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Abstract Spectral estimation, and corresponding time-frequency representation for nonstationary

signals, is a cornerstone in geophysical signal processing and interpretation. The last 10–15 years have seen

the development of many new high-resolution decompositions that are often fundamentally different from

Fourier and wavelet transforms. These conventional techniques, like the short-time Fourier transform and

the continuous wavelet transform, show some limitations in terms of resolution (localization) due to the

trade-off between time and frequency localizations and smearing due to the finite size of the time series

of their template. Well-known techniques, like autoregressive methods and basis pursuit, and recently

developed techniques, such as empirical mode decomposition and the synchrosqueezing transform, can

achieve higher time-frequency localization due to reduced spectral smearing and leakage. We first review

the theory of various established and novel techniques, pointing out their assumptions, adaptability,

and expected time-frequency localization. We illustrate their performances on a provided collection of

benchmark signals, including a laughing voice, a volcano tremor, a microseismic event, and a global

earthquake, with the intention to provide a fair comparison of the pros and cons of each method. Finally,

their outcomes are discussed and possible avenues for improvements are proposed.

1. Introduction

Spectral or period estimation is a fundamental analysis tool that has a wide range of applications. Accu-

rate and precise analysis of nonstationary spectral variations is a longstanding problem aiming at revealing

signal characteristics such as any underlying periodicities. The discrete Fourier transform (DFT) and its fast

implementation, the fast Fourier transform (FFT) [Cooley and Tukey, 1965; Cooley et al., 1969], and variants

have been well studied [e.g., Hinich and Clay, 1968; Brigham, 1988]. They provide an efficient way to estimate

the frequency content of a discrete and finite time series. The main application of the DFT to time-varying

spectra is the spectrogram, also called short-time Fourier transform (STFT). Likewise, wavelet transforms and

variants are now well-established and many review articles exist [e.g., Kumar and Foufoula-Georgiou, 1997;

Mallat, 2008].

All these methods are bound by the Heisenberg/Gabor uncertainty principle [Gabor, 1946] with a trade-off

between time and frequency localizations [Reine et al., 2009]. In this review, resolution refers to the ability

to resolve two signals close in time or frequency. It includes both localization, which corresponds to the

“intrinsic” ability of a technique to separate signals in the t–f domain, and sampling (see section 2.2 for more

explanations). Signal windowing leads to smearing, which corresponds to the widening of the main lobe

around its central frequency, as well as sidelobe leakage which introduces spurious frequencies [Hall, 2006]

(Figure 1). Lately, various new transforms have been developed to ameliorate these issues such as empir-

ical mode decomposition (EMD) coupled with the Hilbert-Huang spectrum [Huang et al., 1998] and the

synchrosqueezing transform (SST) [Daubechies et al., 2011].

All the above-mentioned methods can be considered as nonparametric, meaning that they do not assume

any particular stationary structure prior to time-frequency (t–f ) decomposition of the signal. On the other

hand, parametric methods drew a lot of attention in the 1980s and 1990s as they do not assume zero-valued

or periodic data outside the data window and hence are less restricted by smearing and leakage. Autore-

gressive and autoregressive moving-average models for example provide correct and accurate spectral

estimation if the assumed model is appropriate for the investigated time series [Makhoul, 1975; Ulrych and

Bishop, 1975; Kay and Marple, 1981].

Here we provide a comprehensive survey of the current state of parametric and nonparametric t–f trans-

forms including their latest generation. Along the way, we define the time and frequency localization
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Figure 1. Illustration of (a) spectral smearing and sidelobe leakage and (b) frequency sampling. An untapered signal

of 2 s consisting of two sinusoids at 5 and 10 Hz is analyzed using the fast Fourier transform (FFT) and an autoregres-

sive (AR) method (Burg algorithm) [Burg, 1972] with different parameters. Contrary to the autoregressive spectrum, the

Fourier spectrum with 1024 frequency points shows spectral smearing and sidelobe leakage. The Fourier spectrum with

only 50 frequency points does not show correctly the frequencies of the two sinusoids. The influence of the autore-

gressive order p on t–f localization and accurate frequency determination for autoregressive methods is shown by the

two autoregressive spectra with different orders. (c) Two linear chirps of 10 s are analyzed using the short-time Fourier

transform (STFT) and S transform (ST) to illustrate the concepts of fixed and variable t–f localization, respectively. The

instantaneous frequencies of both chirps are indicated by the dashed-dotted black lines. The short-time Fourier trans-

form, computed using a Hann taper of 0.3 s with 90% overlap, is applied to the chirp with a frequency sweep from 0 to

30 Hz, while the S transform is applied to the chirp with a frequency sweep from 0 to 160 Hz.

of each technique, as well as the difference between spectral resolution, localization, and sample den-

sity. We present conventional nonparametric transforms used in geophysical signal processing, i.e., the

short-time Fourier transform, the continuous wavelet transform (CWT), and the S transform (ST). We omit

the Wigner-Ville distribution because of its main disadvantage: cross-terms without physical meanings

that can sometimes mask the true spectral content [Cohen, 1989]. We then describe techniques that were

developed recently, namely, the synchrosqueezing transform [Daubechies et al., 2011] and empirical mode

decomposition and variations [Huang et al., 1998; Flandrin et al., 2004; Han and van der Baan, 2013]. Finally,

new developments on the estimation of autoregressive models are presented. Within the geoscience com-

munity, Kalman filter techniques are mainly employed for time series modeling and forecasting [e.g., Bertino

et al., 2003; Segall et al., 2006; Dikpati et al., 2014] and not for spectral estimation.

We describe first their rationale and underlying principles. We then analyze their respective advantages

and inconveniences using synthetic, speech, and seismic data to illustrate their distinctive features as well

as their complementarities. Even though the presented spectral methods are mainly illustrated on seismic

data, most were applied to other fields of earth sciences such as climate time series [Walker, 1931; Torrence

and Compo, 1998; Ghil et al., 2002; Salisbury and Wimbush, 2002], hydrology [Labat, 2005], ecology [Cazelles

et al., 2008], geology [Bolton et al., 1995; Kravchinsky et al., 2013; Thakur et al., 2013; Reager et al., 2014],

oceanography [Farge, 1992], or solar physics [Miyahara et al., 2006; Barnhart and Eichinger, 2011]. Abbrevia-

tions and template for each spectral estimation techniques are summarized in Table 1.

2. Methods
2.1. Short-Time Fourier Transform

The Fourier transform is a measure of the similarity of a signal with a family basis formed by sines and

cosines. This can be expressed as the inner product of a signal s(t) with a template �(t), i.e., ⟨s(t), �(t)⟩ =

∫ ∞

−∞
s(t)�∗(t)dt, where ∗ stands for the complex conjugate [Gao et al., 2010]. When this template is made of
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Table 1. Abbreviations, Parametric or Not, and Templates of the t–f Techniques Presented in This Review

Techniques Abbreviation Parametric Template

Short-time Fourier transform STFT No Sines and cosines

Continous wavelet transform CWT No Stretched or squeezed, and translated versions of the mother wavelet

S transform ST No Sines and cosines

Synchrosqueezing transform SST No Same as CWT

Matching pursuit MP No User defined dictionary of elementary waveforms

Basis pursuit BP No User defined dictionary of elementary waveforms

Short-time autoregressive method STAR Yes N/A

Kalman smoother KS Yes N/A

Empirical mode decomposition EMD No N/A

Ensemble empirical mode decomposition EEMD No N/A

Complete ensemble empirical mode decomposition CEEMD No N/A

sines and cosines, by Euler’s equation for the complex-value cosine �(t) = ei2�ft , the inner product reduces

to the Fourier transform

FT{s(t)} = ⟨s(t), ei2�ft⟩ = ∫
∞

−∞

s(t)e−i2�ftdt, (1)

where t is time, f is frequency, and i=
√
−1.

The Fourier transform is applied to a signal in its entirety and thus assumes stationarity. The short-time

Fourier transform is the most popular extension to handle nonstationary time signals. Its easy

implementation as well as its good performance explain why this is the most widely used technique for

t–f representation. Indeed, this is simply the Fourier transform of successive, usually overlapping, win-

dows of the signal, each frequency distribution being associated with the central time of each window. The

continuous time short-time Fourier transform can be expressed as

SF
(
�, f

)
= ∫

∞

−∞

s(t)w (t − �) e−i2�ftdt, (2)

corresponding to the Fourier transform of the signal s(t) tapered by the function w(t), which is usually a

Hann or Gaussian function, and where � is the time delay to the center of the taper. It is easy to see that

equation (2) is a special case of equation (1) where we use a tapered window w(t) to select which part of s(t)

will be transformed, i.e., ⟨s(t) ∗ w(t), ei2�ft⟩.
2.2. Time-Frequency Resolution

At this point, it is important to distinguish between time and frequency resolution, localization and sam-

pling (Figure 1). The sample rate in the frequency domain is inversely proportional to the size T of the taper

w(t) in the time domain (Δf = 1∕T). There is always the option of zero-padding in the time domain to

decrease Δf , improving the readability of the spectrum by increasing the frequency sampling. But well sam-

pled does not mean high resolution [Kay and Marple, 1981]. By resolution, we usually mean the ability to

distinguish two spectral peaks in a similar way as we do in the time domain to distinguish between two

events. Frequency resolution then depends not only on frequency sampling but also on the localization

power of each technique. Spectral localization corresponds to the intrinsic ability of each technique to focus

individual t–f components in the computed t–f representations, reducing spectral smearing and sidelobe

leakage (Figure 1).

The untapered FFT of a signal is the convolution of a boxcar function with the original time series. The band-

width of the main lobe of the frequency spectrum of the boxcar function is inversely proportional to the

length of the boxcar (2�∕T). The sinc function corresponding to its Fourier transform introduces sidelobes

that can mask low-amplitude peaks. The result is a peak smeared around its peak frequency with decaying

sidelobes. These effects can be reduced by using tapers such as Hann, Gaussian, or Kaiser-Bessel functions

[Harris, 1978]. The attenuation of sidelobes is however associated with a widening of the main lobe [Hall,

2006]. Spectral smearing can be reduced by enlarging the taper length, yet this reduces the time localization

by imposing increased stationarity. Conversely, reducing the taper length improves the time localization at

the expense of enhancing spectral smearing, thus lowering spectral localization.

TARY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3
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This is known as the Gabor uncertainty principle [Gabor, 1946] by analogy with the Heisenberg uncertainty

principle in quantummechanics [Kumar and Foufoula-Georgiou, 1997]. The Gabor uncertainty principle tells

us that if we define the standard deviation in time and frequency localization by �t and �f , respectively,

then there is a theoretical limit in localization given by [Hall, 2006]

�t�f ≥ 1

4�
. (3)

For signals s(t) with a duration longer than the taper w(t) support, the fixed length for this taper in the

short-time Fourier transform sets the recoverable time and frequency localizations. When the signal’s dura-

tion is shorter than the support of the taper, then the localization is limited by the signal support itself and

not the taper.

Two alternative strategies were developed in the 1980s and 1990s to overcome the undesirable effects

introduced by fixed taper lengths for the analysis window w(t) and resulting spectral smearing. Various t–f

transforms such as the continuous wavelet transform use variable window lengths inversely proportional

to the central target frequency (Figure 1). Hence, long windows used for the low frequencies have good

frequency but limited time localization, whereas the short windows used for high frequencies have good

time but limited frequency localization [Kumar and Foufoula-Georgiou, 1997]. The underlying concept is that

for short-duration signals, timing errors are relatively more important than errors in frequency content and

vice-versa for long-duration signals.

The second strategy is called frequency reassignment and attempts to reduce spectral smearing [Auger

and Flandrin, 1995; Han et al., 2014]. Temporal and spectral smearing indicates that each t–f amplitude is

a weighted average of neighboring points in the t–f plane. This implies that a nonzero amplitude can be

retrieved even if the true signal has no component at this t–f pair. The reassignment method computes

the sphere of influence of each convolution kernel associated with an analysis window and reallocates the

energy in the t–f plane to its center of gravity in the time and frequency domains, improving the readabil-

ity of the t–f picture. The reassignment method has also been implemented for other methods such as

Wigner-Ville distributions or the continuous wavelet transform [Auger and Flandrin, 1995; Auger et al., 2013].

2.3. Continuous Wavelet Transform

The wavelet transform is a well-developed mathematical tool that uses a variable length for the analysis

window in equation (2), in contrast to the short-time Fourier transform’s fixed length window. Many excel-

lent books and tutorials describe the mathematical foundations of the wavelet transform [Daubechies,

1992;Mallat, 2008; Rioul and Vetterli, 1991; Torrence and Compo, 1998]. In this review, for the sake of simplic-

ity and space, we review briefly the rationale and underlying principles to help in the understanding and

application of wavelets in geophysical problems.

In the continuous wavelet transform, the analysis taper w(t) is replaced by a mother wavelet � that can be

shifted in time � and stretched by a scale a, yielding equation (4).

Ws(a, �) =
1√
a ∫

∞

−∞

s(t) �∗
(
t − �

a

)
dt. (4)

In other words, w(t) =
1√
a
�(

t−�

a
), where the multiplication factor

1√
a
ensures energy normalization, such

that the wavelet always has unit energy at all scales:

∫
∞

−∞

|�a,� (t)|2dt = ∫
∞

−∞

|�(t)|2dt = 1, (5)

where �(t) is the original mother wavelet and �a,� (t) represents the generated family of translated and

scaled wavelets.

A comparison of equations (2) and (4) shows that the continuous wavelet transform shares a similar logic

to the short-time Fourier transform; it represents the inner product of the signal with a time shifted and

stretched wavelet ⟨s(t), 1√
a
�(

t−�

a
)⟩. The continuous wavelet transform is simply the cross-correlation of

the signal s(t) with a number of wavelets that are scaled and translated versions of the original mother

wavelet.Ws(a, �) are the coefficients representing a concentrated t–f picture. The actual frequency f is built

from the central frequency of the mother wavelet f0 at each scale a with this relation f = f0∕a [Mallat
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and Zhang, 1993; Reine et al., 2009]. Practical implementations involve the discretization of the scale axis

[Thakur et al., 2013].

A mother wavelet (the starting wavelet) is chosen with some specific characteristics in order to improve

the signal representation. In all cases, the choice of the wavelet is neither unique nor arbitrary [Kumar and

Foufoula-Georgiou, 1997]. This template has to satisfy the admissibility condition [Farge, 1992; Daubechies,

1992], given by

C� = 2� ∫
+∞

0

|�|−1|�̂(�)|2d� < ∞, (6)

where �̂(�) is the Fourier transform of the mother wavelet �(t) and � is angular frequency. The condition

in equation (6) can only be satisfied if the frequency domain wavelet at zero frequency is zero, i.e., �̂(0) = 0.

In other words, the time domain wavelet has zero mean: ∫ �(t)dt = 0.

The wavelet spectrum �̂(�) should be continuously differentiable, which is validated if the time domain

wavelet has a sufficient time decay [Mallat, 2008]: ∫ ∞

−∞
(1 + |t|)|�(t)|dt < +∞. This is called the regularity

condition. Thus, we have a small waveform that oscillates around zero with equal positive and negative

area (i.e., zero mean) and has a short duration, creating a wavelet. The importance of having a wavelet

that satisfies the admissibility condition is that the original signal, s(t), can be reconstructed by the inverse

wavelet transform.

2.4. S Transform

The S transform is halfway between the short-time Fourier transform and the continuous wavelet transform.

It uses a Gaussian template which is time-shifted by � and stretched or squeezed by a factor inversely pro-

portional to the linear frequency f [Stockwell et al., 1996]. This is comparable to the mother wavelet used by

the continuous wavelet transform, leading Stockwell et al. [1996] to describe the S transform as a “continuous

wavelet transform with a phase shift.” The frequency-dependent Gaussian taper is defined by

w(t) = e
−

t2

2�2 , (7)

where � =
k

|f | .

Incorporating � and normalizing the Gaussian taper function lead to the expression for the

Gaussian template

ŵ
(
t, f

)
=

|f |
k
√
2�

e
−

t2 f2

2k2 . (8)

The parameter k, by controlling the width of the Gaussian taper, can also be tuned to obtain better fre-

quency localization at the expense of reduced time localization. Substituting the Gaussian template for

taper w(t) in equation (2), the S transform becomes the inner product ⟨s(t) ∗ |f |
k
√
2�
e

(t−�)2 f2

2k2 , ei2�ft⟩, yielding

SST
(
�, f

)
=

|f |
k
√
2� ∫

∞

−∞

s(t)e
−(t−�)2 f2

2k2 e−i2�ftdt. (9)

Like the continuous wavelet transform, the t–f localization of the S transform is variable (Figure 1). The vari-

able t–f localization of the S transform and continuous wavelet transform enables the analysis of signals

with frequency components separated by few orders of magnitude (e.g., 1 and 1000 Hz).

Unlike the continuous wavelet transform, the S transform keeps the properties of the Fourier transform such

as a uniform frequency sampling, spectral amplitudes independent of frequency owing to the normaliza-

tion of the Gaussian taper to unit area in equation (9), and retains the original signal phase [Stockwell, 2007].

On the other hand, the continuous wavelet transform is characterized by an exponential scale sampling (i.e.,

more scales are allocated on lower portions than higher portions of the spectrum, producing an equal num-

ber of scales per octave instead of a linear frequency sampling), “locally defined” phase, and show higher

amplitudes at lower frequencies.
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2.5. Synchrosqueezing Transform

The synchrosqueezing transform is a derivation of the continuous wavelet transform empowered by a reas-

signment step [Daubechies et al., 2011]. It concentrates the frequency content around the instantaneous

frequencies in the wavelet domain. The synchrosqueezing transform assumes that the signal s(t) is the sum

of individual time-varying harmonic components:

s(t) =

K∑
k=1

Ak(t) cos(�k(t)) + 	(t), (10)

where Ak(t) is the instantaneous amplitude and fk(t) =
1

2�

d

dt
�k(t) is the instantaneous frequency of the signal

component k, derived from the instantaneous phase �k(t). The additive noise 	(t) includes the contribution

of environmental and acquisition sources, and K stands for the maximum number of components in the

signal. This is a mathematical simplification, but this will enable signal separation and analysis.

The rationale behind this technique is that concentrating the t–f map into the most representative instanta-

neous frequencies will decrease smearing while still allowing reconstruction. With the continuous wavelet

transform, the variable length of the mother wavelet leads to a more flexible trade-off between time and

frequency localization but does not prevent spectral smearing in the t–f plane. Daubechies et al. [2011]

observed that there is a physical limit to reduce the smearing effect in the t–f representation using the

continuous wavelet transform. This smearing mainly occurs along scale axis; thus, if we want to get fre-

quency variations with time, we need to compute the instantaneous frequencies also in the wavelet domain.

The angular instantaneous frequency is the rate of change of the time-dependent phase (�(t) =
d�(t)

dt
)

[Taner et al., 1979]; likewise in the wavelet domain, the instantaneous frequency �s(a, �) is computed as the

derivative of the wavelet transform at any point (a, �)with respect to � , for allWs(a, �) ≠ 0:

�s(a, �) =
−i

2�Ws(a, �)


Ws(a, �)


�
. (11)

The instantaneous frequencies are the ridges in the t–f representation [Auger et al., 2013]. To decrease the

smearing, we have to squeeze the frequencies around these ridges. This is to map the information from the

time-scale plane to the t–f plane. Every point (a, �) is converted to (�s(a, �), �), and this operation is called

synchrosqueezing [Daubechies et al., 2011]. Since the scale a and time � are discrete values, we can have

a scaling step Δak = ak−1 − ak for any ak whereWs(a, �) is computed. Likewise, when mapping from the

time-scale plane to the t–f plane (a, �) → (�(a, �), �), the synchrosqueezing transform Ts(�, �) is determined

only at the centers �l of the frequency range [�l − Δ�∕2, �l + Δ�∕2], with Δ� = �l − �l−1:

Ts(�l, �) =
1

Δ�

∑
ak

Ws(ak, �)a
−3∕2Δak. (12)

where the scale ak is bounded by |�(ak, �) − �l| ≤ Δ�∕2. This means that a small frequency band centered

at �l and less than half of the bandwidth is used to reconstruct the concentrated frequency map at time � .

The new t–f representation of the signal Ts(�l, �) is synchrosqueezed along the frequency (or scale) axis only

[Li and Liang, 2012].

The discretized version of Ts(�l, �) in equation (12) is represented by T̃s̃(wl, tm), where tm is the discrete time

tm = t0 + mΔt with Δt the sampling interval,m = 0, ..., n − 1 and n is the total number of samples in the

discrete signal s̃m. The frequency localization in the synchrosqueezing transform is also limited by the Gabor

uncertainty principle. The Nyquist theorem gives the upper frequency limit fmax = 1∕(2Δt) and the mini-

mum frequency is fmin = 1∕(nΔt), with n the signal length. With these two bounds, the synchrosqueezing

transform discretizes the scale axis to compute the frequency division step �l . More special considerations

are described in Thakur et al. [2013].

Summing up the previous steps, the synchrosqueezing transform assumes that the signal is a superposition

of nonstationary monochromatic wavelets and can be efficiently decomposed by the continuous wavelet

transform, followed by the computation of the instantaneous frequencies plus a reassignment step to con-

centrate the energy around the ridges. An extended explanation with applications to seismic signals can be

found in Herrera et al. [2014].

TARY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6
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The reconstruction of the individual components sk from the discrete synchrosqueezed transform T̃s̃ is then

the inverse continuous wavelet transform over a small frequency band l�Lk(tm) around the kth component:

sk(tm) = 2C−1
�
ℜ

( ∑
l�Lk (tm)

T̃s̃(wl, tm)

)
, (13)

where C� is a constant dependent on the selected wavelet. As we take the real partℜ of the discrete syn-

chrosqueezing transform in that band, we recover the real component sk . In this review, we follow Thakur

et al. [2013] where the reconstruction is done by a standard least-squares ridge extraction method.

2.6. Matching Pursuit

In the matching pursuit (MP) algorithm, the signal is decomposed into waveforms selected from a dictionary

of t–f atoms [Mallat and Zhang, 1993]. Time-frequency atoms are discrete-time elementary waveforms pop-

ulating the dictionary. This technique assumes that the signal is a linear combination of these atoms from

a dictionary that is not necessarily built with modulated sine and cosine waves atoms. Matching pursuit

uses a recognition step to identify and subsequently remove the most prominent atom via a deflationary

approach and then repeats the recognition step [Chen et al., 2001]. The subtraction step prevents smearing

and leakage, creating highly localized t–f decompositions.

Generally, the t–f atoms are the dilations, translations, and modulations of a single window function:

� (t) =
1√
a
�

(
t − �

a

)
ei�(t−�), (14)

where  = (a, �, �), i.e., the three transformations scale, modulation, and translation, respectively. Thus, the

recognition step of matching pursuit comprises the inner product of the signal s(t) and then the residual

signal R(n)s which is the original signal minus any subtracted wavelets, with a time shifted, stretched, and

modulated wavelet, i.e., ⟨s(t), � (t)⟩ or ⟨R(n)s, � (t)⟩.
Mallat and Zhang [1993] proposed to build a dictionary D, with an entire set of waveforms � , in order to

best match the signal structures. Matching pursuit uses a greedy algorithm, which means that at each iter-

ation it chooses a waveform from the dictionary that is best adapted to the signal segment under analysis

and repeats this operation until a predefined stopping criterion is reached. This produces a sparse represen-

tation of the signal, s(t), as the weighted sum of chosen waveforms (� ), picked up from the dictionary D

[Wang, 2007]:

s(t) =

N−1∑
n=0

an�n
(t) + R(n)s, (15)

where N is the total number of iterations, an is the amplitude of the wavelet �n
, and R(n)s is the residual at

iteration n, with R0s = s.

Dictionaries are built with different waveforms D = {�}�∈D. The user determines the extent of the dictio-

nary and the type of waveforms used. A large dictionary allows for a more complete signal representation

but at the expense of significantly longer computation times. If the waveforms are sines and cosines, then

it is a Fourier dictionary and the representation is analogous to a “sparse Fourier transform.” If a wavelet dic-

tionary is built from a mother wavelet, then the representation becomes analogous to a “sparse continuous

wavelet transform.” On the other hand, a t–f dictionary, also known as Gabor dictionary [Mallat and Zhang,

1993], produces a decomposition of the signal s(t) into t–f atoms. Computing the Wigner distribution of

each atom leads to the t–f representation [Mallat and Zhang, 1993]. Matching pursuit may lead to similar

time-frequency representations compared with the previous techniques, but its deflationary approach pre-

vents spectral leakage, thereby creating a much sparser representation. Unlike the previous methods, the

matching pursuit algorithm is not exploring the complete t–f plane but is mapping t–f atoms located at the

positions of maximum residual reduction [Addison, 2002].

2.7. Basis Pursuit

The main principle of basis pursuit (BP) is similar to that of matching pursuit as it seeks to decompose a sig-

nal into individual atoms from a predefined dictionary, yet with two important differences. First, it includes

a minimization term to reduce the number and magnitudes of retrieved atoms, yielding a sparse repre-

sentation [e.g., Chen et al., 2001]. Second, instead of applying a deflationary approach where atoms are
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recognized and removed sequentially, basis pursuit identifies all atoms simultaneously by casting both

steps into a single inversion problem [Bonar and Sacchi, 2010; Zhang and Castagna, 2011; Vera Rodriguez

et al., 2012].

The signal s(t) is represented as the convolution of a family of wavelets �(t, n) and its associated coefficient

series a(t, n) as

s(t) =

N∑
n=1

[�(t, n) ∗ a(t, n)]. (16)

where N is the number of atoms, t is time, and n is the dilation of atom �(t, n) determining its frequency.

Using matrix notation, equation (16) can be rewritten as

s = (�1 �2 ... �
N
)

⎛⎜⎜⎜⎜⎝

a1
a2
⋮

aN

⎞⎟⎟⎟⎟⎠
+ � = Da + �. (17)

where�
n
denotes the convolution matrix of �(t, n) with dilation index n, D is the wavelet dictionary, and �

is the noise. The t–f distribution of basis pursuit corresponds then to the set of weights a associated with the

set of atoms �(t, n) coming from the dictionary D [Chen et al., 2001].

At this point, two options are possible, namely, a perfect or a sparse approximate decomposition [Chen

et al., 2001; Vera Rodriguez et al., 2012]. The latter is also known as basis pursuit denoising. In the first case,

one solves the problem: minimize ||a||1 subject to Da = s, where ||.||1 indicates the �1 norm (i.e., minimum

of absolute numbers). In the second case, one minimizes

J =
1

2
||s − Da||2

2
+ �||a||1. (18)

The first term of cost function J represents the data misfit term based on the �2 norm, that is, the

least-squares difference between the observed and predicted data, whereas the second term of J is the

regularization term, based on the �1 norm. � is the trade-off parameter controlling the relative strength

between the data misfit and the number of nonzero coefficients a. A variety of solvers exist to obtain a

solution to equation (18) [Figueiredo et al., 2007; van den Berg and Friedlander, 2008; Beck and Teboulle, 2009].

Unlike matching pursuit, basis pursuit is not a greedy algorithm. It starts from an initial model and itera-

tively improves the model by swapping wavelets from the predefined dictionary. Basis pursuit converges

eventually to a local optimum which is not guaranteed for matching pursuit [Chen et al., 2001].

The performance of matching pursuit and basis pursuit is strongly dependent on the predefined wavelet

dictionary. Combining different dictionaries to make bigger, more complete dictionaries can enhance basis

pursuit decompositions [Chen et al., 2001; Rubinstein et al., 2010] but comes at the expense of making matrix

D bigger and thus prolonging computation time.

The techniques presented in the next sections, corresponding to autoregressive methods and empirical

mode decomposition and variants, are fundamentally different from the previous ones as they drop the

comparison with a template performed by an inner product of signal and basis functions.

2.8. Autoregressive Methods

Autoregressive methods for periodicity analysis were introduced by G. U. Yule and G. Walker in the first half

of the twentieth century and applied to environmental time series [Yule, 1927;Walker, 1931]. Linear autore-

gression, in combination with a moving average scheme, was then used to forecast the values of economic

time series such as price indices [Wold, 1938]. The fundamental idea of autoregressive models is to reduce a

time series to a small set of parameters. Autoregressive methods are called linear prediction filters because

they use a set of past values to estimate the future ones. This has important implications for the resulting fre-

quency localization as the signal is not strictly windowed like FFT-based methods. This is the reason why the

frequency localization of autoregressive methods sometimes seems to “violate the uncertainty principle”

[Marple, 1982]. Using the autoregressive coefficients, specific parts of the signal can then be reconstructed.
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Autoregressive models consider a time series sn as a weighted sum of p past values driven by a white noise

process vn following

sn =

p∑
k=1

aksn−k + vn, (19)

where n are the time steps, ak are the coefficients of the autoregressive model of order p, and vn is a random

white noise process with zero mean and variance �2
s
.

The power spectrum of an autoregressive filter is then given by

SA
(
f
)
=

�s
2

|||1 −
∑p

k=1
ake−i2�kf∕fs

|||
2
, (20)

where fs is the sampling frequency.

Except for the method to obtain the autoregressive coefficients, the main parameter of autoregressive mod-

els is the order of the filter p. The signal window length has only one main restriction: it should be longer

than twice the autoregressive order [Ulrych and Ooe, 1983]. The number of coefficients has a critical influ-

ence on the estimated spectrum as it sets the number of recoverable frequencies independent of signal

s(t). For the different applications, we use a grid-search algorithm to find the minimum in a least-squares

sense of the spectral comparison between Fourier and autoregressive spectra to determine the optimum

autoregressive order [Tary et al., 2014].

As autoregressive models are all-pole filters, they are characterized by peaked spectra. Therefore, only

signals with such spectra should be good candidates for this method [Kay and Marple, 1981]. The poles

defining autoregressive filters correspond to the different modes of a resonator. In the following sections,

we will describe two different autoregressive methods able to capture time-varying frequency content.

2.8.1. Short-Time Autoregressive Method

As the name suggests, the short-time autoregressive method (STAR) is an application of autoregressive

models on short windows. Like the short-time Fourier transform, the short-time autoregressive method

deals with nonstationary spectra by assuming that signals are piecewise stationary in short, untapered win-

dows. The autoregressive spectrum, calculated from the autoregressive coefficients determined using the

Burg method [Burg, 1972] and equation (20), is computed for short, overlapping windows and then merged

sequentially to obtain the final picture. The time localization is then the same as the short-time Fourier trans-

form but is independent of the frequency localization, although the maximum autoregressive order p is still

limited by the window length. The frequency localization depends mainly on the signal-to-noise ratio and

the autoregressive order [Marple, 1982; Quirk and Liu, 1983], even though spectral estimates using the Burg

method employ the total data window [e.g.,Muthuswamy and Thakor, 1998].

2.8.2. Continuous Autoregressive Model: Kalman Smoother

Rather than assuming stationarity in short windows, one can modify equation (19) to use time-varying

autoregressive coefficients defined at each time step n,

sn =

p∑
k=1

ak
n
sn−k + vn, (21)

where ak
n
are the nonstationary autoregressive coefficients.

The nonstationary coefficients are usually determined using stochastic or deterministic regression methods

[Kaipio and Karjalainen, 1997]. For the deterministic method, a set of basis functions with variable ampli-

tudes is used in order to model the time-varying frequency content [e.g., Hall et al., 1983]. In the case of

stochastic methods, a recursive algorithm is generally employed to determine the autoregressive coeffi-

cients at instant n from the autoregressive coefficients at instant n − 1 [e.g., Baziw and Weir-Jones, 2002].

In the following, we present a stochastic method, the Kalman smoother (KS) [Khan and Dutt, 2007; Tary

et al., 2014].

The autoregressive model assumes that the observation at instant n, yn, is a linear combination of a vector

of previous measurementsmn weighted by the vector of autoregressive coefficients xn, also called the state

vector, plus some random noise �n. The measurement equation is then

sn = m
′

n
xn + �n, (22)
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where the prime denotes matrix transpose.

The Kalman filter uses a recursive scheme to predict the next estimate from the previous one. The state

variable at instant n, xn, is then obtained from the state variable at n − 1, xn−1, by the transition equation

xn = Txn−1 + �n, (23)

where T is the state transition matrix and �n is the state noise. In addition, the following assumptions

are made

1. The measurement and state noises are independent, white noise processes which are normally dis-

tributed with zero mean and known covariance matrices.

2. The state vector xn is a Gauss-Markov process independent on both measurement and state noises.

3. The initial state is defined by its mean �0|0 and covariance matrix P0|0, given by

�0|0 = E
[
x0
]
,

P0|0 = E
[(
x0 − x̂0|0

) (
x0 − x̂0|0

)′]
, (24)

where the hat refers to estimates, E[⋅] is the mathematical expectation, and the notation �n|n−1 corre-
sponds to the estimate at time step n given the estimates at n − 1. Initial estimates for �0|0, P0|0 and x̂0|0
are generally obtained using a training data set [Tary et al., 2014].

Optimal estimates of the state vector are obtained by minimizing the covariance of the estimates at the

instant n + 1 given the set of observations s1∶n+1 = [s1, ..., sn+1]. This is achieved by using the prediction and

update equations for the Kalman filter [Grewal and Andrews, 2001]. The estimates of the state vector can be

further smoothed by applying the Rauch-Tung-Striebel backward recursions [Rauch et al., 1965]. Using the

forward recursions of the Kalman filter together with the smoothing backward recursions corresponds to

the Kalman smoother. Additional details on this algorithm can be found in Tary et al. [2014].

2.9. Empirical Mode Decomposition and Variants

Empirical mode decomposition, developed by Huang et al. [1998], is a powerful signal analysis technique

to model nonstationary and nonlinear signal systems. Through the extraction of intrinsic mode functions

(IMFs), empirical mode decomposition captures the nonstationary feature of seismic data. A t–f represen-

tation is obtained by combining empirical mode decomposition with the Hilbert transform to compute

instantaneous frequencies [Taner et al., 1979; Magrin-Chagnolleau and Baraniuk, 1999]. This is sometimes

called the Hilbert-Huang spectrum [Huang et al., 1998].

The instantaneous frequency [Taner et al., 1979] holds the promise of the highest possible time localization

since it produces a frequency at each time sample, but at the expense of a very limited frequency localiza-

tion, due to the Gabor uncertainty principle, equation (3). This often leads to rapid fluctuations from time

sample to time sample. In addition, it can even produce negative frequencies which hold uncertain physical

meaning. Instantaneous frequency is thus a somewhat controversial variable [Barnes, 2007; Fomel, 2007; Han

and van der Baan, 2013]. Empirical mode decomposition aims at solving the predicament of instantaneous

frequency, as each IMF after decomposition is guaranteed to be a symmetric, narrow-band waveform,

which ensures that the instantaneous frequency of each IMF is smooth and positive.

The IMFs are computed recursively, starting with the most oscillatory one. The decomposition method uses

the envelopes defined by the local maxima and minima of the input seismic trace. Once the maxima of the

original signal are identified, a spline is used to interpolate all the local maxima and construct the upper

envelope. The same procedure is used for local minima to obtain the lower envelope. The mean of the upper

and lower envelopes is then subtracted from the initial signal. This interpolation process is pursued on the

remaining signal. This procedure is called sifting, and it terminates when the mean envelope is reasonably

close to zero everywhere. The resultant signal is designated as the first IMF.

The first IMF is then subtracted from the data, and the difference is treated as a new signal on which the

same sifting procedure is applied to calculate the next IMF. The decomposition is stopped when the last IMF

has a small amplitude or becomes monotonic [Huang et al., 1998; Bekara and Van der Baan, 2009; Han and

van der Baan, 2013]. As the name implies, empirical mode decomposition is an empirical decomposition

in that no a priori decomposition basis is chosen such as sines and cosines for the Fourier transform or a

mother wavelet for the Wavelet transform.
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Figure 2. Synthetic signal constituted by straight,

frequency-modulated, and gliding harmonic components and

one Morlet wavelet. (a) Time series. (b) Instantaneous frequen-

cies (see text for equations corresponding to the signal labels).

(c) Short-time Fourier transform (STFT) computed using a Hann

taper of 0.4 s with 90% overlap.

Empirical mode decomposition has sev-

eral interesting properties that makes it an

attractive tool for signal analysis. It results in

complete signal decomposition; i.e., the origi-

nal signal is reconstructed by summing all IMFs.

No loss of information is incurred. The empiri-

cal mode decomposition is a quasi-orthogonal

decomposition in that the cross-correlation

coefficients between the different IMFs are

always close to zero. This minimizes energy

leakage between the IMFs [Bekara and Van der

Baan, 2009].

Even though empirical mode decomposition

offers several promising properties, some fea-

tures encumber its direct application: mode

mixing and splitting, aliasing, and end-point

artefacts [Mandic et al., 2013]. Empirical mode

decomposition is also relatively inefficient

for flat signals due to the extrema interpo-

lation step and for signals with frequency

components that are not well-separated.

Two variants were recently introduced to

overcome some of the negative features asso-

ciated with empirical mode decomposition,

namely, ensemble empirical mode decom-

position (EEMD) and complete ensemble empirical mode decomposition (CEEMD). Ensemble empirical

mode decomposition, briefly speaking, is empirical mode decomposition combined with noise stabilization.

Using the injection of controlled zero mean, Gaussian white noise, ensemble empirical mode decomposi-

tion effectively reduces mode mixing [Wu and Huang, 2009; Tong et al., 2012;Mandic et al., 2013]. Adding

white Gaussian noise helps perturb the signal and enables the empirical mode decomposition algorithm

to visit all possible solutions in the finite neighborhood of the final answer, and it also takes advantage of

the zero mean of the noise to cancel aliasing [Wu and Huang, 2009]. However, ensemble empirical mode

decomposition leaves two problems: first, different noise realizations may end up with different numbers of

IMFs, which could mix up the IMFs after each decomposition in the frequency domain; second, ensemble

empirical mode decomposition does not maintain the complete decomposition feature of empirical mode

decomposition [Torres et al., 2011; Han and van der Baan, 2013]. In other words, contrary to empirical mode

decomposition, the sum of the IMFs obtained via ensemble empirical mode decomposition does not neces-

sarily reconstruct the original signal. The reconstruction error of ensemble empirical mode decomposition is

often acceptable when the injected noise is of small amplitude.

An important improvement of ensemble empirical mode decomposition is complete ensemble empiri-

cal mode decomposition, proposed by Torres et al. [2011], which obtains again the final IMFs sequentially,

contrary to ensemble empirical mode decomposition. The first IMF component is obtained in the same

way as ensemble empirical mode decomposition. The next IMF components can be calculated by the

following equation:

IMF(k+1) =
1

N

N∑
n=1

E1[rk + �Ek[vn]]. (25)

where Ek is the empirical mode decomposition operator which produces the k-th IMF component, rk is the

k-th decomposition residue, � is a fixed percentage of injected Gaussian white noise vn, and N is the number

of realizations. Complete ensemble empirical mode decomposition is a robust extension of empirical mode

decomposition methods. It leads to complete signal reconstructions.

The properties of empirical mode decomposition and its variants are not fully understood. In particular, its

exact time and frequency localizations are not predictable, although Han and van der Baan [2013] provide
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Figure 3. Time-frequency representations of the synthetic signal of Figure 2 using the ST, STAR, KS, CWT, SST, EMD,

BP, and MP. The different techniques are computed using the following parameters: ST, parameter k=10; STAR, win-

dow of 0.3 s with 90% overlap and an autoregressive order of 21; KS, autoregressive order of 21; CWT and SST, Morlet

wavelet with 64 voices per octave; EEMD, 100 realizations and random noise injection with 10% of the signal maximum

amplitude; MP, Gabor dictionary; BP, Morlet wavelet dictionary; and regularization parameter �=0.5.

some hypotheses. Given the uncertainty principle, the instantaneous frequency produces the highest possi-

ble time localization at each time sample, which necessarily comes along with poor frequency localization.

Based on the constant-Q band-pass feature of empirical mode decomposition [Flandrin et al., 2004], ensem-

ble empirical mode decomposition and complete ensemble empirical mode decomposition extract the

IMFs in each octave more accurately with the help of noise stabilization. The inherent frequency localiza-

tion of each individual IMF, given a white-noise input signal, is one octave with a time localization inversely

proportional to the center frequency of this octave. With increasing IMFs, each octave is centered around a

decreasing base frequency with a narrower linear frequency range. The obtained IMFs thus have an increas-

ing frequency localization at the expense of a decreasing time localization. In other words, the first IMF has

the highest time localization and the lowest frequency localization, and vice-versa for the last IMF.

3. Applications

For each benchmark signal, the important parameters used with each technique are mentioned in the

caption of the figures.

3.1. Toy Examples
3.1.1. Synthetic Example

In order to test the performances of the aforementioned techniques on a noise-free signal, we build a

synthetic signal, shown in Figure 2, consisting of two harmonic components at 15 and 35 Hz (s1 and s2),
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Figure 4. Speech signal corresponding to a sample of

a voice laughing and its time-frequency representation

using the STFT. The STFT is computed using a Hann taper

of 0.025 s with 90% overlap.

one frequency-modulated harmonic around 65 Hz

(s3), one harmonic gliding from 15 to 158 Hz (s4),

and one Morlet wavelet with a central frequency of

∼113 Hz (s5). The equations and associated instanta-

neous frequencies (IF, in brackets) corresponding to

these components are

s1(t) = 0.6 cos(70�t) [IF ∶ 35]

s2(t) = 0.8 cos(30�t) [IF ∶ 15]

s3(t) = 0.7 cos(130�t+5 sin(2�t)) [IF ∶ 65 + 5 cos(2�t)]

s4(t) = sin

(
8�100

t

8

ln(100)

)
[IF ∶

100
t

8

2
]

s5(t) = 3 exp

(
−t2

2

)
cos(5t) [IF ∶

5

2�

fs

log2(N5)
− |t|]

where instantaneous frequencies are calculated as
1

2�

d�(t)

dt
with �(t) the argument of the signal components,

ln and log2 are the natural and binary logarithms, respectively, N5 is the number of samples of signal s5, and

fs is the sampling frequency.

This synthetic signal includes straight, frequency-modulated, sharp, and progressive changes in spectral

lines, as well as a Morlet wavelet with localized t–f support. The decomposition results for all techniques are

presented in Figure 3.

The t–f representations of this noise-free synthetic signal clearly shows the expected performances of the

conventional techniques: short-time Fourier transform (STFT), continuous wavelet transform (CWT), and S

transform (ST). Spectral lines for the short-time Fourier transform have a constant width, reflecting the fixed

t–f localization of this method, while the variable t–f localization of the continuous wavelet transform and

S transform involves the widening of the spectral lines toward higher frequencies together with the better

temporal localization of the high-frequency Morlet atom. Both the short-time Fourier transform and S trans-

form seem to retain the amplitude of the different components, unlike the continuous wavelet transform

which show a decrease in maximum amplitude toward higher frequencies due to the frequency widening

of the wavelet support and the wavelet energy conservation required by this technique.

The autoregressive techniques (short-time autoregressive method STAR and Kalman Smoother KS), basis

pursuit (BP), synchrosqueezing transform (SST), and ensemble empirical mode decomposition (EEMD) show

higher t–f localizations close to the theoretical instantaneous frequencies, with the exception of short-time

autoregressive method and ensemble empirical mode decomposition which exhibits somewhat noisy

frequency components for those varying over time. Ensemble empirical mode decomposition maps the

continuous spectrum of the Morlet atom to a single point, contrary to the more conventional methods. Like

autoregressive methods, empirical mode decomposition is challenged when handling continuous spec-

tra [e.g., Kay and Marple, 1981]. Even though the localization of this atom is fully recovered by the Kalman

smoother, its time position is slightly shifted due to some smoothing. The t–f smoothing also leads to the

introduction of spurious components such as the one at ∼80 Hz and 3.9 s. The separation of the Morlet

atom into two spectral peaks by the short-time autoregressive method illustrates another pitfall of autore-

gressive methods, which is spectral line splitting. Splitting occurs essentially for high autoregressive orders,

compared to the number of frequency components in the signal, and noise-free signals [Chen and Stegen,

1974; Kay and Marple, 1979]. In this case, the presence of small amplitude noise would be beneficial, as it

prevents allocation of multiple autoregressive coefficients to higher amplitude spectral peaks. Additional
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Figure 5. Time-frequency representations of the speech signal shown in Figure 4 using the ST, STAR, KS, CWT, SST, EMD,

BP, and MP. The computing parameters are as follows: ST, parameter k=32; STAR, window of 0.025 s with 90% overlap and

an autoregressive order of 14; KS, autoregressive order of 14; CWT and SST, Morlet wavelet with 64 voices per octave;

EEMD, 100 realizations and random noise injection with 15% of the signal maximum amplitude; MP: Gabor dictionary;

BP, Morlet wavelet dictionary and regularization parameter �=0.5.

autoregressive coefficients are sometimes necessary to handle the appearance of frequency components

over time.

The sparse representation imposed by the matching pursuit (MP) algorithm and the choice of the Gabor

dictionary lead to discontinuous spectral lines and the localized mapping of the Morlet atom. We select the

Morlet wavelet dictionary for analyzing the benchmark signals with basis pursuit which is very similar to the

Gabor atoms dictionary used with matching pursuit [Addison, 2002]. The better performance of basis pursuit

compared with matching pursuit is mainly due to the optimization scheme for finding the optimal solution

in equation (18) ensuring sparsity of the solution [Chen et al., 2001; Vera Rodriguez et al., 2012]. Noticeably,

the t–f representations of autoregressive methods, basis pursuit, synchrosqueezing transform, and

ensemble empirical mode decomposition are not showing the differences in amplitude between the various

signal components.

3.1.2. Seminal Example: Speech Signal

Spectral analysis is commonly used to characterize speech signal and for pattern recognition [Rabiner and

Juang, 1993]. The different methods are applied to a short sample of a speech signal, specifically a laughing

voice (Figure 4). The signal, sampled at 8000 Hz, is mainly composed of three harmonics at ∼600,∼1050, and

∼1570 Hz (Figure 5). Its signal-to-noise ratio (SNR), based on the maximum amplitude of the noise and the

signal, is greater than 3.
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Figure 6. Volcanic pre-explosion recordings from the Redoubt volcano, Alaska [Hotovec et al., 2013] (top), and

time-frequency representation obtained using the STFT (bottom). The STFT is computed using a Hann taper

of 5.12 s with 90% overlap. The inset is an enlargement of two volcano-tectonic events showing their main

frequency components.

All techniques are able to pick up the three main spectral components. An additional low-amplitude spectral

line is discernible around 2050 Hz only for some of the techniques, namely, the short-time Fourier trans-

form, S transform, basis pursuit, short-time autoregressive method, and Kalman smoother. The decrease

in frequency localization towards higher frequencies prevents the continuous wavelet transform and syn-

chrosqueezing transform from detecting this low-amplitude spectral component. Even though the principle

of the S transform is very similar to the continuous wavelet transform, the frequency localization has been

adjusted using the parameter k (see equation (9)) to depict the low-amplitude line. Time-frequency rep-

resentations of nonconventional methods (i.e., autoregressive methods, synchrosqueezing transform,

empirical mode decomposition, matching pursuit, and basis pursuit) show less noise than the conven-

tional methods, which are prone to smearing and leakage. The highest frequency components are however

oscillating between 1000 and 1600 Hz for ensemble empirical mode decomposition and hence cannot be

separated. For basis pursuit, the value of the regularization parameter � is the same as for the synthetic sig-

nal (0.5) which gives approximately the same weight to data misfit and nonzero coefficients a in the cost

function (equation (18)). This choice seems well adapted for the representation of spectral lines.

One can wonder if the rapid oscillations present in the synchrosqueezing transform and Kalman smoother

decompositions correspond to the correct picture of the signal t–f content, as no other techniques show

these oscillations. Comparing in detail the synchrosqueezing transform and Kalman smoother represen-

tations, we can see that most of these oscillations are similar in both pictures, especially for the spectral

line around 1570 Hz. The fact that both techniques based on entirely different methodologies produce

very close results likely means that these oscillations are indeed correct. Several reasons can explain why

the other techniques are missing these rapid frequency modulations, smearing for the short-time Fourier

transform, continuous wavelet transform and S transform, averaging over a relatively long window for the

short-time autoregressive method, irregular fluctuations of instantaneous frequencies for ensemble empir-

ical mode decomposition, sparsity, and size of the operator (i.e., atom family) for matching pursuit, and

amount of smoothing in the inversion for basis pursuit. A high localization in both time and frequency is

here the key to their detection.
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Figure 7. Time-frequency representations of the signal recorded at Redoubt volcano, Alaska (See Figure 6), using the ST,

STAR, KS, CWT, SST, EMD, BP, and MP. It includes numerous volcano-tectonic earthquakes as well as a gliding tremor. The

computing parameters are as follows: ST, parameter k=32; STAR, window of 6 s with 90% overlap and an autoregressive

order of 97; KS, autoregressive order of 97; CWT and SST, Morlet wavelet with 32 voices per octave; CEEMD, 100 realiza-

tions and random noise injection with 10% of the signal maximum amplitude; MP, Gabor dictionary; BP, Morlet wavelet

dictionary and regularization parameter � = 3. Insets are enlargements of the same two volcano-tectonic events as those

enlarged in Figure 6 for the STFT and indicated by the dashed rectangle in the CWT plot.

3.2. Geophysical Data Examples
3.2.1. Volcanic Tremor

Volcanic tremors are observed on many volcanoes worldwide [e.g., Chouet, 1996]. They distinguish them-

selves from their relatives, the long-period events, by the absence of strong onsets with broad spectra. They

are characterized by long durations and harmonics mainly between 0.5 and 10 Hz. Potential causes range

from the resonance of fluid-filled cracks [Aki et al., 1977; Frehner and Schmalholz, 2010], nonlaminar flow in

sinuous conduits [Julian, 1994; Benson et al., 2008], or repetitive events with quasi-perfect periodicity [Lees et

al., 2004].

The tremor sample presented here was recorded in 2009 at Redoubt volcano, Alaska (event 12 in Hotovec

et al. [2013]), by a short-period station (natural frequency 1–2 Hz, sampling frequency 100 Hz). This tremor

was preceded by swarms of volcano-tectonic events with decreasing interevent periodicity and followed by

an explosive episode in the volcano. The signal is constituted by one fundamental harmonic plus one over-

tone gliding toward higher frequencies over time, as well as numerous volcano-tectonic events and some

broadband noise up to 15 Hz (Figure 6). Hotovec et al. [2013] suggest that the tremor cause is the repeti-

tion of periodic volcano-tectonic events with decreasing interevent periodicity owing to their large number

before the tremor. Hotovec et al. [2013] note also that increasing the size of the signal window improves
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Figure 8. (top) Raw recordings and (bottom) time-frequency repre-

sentation obtained with the STFT of a microseismic event recorded

by a borehole geophone (vertical component) during a hydraulic

fracturing treatment. Two seismic phases are indicated, a P-to-S

converted wave, likely converted very close to the receiver, and the

S wave. The STFT is computed using a Hann taper of 0.03 s with

90% overlap.

the readability of harmonics and over-

tones in short-time Fourier transform

t–f decompositions, coming at the

expense of time localization. This limita-

tion of the short-time Fourier transform

could be alleviated by some of the tech-

niques presented in this study, such as

autoregressive methods, empirical mode

decomposition, basis pursuit, and the

synchrosqueezing transform.

With this signal, the different techniques

are challenged in terms of noise sensitiv-

ity and adaptability to different types of t–f

signatures. Volcano-tectonic events have

SNR ranging between ∼1 to 5, while the

tremor is approximately at the noise level.

The decomposition results are presented

in Figures 6 and 7. Overall, conventional

methods are performing similarly on this

signal. The frequency content is mainly

below 15 Hz, with the exceptions of the

gliding tremor (from 365 s and 6.2 Hz to

507 s and 27 Hz) and its overtone (from

364 s and 11.7 Hz to 470 s and 28.6 Hz).

Volcano-tectonic events correspond to the broad vertical lines with a frequency content mainly below

15 Hz. Some of them seem to consist of several frequency components (∼7), especially those after the

appearance of the gliding tremor. This feature is better seen on the t–f representations of the S transform,

continuous wavelet transform, synchrosqueezing transform, basis pursuit and short-time autoregressive

method (Figure 7).

On the other hand, no significant improvements are achieved by the nonconventional techniques for the

delineation of the gliding tremors compared with the conventional ones. The t–f picture for the short-time

Fourier transform presented in Figure 6 has a higher frequency localization than the one presented in

Hotovec et al. [2013], even though the same window size was used. The main parameters to improve the

short-time Fourier transform resolution and readability are the window size, the type of taper used, and the

number of points of the Fourier transform. The good performances of the continuous wavelet transform on

this signal are transferred to the synchrosqueezing transform, which shows the highest t–f localization of

all techniques.

The high-amplitude noise degrades the performance of complete ensemble empirical mode decomposition

(CEEMD) technique such that the tremor and the volcano-tectonic events are not, or barely, identifiable

before and after around 400 s, respectively. The noise also degrades the representation of this signal by

matching pursuit due to the absence of a separation mechanism between signal and noise components in

this algorithm. The iterative procedure and the compromise entrusted to the regularization parameter �,

which is equal to 3 for this signal, enable basis pursuit to reduce contributions from the noise.

The spectral localization as well as the performance of both autoregressive methods depends on the

SNR [Marple, 1982; Quirk and Liu, 1983]; this is particularly clear on the t–f representation of the Kalman

smoother. For the present signal, a high autoregressive order is needed to account for the broadband char-

acter of the volcano-tectonic events and the background noise. The autoregressive methods are fitting

peaked spectra to these broadband frequency components, leading to the horizontally hatched aspect of

this Kalman smoother representation.

Both the short-time Fourier transform and continuous wavelet transform represent well broad contin-

uous spectra, whereas autoregressive methods, the synchrosqueezing transform, and empirical mode

decomposition try to condense such spectra to a few single frequencies [Kay and Marple, 1981; Auger et al.,
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Figure 9. Time-frequency representations of the microseismic event in Figure 8), using the ST, STAR, KS, CWT, SST, EMD,

BP, and MP. The computing parameters are as follows: ST, parameter k = 4; STAR, window of 0.04 s with 90% overlap and

an autoregressive order of 11; KS, autoregressive order of 11; CWT and SST, Morlet wavelet with 64 voices per octave;

CEEMD, 100 realizations and random noise injection with 15% of the signal maximum amplitude; MP, Gabor dictionary;

BP, Morlet wavelet dictionary and regularization parameter � = 0.05.

2013; Mandic et al., 2013]. Hence, they display the gliding tremor fairly well but not necessarily the

volcano-tectonic events.

3.2.2. Microseismic Event

Microseismic events are small brittle failure events occurring when fluids are injected inside a rock volume,

be it for enhanced oil recovery, geothermal operations, or carbon capture and storage for example. These

events are usually recorded by geophones deployed in boreholes to decrease surface noise contamination

and be closer to the point of fluid injection into the reservoir. Their magnitude are usually negative, ranging

from −3 to −1 [Cipolla et al., 2011]. The t–f representation of these events is complicated mainly by their

very short durations generally between 0.1 and 1 s. A clear separation of the different seismic phases is then

difficult to obtain due to the limits in time and frequency localizations of conventional t–f methods [Herrera

et al., 2015].

In this section, we analyze a high-quality microseismic event recorded during a 24-stage hydraulic fracturing

experiment that took place in Rolla, British Columbia, Canada, in 2011 [Eaton et al., 2013]. The fracturing is

monitored by a toolstring of six downhole short-period geophones, with a sampling frequency of 2000 Hz.

The signal shown in Figure 8 corresponds to the recordings of a magnitude −1.7microseismic event by the

vertical component of the deepest geophone. Its SNR is superior to 1.5 allowing an easy identification of

two wave arrivals. The two wavepackets correspond to a P-to-S converted wave, likely converted close to
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Figure 10. (top) Raw recordings and (bottom) time-frequency represen-

tation obtained with the STFT of the Mw9 Tohoku earthquake by the

broad-band station KDAK (vertical component) of the IRIS IDA network.

The main seismic phases are also indicated. The STFT is computed using

a Hann taper of 100 s with 90% overlap.

the receiver location, and the S wave.

On the short-time Fourier transform

picture (Figure 8), the converted wave

has a frequency content around 320 Hz

while the S-wave consists of two main

components at 320 and 210 Hz.

The t–f representations of this micro-

seismic event are presented in Figures

8 and 9. Due to the short signal win-

dow imposed by the short duration of

these kind of events, the picture of con-

ventional methods suffers heavily from

spectral smearing and the different

components are spread out over a fre-

quency interval of approximately 50 Hz.

Apart from matching pursuit and basis

pursuit, the other nonconventional

methods are converting the different

zones into several localized lines. The

synchrosqueezing transform, basis pursuit, Kalman smoother, and complete ensemble empirical mode

decomposition representations offer the best performance in terms of time and frequency localizations, the

short-time autoregressive method representation being noisier.

On the other hand, Kalman smoother and complete ensemble empirical mode decomposition represen-

tations show rapid amplitude modulations, together with frequency modulations for complete ensemble

empirical mode decomposition, which are not corroborated by the other representations. Matching pur-

suit clearly localizes the main three frequency components but show higher smearing than the other

nonconventional methods. The basis pursuit algorithm detects approximately the same components but

focus them around their central frequencies. The regularization parameter � used for this signal is equal

to 0.05 which is favoring the reduction of data misfit over the number of nonzero coefficients a. Matching

pursuit, basis pursuit, and complete ensemble empirical mode decomposition are able to represent the

monofrequency tails in the event coda between 0.15 and 0.3 s.

3.2.3. Megathrust Earthquake: Tohoku 2011, M
w
9

The Mw9 Tohoku earthquake occurred on 11 March 2011, offshore the northwest coast of Japan where the

Pacific plate subducts under the Okhotsk plate [Tajima and Kennett, 2012]. The seismogram presented in

Figure 10 was recorded by the borehole station KDAK from the IRIS IDA network located in Kodiak Island

on the Aleutian trench, South Alaska. This station has a three-component broadband seismometer with

sampling frequency at 20 Hz giving an usable frequency band between around 0.003 and 10 Hz. The main

signal from the earthquake lasts for about half an hour, with a high SNR superior to 10.

The t–f representations of this seismogram using the presented techniques are given in Figures 10 and

11. P waves arrive at ∼265 s and have a broadband frequency content up to the Nyquist frequency (not

shown in figures). Swaves, arriving at ∼695 s, have a more localized frequency content around 0.015 Hz. The

late high-amplitude arrival corresponds to surface waves. Their dispersion curve is clearly visible on the t–f

representations, starting from around 0.02 Hz at 1115 s to reach 0.05 Hz at later times.

The broadband character of the P waves gives to the short-time Fourier transform and S transform repre-

sentations a blurry aspect. Together with the continuous wavelet transform representation, they show some

smearing around the dispersion curve of the surface waves. While the S wave arrival is discernible on the

short-time Fourier transform and continuous wavelet transform representations, this is not the case for the S

transform. This arrival is actually also visible only on complete ensemble empirical mode decomposition and

perhaps the short-time autoregressive method, Kalman smoother, and basis pursuit t–f plots (Figure 11).

Except for the short-time autoregressive method, nonconventional techniques elude the P waves arrival

with its broad spectrum in their t–f representations.

The surface waves are well characterized by the nonconventional techniques, especially the synchrosqueez-

ing transform and Kalman smoother. The matching pursuit technique shows the dispersion curve relatively
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Figure 11. Time-frequency representations of the Mw9 Tohoku earthquake recorded by station KDAK (vertical compo-

nent) of the IRIS network (See Figure 10), using the ST, STAR, KS, CWT, SST, EMD, BP, and MP. The computing parameters

are as follows: ST, parameter k = 4; STAR, window of 150 s with 90% overlap and an autoregressive order of 6; KS,

autoregressive order of 6; CWT and SST, Bump wavelet with 64 voices per octave; CEEMD, 100 realizations and random

noise injection with 10% of the signal maximum amplitude; MP, Ricker dictionary; BP, Morlet wavelet dictionary and

regularization parameter � = 1.

well, even though it seems that this method has more difficulties to delineate time-varying spectral lines, as

previously seen also on the synthetic signal (Figure 3). The high amplitude of the surface waves allows for

an easy recovery of this component by autoregressive methods, even with a low number of autoregressive

coefficients (six autoregressive coefficients in Figure 11).

4. Discussion

Table 2 gives the key parameters, a summary of the main t–f features, and the main references for each

t–f technique.

4.1. Parametrization and Adaptability

Depending on the t–f template, or an a priorimodel, the resulting t–f representations will be very contrast-

ing as illustrated by the presented applications. Obtained t–f estimates are then not “absolute” measures

but actually reflect the contents of their template. All techniques are however able to decompose and fully

reconstruct the signal under investigation, given some basis, with the exception of autoregressive methods

which are appropriate only for peaked spectra. The fact that these transforms are fully reversible indicates

that they all lead to correct t–f representations. However, one method might provide more insight into

a particular signal than another one. Results from different techniques should be compared in order to
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Table 2. Summary of Key t–f Parameters and Features for the t–f Techniques Presented in This Reviewa

Techniques Key Parameters Key t–f Features Main References

STFT Window length and overlap, taper type, Fixed t–f resolution, smearing of t − f components Cohen [1989]

number of frequency bins

CWT Type of mother wavelet and its central frequency, Variable t–f resolution, exponential frequency Daubechies [1992] and

number of voices and octaves axis, smearing of t–f components Kumar and Foufoula-Georgiou [1997]

ST Localization parameter k, number of frequency Variable t–f resolution, linear frequency Stockwell et al. [1996] and

bins axis, smearing of t–f components Reine et al. [2009]

SST Same as CWT plus computation of instantaneous Reassignment of CWT t–f distribution on Daubechies et al. [2011],

frequencies and reassignment the instantaneous frequencies ridges leading Thakur et al. [2013], and

to narrow-band frequency components Herrera et al. [2014]

MP Dictionary definition, algorithm stopping Sparse t–f representations, deflationary Mallat and Zhang [1993] and

criterion approach potentially leading to non Wang [2007]

optimum t − f decompositions

BP Dictionary definition, regularization parameter Sparse t–f representations, inversion Chen et al. [2001] and

� scheme leading to locally optimum t–f decompositions Vera Rodriguez et al. [2012]

STAR Autoregressive order, window length and Peaked spectra, no windowing and hence Makhoul [1975],

overlap, autoregressive method smearing reduction Kay and Marple [1981], and

Leonard and Kennett [1999]

KS Autoregressive order, parameters for the Smoother peaked spectra, time-varying Khan and Dutt [2007] and

training data set (noise amplitude, number autoregressive coefficients Tary et al. [2014]

of realizations)

EMD Stopping criteria for IMFs extraction, Computation of instantaneous frequencies Huang et al. [1998],

extrema interpolation algorithm from IMFs, narrow-band and fluctuating Flandrin et al. [2004], and

frequency components, problems of mode Bekara and Van der Baan [2009]

mixing and splitting, aliasing, end-points

artefacts

EEMD Same as EMD plus amplitude of Gaussian Same as EMD but reduces mode mixing Wu and Huang [2009],

white noise injected and number of realizations and aliasing, possibility of IMFs mixing Mandic et al. [2013], and

in the frequency domain and incomplete Tong et al. [2012]

decomposition of the signal

CEEMD Same as EEMD Same as EEMD without IMFs mixing in Torres et al. [2011] and

the frequency domain, complete decomposition Han and van der Baan [2013]

of the signal

aIMF, intrinsic mode function.

gain confidence on their t–f decomposition, particularly for techniques that are strongly model dependent

(e.g., matching and basis pursuits and autoregressive methods). While the various t–f techniques are more

or less suitable for different kind of signals, these techniques can also serve two main rationales which are

time series representation and time series manipulation [Auger et al., 2013].

In addition, the presented techniques not only rely on different assumptions such as periodicity or peaked

spectra but also on the determination on various parameters that are critical for the t–f picture. The

necessary parameters depend on the technique considered. For the short-time Fourier transform, four main

parameters influence the t–f representation: window size, taper type, overlap, and number of frequency

bins in the fast Fourier transform [Harris, 1978; Kay and Marple, 1981]. Wavelet- and dictionary-based tech-

niques both depend on the choice of the basis atom (Morlet, Ricker, bump wavelets, etc.), even though

techniques exist to estimate this basis atom from the data themselves [Mesa, 2005], or to merge several dic-

tionaries into a “super-dictionary” [Chen et al., 2001; Rubinstein et al., 2010]. Additional parameters affect

the t–f decomposition such as the number of octaves and voices for the continuous wavelet transform

[Daubechies, 1992] and the regularization parameter for basis pursuit [Vera Rodriguez et al., 2012]. As the syn-

chrosqueezing transform depends on the continuous wavelet transform results, it is governed by the same

parameters plus those for instantaneous frequencies computation [Thakur et al., 2013].

The main parameters for empirical mode decomposition are the stopping criteria for the sifting process and

the extrema interpolation scheme (splines in this study) [Han and van der Baan, 2013;Mandic et al., 2013].

For the different examples presented in the application section, ensemble empirical mode decomposition

and complete ensemble empirical mode decomposition employed with the same parameters show similar
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t–f representations. On the other hand, the ensemble empirical mode decomposition implementation tends

to extract smoother IMFs with increasing IMF numbers due to the decrease in Gaussian noise fluctuations,

which is not the case in the complete ensemble empirical mode decomposition implementation. From our

tests, complete ensemble empirical mode decomposition is more computationally intensive than ensemble

empirical mode decomposition which contradicts the conclusions of Torres et al. [2011]. We show ensemble

empirical mode decomposition results when no significant improvement is achieved by using complete

ensemble empirical mode decomposition.

Autoregressive methods mainly depend mainly on the autoregressive order. If the autoregressive order is

too low, then the spectrum will be very smooth and some spectral peaks will be lost or misplaced, whereas

if the autoregressive order is too high, then spurious peaks can appear and spectral line splitting can occur

[Kay and Marple, 1981]. Various methods have been proposed to determine the autoregressive order, such

as spectral comparison [Tary et al., 2014], information theory-based criteria (e.g., Akaike information crite-

rion, final prediction error) [Priestley, 1994] which weigh the misfit of the model with the data against the

model complexity and higher order statistics [Lesage, 2008]. In the case of signal with noise, information

theory criteria usually do not converge toward an optimum value but decrease with increasing autore-

gressive orders. However, the curve of Akaike information criterion against autoregressive order can be

useful to determine when no significant improvements are made by increasing the autoregressive order

and hence find the optimum order. The other methods provide an autoregressive order that seem to give

reasonable results.

The various techniques show different levels of adaptability to all possible time series. Techniques that are

based on a fixed basis (e.g., mother wavelet and dictionaries) or present strong model assumptions are

naturally less adjustable to different kinds of signals than techniques completely data driven such as empir-

ical mode decomposition. On the downside, empirical mode decomposition algorithm seems very sensitive

to the SNR as no criterion to separate noise and signal is defined in this kind of algorithm. At the same time,

empirical mode decomposition coupled with the Hilbert-Huang spectrum, which involves the computa-

tion of instantaneous frequencies, seems to limit its t–f representation potential to narrow-band signals,

as illustrated by the broadband signals of the Tohoku mega-earthquake (Figure 11) and the Redoubt

volcano (Figure 7).

Algorithms of conventional methods for t–f analysis (short-time Fourier transform, continuous wavelet

transform, S transform) show more adaptability to different spectral bandwidths owing to the flexibility

of their templates. A complete representation of the t–f content of a signal, including narrow-band and

broadband components, is achieved by the conventional techniques at the cost of a lower time-frequency

localization. Nonconventional techniques all rely on various assumptions to increase their localization or

separating power, at the expense of “rejecting” parts of the signal. The biggest challenge is then to obtain

an adaptable technique with both high time and frequency localizations. None of the presented techniques

succeeds unequivocally in this task, even though the basis pursuit and synchrosqueezing transform give

promising results.

4.2. Performances

Conventional methods, subject to the uncertainty principle, present some smearing for all examples, espe-

cially in the case of the microseismic event (Figure 9). The S transform performances are also limited by the

total number of samples of the signal N as the resulting t–f array will have a size N × N. Allowing a lower

number of frequencies, like for the fast Fourier transform, and decimating the signal in time can help reduce

the size of the t–f array. Matching pursuit performances are found to be generally lower than those of the

other methods, including the conventional ones. The sparse representation of matching pursuit might be

inadequate for the applications shown in this study. On the other hand, matching pursuit may be more suit-

able for signal compression. Conversely, basis pursuit shows that “superlocalization” achieved by sparsity

constrained inversion is appropriate for most of the examples shown in this study. In addition, the com-

promise between data misfit and sparsity through the resolution parameter � increases the flexibility of

this technique.

The reassignment method applied on instantaneous frequencies for the synchrosqueezing transform

improves the t–f representation of the continuous wavelet transform in all the examples shown. How-

ever, some limitations of the continuous wavelet transform, such as the exponential frequency sampling,

that sometimes compromises its t–f representations are then transferred to the t–f pictures of the
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synchrosqueezing transform. Empirical mode decomposition and variants ensemble empirical mode

decomposition and complete ensemble empirical mode decomposition offer high-localized t–f represen-

tation for signals characterized by good SNR (e.g., the microseismic event, surface waves of the Tohoku

earthquake). On the other hand, instantaneous frequencies computed from empirical mode decomposition

IMFs have an inconsistent aspect in the presence of high-amplitude broadband noise (e.g., Redoubt volcano

example) and for close spectral lines (e.g., speech signal) [see also Bowman and Lees, 2013]. In these con-

texts, instantaneous frequencies calculated from the continuous wavelet transform picture (synchrosqueez-

ing transform) show a more continuous aspect, expected for these geophysical and audio signals, and

lower noise sensitivity. Finally, instantaneous frequencies, if coupled with decomposition into subsignals

like the synchrosqueezing transform and empirical mode decomposition, may be the paradigm of the

ultimate frequency localization, but examples like the P and S waves arrivals of Tohoku mega-earthquake

seem to indicate that some natural signals with broadband spectra are not well represented by

instantaneous frequencies.

Autoregressive methods are shown to be particularly efficient for spectral line delineation, for the speech

signal or the dispersion curve of surface waves for example. For the Kalman smoother method, a careful

attention should be given to potential spurious frequency components (e.g., synthetic signal), and poor t–f

pictures are obtained for signals with low SNR (e.g., Redoubt volcano example). These methods combine

high time-frequency localization with an absence of smearing, leading to clearer t–f representation over

conventional techniques. Improvements obtained by using autoregressive methods are more significant

for signals with high SNR [Marple, 1982]. This could explain the relative absence of improvements for the

Redoubt volcano signal (Figure 7).

All considered methods allow for signal reconstruction. In this review, we focus on signal representation, not

signal manipulation. The fact that all methods permit reconstruction indicates that they all can be used for

signal manipulation. We anticipate that their suitability for manipulation could be quite different from the

visual impression provided by their signal representation.

4.3. Possible Improvements

An automatic, data-driven selection of the main parameters for the continuous wavelet transform (mother

wavelet, central frequency, and bandwidth) [Mesa, 2005] could be combined with the synchrosqueez-

ing transform algorithm in order to remove the usual trial-and-error procedure. This could also improve

the resulting t–f representation of the continuous wavelet transform. On the other hand, the continuous

wavelet transform could be replaced by another time-frequency decomposition such as the curvelet trans-

form [Yang and Ying, 2014] or the S transform. The latter shows equal or better performances than the

continuous wavelet transform and also requires less tunable parameters. Data-driven selection of the right

dictionary could also improve the performance of methods such as matching pursuit and basis pursuit

[Hou and Shi, 2011].

The selection of the optimal autoregressive order is a longstanding issue for autoregressive methods that

is left open. Autoregressive methods relying on stochastic estimates usually involve high computational

costs that limit their real-time implementation. Modern computational tools and programming languages

should help mitigate this problem; this is also true for other methods like empirical mode decomposition

and variants.

Algorithms imposing sparsity on their t–f decomposition, such as constrained inversion schemes [Vera

Rodriguez et al., 2012], might increase their t–f localization in an artificial way for broad-band signals. In

other words, these signals have a broad spectrum which is compacted by the decomposition method, pro-

viding in essence an incorrect representation. Hence, there is a need for algorithms that can handle both

narrowband and broadband t–f representations depending on the actual underlying signal characteristics.

In a similar way as the synchrosqueezing transform is combining the continuous wavelet transform, instan-

taneous frequencies, and reassignment in a single method, mixing algorithms [e.g., Puryear et al., 2012] or

dictionaries [e.g., Rubinstein et al., 2010] might be alternatives to address these important challenges.

Finally, all considered algorithms in this review are single-trace and thus one-dimensional methods. How-

ever, multidimensional signals are very common (e.g., photos and shot gathers in reflection seismology).

Likewise, multicomponent data are also abundant. In a multicomponent recording, different types of signals

are recorded at the same spatial position and time (e.g., three-component seismic signals, omni-directional
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microphones, and red-green-blue channels in photos). Many of the presented methods have their multi-

dimensional counterparts including multidimensional wavelet transforms [Kumar and Foufoula-Georgiou,

1997], 2-D empirical mode decomposition [Nunes and Deléchelle, 2009], and multidimensional autoregres-

sive models [McClellan, 1982; Hansen and Chellappa, 1988]. Both matching pursuit and basis pursuit can

easily be extended to handle multidimensional signals too [Bergeaud and Mallat, 1995; Chen et al., 2001;

Mendels et al., 2007; Bruckstein et al., 2009].

We anticipate that many of the other novel high-localization methods will also be transformed to higher

dimensions. The topic of high-localization multicomponent spectral analysis has however received relatively

less attention for geophysical applications, despite its practical importance. Generally, each component is

decomposed separately (e.g., the vertical component in a seismic section or the red channel in a photo)

and subsequently individually or jointly analyzed. Ideally however, multicomponent, multidimensional data

should be decomposed jointly, instead of individually, with a single algorithm. We nevertheless anticipate

new developments in this area such that signal characteristics present on one or more recorded compo-

nents can be successfully jointly decomposed and subsequently analyzed instead of trying to infer their

presence from the individual component decompositions. The recent introduction of the quaternion-based

Fourier transform offers much promise to achieve multicomponent, multidimensional decompositions [Ell

and Sangwine, 2007].

5. Conclusion

Time-frequency analysis is a cornerstone of geophysical signal analysis. Close examination of the theoret-

ical basis of the presented conventional and nonconventional techniques reveals their assumptions and

restrictions. These also often determine their time-frequency localization. Conventional techniques, i.e., the

short-time Fourier transform, continuous wavelet transform, and S transform, are based on a quantitative

comparison of the signal with a template. This is also true for some of the nonconventional techniques like

matching pursuit and basis pursuit, while the synchrosqueezing transform actually combines it with instan-

taneous frequencies determination and the reassignment method. Other nonconventional techniques

are directly based on data modeling such as autoregressive methods and empirical mode decomposition

and variants.

The applications to a synthetic signal, a speech signal, and various geophysical time series show the

capabilities of the various techniques in terms of their adaptability to different frequency content,

time-frequency localization, and noise sensitivity. Conventional techniques perform similarly on the various

signals, clearly showing their main shortcomings which are spectral smearing and the trade-off between

time and frequency localizations. The nonconventional techniques address them more or less efficiently in

different ways. Out of all the presented techniques, the synchrosqueezing transform and basis pursuit are

the only one providing high-localization and low noise sensitivity, even though the synchrosqueezing trans-

form results are broadly dictated by those of the continuous wavelet transform. Matching pursuit and basis

pursuit results are also bound by the suitability of the dictionary to the analyzed signal. Kalman smoother

and empirical mode decomposition show high time-frequency localizations but also a high sensitivity to the

signal-to-noise ratio. The actual performance of each technique is then ultimately conferred by their original

design (e.g., matching pursuit for signal compression and autoregressive method for time series prediction).

Recent developments like data-driven procedures (empirical mode decomposition), algorithmic combina-

tions (synchrosqueezing transform), or inversion schemes (basis pursuit) show potential ways to improve

time-frequency representations. They might hold the keys to help circumvent longstanding hurdles such as

the high-localization representation of both narrow-band and broadband spectra at the same time.
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