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Abstract

The array processing problem is briefly discussed and an abstract spectral

estimation problem is formulated. This abstract problem involves the estima-

tion of a multi-dimensional frequency-wavevector power spectrum given certain

measurements of the correlation function and knowledge of the spectral sup-

port.

The pursuit of correlation-matching spectral estimates leads to the exten-

dibility question: does there exist any positive spectrum on the spectral support

which matches a given set of correlation samples? In answering this question,

the necessary mathematical framework is developed with which to analyze

specific spectral estimation algorithms and to design algorithms for their com-

putation.

This framework is exploited in the extension of two spectral estimation

techniques from the time series case, for which they were originally formulated,

to the more general array processing case. Pisarenko's method models the

spectrum as a sum of impulses plus a noise component. Its computation in the

time series case requires the solution of a eigenvalue problem; more generally

it is shown to require the solution of a finite-dimensional linear optimization

problem. The maximum entropy method (MEM) models the spectral density

function as the inverse of a positive polynomial. Its computation in the time

series case requires the solution of a system of linear equations; more generally

it is shown to require the solution of a finite-dimensional convex optimization

problem.

Algorithms are developed for the solution of the optimization problems

involved in the computation of Pisarenko's estimate and the MEM estimate.

Several spectral estimation examples using these algorithms are presented.

Thesis Supervisor: James H. McClellan

Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

Just as the power spectrum of a stationary time series describes a distribu-

tion of power in frequency, the frequency-wavevector power spectrum of a

homogeneous and stationary wavefield describes a distribution of power in

wavevector and frequency, or equivalently, in propagation direction and fre-

quency. The frequency-wavevector spectrum, or information which can be

derived from it, is important in many applications areas such as radio-

astronomy, radar, and sonar. Hence its estimation, from data provided by sen-

sor arrays, is of great practical interest.

Chapter 2 contains a more detailed description of wavefields and sensor

arrays and motivates the spectral estimation problem. The representation of a

power spectrum as a measure and as a spectral density function is discussed.

Chapter 2 introduces the coarray, the set of vector separations and time lags

for which correlation samples are available, and the spectral support, the

region of frequency-wavevector space containing power to which the sensors

are sensitive. It concludes with the formulation of an abstract problem: the

estimation of a power spectrum given only that it is positive on the spectral

support, zero outside, and has certain known correlations for separations in

the coarray. Although simpler than many problems encountered in p'actice,

this abstraction retains the key features which distinguish the array problem

from the problem of time series power spectral estimation; the multi-

dimensionality of the spectral support and of the frequency variable, and the

non-uniformity of the coarray. The formulation is a compromise; hopefully it is
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specific enough to result in techniques of practical usefulness in array process-

ing, and general enough so that the results will be useful in other areas as well.

Given this problem formulation, it is natural to consider spectral estimates

which match the known information: spectral estimates which are positive, zero

outside the spectral support, and which match the measured correlations. The

pursuit of such correlation- matching spectral estimates raises two important

questions. The first, and more fundamental, question concerns the existence of

any such estimate. This extendibity problem has deep historical roots

(Stewart 1976) and was recently raised by Dickinson (1980) with reference to

the maximum entropy spectral estimation method. The extendibility problem is

explored in chapter 3. Extendible sets of correlation measurements are

characterized, for power spectra represented as measures and as spectral den-

sity functions. The effect which sampling of the spectral support has on exten-

dibility is considered. In answering the extendibility question, the necessary

mathematical framework is developed with which to analyze specific spectral

estimation methods and to design algorithms for their computation.

The second question raised is that of uniqueness, is there a unique

correlation-matching spectral estimate, and, if not, how can a specific one be

chosen? If fact, except in very special cases, a unique estimate does not exist

and the task of a spectral estimation method becomes the selection of one out

of an ensemble of spectra satisfying the correlation, positivity, and spectral

support constraints. Two spectral estimation methods, originally developed for

time series analysis, are extended to the array problem. Chapter 4 concerns

Pisarenko's method (Pisarenko 1973), which involves modelling the correlation

measurements as a sum of two components. One, a noise component of known

spectral shape but unknown amplitude, is made as large as possible without
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making the other component non-extendible. The spectral estimate resulting

from Pisarenko's method is revealed to solve a linear optimization problem. A

solution to this optimization problem will always exist if the correlation meas-

urements are extendible. In fact, Pisarenko's method is shown to be intimately

related to the extendibility question and an algorithm for the computation of

Pisarenko's estimate easily serves as an extendibility test. Although the esti-

mate happens to be unique in the time series case, it is shown that it is not

always unique in the more general array setting. The computation of

Pisarenko's estimate, which in the time series case involves the solution of an

eigenvalue problem, is shown, more generally, to involve the solution of a linear

program.

Chapter 5 concerns the maximum entropy method (Burg 1975). Of the

feasible spectral density functions, the maximum entropy method (MEM) selects

that with the largest entropy as the spectral estimate. Given an additional con-

straint on the spectral support and coarray, easily met in practice, the MEM

spectral estimate is shown to exist and be unique. Further, it is derived as the

solution to certain convex optimization problems. While, in the time series case,

the computation of the MEM estimate essentially involves only the solution of a

set of linear equations, this no longer holds true in the more general array

problem. However, the application of standard techniques to the convex optim-

ization problems result in reliable computational algorithms. These are com-

pared to algorithms previously proposed for the computation of the multi-

dimensional MEM estimate.

Several spectral estimation examples are presented in chapter 6. These

examples provide an opportunity to review some of the ideas presented previ-

ously, to expand upon them in specific contexts, and to discuss some details of



- 12-

computation and implementation. Chapter 7 contains a summary of the

research and raises some questions which may prove to be fruitful areas for

future research.

In the process of exploring the array processing problem, several interest-

ing themes are developed. The first involves the application of simple ideas

from functional analysis to the spectral estimation problem. The set of correla-

tion measurements are seen to naturally inhabit a real vector space, therefore

functional analysis, the study of such spaces, provides the necessary

mathematical tools. Functional analysis is, of course, the language of approxi-

mation theory; those familiar with filter design, long a problem of interest in

digital signal processing, will find much they recognize here. The computation

of Pisarenko's and the MEM estimate rely upon the solution of optimization

problems. Iterative optimization algorithms must be considered, therefore, not

just as aids for the design of, but as components of signal processing systems.

Modern optimization theory, which can also be considered a branch of func-

tional analysis, provides the basic techniques for the design of reliable compu-

tational algorithms. Some knowledge of functional analysis and of optimization

theory is assumed on the part of the reader, although only the most basic ideas

are made use of. The two books by Luenberger (1969, 1973) are appropriate

references for those wishing to familiarize themselves with these topics.

Simple measure theoretic ideas provide the means for treating many

different spectral supports in a unified manner. In particular, the discrete

spectral supports necessary in practical computational algorithms are handled

by the same theory as the spectral supports, consisting of an infinite number of

points, which they are intended to approximate. Only the most basic ideas from

measure theory are needed; again the reader is assumed to be familiar with
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them. The book by Royden (196B) is an appropriate reference.
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Chapter 2

The Array Processing Problem

Imagine a multi-dimensional homogeneous medium supporting scalar pro-

pagating waves and containing a group of sensors, called an array. The medium

in the vicinity of the array is completely described by the scalar wave equation

V2u(zt) = ii(x,t) (2.1)

u: RD x R -+ C.

The wavefield will be assumed to be homogeneous and stationary so that its

second order statistics are described by a correlation function, or equivalently,

by a power spectrum (Baggeroer 1976),

r (6,r) = E[u *(z ,t)u (z +6,t +r)] = f e (k.oc.r)d (2.2)

The power spectrum is represented here by a positive measure, y, which assigns

a non-negative power to each measurable subset of frequency-wavevector

space.

The use of a positive measure to represent a power spectrum provides the

flexibility needed to deal with a range of spectral supports in a unified manner

and to easily handle spectra which contain impulses: finite power at a single

wavevector. It is more common to represent a power spectrum by means of a

spectral density function. In the representation of a power spectrum by a

spectral density function, there is some fixed measure v which defines the

integral of a function. The power spectrum is then represented as a positive

function S(k ,c>).

r(6,) = fe(2(k.-+)r)S(k w)dv. (2.3)
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Given a power spectral density function S, it is possible to define a correspond-

ing positive measure by requiring the measure of a set B to equal the integral of

the spectral density function over B:

A(B) = fd A = fS(k.c dv. (2.4)
B B

Although more common, the representation of power spectra as power spectral

density functions is slightly less general and somewhat more cumbersome than

the representation in terms of measures. Both will be used in succeeding

chapters.

However represented, the spectrum describes the distribution of incident

power in temporal frequency and spatial wavevector or, equivalently, spatial

bearing. It is important in many applications areas. In radio-astronomy, the

formation of an image can be described as the estimation of a power spectrum.

The detection and bearing estimation of targets in radar and sonar can be

based upon information contained in a power spectral estimate.

The sensors each produce a time function which is the wavefield u sampled

in space. The collection of time functions produced by all the sensors will be

called the array output or the array response. The array output is to be pro-

cessed so as to provide an estimate of the frequency-wavenumber spectrum.

The stochastic character of the wavefield invariably leads to random variations

of any spectral estimate based on the array output. To combat this effect,

spectral estimates are often based on stable statistics derived from the array

output. A common example of such a statistic is a correlation estimate calcu-

lated by multiplying the output of one sensor and a time delayed version of a

second sensor and averaging over time. This process results in an estimate of

the correlation function at a temporal lag corresponding to the delay time and
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a spatial separation which is the vector distance between the two sensors. The

averaging process results in statistical stability of the correlation estimates

and therefore in statistical stability of any spectral estimate based on these

correlation estimates. Estimates or samples of the correlations are only avail-

able for a finite set of inter-sensor separations, the coarray (Haubrich 1968).

A = ix -y : sensor locations z, y j (2.5)

Besides samples of the correlation function, two other pieces of informa-

tion about the spectrum are available: the spectrum is known to be positive and

it is confined to a finite region of frequency-wavevector space, the spectral sup-

port. Outside of this support the spectrum is assumed to be zero. The spectral

support arises naturally in several ways. Actual sensors have a finite temporal

bandwidth; they will be relatively insensitive to power outside of this bandwidth.

If the wavefield has finite temporal bandwidth, a result perhaps of finite sensor

bandwidth, and satisfies the homogeneous dispersion relation then it has

natural cutoff wavenumbers. Also, if the source of the wavefield has a known

angular extent or if the sensors are directional then there is limited angular

beamwidth which translates to a cutoff wavenumber for a particular temporal

frequency. All of these effects can be modelled by assuming that no power is

present outside of a certain region of frequency-wavevector space. A known

spectral support, based on the physics of the problem, constitutes important

prior information which can be brought to bear on the spectral estimation

problem. A simple example is provided by a sensor array composed of uniformly

oriented dish antennas.
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Ezrample 2.1: A three dish array.

--D - 2 & 3

Fig. 2.1: A three dish array

A dish antenna of diameter D has a cutoff wavenumber of roughly

-Vk 2
2 +k 3

2 ! 0.61 -

Assuming that the wavefield satisfies the dispersion relation for a

homogeneous, non-dispersive medium and that the receivers are only

sensitive to a particular temporal wo, suggests that the support for the

spectral estimate should be the region of frequency-wavevector space

which satisfies the dispersion relation and to which the sensors are

sensitive. This region is defined by the three equations:

Cd = Cd
0 -

k1
2 + k 2 + k 3

2

Nk 22 +k 3 2 2 0.610,1
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k1

Support

k -k
3

2T

Fig. 2.2: Spectral support for an array of dish antennas.

In many applications much more data is available in the time dimension

than in the space dimension. In these cases it is convenient to separate out the

time variable by Fourier analyzing the time series output of each sensor and

then doing a separate wavevector spectral estimate for each temporal fre-

quency by using the Fourier coefficients as data for a wavevector spectral esti-

mator. Thus the estimation problem is formulated for complex data even

though physical waveflelds are real valued. Fortunately conventional Fourier

analysis is often satisfactory when data is abundant, as well as being implicit in

the narrow-band character of many sensors. Where limited data in the time

dimension makes the above approach impractical and wide-band sensor arrays

are available the full problem may be treated by including the temporal vari-

ables -r and w in the vectors 6 and k. It shall be assumed that one of these two

approaches has been taken; henceforth the temporal variables T and w will be

dropped.
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Chapter 3

Extendibility

3.1 Introduction

A simple model of the array processing problem was constructed in the last

chapter: given certain correlation measurements and a spectral support, pro-

duce a spectral estimate. It is natural to use the known information about the

spectrum to constrain the spectral estimate. Knowledge of certain correlations

can be used by constraining the spectral estimate to have these same correla-

tions. Knowledge that the spectrum is positive and zero outside the spectral

support can be used by constraining the spectral estimate to be positive and

zero outside the spectral support. Such spectral estimates are thus consistent

with the known information; they are called correlation--matching spectral esti-

mates. Two of these estimates, Pisarenko's method and the maximum entropy

method will be discussed in later chapters.

The pursuit of correlation-matching spectral estimates raises a fundamen-

tal existence question. Given a finite collection of measured correlations and a

spectral support, does there exist any correlation-matching spectral estimate?

If such a spectral estimate exists, the measured correlations are said to be

extendible; the correlation function associated with any correlation-matching

spectral estimate is a suitable extension of the correlation measurements to all

spatial separations. After some necessary mathematical definitions, the

existence question is answered by characterizing the set of extendible correla-

tion measurements. The mathematical framework developed to answer this

question will prove useful in analyzing spectral estimation techniques and in
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designing algorithms for their computation.

3.2 Spectral Supports and Coarrays

It is first necessary to define more carefully a spectral support and a coar-

ray. The spectral support K is assumed to be a compact subset of RD, i.e. K is

closed and bounded. This assumption is similar to the bandlirnitedness assump-

tion of time series analysis. Some such assumption is necessary because of the

finite amount of data on which the spectral estimate is to be based. Assuming

that K is compact leads to a certain technical advantage: a continuous function

on a compact set attains its infimum and supremum. The assumption of this

property will prove useful and leads to no practical disadvantage. In fact, it will

be turned to advantage by using the spectral support as a device by which to

incorporate certain prior knowledge into the spectral estimation problem in a

simple manner. As discussed in the previous chapter, knowledge of dispersion

relations and sensor directionality and frequency response can be used to con-

struct an appropriate spectral support. The incorporation of this additional

prior information into the spectral estimation problem is expected to result in

improved spectral estimates.

In the last section, it was assumed that the coarray A, the set of spatial

differences at which the correlation function is sampled, is the difference set of

some set of sensor locations. Although this definition for the coarray arises

naturally in the array processing problem, it can be relaxed somewhat. It will

only be assumed that A is a finite subset of RD with the properties:

(i) 0 CA;

(ii) if 6cA, then -cA;

(iii) leik*d: 6E:A is a set of linearly independent functions on K.
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Condition (i) implies knowledge of r(O), the total power in the spectrum.

Condition (ii) reflects the fact that the correlation function is conjugate-

symmetric, thus if r(6) is known, so to is r(-6). Condition (iii) is only slightly

more subtle than the first two. Linear independence means that if p (6) are

complex constants, not all zero, such that p (6) = p (-6) then the real-valued

function

Sp (6)e k'* (3.1)

is not identically zero on K. A correlation sample is a measurement on the

spectrum, and this condition guarantees that these measurements are indepen-

dent, each measurement gives new information about the spectrum.

If D>1 then the spectral estimation problem is multi-dimensional. If D=1,

K = [-nrn] and A = 0, 1. ±Mj then the spectral estimation problem is that

of the familiar time series case and the extendibility question reduces to the

famous trigonometric moment problem (Grenander and Szegb 1958).

3.3 Mathematical Terminology

The spectral support and the coarray give rise to a few other important

mathematical entities. Conjugate-symmetric complex-valued functions on A will

play a central role in this work. A conjugate-symmetric function f on A is one

for which f (-6) = f *(6) for all 6cA. Correlation samples, from which spectral

estimates are to be made, are such functions. Because of this symmetry, many

of the expressions to follow are real-valued even though, for the sake of simpli-

city, they have been written in a form which suggests that they might be

complex-valued. The coarray A has 2M+1 elements, and so a conjugate-

symmetric function on A is characterized by 2M+1 independent real numbers.
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Thus a conjugate-symmetric function on A may be thought of as a vector in

R2M+1. A vector space over the real numbers is chosen because it is only multi-

plication by a real number which sends a correlation function into another

correlation function. This representation of conjugate-symmetric functions on

A as vectors hints at the importance of functional analysis, the study of linear

vector spaces, to the spectral estimation problem.

Since eik'6: 6EAj is a linearly independent set of functions on K, it follows

that each vector p in R2M+1 can be uniquely associated with a real-valued A-

polynomial P(k) on K through the relation

P(k) = Zp(6)e-ik'. (3.2)
BEA

p shall be termed positive if P(k);?O on K. P shall denote the set of those vec-

tors associated with positive A-polynomials. From the compactness of K, it can

be shown that P is a closed convex cone with its vertex at the origin. A cone

with vertex at the origin is a set such that if f is in the set, then so is af for all

ae:O (Luenberger 1969). Cones are important kinds of sets in the spectral esti-

mation problem because it is only multiplication by positive real numbers that

sends a correlation function into another correlation function.

The inner product between a vector r of correlation samples and a vector

p of polynomial coefficients shall be defined as

(r,p) = Zr*(6)p (6). (3.3)
a EA

It should be noted that this is not the standard inner product in R2M+1,

although a simple scaling of the zeroth correlation would make it so.
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3.4 Characterizations of Extendibility

Let E denote the set of extendible correlation vectors. That is, r cE if

(3.4)r(6) f eik 'd/j
K

for some positive measure A on K. From the properties of the integral, it follows

that E is a closed convex cone. Furthermore, a section through E at r(0) = 1:

E' = fr EE: r (0) = 1 j (3.5)

is the convex hull of the compact set

A = r: r (6) = ei", k EK. - (3.6)

Thus E is the closed convex cone, with vertex at the origin, generated by A.

r(O)

-E

a

Im r (1)

/

K

e rO)

P

Re r (1)

b

Fig. 3.1: E and P for K = [-n,ir] and A = 0, t1J. (a) shows a section

through E and P at Imr (1) = 0 and (b) shows a section through E and

P at r(0) = 1.

This characterization of extendible correlations is similar to that given origi-

nally by Carathdodory in 1907 for the trigonometric moment problem (Stewart

1976). It is important in that it relates the set of extendible correlation vectors

directly to the spectral support and the coarray via fundamental properties of

the integral. It thus gives a clear geometric picture of extendibility, and will be

rr

R
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useful in proofs.

A characterization of extendibility which is more useful in the development

of spectral estimation methods results from expressing E as the intersection of

all the closed half-spaces containing it (Luenberger 1969). This characteriza-

tion involves duality, since half-spaces are defined by linear functionals, ele-

ments of the dual space. A closed half space is defined by a vector p and a real

number c as

ir : (r ,p) ! c i.(3.7)

To determine the particular half-spaces containing E, it is only necessary to

consider those correlation vectors which generate E, positive multiples of vec-

tors in the set A. p and c define a closed half-space containing E if and only if,

for every rcEA, (crrp) > c for every cx 0. Hence (ar,p) = aP(k) e c for every

k EK and a ! 0. Since a may be made arbitrarily large, it must be true that

P(k) = 0. The smallest half-space containing E for such a p corresponds to

choosing c = 0. Thus

E= r Jr: (r,p) ;; 0, (3.8)
pEP

hence

The extension theorem: r is extendible if and only if (rp) ! 0 for all positive p.

Positive polynomials thus occur naturally in the extendibility problem,

since they define the supporting hyperplanes of the set E of extendible correla-

tion vectors. The extension theorem simply states that E and P are positive

conjugate cones (Luenberger 1969).

Although the incorporation of a spectral support into the problem is new,
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essentially the same characterization of extendibility through the use of posi-

tive polynomials has been used by Calderdn and Pepinsky (1952), and Rudin

(1963).

Fig. 3.2 shows the dependence of E on the spectral support. There are two

ways of looking at this dependence. E is the convex cone generated by A;

because the spectral support has been reduced, E is smaller than in Fig. 3.1.

That is the direct way; the indirect way involves constraints. The set K con-

strains the set P via the positivity condition and the set P constrains the set E

via the extendibility theorem. Thus when K shrinks, P grows, and E shrinks.

r(O) Im r(I)

-E P

Re r(i)

-- - -- -- - - -- - - R e r(l)

a b

Fig. 3.2: E and P for K = [-n, !-] and A = 1 0, t1 . (a) shows a section
2

through E and P at Im r(1) = 0 and (b) shows a section through E and

P at r(0) = 1.

In the time series case, the extendibility theorem reduces to a test of the

positive-definiteness of the correlation samples. Hence extendibility may be

thought of as a more general analog of positive-definiteness.

Example 3.1: The time series case; K = [-r,r], A = 0, t1.±Mj.

In this case, the extendibility problem reduces to the trigonometric
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moment problem (Grenander and Szeg6 1958). Although not generally

true, it follows in this case, from the fundamental theorem of algebra, that

a positive polynomial may be factored as the squared magnitude of an M-th

degree trigonometric polynomial:

P(k) =I A(k)12 .

The inner product (rp) becomes a Toeplitz form in the coefficients of the

new polynomial

M
(r,p) =E a *(i)r(i-j)a (j).

ij=0

Thus the requirement that the inner product (rp) be positive for all posi-

tive polynomials reduces to a requirement that the Toeplitz form

corresponding to the correlation measurements be positive definite.

3.5 Boundary and Interior

Sometimes it is necessary to know more about a correlation vector than

that it is extendible, or to know more about a polynomial than that it is positive.

The discussion of Pisarenko's method in chapter 4, for example, involves vec-

tors on the boundaries of E and P and the discussion of the maximum entropy

method in chapter 5 involves vectors in the interiors.

The boundary of a closed set consists of those members which are arbi-

trarily close to some vector not in the set. The interior of a closed set consists

of those members which are not on the boundary. The boundary and the inte-

rior of a finite dimensional set do not depend upon a particular choice of vector

norm (Hoffman 1975). Moreover, since P and E are convex sets, they have inte-

riors and boundaries which are particularly simple to characterize.
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The boundary of P, denoted ZP, consists of those positive polynomials

which are zero for some kEK. The interior of P, denoted P", consists of those

polynomials which are strictly positive on K.

Positive polynomials may be used to define the boundary and the interior

of E. The boundary of E, denoted 0E, consists of those extendible correlation

vectors which make a zero inner product with some non-zero positive polyno-

mial. The interior of E, denoted E', consists of those correlation vectors which

make strictly positive inner products with every positive polynomial.

3.6 Power Spectral Density Functions

Many spectral estimation methods represent the power spectrum, not as a

measure, but as a spectral density function. This leads to a modification of the

extendibility problem: given a fixed finite measure v which defines the integral

r (6) = fs(k)eik'dd v, 6cEA (3.9)
K

which correlation vectors r can be derived from some bounded, strictly positive

function S? Under one additional constraint on v, easily satisfied in practice, it

can be shown that vectors which can be represented in this fashion are exactly

those vectors in the interior of E.

Ihe extension theorem for spectral density functions: If every neighborhood of

every point in K contains a set of non-zero measure, then there exists a positive

function S(k) which is bounded and bounded away from zero such that

r (6) = fS(k)eik"ad v, 6EA,
K

if and only if

(r,p) > 0
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for all positive p.

The proof of this theorem is contained in Appendix A. The ability to

represent correlation vectors in E' by spectral density functions which are

bounded away from zero will be of use in the proof of the existence of the MEM

spectral estimate.

3.7 Sampling of the Spectral Support

A finite computational algorithm can only evaluate a function at a finite

number of points. In practice, therefore, the only spectral supports which can

be dealt with are those composed of a finite number of points:

K = jk. ERD: i = 0,....,N-1j. (3.10)

Many spectral supports of interest contain an infinite number of points. In

designing computational algorithms for spectral estimation on these spectral

supports, the support must be approximated by one having a finite number of

points. A measure A on a support consisting of a finite number of points is com-

pletely characterized by its value A(k 1 ) on each point. Thus the inverse Fourier

integral reduces to a finite sum:

N-1 j--
feik'6d = N i tL(k.). (3.11)
K i=O

Similarly, for spectral density functions,

N-1

feik'S(kz)d v = E ejk'-'S(k.)v(k ). (3.12)
K i=o

The measure v can be considered to define a quadrature rule for integrals over

the spectral support.

From the definitions of extendible correlation vectors and of positive poly-
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nomials, it can be seen that if a new spectral support is formed by choosing a

finite number of points out of some original spectral support then the new set E

is a convex polytope inscribed within the original set E and the new set P is a

convex polytope circumscribed about the original set P. Hence the new E is

smaller than the original E and the new P is larger than the original P. By sam-

pling the original spectral support sufficiently densely, these polytopes can be

made to approximate the original sets to arbitrary precision. For example, Fig.

3.3 shows the effect of approximating the spectral support [-rr,n] by the four

samples JO, tI , ir for A = 0, ±1J. The original E and P cones have a circular
2'

cross-section, as in Fig. 3.1. The cones corresponding to the sampled support

have a square cross-section. The boundaries of the new and old cones intersect

at vectors corresponding to the sample points.

Im r() Im p()

E P

Re r() Re p()

Fig. 3.3: Approximation of a spectral support by sampling; a section at

r (0) = 1.
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Chapter 4

Pisarenko's Method

4.1 Introduction

Pisarenko (1973) described a time series spectral estimation method in

which the spectrum is modelled as the sum of line components plus a white

noise component. If the white noise component is made as large as possible, he

showed that the position and amplitudes of the lines needed to match the meas-

ured correlations are uniquely deLermined. In this section, Pisarenko's method

will be derived in the more general array setting and for a more general noise

component. The relationship of Pisarenko's method to the extendibility ques-

tion will be demonstrated.

The extended Pisareko's estimate will be derived as the solution of an

optimization problem involving the minimization of a linear functional over a

convex region defined by linear constraints. A solution to this optimization

problem always exists, but it may not be unique. A dual optimization problem is

derived which, in the time series case, leads to the familiar interpretation of

Pisarenko's method as the design of a constrained least squares smoothing

filter.

Algorithms for the computation of Pisarenko's method are discussed. A

primal optimization problem is written, for the case of a spectral support com-

posed of a finite number of points, as a standard form linear program. The

application of the simplex method to the solution of this primal linear program

is discussed. A dual linear program is presented which is related to the dual

optimization problem developed before. The possible existence of
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computational algorithms faster than the simplex method is discussed.

4.2 Pisarenko's Method for Sensor Arrays

The basis of Pisarenko's method is the unique decomposition of a correla-

tion vector r into a multiple of a given noise correlation vector n, in the inte-

rior of E, plus a remainder r', on the boundary of E:

r = r' + an. (4.1)

E

r(O)

r

an

n

Re r(8,)

Fig. 4.1: Decomposition of a vector r into a vector r' on the

of E plus a multiple of a given vector n.
boundary

The assumption that n is in the interior of E implies that such a decomposition

of an arbitrary vector r exists and is unique. Consider the one-parameter fam-

ily of correlation vectors

7c = r - Cn. (4.2)

For c sufficiently positive, rc must be non-extendible, since the assumption that

n EE* implies that n(0) > 0. For c sufficiently negative, r. = IcI[n + 1] must
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be extendible, since the assumption that n EE" implies that E contains a neigh-

borhood of n. The convexity of E implies that there is some greatest number a

such that r' = r - an is extendible. Since it is arbitrarily close to some non-

extendible vector, r' must be on the boundary of E. Furthermore, since a t 0 if

and only if r is extendible, this decomposition of r can also be used as an

extendibility test.

This unique decomposition of r can be formulated as a primal spectral

optimization problem. a is the largest number such that the remainder

r' = r - an is extendible. Thus

a = max 1 (0) fdy (4.3)
Pao n(0) K

such that

r(6) = fejk'adyi + n(0) r(0) - fd (6), 6EA, 6 0.

The maximum is attained for some positive measure A' corresponding to the

remainder r'. Since n is extendible, it corresponds to some positive measure

An. Hence

r(6) = fek-[du' + adk ]. (4.4)
K

If a > 0 then A' + ayn is a positive measure which matches the correlation

measurements and which has the largest possible noise component.

Polynomials can be used to derive some further information about the

remainder r' and its spectral representation A'. r' is on the boundary of E,

hence it makes a zero inner product with some non-zero positive polynomial:

(r',p') = fP'(k )d A' = 0. (4.5)
K
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It follows that A'(B) = 0 for any set B which is disjoint from the zero set of P'(k).

This suggests the final step in the derivation of Pisarenko's method, which is

the association of the remainder r' with an impulsive spectrum. The fact that

the objective functional of the primal optimization problem is not strictly con-

vex hints that the solution A' will not be unique in general. One special case in

which p' is uniquely determined is the time series case considered by

Pisarenko.

Example 4.1: The time series case: K = [-n,Tr], A = 0, t1,..., tMJ.

Since r' is on the boundary of E, there is some non-zero positive p'

such that (r',p') = 0. Every such p' and every spectral representation A' of

r' must satisfy (r',p') = fP'(k)d py' = 0. As in example 3.1, P'(k) =I A(k)1 2

K

for some M-th degree trigonometric polynomial A(k). A(k), and hence

P(k), can be zero at no more than M points. The spectrum A', therefore,

must be a sum of impulses at these points. Since it is possible to construct

a positive polynomial which is zero at N -< M arbitrarily selected points, it

follows that r' has a unique spectral representation as a sum of impulses at

the common zeros of all positive polynomials p' such that (r,p') = 0.

For the solution, p.', to the primal optimization problem (4.3) to be unique

for every correlation vector r, every correlation vector r' in aE must have a

unique spectral representation. Example 4.1 shows that, in the time series

case, every such r' has a unique spectral representation in terms of no more

than M impulses. More generally, the extension theorem combined with

Carathdodory's theorem (Cheney 1966) shows that there is at least one spectral

representation of r' as a sum of no more than 2M impulses.
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The representation theorem: If r' is on the boundary of E, then for some 2M

non-negative a (i) and some k cK:

2M j
1

j5
r'(6) = Zz(i)e . (4.6)

i,=1

(See appendix B for proof.)

This representation, and thus the solution to the primal optimization problem

(4.3) may not be unique. This uniqueness problem is discussed in appendix C,

where it is shown that, in many multi-dimensional cases of interest, vectors

exist on the boundary of E with more than one spectral representation.

Although the existence of such vectors is shown it is not clear how common

they may be.

Given r, if a and the locations of the impulses in the solution /' could be

determined, then the impulse amplitudes could be calculated simply by solving

a set of linear equations. A dual optimization problem (4.8) will now be derived

which gives a and p' such that (r',p') = 0. Then, if r' has a unique spectral

representation, the line locations can then be determined from the zeros of

P(k). From the extendibility theorem,

(r',p) = (r-an,p) = (n,p)[(r,p)/(n,p) -a] 0. (4.7)

Since nCE' and r'EAE, it follows that (np)>0 and (r',p) 0 for all p EP.

Furthermore, since (r,p') = 0 for some p'cP, it follows that

a = min (rp) (4.8)

over the set

p EP: (np) =

and that the minimum is attained at p'. In the time series case, this dual prob-
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lem reduces to the same eigenvector problem derived by Pisarenko and leads to

the interpretation of Pisarenko's method as determining a constrained least

squares smoothing filter.

Example 4.2: The time series case: K = [-rr,rr], A = jQ, t1.tMj.

As in example 3.1,

M
(r ,p) =E a *(i)r (i-j)a (j).

,j =0

Furthermore, if n corresponds to white noise,

M 2
(n,p) p (0) = ja(i)l

i=0

Thus the dual optimization problem reduces to finding the eigenvector of

the Toeplitz matrix associated with r corresponding to the smallest eigen-

value. If there are several such eigenvectors, the impulses in .' are located

at the common zeros of the corresponding polynomials. Any normalized

eigenvector corresponding to the minimal eigenvalue gives the coefficients

of a smoothing filter, the sum of whose squared magnitudes is constrained

to be one, which gives the least output power when fed an input process

whose correlations are described by r (Sullivan, Frost, and Treichler 1978).

4.3 The Computation of Pisarenko's Estimate

In the design of algorithms to compute Pisarenko's estimate, one is neces-

sarily concerned with spectral supports composed of a finite number of points:

K = Jkj ERD: i = 0,....,N-1 J. (4.9)

A measure y on such a support is completely characterized by its value s(kg) on

each point. The primal problem (4.3) can be written as the standard form
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linear program

N-1

min E p(ki) (4.10)

such that

'eikf _ =T(6) -( r ,() 6EA, 6 0 (4.11)
E= ne (r n (0)

with N variables and 2M constraints. The fundamental theorem of linear pro-

gramming (Luenberger 1973) is equivalent to the representation theorem in

this case. Given that a solution exists to this linear program, as shown in the

previous section, the fundamental theorem guarantees a solution in which no

more than 2M of the p.(ki)'s are non-zero, a so-called basic solution.

The (unsymmetric) dual linear program can be shown (Luenberger 1973) to

be

max (6)[r (6) -*0 n 0 ) (4.12)

such that

((6) eI 1, i = 0, . . . , N-1. (4.13)

The dual optimization problem derived in the last section can be derived from

this linear program by defining

p (6) = - 1 (6), 6 i0, (4.14)
n (0)

and by introducing the additional variable p (0) and adjoining the additional

constraint equation

(n,p ) = 1. (4.15)
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The primal problem can be solved using the simplex method (Luenberger

1973). The application of the simplex method to the primal problem results in

essentially the same computational algorithm as the application of-the (single)

exchange method to the dual problem (Stiefel 1960). By incorporating a tech-

nique to avoid cycling, such as that due to Charnes (1952), an algorithm can be

obtained which is guaranteed to converge to an optimal solution in a finite (typ-

ically O(M)) number of steps.

The problem of Chebyshev approximation is related to the computation of

Pisarenko's estimate; it also can be formulated as the minimization of a linear

functional over a convex space defined by linear inequality constraints (Cheney

1966). It also has been solved using the simplex (single exchange) method.

However, for the particular problem of the Chebyshev approximation of con-

tinuous functions by polynomials in one variable, a computational method

exists which is significantly faster than the simplex method, a multiple

exchange method due to Remes. Although attempts have been made to extend

this method to more general problems (Harris and Mersereau 1977), the result-

ing algorithms are not well understood; in particular, there is no proof of con-

vergence. Recent work in this area (Blatt 1978) is promising, however, and the

development of a reliable multiple-exchange method for Chebyshev approxima-

tion would have important consequences for the related problem of the compu-

tation of Pisarenko's estimate.
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Chapter 5

The Maximum Entropy Method

5.1 Introduction

In maximum entropy method (MEM), a unique spectral estimate is obtained

by optimizing a convex functional over a collection of spectral density functions

which satisfy the correlation-matching constraints. The positivity constraint is

implicitly enforced by the selection of a functional which penalizes lo- values of

the spectral density function.

The maximum entropy method is developed in the array processing setting.

Conditions are posed which guarantee the existence and uniqueness of the MEM

spectral estimate and for which the estimate can be characterized as having a

particular parametric form. These conditions involve certain constraints on

the coarray and the spectral support which are easily met in practice. The cal-

culation of the MEM estimate is reduced to the solution of either of two finite

dimensional convex optimization problems. The application of standard optimi-

zation techniques to these problems results in iterative computational algo-

rithms which are guaranteed to converge. The resulting algorithms are com-

pared to those previously proposed.

5.2 The Maximum Entropy Spectrum

MEM is so named because it can be derived (Burg 1975) as the solution of a

constrained entropy maximization problem. Consider optimizing the entropy

functional

H = flnS(k)d v (5.1)
K
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over the set of all continuous and strictly positive functions of k which satisfy

the correlation-matching constraints

r (6) = fS(k)eik'6d v, 6zA. (5.2)
K

Integrals over K are defined by some measure v, as described in section 3.6. If

an optimum S' exists of the required form then a Lagrange multiplier theorem

(Luenberger 1969, p. 188) implies that

S'(k ) = - 1)(5.3)
P'(k )

for some strictly positive A-polynomial P'. Conversely, if there exists a positive

A-polynomial P' whose inverse S'(k) is a spectral density function which

satisfies the correlation-matching constraints, then the convexity of H guaran-

tees the uniqueness and optimality of S'.

The existence proof presented in appendix D, therefore, merely demon-

strates that if r is a correlation vector in the interior of E, then there exists a

1
polynomial p', in the interior of P, such that P'(k) is a spectral density func-

tion which satisfies the correlation-matching constraints. The basis of the

proof is to consider (5.2, 5.3) as a mapping from P0 into E*, which must be shown

to be invertible. It is easily seen that this mapping is continuous and one-to-

one. Therefore, if it can be shown that points on the boundary of P are mapped

into points on the boundary of E, the mapping must be onto, hence invertible.

Two conditions are assumed in the proof of this theorem. First it is

assumed that every neighborhood of every point in K contains a set of non-zero

measure. This is the same condition posed in section 3.6, under which correla-

tion vectors in Ea can be associated with spectral density functions which are

bounded and bounded away from zero. Second, it is assumed that if p EP" is a
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sequence converging to p EOP, then

-d v(. (5.4)
Pn (k )

It follows that if r, is the correlation vector corresponding to the spectral den-

sity function 1 then

r P)=\f d 0. (5,5)

Thus the sequence of normalized correlation vectors -r approaches 6E.
rn(0)

This shows that points on the boundary of P are mapped into points on the

boundary of E. Although there are some simple spectral supports which do not

satisfy these two conditions, the supports can easily be modified to do so.

These conditions, therefore, are not very restrictive in practice.

5.3 Dual Optimization Problems

In this section, it is shown that the polynomial corresponding to the MEM

estimate can be obtained as the solution to either of two finite-dimensional

optimization problems, both of which require the optimization of a convex func-

tional over a convex set. These well-behaved optimization problems can be suc-

cessfully attacked with a number of standard algorithms.

The correlation vector, as well as the entropy, may be thought of as func-

tions of a polynomial p CP":

e k -6
rP(6) = fP(k ) d v, (5.6)

H(p) = -flnP(k)dv. (5.7)
K
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Taking the gradient of H with respect to the polynomial coefficients results in

OH

0 P ( 6 )
(5.8)

-f P(k) d v(=).

The polynomial p' corresponding to the MEM spectrum makes a known inner

product with the correlation vector:

(r,p') = r*(6)p'(6)
6cA

= f P'(k) dv = v(K).
K

Therefore, the hyperplane (rp) = v(K) is tangent to the surface H(p) = H(p')

at the point p = p', where the correlation matching constraints are satisfied.

This situation is illustrated in Fig. 5.1.

p(O)

r
--P(k)>2 0- //

H(p) < H()

H(p) = H(p

(r ,p )V(K)

n ~ p(8 1)

Fig. 5.1: The hyperplane (rp) = v(K)

H(p) = H(p') at the point p = p'.
is tangent to the surface

(5.9)

.
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H(p) is a strictly convex function of p. It follows that surfaces of constant

entropy are convex, and that the intersection point p' may be obtained as the

solution to either of two optimization problems, which are dual to the primal

entropy maximization problem (5.1, 5.2).

Of all points on the hyperplane (rp) = v(K), the minimum entropy is

attained at p = p':

H(p') = minH(p) such that (r,p) = v(K). (5.10)

Of all points in the convex set H(p) i H(p'), the minimum projection onto r is

attained at p = p':

v(K) = min (rp) such that H(p) H(p'). (5.11)

The first optimization problem (5.10) is amenable to solution by any of a

number of standard techniques, such as the method of steepest descent or a

quasi-Newton method, It will form the basis for a computational algorithm to be

discussed in the next section.

In the second optimization problem (5.11), it is not necessary to know

H(p'). Since the objective functional is linear, the optimum will be attained on

the boundary of the constraint set. It can be shown that the solution of (5.11)

simply scales with H(p'), thus it may be solved with the equality constraint

H(p) = 0, giving q. It is easily verified that the scaling yields

v(K) (5.12)

and that

H(p') in[ 'K). (5.13)
I K)

In the time-series case, the second optimization problem leads to the usual
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interpretation of the MEM estimate as a least-squares predictor.

Example 5.1: MEM in the time-series case: K = A = 0, t1,..., tM.

P(k)EP may be factored:

P(k ) =|I A (k )| = c1-. -k|
i=1

where A is a M-th degree trigonometric polynomial with zeros at the loca-

tions zi. In this case,

H(p) = in c

and

(r,p )=fS(k)P(k) .
-T 2T

Therefore, minimizing (r,p) s.t. H(p)=0 is equivalent to minimizing the

power out of the linear predictor, with transfer function 1+ Za(n)z-,

which is fed an input process whose correlation are described by r.

results in the familiar Toeplitz normal equations (Burg 1975)

r (i -j)a (j) = -r(-i), i = 1,..., M
j=1

(r,q)= r (0) + E r (-j)a (j)
j=1

and giving the MEM spectral estimate

S(k) = ' .
|A(k )|2

This
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5.4 Application of the Method of Steepest Descent

The method of steepest descent is one of the oldest methods of minimiza-

tion, as well as the basis for more advanced quasi-Newton methods (Luenberger

1973). This section discusses the application of steepest descent to the prot-

lem of obtaining the MEM spectral estimate, in particular the solution of

H(p') = min H(p) such that (r,p) = v(K). (5.14)

The constraint (rp) = v(K) can be used to eliminate the parameter p (0) via the

equation

p (0) = [v(K) - Z r*(6)p (6)]. (5.15)
r (0) 600

The reduced problem is now an unconstrained minimization problem in the 2M

real variables JRe p (6), Imp (6): 6EA, 610j.

In the method of steepest descent, the iteration

pi+1 = Pi ~ -9i (5.16)

is used, where a, is a non-negative scalar minimizing H(pi - aogi) and gi is the

gradient vector:

gi (6) = -2[r ,(6) - -T( 6)], 6-0. (5.17)

gi(0) is determined from the constraint (r,p2 ) = v(K), thus

gE(0) = - 1 r*(6)gi (6). (5.18)
r (0) ":"

Thus, in the i-th iteration, the gradient gi is calculated. Since the correlations

I of the spectrum 1 must be calculated to obtain the gradient, the

difference between these correlations and the desired correlations, r - rT,, can
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be conveniently used as a stopping criterion. Then a line search is performed

from the point pi, in the direction -g, to a minimum of H. The minimum point

is taken as pi. Since H is convex, it is convenient to search for a zero of the

derivative

dH(p-cxg) f G(k) d v (5.19)
d a K P (k) - aGi (k)

rather than a minimum of H. Note that Gi(k) should be positive somewhere on

K, since

Gi (k)
0 (rgi) = -(k ) -d v (5.20)

1 dH
and > 0. Thus -, which starts out negative, turns positive when

Pi (k)-a Gi(k) becomes small in some region of K where Gi is positive. The line

cxj0 Gi(k ) 1dH
search is restricted to the interval a 0 max (k) within which a zero of

K Pi(k )] d a

must lie. The convexity of H guarantees the convergence of this algorithm.

Of course, in actual algorithms, one is necessarily concerned with spectral

supports composed of a finite number of points:

K = (kgERD: i = 0, . N-1[ (5.21)

The measure v, which defines a particular integral over K, is completely charac-

terized by its values v(ki) on each point. The integral of a function over K

reduces to a finite sum

N-1
fF(k)d v = F(k )v(k ). (5.22)
K j=0

The measure v then, merely defines a quadrature rule for integrals over K. As

long as v(ki) > 0, the conditions for the existence of the MEM estimate,
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discussed in section 5.2, are trivially met.

5.5 Comparison to Other Algorithms

In his Ph.D. thesis (pp. 97), Burg discussed a general variational approach

to the estimation of a function and he proposed a general, iterative, solution

procedure. When his solution procedure is specialized to the MEM problem, it is

seen to be an application of a version of Newton's Method to the problem:

min [H(p) + (r,p)]. (5.23)

This minimization problem can be shown to be dual to the original entropy max-

imization problem (5.1, 5.2). The two minimization problems (5.10, 5.11) derived

in section 5.3 can be derived from (5.23) by holding one of the two terms fixed.

This reduction in dimensionality is obtained by using the additional information

that (rp') = v(K). The convexity of the objective functional in (5.23) guaran-

tees the convergence of a suitably modified Newton's method (Luenberger

1973), although not of the version suggested by Burg. Specifically, a line search

along the search direction must be done. Other authors have actually con-

structed iterative algorithms for the computation of the MEM estimate. Several

of these can be shown to be the result of applying standard optimization tech-

niques to (5.23).

Ong (1971) actually applied a version of Newton's method to (5.23) for the

computation of two-dimensional MEM spectra. Again, lack of a line search

means that the resulting algorithm is not guaranteed to converge.

The algorithm proposed by Woods (1976) is similar to the method of

steepest descent applied to (5.23). Woods, deals with a normalized polynomial

1
q = cp, where c (0) , with the corresponding spectral density function



- 47 -

C

Q) . The resulting algorithm iteratively updates c and q in a manner similar

to moving p in the direction of the negative gradient of (5.23). It is not exactly

the same, however. Furthermore, required calculations are done only approxi-

mately. Either of these characteristics, as well as the absence of a line search

along the search direction, create potential convergence problems.

More recently, Jain and Ranganath (1978) have applied a coordinate des-

cent method to the solution of (5.23). They do implement a line search and the

resulting algorithm is guaranteed to converge, although typically much more

slowly than steepest descent (Luenberger 1973).

Two other distinctly different approaches to computing the MEM estimate

have been taken. Wernecke and D'Addario (1977) have attacked the primal

problem (5.1, 5.2). Although this allows them to trade off accuracy in

correlation-matching for increases in entropy, it results in more computation

because the primal problem is of much higher dimensionality than the dual

problems, since typically N >> M. Lim and Malik (1981) have used an

alternating-projection type of algorithm which has not been proven to con-

verge.
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Chapter 6

Spectral Estimation Examples -

6.1 Introduction

Three examples of spectral estimation using MEM and Pisarenko's method

are presented in this chapter. These examples provide an opportunity to review

some of the ideas presented in previous chapters, to expand upon them in a

specific context, and to discuss some details of computation and implementa-

tion.

The MEM estimate was computed using the method of steepest descent, as

discussed in section 5.4, for the first five iterations, in order to get close to the

optimum. Succeeding iterations, if any, used a self-scaling quasi-Nev7ton

method due to Luenberger (1973), which converges significantly faster. The

quasi-Newton method involves only few modifications to the the method of

steepest descent, principally involving the accumulation of an approximate

Hessian matrix and the use of this matrix to modify the gradient vector in the

choice of a search direction. The stopping criterion used involved the Che-

byshev norm of the difference between the correlation data and the correla-

tions of the current model, considered as vectors in R2 M+l. When the norm of

this error was sufficiently small, less than r(Q)x10- 2 for the examples to be

presented, the iteration was stopped. This stopping criterion was arbitrarily

selected. Tightening this error threshold did not, however, significantly change

the spectral estimates in the following examples.

Pisarenko's estimate was computed using the simplex method to solve the

primal linear program (4.10, 4.11), as described in section 4.3. The algorithm is
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guaranteed to stop after a finite number of steps.

The desired spectral supports consisted of infinite numbers of points; they

were approximated by supports containing a finite number of points, densely

sampling the desired supports. The bulk of the time spent in the computation

of both the MEM and Pisarenko's estimate was used in, essentially, evaluating

polynomials over the spectral support. This required O(MN) computations per

iteration, for a spectral support consisting of N points. The algorithms were

written in the C programming language and run under the UNIX* operating sys-

tem on a PDP* 11/50. Because of the small address space of the computer

used, sine and cosine tables had to be stored on disk instead of in main

memory, which significantly slowed the algorithms. An exception was the simple

1-D MEM example of section 6.2, for which a simple recursion was used to calcu-

late the necessary sines and cosines.

6.2 The Importance of a Proper Spectral Support

Fig. 6.1 shows a 6 sensor linear non-uniform array and its coarray, which

consists of 15 non-zero ±6 pairs, specifically all the integer multiples of ±0.75

up to ±12.75 except for ±10.5 and ±11.25. Consider the correlation vector

whose elements are given by

r( eckS(k) 6:A, (6.1)
-17 2rr

where S(k) is pictured in Fig. 6.2.

The spectral support, often known from dispersion relations or from sensor

specifications, constitutes important prior information about the spectrum.

'UNIX is a trademark of Bell Laboratories.
'PDP is a trademark of Digital Equipment Corporation.
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(a)

I
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15

0 0

(b)

Fig. 6.1: Six sensor linear non-uniform array (a) and the positive por-

tion of its coarray (b).
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Fig. 6.2: Original spectral density function, whose correlation function,

sampled on the coarray, produced the correlation vector.

This example concerns the effects of choosing the spectral support incorrectly.
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Several spectral estimates, both MEM and Pisarenko's method, were computed

for spectral supports approximating various intervals. All used a spectral sup-

port of 401 points, uniformly distributed across the interval to be approxi-

mated. For the MEM estimates, the measure v corresponded to quadrature of

the integrals by the trapezoidal rule; v(k) = , except for the endpoints,
vk) 400 exetfrteedons

which were half of this value. Here m(K) denotes the length of the interval K.

First the MEM spectrum was computed using the correct spectral support

of [-n,n]. The result, shown in Fig. 6.3, is a reasonable facsimile of the original

spectrum.

Next, the MEM spectrum was computed using a larger spectral support of

[- , -]. The result, shown in Fig. 6.4, has marked differences from the origi-
4 4

nal spectrum. These differences can be explained by recalling that the MEM

spectrum maximizes the entropy integral

51

fIn S(k ) d (6.2)

4

subject to the correlation constraints. Since the original spectrum is zero out-

side of the region [-n,if], it has an entropy of -oo. MEM picks a spectrum which

is positive everywhere in order to obtain a higher entropy; to do this while still

satisfying the correlation matching constraints requires quite complicated

behavior in the region [-irr]. In fact, computing Pisarenko's estimate, for a

noise vector corresponding to a constant spectral density level of 1 over the

interval [ 5], resulted in an a = 3.3x10~4. Thus r is close to BE, the poly-
44

nomial corresponding to the MEM estimate is close to OP, and high peaks in the

MEM estimate are to be expected.
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Fig. 6.3: MEM spectral estimate

iterations, 13 seconds CPU time.)

r

for a spectral support of [-r]. (5

I I

-7 0
7r

51T 51T
Fig. 6.4: MEM spectral estimate for a spectral support of [- , -]4

(36 iterations, 97 seconds CPU time.)
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The introduction of significant regions into the spectral support where

there is no power has done considerable violence to the MEM estimate. This

behavior will be common to all spectral estimation methods which optimize

functionals severely penalizing low spectral values in order to implicitly enforce

the positivity constraints, as proposed by Burg (1975).

3ir 3r
Finally, the spectral support was chosen too small, [- -]. When an

4,4

attempt was made to compute the MEM estimate, a positive polynomial was

discovered, on the ninth iteration, which makes a zero inner product with the

correlation vector. Thus the correlation vector is outside of E'. To verify this,

Pisarenko's estimate was computed, for a noise vector corresponding to a con-

stant spectral density level of 1 over the interval [- , -]. This resulted in an
4 4

alpha of -1.7x10 5 , indicating that the correlation vector is not extendible.

Unlike the poor behavior of MEM when the spectral support was made too large,

this non-extendibility problem when the spectral support is made too small is

fundamental; there is no positive spectrum on this too-small support which

matches the correlations.

6.3 Choosing the Correct Spectral Estimation Method

Given the model of the array processing problem developed in chapter 2,

the task of a spectral estimation method is simply to pick out one of the many

positive spectra which are consistent with the correlation measurements and

the known spectral support. There are many ways to do this, Pisarenko's

method and MEM are just two. The selection of an estimation method is a way in

which to incorporate additional prior knowledge into the problem. Consider the

array and coarray pictured in Fig. 6.5 and the spectral support pictured in Fig.
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6.6, consisting of the boundary of the circle of radius rr, corresponding to two-

dimensional waves in a homogeneous, non-dispersive medium. Further, con-

sider the correlation vector corresponding to two impulses of unit power at

270' and at 275' plus noise of constant spectral density level 1.

t.5

0 00 0

0 0 0 0 0 0 0 0

0 0

( b)(a)

0

Fig. 6.5: Four sensor array (a) and its coarray (b).

Fig. 6.6: Spectral support for two-dimensional waves.

Both MEM and Pisarenko spectral estimates were computed for spectral

supports approximating the circle. Both used a spectral support of 360 points,

one per degree. For the MEM estimates, the measure v assigned equal weight to

each sample point. Fig. 6.7 shows the MEM spectral estimate. Note that the two

0+

r_

7 r
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peaks are not resolved. Table 6.1 shows the Pisarenko estimate, in the form of

power at 2M points. Note that, except for the effects of machine rounding error

the peaks are exactly resolved. Thus, if it is known that the spectrum consists

of point sources in background noise of some known spectral shape, then

Pisarenko's method is more appropriate than MEM because it effectively incor-

porates this prior knowledge into the estimation problem.

1000

100

101

.1'
'0O 360180

Fig. 6.7: MEM spectral estimate of two point sources
(16 iterations, 33 seconds CPU time.)

in isotropic noise.

I
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e= 0.999999

A(;o)

0.000000

0.000000
0.000000
0.000000
0.011591

0.968303
0.023218
0.992969
0 003917
0.000000

Table 6.1: Pisarenko's estimate of two

(105 iterations, 72 seconds CPU time.)
point sources in isotropic noise.

Consider the effect on Pisarenko's estimate of adding a point source, of

unit power, at 180.5', half-way between two sample points. In order to

represent this point source by power at the sample points requires power at 21

sample points. These samples points do not include both 270' and 275'. When

all three point sources are present, the spectra do not simply add. In fact the

presence of the point source at 180.50 significantly disturbs the spectrum

around 270' (Table 6.2).

12

13

91

167

269
270

271

275

276

305
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a = 0.997803

p(O)

0.000429

0.000062
0.00050
0.500525

0.500090
0.806229
0.860291
0.245172
0.088951

0.000293

Table 6.2: Pisarenko's estimate of three point

noise. (55 iterations, 41 seconds CPU time.)

sources in isotropic

6.4 A Two-Dimensional TMEM Spectrum

Consider the array and coarray in Fig. 6.8 and a spectral support, consist-

ing of a circular disk of radius 2Vn. This spectral support can be considered as

a limiting case of the spherical cap support of example 2.1, where the

beamwidth of the dish antennas is very small.

62
63

118

180

161
270

273
277

278

359
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3

* 0 00 00

* 00 00 00

00 0 00 0 0 0 0 @ 0 000 0

(a) (b) -3

Fig. 6.8: Array (a) and coarray (b) for 2-D example.

Consider the correlation vector corresponding to the spectral density function

in Fig. 6.9, which is of constant spectral level 1, except for a central circular

portion, of radius vir, which is of spectral level 2. The spectral support was

sampled in rectangular pattern, approximately 60 points from the center to the

radius. If more sample points had been used, an entire spectral estimate could

not have been kept in main memory at one time. Equal weight was assigned to

each point.

Fig. 6.10 is a contour plot of the resulting MEM spectral estimate. Although

the correlations correspond to a circularly symmetric spectrum, the asym-

metry of the coarray causes an asymmetry in the spectral estimate. In other

respects, the estimate is a reasonable copy of the original spectrum, exhibiting

a rise at radii near .1r and plateaus at larger and smaller radii.
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k,

2

Fig. 6.9: Spectrum from which correlation vector was derived.

Fig. 6.10: MEM spectral estimate. (2 iterations, 733 seconds CPU time.)
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Chapter 7

Summary

This thesis has been concerned with what is probably the simplest interest-

ing problem in array processing; the estimation of a power spectrum with a

known support, given certain samples of its correlation function. This problem

retains the key ingredients of multi-dimensional spectra, non-uniformly sam-

pled correlation functions, and arbitrary spectral supports. The investigation

of correlation-matching spectral estimates led to the extendibility problem.

This problem is called the trigonometric moment problem, in the time series

case, and its solution involves consideration of the positive-definiteness of the

correlation samples. Extendibility can therefore be considered as a generaliza-

tion of positive-definiteness. Trigonometric polynomials, so common in the tri-

gonometric moment problem, turned out to be a special case of A-polynomials,

of central importance in the extendibility problem. The representation of

power spectra, both as measures and as power spectral density functions, was

considered.

Building on the theoretical framework developed in solving the extendibil-

ity problem, two spectral estimation methods were extended from the time

series case to the array processing problem. Pisarenko's method was shown to

be intimately related to the extendibility problem. Although it leads to a unique

spectral estimate in the time-series case, it was shown not to do so in general.

In the time series case, its computation involves the solution of a eigenvalue

problem; its computation was shown to involve the solution of a linear optimiza-

tion problem in general. Sufficient constraints on the spectral support and the
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coarray were posed which ensure the existence of the MEM spectral estimate in

its usual parametric form. Its computation, which in the time series case

involves the solution of a system of linear equations, more generally involves

the solution of a convex optimization problem.

Because the computation of both Pisarenko's and the MEM estimate involve

the solution of optimization problems, iterative solution algorithms must be

considered as components in, not just as design aids for, signal processing sys-

tems. Thus the design of reliable and fast algorithms is important. Because of

the use of simple ideas from measure theory, the analytical techniques

developed in this thesis also apply exactly to problems involving discrete spec-

tral supports, for which computational algorithms can be devised. This allows

the exact analysis of these algorithms, essential in the design of reliable com-

putational algorithms. This formula has been used with great success in digital

signal processing in the context of sampled data systems, principally because

techniques exist to exactly analyze the behavior of the discrete time systems

and hence to design reliable algorithms.

The relationship between the solutions to these discretized problems and

the solutions to the original problems, involving spectral supports with a infinite

number of points, has not been explored. However, it is only to be expected

that the denser the sampling, the better the degree of approximation. Efforts

to increase the sampling density without proportionally increasing the amount

of computation, or to decrease the amount of computation for the same sam-

pling density, should prove fruitful. In particular, the interpolation and adap-

tive grid techniques used in filter design should be useful. The computational

algorithms discussed have been the result of applying standard optimization

techniques to discretized optimization problems. New techniques, such as the
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use of multiple exchange algorithms in the computation of Pisarenko's esti-

mate, are of great interest.

Aside from just extending existing time series spectral estimation methods

to the array processing case, the development of completely new methods is of

interest. If a new method is to involve the optimization of some functional, the

question of which functional to optimize is of interest. Further, there is the

issue of implicit versus explicit positivity constraints. Burg points out that, in

the absence of an explicit positivity constraint, spectral estimation methods

which optimize some functional subject to correlation constraints result in

parametric models simply related to A-polynomials. The use of explicit posi-

tivity constraints should result in more varied forms, such as Pisarenko's

method, and should not exhibit the bad behavior of MEM, described in section

6.2, which results from the use of the functional being optimized to enforce the

positivity constraint implicitly. More fundamentally, there is the question of

how important is the positivity constraint. Constraints only result in improved

spectral estimates if they would be violated, were they not imposed. The posi-

tivity constraint is an inequality constraint, while the correlation and spectral

support constraints are both equality constraints. Thus one would expect the

positivity constraint to be less useful than the other two.

Finally, there is the problem of enlarging the simple model of the array

processing problem used in this thesis. In the time series case, direct data

methods for spectral estimation are related to methods which assume

knowledge of samples of the correlation function. One might hope that similar

direct data methods could be developed for the array processing case.
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Appendix A

The Extension Theorem for Spectral Density Functions

This appendix concerns the extension theorem for spectral density func-

tions, discussed in section 3.6. This theorem identifies the interior of E with the

set of correlation vectors which can be associated with spectral density func-

tions which are bounded and bounded away from zero. It is assumed that every

neighborhood of every point in K contains a set of non-zero measure. This con-

dition guarantees that correlation vectors corresponding to impulses in K can

be approximated by correlation vectors corresponding to bounded spectral

density functions.

The extension theorem for spectral density functions: If every neighborhood of

every point in K contains a set of non-zero measure, then there exists a positive

function S(k) which is bounded and bounded away from zero such that

r(6) =fS(k)eik'bdv, 6E:A, (A.1)

K

if and only if

(r,p ) > 0 (A.2)

for all positive p.

Proof: Define EB as the set of correlation vectors corresponding to spectral

density functions which are bounded and bounded away from zero:

EB = jr: r(6) = feik'6S(k), b > S(k) > r > 0 for some b, ej. (A.3)
K

It follows immediately that EB is convex. It will be shown that Es is open and
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that its closure is E. From these properties it will follow that EB = E0 .

Consider the mapping from a bounded function Q(k) into a vector r

defined by

(A.4)r(6) = feik'6 Q(k)dv.
K

Because leik': 6EcA is a set of linearly independent functions on K and since

every neighborhood of every point in K contains a set of non-zero measure, it

follows that the image of the set of bounded A-polynomials

(A.5)

under this mapping, is a neighborhood of 0. Therefore the image of

(A.6)

is a subset of EB which is a neighborhood of r. Hence EB is open.

Consider the subsets of K

Kn = jk EK:Ilk -k o1 < , (A.7)

the corresponding functions in EB

X (k)
SX(k)= + ,

v(KL) n
(A. 8)

where xn(k) is the characteristic function of the set K,, and the correspond-

ing vectors

(A.9)rn(6) = fenkS,(k)dv.
K

It can easily be shown that limrn = rko where rko(6) = e jk0 '. Thus rT, is in the
n

closure of EB. It follows from Carathdodory's theorem (Cheney 1966) that every

q cR 1+1:IQ (k )l < & ,

IS(k )+Q (k ):IQ'k )| < j
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rcE can be written as a positive sum of some 2M+1 such rk,. Since each rk, is in

the closure of EB it follows that each rEE is also. Therefore the closure of EB is

E.

E' is the largest open set contained in E (Hoffman 1975). Suppose rTEEB

and that r 2 EE and that rT2 EB. Since both EB and E' are open, EB contains an

open ball around r I and E' contains an open ball around r2 ,

r3 r. r,0 0

Fig. A.1: Two open convex sets with the same closure are identical.

The open ball around r 3 must be entirely outside of EB or else, by convexity, r 2

would be in EB. But then r 3 is a vector in E which is not in the closure of EB, a

contradiction. Therefore there exists no such r 2 and EB = E".
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Appendix B

The Representation Theorem

The representation theorem of section 4.2 is a simple extension of

Carathdodory's theorem (Cheney 1966) for correlation vectors on the boundary

of E, making use of the extension theorem. It is the generalization of "A

theorem of C. Carathdodory" (Grenander and Szeg6 1958, chapter 4) to multiple

dimensions. In view of the chapter 4 derivation of Pisarenko's method as a

linear program, the representation theorem may also be viewed as an extension

of the fundamental theorem of linear programming (Luenberger 1973).

The representation theorem: If r' is on the boundary of E, then for some 2M

non-negative a(i) and some ki K

2M
r'(6) = E z(i)e'k 6 . (B.1)

i=1

Proof: Consider the compact convex set E' = TE: r (0) = 1j c R72 . If r EE'

then r(6) = fejk'6dy for some positive A such that fdyz = 1. Thus E' is in the
K K

closed convex hull of A = fr: r (6) = ek '6 , keKi. Since A is compact, by

Carathdodory's theorem, E' is the convex hull of A and any element of E' can be

expressed as a convex combination of 2M+1 elements of A:

2M+1
r = ri (B.2)

i=1

2M+1
with ii ! 0, E di = 1, and riEA. If one of the 6i is zero, the proof is complete.

t=1

Otherwise, since r is on the boundary of E', there is some non-zero p eP such

that
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2M+1

0 = (rp) = (rp). (B.3)
i=1

Thus, for each i, (rg,p) = 0. The ri's must be linearly dependent, so there are

2M+1I -

some P.ER, not all zero, such that Pri = 0. Let A be the number with the
i=1

smallest magnitude such that .+Xp. = 0 for some i. Then

2M+1
r = + ( .)rig. (BA)

(=1

One of the coefficients is zero, reducing this to a sum over only 2M terms.

Recognizing that any element of E is a scaled version of an element of E' com-

pletes the proof.

Note that, in the times series case, r' could be expressed as a sum of no

more than M complex exponentials while this theorem only guarantees a

representation in terms of 2M exponentials. This is not a deficiency in the

proof, but a genuine feature of the problem, as the following one-dimensional

example shows.

Example B.1: K = [-7, ] = 0, t1j.

Suppose that r is on the straight portion of the boundary of E, as indi-

cated in Fig. BA. Clearly, r has a unique representation as a convex sum of

members of A in terms of the two correlation vectors corresponding to

k = and k = -7T,
2

r(6) = + 2~e
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r(O)

-E

a

/

im Ai)
k=

Re r(i)

A

r

k = --- ir

Sr(I)

b

Fig. B.1: E for K = [-lT, -] and A = ± 0 11. (a) shows a section through

E at Im r (1) = 0 and (b) shows a section through E at r (0) = 1.

rit
-
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Appendix C

The Uniqueness of Pisarenko's Estimate

As discussed in section 4.2, Pisarenko's estimate is unique if one and only

one spectrum can be associated with each correlation vector on the boundary

of E (OE). Let rk denote the correlation vector with elements rk(6) = eik'6 for

some k cK. Trivial uniqueness problems result if two distinct k's give rise to the

same rk's; it shall be assumed that this is not the case. Consider the set of

correlation vectors corresponding to the zero set of some non-zero positive

polynomial p,

Z = frk: (rk,p) = P(k) = oj. (C.1)

Any vector r'eE which makes a zero inner product with p can be expressed as a

sum of positive multiples of vectors from the set Z. It follows that, if this set is

linearly independent the representation is unique. Conversely, if this set is

linearly dependent, then an r' on the boundary of E can be constructed which

has more than one spectral representation. If the set is linearly dependent

then there is a finite collection of non-zero real numbers c(i) and rk EZ such

that

c (i)rk, = 0. (C.2)

Because r,(0) = 1 for all i, there must be at least one c(i) which is strictly

positive and one which is strictly negative. Thus

r ' = Z c (i)r = Z [-c (i)]r (C.3)

c (i)>O c (i)<0

ei eation vector on the boundary of E with at least two spectralis a non-zero



- 70 -

representations.

Therefore Pisarenko's estimate is unique if and only if the set of correla-

tion vectors corresponding to the zero set of each non-zero positive polynomial

is linearly independent. In particular, for Pisarenko's estimate to be unique, no

non-zero positive polynomial can have more than 2M zeros. This condition is

similar to, though not quite as strict as the Haar condition (Rice 1964), which

involves all polynomials, not just positive ones.

The factorability of polynomials, in the time series case, leads to a strong

result. In the time series case, a non-zero positive polynomial can have no

more than M zeros. Furthermore, a non-zero positive polynomial can be con-

structed with up to M arbitrarily located zeros. This implies (Example 4.1) that

a correlation vector in BE has a unique spectral representation and that this

spectrum is composed of M or fewer impulses. Furthermore, it implies that any

spectrum composed of M or fewer impulses has a correlation vector in BE.

However, a simple example shows that Pisarenko's estimate is not

guaranteed to be unique in most multi-dimensional situations. Consider the

non-zero positive polynomial

P(k) = 1 - cos(k -6) > 0 (C.4)

for some non-zero 6&A. The zero set of P(k) includes the hyperplane in K:

Jk: k-6 = QJ. (C.5)

Many spectral supports, of practical interest, intersect this hyperplane at an

infinite number of points, implying the existence of some correlation vector on

the boundary of E with a non-unique spectral representation. This non-

uniqueness problem is similar to the non-uniqueness problem in multi-

dimensional Chebyshev approximation (Rice 1969).
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Appendix D

The Existence of the MEM Estimate

As discussed in section 5.2, MEM estimate can be considered as a mapping

from the interior of P (P") into the interior of E (E"). The problem is to show

that this mapping is onto. This mapping idea was used by Woods (1976), how-

ever the proof given below is both more general and less complicated than his.

Theorem: If every neighborhood of every point in K contains a set of non-zero

measure and if, for every p&OP, f P' - then, for every rcEc, there is a

f 'ik -3

K P(k)
pv mean such that, :

Proof: The condition that, for every p EOP, f = c, means that if p, EP

is a sequence converging to p caP, then f (k)

Two important facts derive from the assumption that every neighborhood

of every point in K contains a set of non-zero measure. First, remembering that

K is compact, it follows that

0 < el = minfP(k)d v such that 1 = max P(k). (D.2)
pEP K K

Second, it follows that any vector r in E" can be associated with a spectral den-

sity function which is bounded and bounded away from zero:

0 < E2 < S(k). (D.3)
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Consider the mapping T from P0 into E* defined by (D.1). T is a continu-

ously differentiable mapping whose Jacobian is nowhere 0. Therefore, by the

inverse mapping theorem (Hoffman 1975), T(P*) is open and contains a neigh-

borhood of the correlation vector nEE* corresponding to the spectral density

function N(k) = 92. The proof now proceeds by contradiction. Assume that

there is some rCE which is not in T(PO) and consider the one-parameter family

of correlation vectors:

ra = (1-a)n + ar. (D.4)

There is some smallest a, 0 < a,. < 1, such

sequence at < a,,, and two corresponding

that an -* a0 , ra - ra, and ran = T(pn).

since

that ra.0 T(P'). Thus there exists a

sequences, ra EE', and p. EP', such

Pn(k) is bounded uniformly in n,

v(K) = Pn(k) dv = fPn(k)[(1-a)N(k) + aS(k)]dv
K Pn(k) K

> E2 fP (k)d v > E &max Pn(k).
K K

implies that

max Pn (k) < v(K)
K E2

Since

v(K)FmaxPn(k)] 2 > fPn(k)2dv = p*(61)g(61, 
62)Pn(o2)

K K n , 62

where

gK(61 , 62) = fei(
6

1
6

2)kd

K

is a positive-definite Grammian matrix, this bound on Pn(k) also bounds pg.

(D.5)

(D.6)

(D.7)

(D.8)
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Since p, is bounded, the Bolzano-Weierstrass theorem states that some subse-

quence of pn converges, say to p.EP. The boundedness of the integrals

fdv a (0) t; n (0) + r (0) < oo,

implies that Pa.E:P". The continuity of T implies that T (p .) = r.,

(D.9)

thus

ra.C T(P), a contradiction. Therefore there exists no r EE which is not in

T(P")

A simple example can be given in which the condition that f P =) = for
P(k )

every p eaP is violated. Consider the two-dimensional, square spectral support

[-.r IT]2 and the positive A-polynomial P(k) = cos(k 1 +k 2 ).4.4
P(k) is on the

boundary of P, being zero at the two corners k I = k2= i, and nowhere else.

Unfortunately

dkldk
2

7T IT P(k)
4 4

r

7T 7T

4 4 dk 1 dk 2

ff cos(k 1 +k 2 )
4 4

+
32 52 72

which is certainly finite. This example depends upon the fact that the spectral

support has corners. If the corners were even slightly rounded then the condi-

tions for the existence of the MEM estimate would be fulfilled.

2 xdx
4f - =

.sinx
(D.10)



- 74 -

References

Baggeroer, A. B., "Space/Time Random Processes and Optimum Array Process-

ing," Naval Undersea Center, San Diego, Ca., NUC TP 506, April 1976.

Blackman, R. B. and J. W. Tukey, The Measurement of Power Spectra, Dover, 1959.

Blatt, H. P., "A General Remes Algorithm in Real or Complex Normed Linear

Spaces," Multivariate Approximation, D. C. Handscomb, ed., Academic

Press, pp. 145-153, 1976.

Burg, J. P., "Maximum Entropy Spectral Analysis," Ph.D. thesis, Stanford Univer-

sity, May 1975.

Calder6n, A. and R. Pepinsky, "On the Phases of Fourier Coefficients for Positive

Real Functions," Computing Methods and the Phase Problem in X-Ray

Crystal Analysis, The X-Ray Crystal Analysis Laboratory, Department

of Physics, Pennsylvannia State College, pp. 339-348, 1952.

Charnes, A., "Optimality and Degeneracy in Linear Programming," Econometrica,

vol. 20, pp. 160-170, 1952.

Cheney, E. W., Introduction to Approximation Theory, McGraw-Hill, 1966.

Dickinson, B. W., "Two-Dimensional Markov Spectrum Estimates Need Not Exist,"

IEEE Trans. Inform. Theory, vol. IT-26, pp. 120-121, Jan. 1980.

Grenander, U. and G. Szegb, Toeplitz Fbrms and Their Applications, University of

California Press, Berkeley and Los Angeles, 1958.



- 75 -

Harris, D. B., and R. M. Mersereau, "A Comparison of Algorithms for Minimax

Design of Two-Dimensional Linear Phase FIR Digital Filters," IEEE

Trans. Acoustics, Speech, and Signal Proc., vol. ASSP-25, pp. 492-500,

December 1977.

Haubrich, R. A., "Array Design," Bulletin of the Seismological Society of America,

vol. 58, pp. 977-991, June 1968.

Hoffman, K., Analysis in Euclidean Space, Prentice-Hall, 1975.

Jain, A. K. and S. Ranganath, "Two Dimensional Spectral Estimation," Proceed-

ings of the RADC Spectrum Estimation Workshop, pp. 151-157, May

1978.

Lim, J. S. and N. A. Malik, "A New Algorithm for Two-Dimensional Maximum

Entropy Power Spectrum Estimation", IEEE Trans. Acoustics, Speech,

and Signal Proc., vol. ASSP-29, pp. 401-413, June 1981.

Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Addison-

Wesley, 1973.

Luenberger, D. G., Optimization by Vector Space Methods, Wiley, 1969.

Ong, C., "An Investigation of Two New High-Resolution Two-Dimensional Spectral

Estimate Techniques," Special Report No. 1, Long-Period Array Pro-

cessing Development, Texas Instruments, Inc., April 1971.

Pisarenko, V. F., "The Retrieval of Harmonics from a Covariance Function," Geo-

phys. J. R. Astr. Soc., vol. 33, pp. 347-366, 1973.



- 76 -

Rice, J. R., The Approximation of %unctions, vol. 1 - Linear Theory, Addison Wes-

ley, 1964.

Rice, J. R., The Approximation of unctions, vol. 2 - Nonlinear and Multivariate

Theory, Addison Wesley, 1969.

Royden, H. L., Real Analysis, Macmillan, 1968.

Rudin, W., "The Extension Problem for Positive-Definite Functions," ll. J. Math.,

vol. 7, pp. 532-539, 1963.

Stiefel, E., "Note on Jordan Elimination, Linear Programming, and Tchebycheff

Approximation," Numerische Mathematik, vol 2, pp. 1-17, 1960.

Stewart, J., "Positive Definite Functions and Generalizations, an Historical Sur-

vey," Rocky Mountain Journal of Mathematics, vol. 6, pp. 409-434, Sum-

mer 1976.

Sullivan, T. M., 0. L. Frost, and J. R. Treichler, "High Resolution Signal Estima-

tion," Argosystems, Inc., Sunnyvale California, June 1978.

Wernecke, S. J. and L. R. D'Addario, "Maximum Entropy Image Reconstruction,"

IEEE Trans, Comput., vol. C-26, pp. 351-364, April 1977.

Woods, J. W., "Two-Dimensional Markov Spectral Estimation," IEEE Trans. Inform.

Theory, vol. IT-22, pp. 552-559, Sept. 1976.


