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SPECTRAL EVOLUTION OF A ONE–PARAMETER EXTENSION

OF A REAL SYMMETRIC TOEPLITZ MATRIX

William F. Trench

Following Andrew [1], we will say that an m–vector

X = [x1, x2, . . . , xm]

is symmetric if

xj = xm−j+1, 1 ≤ j ≤ m,

or skew–symmetric if

xj = −xm−j+1, 1 ≤ j ≤ m.

(Some authors call such vectors reciprocal and anti-reciprocal .) Cantoni and Butler

[2] have shown that if

Tm = (ti−j)
m
i,j=1

is a real symmetric Toeplitz matrix of order m, then Rm has an orthonormal basis

consisting of m − [m/2] symmetric and [m/2] skew–symmetric eigenvectors of Tm,

where [x] is the integer part of x. A related result of Delsarte and Genin [4, Thm.

8] is that if λ is an eigenvalue of Tm with multiplicity greater than one, then the

λ–eigenspace of Tm has an orthonormal basis which splits as evenly as possible

between symmetric and skew–symmetric λ–eigenvectors of Tm. For convenience

here, we will say that an eigenvalue λ of Tm is even (odd) if Tm has a symmetric

(skew–symmetric) λ–eigenvector. The collection S+(Tm)(S−(Tm)) of even (odd)

eigenvalues will be called the even (odd) spectrum of Tm. From the result of Delsarte

and Genin, a multiple eigenvalue is in both the even and odd spectra of Tm.
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This paper is motivated by considerations that arose in connection with the in-

verse eigenvalue problem for real symmetric Toeplitz matrices. Although we do not

claim that our results provide much insight into this problem, they may nevertheless

be of some interest in their own right.

The inverse eigenvalue problem for real symmetric Toeplitz matrices is usually

stated as follows: Find a real symmetric Toeplitz matrix Tm with given spectrum

S(Tm) = {λ1 ≤ λ2 ≤ · · · ≤ λm}.

For our purposes it is convenient to impose an additional condition; namely, that

Tm have even and odd spectra S+(Tm) and S−(Tm), containing, respectively, m −

[m/2] and [m/2] given elements (counting repeated eigenvalues according to their

multiplicities) of S. We will say that S+(Tm) and S−(Tm) are interlaced if whenever

λk and λl are in S+(Tm) (S−(Tm)) and k < l, there is an element λi in S−(Tm)

(S+(Tm)) such that λk ≤ λi ≤ λl. Delsarte and Genin [4] showed that if m ≤ 4 then

the inverse eigenvalue problem always has a solution (regardless of the numerical

values of λ1, λ2, λ3, and λ4) if S+(Tm) and S−(Tm) are interlaced; however, if they

are not, then the existence or nonexistence of a solution depends on the specific

numerical values of the λi’s. They also argue that this negative consequence of

non–interlacement of S+(Tm) and S−(Tm) holds for all m > 4; that is, if the two

desired spectra are not interlaced, then the inverse eigenvalue problem fails to have

a solution for some choices of desired eigenvalues.

Delsarte and Genin [4] formulated the (still open) conjecture that the inverse

eigenvalue problem always has a solution (for arbitrary m) provided that the desired

even and odd spectra are interlaced. (This was apparently misinterpreted by Laurie

[6], who cited a real symmetric Toeplitz matrix for which S+(Tm) and S−(Tm) are

not interlaced as “a counterexample . . . to the conjecture of Delsarte and Genin

that the eigenvectors of a symmetric Toeplitz matrix, corresponding to eigenval-
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ues arranged in decreasing order, alternate between reciprocal and anti-reciprocal

vectors.”)

In numerical experiments reported in [7] we computed the eigenvalues of hun-

dreds of randomly generated real symmetric Toeplitz matrices with orders up to

1000. (Since then we have considered matrices of order 2000). The even and odd

spectra of these matrices are certainly not necessarily interlaced, but they seem

to be “almost interlaced,” in that we seldom saw more than two or three succes-

sive even (or odd) eigenvalues. In unsuccessfully trying to formulate a definition

of a measure of interlacement that would be useful in connection with the inverse

eigenvalue problem, we were led to study the problem considered here; namely, if

Tn−1 =









t0 t1 . . . tn−2

t1 t0 . . . tn−3

...
...

. . .
...

tn−2 tn−3 . . . t0









,

is a given real symmetric Toeplitz matrix of order n−1, then how does the spectrum

of the n-th order matrix

(1) Tn(t) =













t0 t1 . . . tn−2 t
t1 t0 . . . tn−3 tn−2

...
...

. . .
...

...
tn−2 tn−3 . . . t0 t1

t tn−2 . . . t1 t0













evolve as t varies over (−∞,∞)?

We impose the following assumption throughout.
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Assumption A: n ≥ 3 and Tn−2 and Tn−1 have no eigenvalues in common.

Assumption A and Cauchy’s interlace theorem imply that Tn−2 and Tn−1 have

no repeated eigenvalues. Let

α1 < α2 < · · · < αn−1

be the eigenvalues of Tn−1 and let

λ1(t) ≤ λ2(t) ≤ · · · ≤ λn(t)

be the eigenvalues of Tn(t). The Cauchy interlace theorem implies that

λi(t) ≤ αi ≤ λi+1(t), 1 ≤ i ≤ n − 1, −∞ < t < ∞.

It is also convenient to introduce distinct names for the even and odd eigenvalues

of Tn−2 and Tn(t). Define

r = n − [n/2] and s = [n/2];

thus r = s if n is even and r = s+1 if n is odd. Denote the even and odd eigenvalues

of Tn−2 by

β1 < β2 < · · · < βr−1

and

γ1 < γ2 < · · · < γs−1,

respectively, and let

(2) µ1(t) ≤ µ2(t) ≤ · · · ≤ µr(t)

and

(3) ν1(t) ≤ ν2(t) ≤ · · · ≤ νs(t)
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be the even and odd eigenvalues, respectively, of Tn(t).

Now define

pj(λ) = det(Tj − λIj), 1 ≤ j ≤ n − 1,

and

pn(λ, t) = det(Tn(t) − λIn).

As observed by Delsarte and Genin [4], a result of Cantoni and Butler [2] implies

that pn(λ, t) can be factored in the form

pn(λ, t) = p+
n (λ, t)p−n (λ, t),

where p+
n and p−n are of degrees r and s respectively in λ,

(4) p+
n (µi(t), t) = 0, 1 ≤ i ≤ r,−∞ < t < ∞,

and

(5) p−n (νj(t), t) = 0, 1 ≤ j ≤ s,−∞ < t < ∞.

Moreover, an argument of Delsarte and Genin [4, p. 203, 208] implies that the even

(odd) eigenvalues of Tn−2 separate the even (odd) eigenvalues of Tn(t); i. e.,

(6) µi(t) ≤ βi ≤ µi+1(t), 1 ≤ i ≤ r − 1,

and

(7) νi(t) ≤ γi ≤ νi+1(t), 1 ≤ i ≤ s − 1.

It now follows that (2) and (3) can be replaced by the stronger inequalities

µ1(t) < µ2(t) < · · · < µr(t)

and

ν1(t) < ν2(t) < · · · < νs(t).
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To see this, suppose for example that µi(t̂) = µi+1(t̂) for some i and t̂. Then (6)

implies that βi, an eigenvalue of Tn−2, is a repeated eigenvalue of Tn(t̂). Cauchy’s

theorem then implies that βi is also an eigenvalue of Tn−1, which violates Assump-

tion A.

Since p+
n (λ, t) and p−n (λ, t) have distinct roots for all t, (4), (5), (6), and (7)

define µ1(t), . . . , µr(t) and ν1(t), . . . νs(t) as continuously differentiable functions on

(−∞,∞). However, (4) and (5) do not provide convenient representations for the

derivatives of these functions. The next two lemmas will enable us to find such

representations.

Lemma 1. Suppose that Assumption A holds, and let αi (1 ≤ i ≤ n − 1) be

an eigenvalue of Tn−1. Then there is exactly one value τi of t such that αi is an

eigenvalue of Tn(τi). Moreover, αi is in fact an eigenvalue of Tn(τi) with multi-

plicity two, and τ1, . . . , τn−1 are the only values of t for which Tn(t) has repeated

eigenvalues.

Proof. By an argument of Iohvidov [5, p. 98], based on Sylvester’s identity,

it can be shown that

(8) pn(λ, t)pn−2(λ) = p2
n−1(λ) −

∣

∣

∣

∣

∣

∣

∣

∣

t1 t2 t3 . . . tn−2 t
t0 − λ t1 t2 . . . tn−3 tn−2

...
...

...
. . .

...
...

tn−3 tn−4 tn−5 . . . t0 − λ t1

∣

∣

∣

∣

∣

∣

∣

∣

2

for all λ and t. Expanding the determinant on the right in cofactors of its first row

shows that (8) can be rewritten as

(9) pn(λ, t)pn−2(λ) = p2
n−1(λ) − [(−1)n+1pn−2(λ)t + kn−2(λ)]2,
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where kn−2(λ) is independent of t. Therefore, pn(αi, τi) = 0 if and only if

τi =
(−1)nkn−2(αi)

pn−2(αi)
.

Obviously, αi is a repeated zero of the polynomial obtained by setting t = τi on

the right of (9), and therefore αi is an eigenvalue of Tn(τi) with multiplicity m > 1.

To see that m = 2, suppose to the contrary that m > 2. Then either µl(τi) =

µl+1(τi) = αi or νl(τi) = νl+1(τi) = αi for some l. But then (6) and (7) imply that

αi = βl or αi = γl for some l, which contradicts Assumption A; hence, m = 2. To

conclude the proof, we simply observe that a repeated eigenvalue of Tn(t) must be

an eigenvalue of Tn−1.

This lemma is related to Theorem 3 of Cybenko [3], who also considered ques-

tions connected with the eigenstructure of Tn(t) regarded as an extension of Tn−1.

Now define

qn(λ, t) =
pn(λ, t)

pn−1(λ)
.

The next lemma can be proved by partitioning Tn(t) − λIn in the form

Tn(t) − λIn =

[

t0 − λ UT
n−1(t)

Un−1(t) Tn−1 − λIn−1

]

,

where Un−1(t) is defined in (11), below. (For details, see the proof of Theorem 1 of

[7].)

Lemma 2. If λ is not an eigenvalue of Tn−1, let

Xn−1(λ, t) =









x1,n−1(λ, t)
x2,n−1(λ, t)

...
xn−1,n−1(λ, t)
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be the solution of the system

(10) (Tn−1 − λIn−1)Xn−1(λ, t) = Un−1(t),

where

(11) Un−1(t) =









t1
...

tn−2

t









.

Then

qn(λ, t) = t0 − λ − UT
n−1(t)Xn−1(λ, t);

moreover, if qn(λ, t) = 0, then the vector

Yn(λ, t) =

[

−1
Xn−1(λ, t)

]

is a λ–eigenvector of Tn(t); hence

(12) xn−1,n−1(λ, t) = (−1)q+1,

where

q =

{

0 if λ is an even eigenvalue of Tn−1(t),

1 if λ is an odd eigenvalue of Tn−1(t).

We will call q the parity of the eigenvalue λ.

Now suppose that λ(t) is one of the functions µ1(t), . . . , µr(t) or ν1(t), . . . , νs(t).

Lemmas 1 and 2 imply that

t0 − λ(t) − UT
n−1(t)Xn−1(λ(t), t) = 0, t ∈ J,
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where J is any interval which does not contain any of the exceptional points

τ1, . . . , τn−1 defined in Lemma 1. Differentiating this yields

(13)

(

1 + UT
n−1(t)

∂

∂λ
Xn−1(λ(t), t)

)

λ′(t) +
∂UT

n−1(t)

∂t
Xn−1(λ(t), t)

+ UT
n−1(t)

∂

∂t
Xn−1(λ(t), t) = 0.

However, if λ is any number which is not an eigenvalue of Tn−1, then

(14) UT
n−1(t) = XT

n−1(λ, t)(Tn−1 − λIn−1)

(see (10)), and differentiating (10) yields

(15) (Tn−1 − λIn−1)
∂

∂λ
Xn−1(λ, t) = Xn−1(λ, t)

and

(16) (Tn−1 − λIn−1)
∂

∂t
Xn−1(λ, t) =

∂

∂t
Un−1(t) =









0
...
0
1









(see (11)). Setting λ = λ(t) in (14), (15), and (16) and substituting the results into

(13) yields
(

1 + ‖Xn−1(λ(t), t)‖2
)

λ′(t) + 2xn−1,n−1(λ(t), t) = 0

(Euclidean norm); therefore, from (12),

(17) λ′(t) =
(−1)q2

1 + ‖Xn−1(λ(t), t)‖2
.
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Because of (12) we can write

(18) Xn−1(λ(t), t) =

[

X̂n−2(λ(t), t)
(−1)q+1

]

,

where q is the parity of λ(t) and X̂n−2(λ(t), t) is symmetric if q = 0 or skew–

symmetric if q = 1; then (17) becomes

(19) λ′(t) =
(−1)q2

2 + ‖X̂n−2(λ(t), t)‖2
,

which is valid for t 6= τi, 1 ≤ i ≤ n − 1. This formula does not yet apply at these

exceptional points, simply because the vectors X̂n−2(λ(τi), τi) = X̂n−2(αi, τi), 1 ≤

i ≤ n − 1 are as yet undefined. This is easily remedied; by Lemma 2,

(20)
(

Tn(t) − λ(t)In

)





−1
X̂n−2(λ(t), t)

(−1)q+1



 = 0

for all t 6= τi, 1 ≤ i ≤ n − 1. This and (1) imply that

(21)
(

Tn−2 − λ(t)In−2

)

X̂n−2(λ(t), t) =









t1
t2
...

tn−2









+ (−1)q









tn−2

tn−3

...
t1









for all t 6= τi, 1 ≤ i ≤ n−1. However, this system has a unique solution when t = τi,

since the matrix Tn−2 − λ(τi)In−2 = Tn−2 − αiIn−2 is nonsingular, by Assumption

A. Defining this solution to be X̂n−2(λ(τi), τi) extends X̂n−2(λ(t), t) so as to make

it continuous on (−∞,∞). Since λ′(t) is also continuous for all t, (19) must hold

for all t.

11



For future reference, notice from (12) and the continuity of xn−1,n−1(λi(t), t)

that the parity qi(t) of λi(t) is constant on any interval J which does not contain

any of the exceptional points τ1, . . . , τn−1.

Theorem 1. The even eigenvalues µ1(t), . . . , µr(t) are strictly increasing on

(−∞,∞) and the inequalities (6) can be replaced by the strict inequalities

(22) µi(t) < βi < µi+1(t),−∞ < t < ∞; 1 ≤ i ≤ r − 1;

moreover,

(23) lim
t→∞

µi(t) =

{

βi, 1 ≤ i ≤ r − 1,

∞, i = r,

and

(24) lim
t→−∞

µi(t) =

{

βi−1, 2 ≤ i ≤ r,

−∞, i = 1.

Proof. Setting q = 0 in (17) shows that µ1(t), . . . µr(t) are strictly increasing

for all t; therefore, (6) implies (22). For convenience, define βr = ∞ and suppose

that

(25) lim
t→∞

µi(t) = ζi < βi

for some i in {1, . . . , r}. Since βi−1 < ζi < βi, the system

(

Tn−2 − ζiIn−2

)

X̃i =









t1
t2
...

tn−2









+ (−1)q









tn−2

tn−3

...
t1
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has a unique solution, and, from (21) with λ(t) = µi(t),

lim
t→∞

X̂n−2(µi(t), t) = X̃i.

Consequently, (19) implies that

lim
t→∞

µ′

i(t) =
2

2 + ‖X̃i‖2
> 0,

and therefore limt→∞ µi(t) = ∞, which contradicts (25). This implies (23). A

similar argument implies (24).

The proof of the next theorem is similar to this.

Theorem 2. The odd eigenvalues ν1(t), . . . , νs(t) are strictly decreasing on

(−∞,∞) and the inequalities (7) can be replaced by the strict inequalities

νi(t) < γi < νi+1(t),−∞ < t < ∞; 1 ≤ i ≤ s − 1;

moreover,

(26) lim
t→∞

νi(t) =

{

γi−1, 2 ≤ i ≤ s,

−∞, i = 1,

and

(27) lim
t→−∞

νi(t) =

{

γi, 1 ≤ i ≤ s − 1,

∞, i = s.

The remaining theorems deal with the asymptotic behavior of the vectors

X̂n−2(λ(t), t) (see (18)) and with the orders of convergence in (23), (24), (26),

and (27).

Theorem 3. Let

Ai =











a
(i)
1

a
(i)
2
...

a
(i)
n−2
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be the βi–eigenvector of Tn−2 which is normalized so that

tn−2a
(i)
1 + tn−3a

(i)
2 + · · · + t1a

(i)
n−2 = 1.

Then

(28) lim
t→∞

X̂n−2(µi(t), t)

t
= Ai, 1 ≤ i ≤ r − 1,

and

(29) µi(t) = βi −
2(1 + o(1))

‖Ai‖2t
, t → ∞, 1 ≤ i ≤ r − 1.

Also,

(30) lim
t→−∞

X̂n−2(µi(t), t)

t
= Ai−1, 2 ≤ i ≤ r,

and

(31) µi(t) = βi−1 −
2(1 + o(1))

‖Ai−1‖2t
, t → −∞, 2 ≤ i ≤ r.

Proof. It is easy to verify that the vector

[

Ai

0

]

is the last column of (Tn−1 − βiIn−1)
−1. Setting λ = µi(t) in (10) shows that

Xn−1(µi(t), t) = (Tn−1 − µi(t)In−1)
−1Un−1(t)

for |t| sufficiently large. Therefore, (11), (23), and (24) imply (28) and (30). From

(19) with λ(t) = µi(t) and (28)

(32) µ′

i(t) =
2(1 + o(1))

‖Ai‖2t2
, t → ∞, 1 ≤ i ≤ r − 1.

Similarly, (19) and (30) imply that

(33) µ′

i(t) =
2(1 + o(1))

‖Ai−1‖2t2
, t → −∞, 2 ≤ i ≤ r.
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Since (32) and (33) imply (29) and (31), the proof is complete.

A similar argument yields the following theorem.

Theorem 4. Let

Bi =











b
(i)
1

b
(i)
2
...

b
(i)
n−2











be the γi–eigenvector of Tn−2 which is normalized so that

tn−2b
(i)
1 + tn−3b

(i)
2 + · · · + t1b

(i)
n−2 = 1.

Then

lim
t→∞

X̂n−2(νi(t), t)

t
= Bi−1, 2 ≤ i ≤ s,

and

νi(t) = γi−1 +
2(1 + o(1))

‖Bi−1‖2t
, t → ∞, 2 ≤ i ≤ s.

Also,

lim
t→−∞

X̂n−2(νi(t), t)

t
= Bi, 1 ≤ i ≤ s − 1,

and

νi(t) = γi +
2(1 + o(1))

‖Bi‖2t
, t → −∞, 1 ≤ i ≤ s − 1.

Theorems 3 and 4 provide no information on the asymptotic behavior of the

eigenvalues which tend to infinite limits as t → ±∞. The next theorem fills this

gap.
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Theorem 5. Let

(34) Γq =









t1
t2
...

tn−2









+ (−1)q









tn−2

tn−3

...
t1









.

Then

(35) µr(t) = t + t0 +
‖Γ0‖

2

2t
+ o

(1

t

)

(t → ∞);

(36) µ1(t) = t + t0 +
‖Γ0‖

2

2t
+ o

(1

t

)

(t → −∞);

(37) lim
t→∞

tX̂n−2(µr(t), t) = lim
t→−∞

tX̂n−2(µ1(t), t) = −Γ0;

(38) ν1(t) = −t + t0 −
‖Γ1‖

2

2t
+ o

(1

t

)

(t → ∞);

(39) νs(t) = −t + t0 −
‖Γ1‖

2

2t
+ o

(1

t

)

(t → −∞);

and

(40) lim
t→∞

tX̂n−2(ν1(t), t) = lim
t→−∞

tX̂n−2(νs(t), t) = Γ1.

Proof. We will prove (35) and (38) and verify the first limits in (37) and

(40); the proof of (36) and (39) and the verification of the second limits in (37) and
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(40) are similar. Let λ(t) = µr(t) and q = 0 or λ(t) = ν1(t) and q = 1. We know

from Theorems 1 and 2 that

(41) lim
t→∞

|λ(t)| = ∞.

From (21) and (34),

(

|λ(t)| − ‖Tn−2‖
)

‖X̂n−2(λ(t), t)‖ ≤ ‖Γq‖;

therefore, (41) implies that

lim
t→∞

‖X̂n−2(λ(t), t)‖ = 0.

From this and (19),

lim
t→∞

λ′(t) = (−1)q ,

and therefore

lim
t→∞

λ(t)

t
= (−1)q ,

by L’Hôpital’s rule. Now (21) implies that

(42) lim
t→∞

tX̂n−2(λ(t), t) = (−1)q+1Γq,

with Γq as in (34). This verifies the first limits in (37) and (40). Since the first

component of the vector on the left of (20) is identically zero,

(43) λ(t) − t0 + [t1, t2, . . . , tn−2]X̂n−2(λ(t), t) + (−1)q+1t = 0.

From (35) and (42),

[t1, t2, . . . , tn−2]X̂n−2(λ(t), t) = (−1)q+1 [t1, t2, . . . , tn−2]Γq

t
+ o

(1

t
)

= (−1)q+1 ‖Γq‖
2

2t
+ o

(1

t

)

.
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Substituting this into (43) and solving for λ(t) yields

λ(t) = t0 + (−1)q
[

t +
‖Γq‖

2

2t
+ o

(1

t

)]

,

which proves (35) and (38).

We conclude with a comment on the possible orderings of even and odd eigen-

values of Tn(t). Let the eigenvalues of Tn−2 be

ω1 < ω2 < · · · < ωn−2;

i. e.,

{ω1, . . . , ωn−2} = {β1, . . . , βr−1} ∪ {γ1, . . . , γs−1}.

Define

Q0 = [q(ω1), q(ω2), . . . , q(ωn−2)],

where q(ωi) is the parity of ωi. Suppose that the elements τ1, . . . , τn−1 of the

exceptional set discussed in Lemma 1 are distinct, and ordered so that

(44) τi1 < τi2 < · · · < τin−1
.

Let

Jl =











(−∞, τi1), l = 1,

(τil−1
, τil

), 2 ≤ l ≤ n − 1,

(τil
,∞), l = n.

The eigenvalues of Tn(t) satisfy the strict inequalities

λ1(t) < λ2(t) < · · · < λn(t)

18



for all t in each interval J1, . . . , Jn−1. Recalling that the parities of λ1(t), . . . , λn(t)

are constant on each Jl, we can define the n-vectors

Ql = [ql1, ql2, . . . , qln], 1 ≤ l ≤ n,

where qlj is the parity of λj(t) on Jl. Since λi(t) ≤ αi ≤ λi+1(t) for all t and αi is

an eigenvalue with multiplicity two of Tn(τi), we must have λi(τi) = λi+1(τi) = αi.

Therefore, αi is in both the even and odd spectrum of Tn(τi). From the monotonicity

properties of the even and odd eigenvalues of Tn(t), it follows that λi(t) changes

from even to odd and λi+1(t) changes from odd to even as t increases through τi.

This and (23), (24), (26), and (27) imply the following theorem.

Theorem 6. If τ1, . . . , τn−1 satisfy (44), then

Q1 = [0, Q0, 1], Qn = [1, Q0, 0],

and, for 1 ≤ l ≤ n − 1,

(45) qi,l+1 = qi,l if i 6= il and i 6= il+1,

and

(46) qil,l = 0, qil+1,l = 1, qil,l+1 = 1, and qil+1,l+1 = 0.

From (45) and (46), Ql+1 is obtained by interchanging the zero and one which

must be in columns il and il+1, respectively, of Ql.

The assumption that τ1, . . . , τn−1 are distinct was imposed for simplicity. The-

orem 6 can easily be modified to cover the exceptional case where {τ1, . . . , τn−1}

contains fewer than n − 1 distinct elements.
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