1−u2

e j1∆nλr+ j2∆nλr−i(ω∆n)k·(u1−u2+ j1− j2)

=: V121 +V122

and observe that V121 ≤ ∑
−n−1
u=−∞ Z2

n,u

(
∑

n−u
j=1−u e j∆nℜ(λr)

)2
. We prove that, for any δ ≥ 0,

fn(δ ) := E

exp

−δ 2

2
∆

2
n n−

2
α

−n−1

∑
u=−∞

Z2
n,u

(
n−u

∑
j=1−u

e j∆nℜ(λr)

)2

→ 1 as n→ ∞. (5.14)
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Note that this implies ∆2
n n−2/α V121

P→ 0 as n→ ∞. Let (Nu)u∈Z be i.i.d. N(0,1)-random variables with
characteristic function E[exp(iθNu)] = exp(−θ 2/2) independent of (Zn,u)u∈Z for any n ∈ N. Then, we
have for α ∈ (0,2)

fn(δ ) = E

exp

−δ 2

2
∆

2
n n−

2
α

−n−1

∑
u=−∞

S2
u

(
n−u

∑
j=1−u

e j∆nℜ(λr)

)2



= E

[
E

[
exp

{
iδ∆n n−

1
α

−n−1

∑
u=−∞

Su Nu

n−u

∑
j=1−u

e j∆nℜ(λr)

}∣∣∣∣∣(Su)u∈Z

]]

= E

[
E

[
exp

{
iδ∆n n−

1
α

−n−1

∑
u=−∞

Su Nu

n−u

∑
j=1−u

e j∆nℜ(λr)

}∣∣∣∣∣(Nu)u∈Z

]]

= E

[
exp

{
−σ

α
L δ

α ∆α
n

n

−n−1

∑
u=−∞

|Nu|α
(

n−u

∑
j=1−u

e j∆nℜ(λr)

)α}]

and E
[
∆α

n n−1
∑
−n−1
u=−∞ |Nu|α

(
∑

n−u
j=1−u e j∆nℜ(λr)

)α]
= E[|N1|α ] · ∆α

n n−1
∑
−n−1
u=−∞

(
∑

n−u
j=1−u e j∆nℜ(λr)

)α → 0 as
n→ ∞, since E[|N1|α ]< ∞ and

∆α
n

n

−n−1

∑
u=−∞

(
n−u

∑
j=1−u

e j∆nℜ(λr)

)α

=
∆α

n

n
·

(
e∆nℜ(λr)

(
1− en∆nℜ(λr)

)
1− e∆nℜ(λr)

)α

· e
(n+1)∆nℜ(λr)α

1− e∆nℜ(λr)α

n→∞∼
(
− 1

ℜ(λr)

)α

· en∆nℜ(λr)α

−n∆nℜ(λr)α

n→∞→ 0 (5.15)

due to Assumptions 1 and 3. Lebesgue dominated convergence then obviously gives fn(δ )→ 1 for any
δ ≥ 0, i.e. Eq. (5.14) is shown for α ∈ (0,2). If α = 2, we first write as above

fn(δ ) = E

[
exp

{
iδ∆n n−

1
2

−n−1

∑
u=−∞

Zn,u Nu

n−u

∑
j=1−u

e j∆nℜ(λr)

}]
.

Then, using the independence of (Nu)u∈Z and (Zn,u)u∈Z, we obtain

E

( ∆n

n1/2

−n−1

∑
u=−∞

Zn,u Nu

n−u

∑
j=1−u

e j∆nℜ(λr)

)2
=

∆2
n

n

−n−1

∑
u=−∞

E
[
Z2

n,u N2
u
]︸ ︷︷ ︸

=σ2
L

(
n−u

∑
j=1−u

e j∆nℜ(λr)

)2
n→∞→ 0,

where the latter can be shown as in the case α ∈ (0,2) above (cf. (5.15)). We can apply again the Dominated
Convergence Theorem and deduce that fn(δ )→ 1 for any δ ≥ 0 also in the case α = 2. Hence, (5.14) and

∆2
n n−2/α V121

P→ 0 as n→ ∞ is shown.
Analogously to V112 above, we obtain for V122 with ε > 0

P
(

∆
2
n n−

2
α |V122|> ε

)
≤ E

[
exp

{
−C(ε)ε ∆

−2
n n

2
α

[
∑

−∞≤u1 6=u2≤−n−1
Z2

n,u1
Z2

n,u2

(
n−u1

∑
j1=1−u1

e j∆nℜ(λr)

)2( n−u2

∑
j2=1−u2

e j∆nℜ(λr)

)2]−1/2}]

≤ E

exp

−C(ε)ε

∆
2
n n−

2
α

−n−1

∑
u=−∞

Z2
n,u

(
n−u

∑
j=1−u

e j∆nℜ(λr)

)2
−1


→ 0 as n→ ∞

due to (5.14) and, once more, Lebesgue dominated convergence.
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Hence, also ∆2
n n−2/α V122

P→ 0 and ∆2
n n−2/α V12

P→ 0 holds as n→ ∞. Note at this point that Equa-
tion (5.11) has been shown.

Thus, it remains to prove that also

∆
2
n ∑
|k|≤mn

Wn(k)A(2)
n,∆n

((ω∆n)k)
P→ 0 as n→ ∞. (5.16)

First,

∑
|k|≤mn

Wn(k)A(2)
n,∆n

((ω∆n)k)≤ 2n−
2
α

{
∑
|k|≤mn

Wn(k)

∣∣∣∣∣ n

∑
j=1

e j∆nλr−i j(ω∆n)k
0

∑
u=1− j

Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2

+ ∑
|k|≤mn

Wn(k)

∣∣∣∣∣ n

∑
j=1

e j∆nλr−i j(ω∆n)k
n

∑
u=n− j+1

Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2}

=: 2n−
2
α (Ṽ1 +Ṽ2)

and

Ṽ1 = ∑
|k|≤mn

Wn(k)

∣∣∣∣∣ 0

∑
u=1−n

Zn,u e−i(ω∆n)ku
n

∑
j=1−u

e j∆nλr−i j(ω∆n)k

∣∣∣∣∣
2

(1.8b)
≤

0

∑
u=1−n

Z2
n,u

(
n

∑
j=1−u

e j∆nℜ(λr)

)2

+ ∑
1−n≤u1 6=u2≤0

Zn,u1Zn,u2 ∑
|k|≤mn

Wn(k)
n

∑
j1=1−u1

n

∑
j2=1−u2

e j1∆nλr+ j2∆nλr−i(ω∆n)k(u1−u2+ j1− j2)

=: Ṽ11 +Ṽ12.

Now, Ṽ11 can be dealt with like V121 above and one observes that in order to show ∆2
n n−2/α Ṽ11

P→ 0 as
n→ ∞, it is sufficient to prove

lim
n→∞

∆α
n

n

0

∑
u=1−n

(
n

∑
j=1−u

e j∆nℜ(λr)

)α

= 0. (5.17)

This follows from [15, Lemma 2.2(iii)] by setting p = 1 (note that in this case Ψ
∆n
j = e j∆nλr ). The proof of

∆2
n n−2/α Ṽ12

P→ 0 as n→ ∞ is then completely analog to the one of ∆2
n n−2/α V122

P→ 0 above.
Finally,

Ṽ2 ≤
n

∑
u=1

Z2
n,u

(
n

∑
j=n+1−u

e j∆nℜ(λr)

)2

+ ∑
1≤u1 6=u2≤n

Zn,u1Zn,u2 ∑
|k|≤mn

Wn(k)
n

∑
j1=n+1−u1

n

∑
j2=n+1−u2

e j1∆nλr+ j2∆nλr−i(ω∆n)k(u1−u2+ j1− j2)

=: Ṽ21 +Ṽ22

and in order to show ∆2
n n−2/α Ṽ21

P→ 0 as n→ ∞, it is, as for Ṽ11, sufficient to prove

lim
n→∞

∆α
n

n

n

∑
u=1

(
n

∑
j=n+1−u

e j∆nℜ(λr)

)α

= 0.
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However, this is exactly Eq. (5.17). As for V122 and Ṽ12, one obtains that ∆2
n n−2/α Ṽ22

P→ 0 as n→ ∞, as
well. This completes the proof of (5.16).

Equations (5.11) and (5.16) together yield the statement of the lemma.

Proof of Proposition 3.3. In Lemma 5.1 it has been shown that, for any ω ∈ R∗,

1
∆n

∑
|k|≤mn

Wn(k)

∣∣∣J(1)n,∆n
((ω∆n)k)

∣∣∣2
∑

n
u=1 Y 2

u∆n

P→ |c(iω)|2∫
∞

0 g2(s)ds · |a(iω)|2
as n→ ∞,

with J(1)n,∆n
((ω∆n)k) = cT (iωIp − A)−1ep

(
∑

n
u=1 ∆L(u∆n)e−i(ω∆n)ku

)
. Since ∆n (n∆n)

−2/α
∑

n
u=1 Y 2

u∆n
con-

verges in distribution as n→ ∞, respectively, to
∫

∞

0 g2(s)ds · [L, L]1 with ([L, L]t)t≥0 being the quadratic
variation process of (Lt)t≥0 if α ∈ (0,2) and to

∫
∞

0 g2(s)ds · σ2
L if α = 2 (cf. [13, Theorem 5.5(a)]), a

straightforward application of the Cauchy-Schwarz inequality shows that it is sufficient to prove

∆
− 2

α
n ∑
|k|≤mn

Wn(k)
∣∣∣∣ ∆n

n1/α
Jn,∆n

((ω∆n)k)−
1

n1/α
J(1)n,∆n

((ω∆n)k)

∣∣∣∣2 P→ 0 as n→ ∞. (5.18)

However, (5.18) is a consequence of Lemma 5.3.

Proof of Proposition 3.4. First, by virtue of the Cauchy-Schwarz inequality, we have

∆n ∑
|k|≤mn

Wn(k)
|Rn,∆n((ω∆n)k)|

∑
n
u=1 Y 2

u∆n

≤ 2

2∆n ∑
|k|≤mn

Wn(k)

∣∣∣Jn,∆n
((ω∆n)k)− 1

∆n
J(1)n,∆n

((ω∆n)k)
∣∣∣2 + ∣∣∣ 1

∆n
J(1)n,∆n

((ω∆n)k)
∣∣∣2

∑
n
u=1 Y 2

u∆n


1/2

×

(
∆n ∑
|k|≤mn

Wn(k)

∣∣cT Kn,∆n((ω∆n)k)ep
∣∣2

∑
n
u=1 Y 2

u∆n

)1/2

+∆n ∑
|k|≤mn

Wn(k)

∣∣cT Kn,∆n((ω∆n)k)ep
∣∣2

∑
n
u=1 Y 2

u∆n

,

where Kn,∆n( · ) and Jn,∆n
( · ) are as in Eq. (2.5) and J(1)n,∆n

( · ) has been defined in Lemma 5.1.
Since ∆n (n∆n)

−2/α
∑

n
u=1 Y 2

u∆n
converges in distribution, respectively, to

∫
∞

0 g2(s)ds · [L, L]1 as n→ ∞ if
α ∈ (0,2) with ([L, L]t)t≥0 being the quadratic variation process of (Lt)t≥0 and g the kernel function in
(2.2b) and to

∫
∞

0 g2(s)ds ·σ2
L if α = 2 (cf. [13, Theorem 5.5(a)]), we can combine Lemma 5.3 and (5.4) in

order to deduce that

∆n ∑
|k|≤mn

Wn(k)
|Rn,∆n((ω∆n)k)|

∑
n
u=1 Y 2

u∆n

≤ OP(1) ·

(
∆n ∑
|k|≤mn

Wn(k)

∣∣cT Kn,∆n((ω∆n)k)ep
∣∣2

∑
n
u=1 Y 2

u∆n

)1/2

+∆n ∑
|k|≤mn

Wn(k)

∣∣cT Kn,∆n((ω∆n)k)ep
∣∣2

∑
n
u=1 Y 2

u∆n

as n→ ∞. Therefore, it is sufficient to prove the following:

∆
2− 2

α
n n−

2
α ∑
|k|≤mn

Wn(k)
∣∣cT Kn,∆n((ω∆n)k)ep

∣∣2 P→ 0 as n→ ∞. (5.19)

To this end, we define

Ûn, j(ω) :=
n− j

∑
u=1− j

ξ̂n,u e−iωu−
n

∑
u=1

ξ̂n,u e−iωu and
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K̂n,∆n(ω) :=
∞

∑
j=0

e j(∆ndiag(λ1, ...,λp)−iωIp) Ûn, j(ω), −π ≤ ω ≤ π,

where ξ̂n,u is given by (5.8). Then

Kn,∆n(ω) = D
∞

∑
j=0

e j(∆ndiag(λ1, ...,λp)−iωIp) Ûn, j(ω)D−1 = DK̂n,∆n(ω)D−1,

which implies

∆
2− 2

α
n n−

2
α ∑
|k|≤mn

Wn(k)
∣∣cT Kn,∆n((ω∆n)k)ep

∣∣2 ≤ const. ·∆2− 2
α

n n−
2
α ∑
|k|≤mn

Wn(k)
∥∥∥vec

(
K̂n,∆n((ω∆n)k)

)∥∥∥2

= const. ·
p

∑
r,s=1

∆
2− 2

α
n n−

2
α ∑
|k|≤mn

Wn(k)
∣∣∣K̂(r,s)

n,∆n
((ω∆n)k)

∣∣∣2
= const. ·

p

∑
r=1

∆
2− 2

α
n n−

2
α ∑
|k|≤mn

Wn(k)
∣∣∣K̂(r,r)

n,∆n
((ω∆n)k)

∣∣∣2 , (5.20)

since K̂n,∆n( · ) =
(

K̂(r,s)
n,∆n

( · )
)

r,s∈{1,...,p}
is diagonal.

Now, for any r ∈ {1, . . . , p},

K̂(r,r)
n,∆n

((ω∆n)k) = eT
r K̂n,∆n((ω∆n)k)er

=
∞

∑
j=0

e j(∆nλr−i(ω∆n)k)

[
n− j

∑
u=1− j

−
n

∑
u=1

]
e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

e(u∆n−s)λr dLs

=
∞

∑
j=0

e j(∆nλr−i(ω∆n)k)

[
n− j

∑
u=1− j

−
n

∑
u=1

]
e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

ℜ

(
e(u∆n−s)λr

)
dLs

+ i
∞

∑
j=0

e j(∆nλr−i(ω∆n)k)

[
n− j

∑
u=1− j

−
n

∑
u=1

]
e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

ℑ

(
e(u∆n−s)λr

)
dLs.

We define (Zn,u)u∈Z := ∆
−1/α
n (∆L(u∆n))u∈Z such that, if α ∈ (0,2), (Zn,u)u∈Z are i.i.d. symmetric α-

stable random variables with scale parameter σL, and in the case α = 2 it is an i.i.d. symmetric sequence
satisfying E[Z2

n,u] = σ2
L for any n ∈ N, u ∈ Z.

Note that(∫ u∆n

(u−1)∆n

ℜ

(
e(u∆n−s)λr

)
dLs

)
u∈Z

D
=

(∫
∆n

0

∣∣∣ℜ(esλr
)∣∣∣α ds

) 1
α

·(Zn,u)u∈Z=:C(r)
n ·(Zn,u)u∈Z and likewise

(∫ u∆n

(u−1)∆n

ℑ

(
e(u∆n−s)λr

)
dLs

)
u∈Z

D
=

(∫
∆n

0

∣∣∣ℑ(esλr
)∣∣∣α ds

) 1
α

· (Zn,u)u∈Z =: C̃(r)
n · (Zn,u)u∈Z .

Since C(r)
n ∼ ∆

1/α
n and ∆

−1/α
n C̃(r)

n → 0 as n→ ∞ for any r ∈ {1, . . . , p} (cf. [15, Lemma 2.1(ii) and its
proof]) and since, for any r ∈ {1, . . . , p},

∆
2
n n−

2
α ∑
|k|≤mn

Wn(k)

∣∣∣∣∣ ∞

∑
j=0

e j(∆nλr−i(ω∆n)k)

[
n− j

∑
u=1− j

−
n

∑
u=1

]
Zn,u e−i(ω∆n)ku

∣∣∣∣∣
2

P→ 0

as n→ ∞ (see Lemma 5.4), we obtain that the right-hand side of Eq. (5.20) converges to 0 in probability as
n→ ∞ which in turn yields (5.19) and hence, completes the proof of the proposition.
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Proof of Proposition 3.7. Note first that we can understand the self-normalized periodogram as a special
case of the smoothed one by choosing the weight functions Wn as Wn(0) = 1 and Wn(k) = 0 for any k 6= 0.
These weights do not satisfy (1.8c), but obviously (1.8a) and (1.8b). With that “degenerated” choice of
weight functions and Lemma 5.3, we deduce immediately that it is sufficient to prove the following:

(n∆n)
−2/α

∣∣∣J(1)n,∆n
(ω∆n)

∣∣∣2 D→ |c(iω)|2

|a(iω)|2
·
∣∣∣∣∫

[0,1)
e2πi x dL∗x

∣∣∣∣2 as n→ ∞,

for any ω ∈ R∗, where J(1)n,∆n
( · ) has been defined in Lemma 5.1. Now, it is clearly enough to show that

(n∆n)
−2/α

∣∣∣∣∣ n

∑
u=1

∆L(u∆n)e−iω∆nu

∣∣∣∣∣
2

D→
∣∣∣∣∫

[0,1)
e2πi x dL∗x

∣∣∣∣2 as n→ ∞. (5.21)

Let (Zn,u)u∈Z := ∆
−1/α
n (∆L(u∆n))u∈Z for n ∈ N. Then (5.21) follows, by virtue of the Continuous Map-

ping Theorem (see, for instance, [20, Theorem 13.25]), from

n−1/α

(
n

∑
u=1

Zn,u cos(ω∆nu),
n

∑
u=1

Zn,u sin(ω∆nu)

)
D→
(∫ 1

0
cos(2πx)dL∗x ,

∫ 1

0
sin(2πx)dL∗x

)
as n→ ∞,

which, in turn, is equivalent to

n−1/α
n

∑
u=1

Zn,u (b1 cos(ω∆nu)+b2 sin(ω∆nu))︸ ︷︷ ︸
=:Xn,u

D→
∫ 1

0
[b1 cos(2πx)+b2 sin(2πx)] dL∗x as n→ ∞,

(5.22)
for any (b1, b2)

T ∈ R2.
First, we prove (5.22) for α ∈ (0,2). Since (Zn,u)u∈Z are an i.i.d. sequence of symmetric α-stable random

variables with scale paramater σL, the random variable n−1/α
∑

n
u=1 Xn,u is again symmetric α-stable with

scale parameter σn,L where

σ
α
n,L =

σα
L
n

n

∑
u=1
|b1 cos(ω∆nu)+b2 sin(ω∆nu)|α .

Moreover, writing ω = 2πη , we have

σ
α
n,L =

σα
L
n

n

∑
u=1

∣∣b1 cos(2π{η∆nu})+b2 sin(2π{η∆nu})
∣∣α n→∞→ σ

α
L ·
∫ 1

0
|b1 cos(2πx)+b2 sin(2πx)|α dx

where the convergence can be shown as in the proof of [15, Proposition 2.6, (4.11)]. This results in (5.22)
for α ∈ (0,2).

For α = 2 we prove (5.22) with the Lindeberg-Feller Theorem (see, e.g., [12, p. 114]). Obviously, for
each n, the random variables Xn,u, 1≤ u≤ n, are independent with E[Xn,u] = 0 since Zn,u are supposed to
be symmetric. Moreover, writing again ω = 2πη , we have

1
n

n

∑
u=1

Var(Xn,u) =
σ2

L
n

n

∑
u=1

(
b1 cos(2π{η∆nu})+b2 sin(2π{η∆nu})

)2

n→∞→ σ
2
L ·
∫ 1

0
(b1 cos(2πx)+b2 sin(2πx))2 dx = σ

2
L ·
(

b2
1

2
+

b2
2

2

)
,

where the convergence can be shown again as in the proof of [15, Proposition 2.6, (4.11)]. Since, for any
ε > 0,

1
n

n

∑
u=1

E
[
X2

n,u1{|Xn,u|>ε
√

n}

]
≤ (|b1|+ |b2|)2 ·E

[
Z2

n,11
{
|Zn,1|>

ε
√

n
|b1 |+|b2|

}] n→∞→ 0,
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we can apply the Lindeberg-Feller Theorem and deduce

n−1/2
n

∑
u=1

Zn,u (b1 cos(ω∆nu)+b2 sin(ω∆nu)) D→

√
σ2

L ·
(

b2
1

2
+

b2
2

2

)
·N(0,1)

D
= σL

(
b1√

2
N1 +

b2√
2

N2

)
(5.23)

D
=

∫ 1

0
[b1 cos(2πx)+b2 sin(2πx)] dL∗x ,

where N1, N2 are i.i.d. N(0,1) random variables. This shows (5.22) and completes the proof.

Proof of Theorem 3.5. Since we can understand the (self-)normalized periodogram as a special case of the
smoothed one by choosing the weight functions Wn as Wn(0) = 1 and Wn(k) = 0 for any k 6= 0, which do
not satisfy (1.8c), but obviously (1.8a) and (1.8b), we can use the same partition as in Eq. (2.7) and apply
Proposition 3.4 together with Proposition 3.7 to obtain the statement.

Proof of Corollary 3.6. Follows from Theorem 3.5, (5.23) and n−1
∑

n
u=1 Y 2

u∆n

P→
∫

∞

0 g2(s)ds ·σ2
L if α = 2

(cf. [13, Theorem 5.5(a)]).
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[1] BJÖRCK, Å. Numerical Methods for Least Squares Problems. SIAM, 1996.
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[18] GARCÍA, I., KLÜPPELBERG, C., AND MÜLLER, G. Estimation of stable CARMA models with an
application to electricity spot prices. Statistical Modelling 11 (2011), 447–470.

[19] JONGBLOED, G., VAN DER MEULEN, F. H., AND VAN DER VAART, A. W. Nonparametric inference
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