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Abstract

Let G be a graph on n vertices with spectral radius λ (this is the largest eigen-
value of the adjacency matrix of G). We show that if G does not contain the
complete bipartite graph Kt,s as a subgraph, where 2 6 t 6 s, then

λ 6

(

(s − 1)1/t + o(1)
)

n
1−1/t

for fixed t and s while n → ∞. Asymptotically, this bound matches the Kővári-
Turán-Sós upper bound on the average degree of G (the Zarankiewicz problem).

1 Introduction

The Zarankiewicz problem [16] is one of the classical and still largely open problems in
extremal graph theory. The problem asks for the maximum number m of edges in a
graph on n vertices which does not contain the complete bipartite graph Kt,s. We will
assume that 2 6 t 6 s throughout the paper. We formulate the results in terms of the
average degree 2m/n. The following upper bound was given in 1954 by Kővári, Sós, and
Turán [11] (see also [2]).

Theorem 1 (Kővári-Sós-Turán). Let G be a graph on n vertices with m edges. If G does

not contain Kt,s as a subgraph then the average degree in G is

2m/n 6 (s − 1)1/tn1−1/t + t − 1.

In 1996, Füredi [7] improved the asymptotic coefficient (s − 1)1/t to (s − t + 1)1/t.

Theorem 2 (Füredi). Under the conditions of Theorem 1,

2m/n 6 (s − t + 1)1/tn1−1/t + tn1−2/t + t. (1)
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The order of magnitude n1−1/t is conjectured best possible, but this has only been
proven for special cases: For t = 2, it was proved by E. Klein (as reported by P. Erdős
in [5]). W. G. Brown [4] showed it for t = 3, and more recently, Kollár, Rónyai, and
Szabó [10] showed it for all (t, s) satisfying s > t! + 1 (improved to s > (t − 1)! in [1]).
For the case t = 2 even the coefficient of the leading n1−1/t term given by Kővári, Sós,
and Turán has been shown to be best possible (E. Klein for s = 2, Z. Füredi [6] for all s).
For t = s = 3, Füredi’s upper bound (1) and Brown’s lower bound [4] are asymptotically
equal, showing the optimality of their coefficient.

The spectral radius λ of G is the largest eigenvalue of the adjacency matrix of G.
The spectral radius satisfies the inequality 2m/n 6 λ and in this sense, bounds on the
spectral radius generalize bounds on the number of edges. Our main result establishes
asymptotically the Kővári–Sós–Turán upper bound on λ.

Theorem 3. Let G be a graph on n vertices with spectral radius λ. If G does not contain

Kt,s as a subgraph, where 2 6 t 6 s, then

λ 6

(

(s − 1)1/t + o(1)
)

n1−1/t,

where the o(1) refers to fixed t and s while n → ∞.

By Füredi’s result [6] it follows that in the case t = 2, our result is asymptotically best
possible (including the constant (s − 1)1/2) for all s.

Although our result implies the asymptotic bound inferred from Theorem 1, this paper
does not provide an alternative proof of that result because our bound for a lower order
term relies on Theorem 1. On the other hand, our bound for the main term relies on a
direct argument independent of Theorem 1; therefore we will not gain by replacing the
KST bound by Füredi’s bound (Theorem 2) in our argument.

Problem 1. 1 Prove that under the conditions of Theorem 3,

λ 6

(

(s − t + 1)1/t + o(1)
)

n1−1/t,

i. e., establish the Füredi bound on λ.

We will prove Theorem 3 in two parts. In Section 3 we consider the case 2 = t 6 s,
and in Section 4 we consider the case 3 6 t 6 s.

2 Preliminaries

The complete bipartite graph Kt,s is the graph whose vertex set is the union of the disjoint
sets T and S, |T | = t and |S| = s, and whose edges are all pairs {x, y}, for x ∈ T and
y ∈ S.

1 (Added in 2009) Most recently, Vlado Nikiforov solved this problem [15].
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Throughout the paper, G is a graph on vertex set V = {1, 2, . . . , n}. The n × n
adjacency matrix A = (aij) of G is defined by setting aij = 1 if i and j are adjacent, 0
otherwise. The largest eigenvalue of A is denoted λ and is called the spectral radius of G.
Further, let x = {x1, . . . , xn} be a nonnegative eigenvector for λ. (We refer the reader to
Chapter 11 of Lovász’s book [13] for background on eigenvalues of graphs.)

We use the following additional notation for any subset W ⊆ {1, . . . , n}:

SW :=
∑

i∈W

xi,

Sr
W :=

(

∑

i∈W

xi

)r

,

PW (r) :=
∑

i∈W

xr
i .

Fact 1. For r a positive integer and W ⊆ V we have

(

∑

i∈W

xi

)r

6 |W |r−1
∑

i∈W

xr
i , i.e., Sr

W 6 |W |r−1PW (r). �

Fact 2 (Adolf Szűcs (see [12])). Let a1 6 · · · 6 an and b1 6 · · · 6 bn be nonnegative real

numbers. Then for every permutation σ on {1, . . . , n},
∑

i

aibi >
∑

i

aibσ(i). �

The following fact is a consequence of the previous one.

Fact 3. Let x be a nonnegative vector, and a and b nonnegative real numbers. Then

(

∑

i∈W

xa
i

)(

∑

i∈W

xb
i

)

6 |W |
∑

i∈W

xa+b
i , i.e., PW (a)PW (b) 6 |W |PW (a + b). �

3 K2,s-free graphs

In this section we prove the following bound.

Theorem 4. Let G be a graph on n vertices with spectral radius λ. If G does not contain

K2,s as a subgraph where 2 6 s then

λ 6 (s − 1)1/2n1/2 + O((ns)1/4).

We will actually prove that

λ < (s − 1)1/2n1/2 + 2−3/4(s − 1)1/4n1/4 + 2−1/2. (2)
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Proof: Recall that x = (x1, . . . , xn) is a nonnegative eigenvector for λ. The Theorem
follows by bounding the expression λ2

∑

i x
2
i . We may rewrite this as:

λ2
∑

i

x2
i =

∑

i

(λxi)
2 =

∑

i

(

∑

j∼i

xj

)2

=
∑

i

dix
2
i +

∑

i6=j

dijxixj (3)

where di is the degree of vertex i and dij is the number of common neighbors of i and
j. (The tilde denotes adjacency.) To simplify notation, we will use P =

∑

i x
2
i and

PX = PX(2) =
∑

i∈X x2
i . We get a reasonable bound on λ2P using only the facts that

di < n and dij < s − 1, by virtue of the assumption that G does not contain K2,s. Using
Fact 3 we may immediately conclude:

λ2P =
∑

i

dix
2
i +

∑

i6=j

dijxixj < nP + (s − 1)nP = snP, (4)

implying that λ < s1/2n1/2. To reduce the constant to the optimal (s − 1)1/2, we need to
examine the two terms more carefully.

We will partition the vertices of G into a set U of vertices of “high” degree and a set
of vertices of “low” degree, and split our sums accordingly.

Let D =
(

2(s − 1)n
)1/2

. Set U = {i ∈ V : di > D} and W = V \ U . With this
notation we have

∑

i

dix
2
i 6 nPU + DPW 6 nPU + DP. (5)

We claim that U is smaller than would be predicted by counting edges.

Claim 1. |U | 6
(

2n/(s − 1)
)1/2

= D/(s − 1).

To prove the Claim, let u = |U | and assume that G is labeled so that U = {1, . . . , u}.
Let Ni ⊂ V be the set of neighbors of i. Then |Ni ∩ Nj | 6 s − 1 whenever i 6= j.
Thus the union of any k of the Ni must contain at least f(k) := D + (D − (s − 1)) +
· · · + (D − (k − 1)(s − 1)) elements. Therefore f(k) 6 n. Now the quadratic function
f(x) = (x/2)(2D+s−1−x) takes its maximum at x0 = D+(s−1)/2 so it is increasing up
to x0. Therefore to verify that k 6 D/(s−1), we only need to show that f(D/(s−1)) > n,
i. e., D(2D+s−1−(D/(s−1)) > 2n(s−1) = D2. This reduces to D(s−2)+(s−1)2 > 0,
which is true. �

Now, using the fact that dij 6 s − 1, we have

∑

i,j

dijxixj 6 (s − 1)
∑

i,j

xixj , (6)

and after factoring out (s − 1) from the the second summation on the right-hand side
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of (3), we may bound it as follows:

∑

i6=j

xixj =
∑

i,j∈U,i6=j

xixj +
∑

i,j∈W,i6=j

xixj + 2SUSW

6 (u − 1)PU + (|W | − 1)PW + 2SUSW

< uPU + nPW + 2
√

unPUPW

6 uP + nPW +
√

unP.

Combining this last inequality with inequalities (5), (6), and the first equation in (4), and
observing that

nPU + (s − 1)nPW 6 (s − 1)nP,

we obtain

λ2 6
1

P

(

nPU + DP + (s − 1)uP + (s − 1)nPW

)

+ (s − 1)
√

un

6 (s − 1)n + D + (s − 1)u + (s − 1)
√

un

and using u 6 D/(s − 1) (Claim 1),

λ2 6 (s − 1)n + 2D +
√

nD(s − 1).

Substituting in the value of D, we arrive at our conclusion:

λ2 6 (s − 1)n + 21/4(s − 1)3/4n3/4 + 23/2(s − 1)1/2n1/2

6

(

(s − 1)1/2n1/2 + 2−3/4(s − 1)1/4n1/4 + 2−1/2
)2

.

This completes the proof of inequality (2). �

4 Kt,s-free graphs

In this section we prove the following result which makes the error-term in Theorem 3
explicit.

Theorem 5. Let G be a graph on n vertices with spectral radius λ, and let 3 6 t 6 s 6 n.

If G does not contain Kt,s as a subgraph, then

λ 6 (s − 1)1/tn1−1/t + c(t, s)n
1− 1

t
− t−2

t(t−1) . (7)

where c(t, s) < 3t/2 for all t and s.

We prove that c(t, s) 6 (3/2)(t − 1)(s − 1)−(1− 2
t
+ 1

t(t−1)).
We need the Kővári-Sós-Turán upper bound on the maximum number of edges in a

Kt,s-free graph to bound the number of vertices of large degree.
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Lemma 1. Let G be a graph on n vertices not containing Kt,s. Then G has fewer than

(s − 1)
1

t(t−1) n1− 1
t(t−1) (1 + ǫ(t, s, n))

vertices of degree at least

(s − 1)
t−2

t(t−1) n1− t−2
t(t−1) ,

where 0 < ǫ(t, s, n) < tn−1+(1/t).

Proof: If G had more than this many vertices of this degree, then it would have more
edges than allowed by Theorem 1. �

Proof of Theorem 5: We consider the t-th power of λ:

λtPV (t) =
n

∑

i=1

(λxi)
t =

n
∑

i=1

(

∑

j∼i

xj

)t

=

n
∑

i1=1

· · ·
n

∑

it=1

d(i1, . . . , it)xi1 · · ·xit

where d(i1, . . . , it) is the number of common neighbors of the t (not necessarily distinct)
vertices i1, . . . , it. If the vertices are distinct, this is at most s − 1, otherwise it it is less
than n.

We break the sum up into two parts. The first part is all summands for which the
t-tuple consists of t distinct vertices, and we call this A. This sum may be bounded above
by

A 6 (s − 1)
(

n
∑

i=1

xi

)t

6 (s − 1)nt−1PV (t), (8)

by Fact 1. The part which remains we call B. This may be bounded above by

B 6

(

t

2

) n
∑

i1=1

· · ·
n

∑

it−2=1

n
∑

j=1

d(i1, . . . , it−2, j)xi1 · · ·xit−2x
2
j . (9)

Indeed, if the components of a t-tuple are not distinct, equality will occur between at least
one of the

(

t
2

)

pairs of positions. We will show that the right-hand side of (9) is o(nt−1),
thus completing the proof.

Let U be the set of vertices of degree at least

D = (s − 1)
t−2

t(t−1) n1− t−2
t(t−1) ,

and let W be the set of remaining vertices. By Lemma 1, we see that

|U | 6 (s − 1)
1

t(t−1) n1− 1
t(t−1) (1 + ǫ(t, n, s)).
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We now split each of the sums into parts corresponding to U and W , and then use the
fact that if at least one vertex is from W , then the number of common neighbors can be
at most D. Hence the sum is bounded above by

n
∑

i1=1

· · ·
n

∑

it−2=1

d(i1, . . . , it−2, j)xi1 · · ·xit−2

n
∑

j=1

x2
j 6 DSt−2

V PV (2) + nSt−2
U PU(2).

Combining Facts 1 and 3 we obtain St−2
V PV (2) 6 nt−2PV (t), hence the first term above is

bounded by

DSt−2
V PV (2) 6 Dnt−2PV (t) = (s − 1)

t−2
t(t−1) nt−1− t−2

t(t−1) PV (t).

The second term satisfies nearly the same bound (a factor of 2 appears only as a specific
upper bound on (1 + ǫ)t−2 = 1 + o(1)),

nSt−2
U PU(2) 6 n|U |t−2PU(t) 6 2(s − 1)

t−2
t(t−1) nt−1− t−2

t(t−1) PV (t).

Thus

λt 6 (s − 1)nt−1

(

1 + 3

(

t

2

)

(s − 1)−1+ t−2
t(t−1) n− t−2

t(t−1)

)

.

Noting that (1 + x)1/t 6 1 + x/t (x > 0, t > 1), we conclude that

λ 6 (s − 1)1/tn1−1/t
(

1 + (3/2)(t − 1)(s − 1)−1+ t−2
t(t−1) n− t−2

t(t−1)

)

,

verifying (7). This completes the proof of Theorem 5. �

5 History.

This work started in 1996 as part of a bigger project on spectral extrema for graphs
while the junior author worked on his Ph.D. thesis at the University of Chicago under
the supervision of the senior author. The paper was completed in its present form (apart
from minor recent polishing) on February 8, 1998. Subsequently the manuscript fell victim
to the senior author’s personal odyssey and the junior author’s move away from academia.
The junior author now works for an investment bank in New York City.

Some published (cf. [9]) and numerous unpublished results of this project can be
found in the junior author’s thesis [8]. The main result of the present paper appears
there as Theorem 4.17, with an outline of the proof given here in full detail. During
the intervening years, unaware of [8], Vladimir Nikiforov, in part with Béla Bollobás,
embarked on a similar project (cf. [14, 3] and many other papers accessible on Vlado’s
home page). In 2007, Vlado discovered the abstract of a talk given by the junior author a
decade earlier in France during his postdoc year at Laboratoire Leibniz, IMAG, Grenoble,
where several of the results of his thesis were announced (cf. links at [8]). We are grateful
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to Vlado for having contacted us at that point as well as for his encouragment and critical
comments on various results in [8].

Acknowledgment. The authors wish to thank the anonymous referees for their com-
ments and in particular for pointing out Füredi’s paper [7].
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