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Spectral factorization and LQ-optimal regulation for multivariable
distributed systems

FRANK M. CALLIERt and JOSEPH WINKINt

A necessary and sufficient condition is proved for the existence of a bistable spectral
factor (with entries in the distributed proper-stable transfer function algebra Sf_)
in the context of distributed multivariable convolution systems with no delays; a
by-product is the existence of a normalized coprime fraction of the transfer function
of such a possibly unstable system (with entries in the algebra rj of fractions over
Sf_). We next study semigroup state-space systems SGB with bounded sensing
and control (having a transfer function with entries in iJ4) and consider its standard
LQ-optimal regulation problem having an optimal state feedback operator Ko. For
a system SGB, a formula is given relating any spectral factor of a (transfer function)
coprime fraction power spectral density to Ko; a by-product is the description of
any normalized coprime fraction of the transfer function in terms of Ko. Finally, we
describe an alternative way of finding the solution operator Ko of the LQ-problem
using spectral factorization and a diophantine equation: this is similar to Theorem
2 of Kucera (1981) for lumped systems.

Nomenclature
IR (respectively IR _ , IR +)

C
C. + (respectively C~+)

SO' (respectively S~)

LTD, (respectively LTD - , LTD +)

Mat (A)
M*

M ;;, 0 (respectively> 0)

set of real (respectively non-positive real, non
negative real) numbers
field oC complex numbers
{s E C: Re (s);;' a, (respectively> a)} (a is omit
ted if a = 0)
{s E C: a ~ Re (s)~ - a, (respectively a <
Re (s)< - a)}
set of C-valued Laplace transformable distri
butions with support on IR (respectively
IR_, IR+)
Dirac delta distribution (Dirac impulse)
(two-sided) Laplace transform oif « LTD
set of Laplace transforms of all f E A
class of all functions f, with support on IR + ,

such that Jg> If(t)1 exp (- at) dt < ce
set of matrices having entries in A
adjoint of the operator M; hermitian transpose,
when M is a matrix
F(- t)*, parahermitian transpose of FE
Mat(LTD), equivalently F*(s)=F(-s)* (=
F(jru)* Cor s = jru)
M is a positive semi-definite (respectively posi-

Received 8 August 1989.
t Department of Mathematics, Facultes Universitaires N.-D. de la Paix, B-5000 Namur,

Belgium.
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56 F. M. Callier and J. Winkin

tive definite) matrix
!i'(X, Y) space of linear bounded (i.e. continuous) oper

ators from X into Y (denoted by !i'(X) if X =
Y)

RHS (LHS respectively) right-hand side (left-hand side)
SGB semigroup state-space system with bounded

sensing and control
ORE operator Riccati equation
D(A) the domain of the operator A

Preliminary remark

To any distributionf =1.(') + foo('), (wheref. is a ~>va1ued function andfo E C),
we associate r ,=f: (.)+2-1f

oo(') E LTD+ and r ,= fa(') +2-1f
oo(') E LTD

such that 1.+ ,= I. almost everywhere on IR +, 1.-,= f. almost everywhere on IR_
andf=r+r·

1. Introduction
Spectral factorization for multivariable linear time-invariant systems can be

viewed as a symmetric causal-anticausal factorization problem which plays a funda
mental role in control. For example, it is useful in LQ- and HOO-optimal control
theory (e.g. Francis 1987).It is also used for solving certain types of integral equations
(e.g. Krein 1962, Gohberg and Krein 1960). Here it is studied first in the context of
multivariable distributed convolution systems with no delays and next, of state-space
semigroup system realizations with bounded sensing and control. We are motivated
by the possibility of applications to robust feedback stability (e.g. Vidyasagar 1985,
Callier and Wink in 1987) and to LQ-optimal regulation (e.g. Kucera 1981).

In this theoretical paper we do not cover the most general cases. Our motivation
is a typical one in theoretical applied science: to create relatively simple learning tools
and models leading hopefully to insight, connections and generalization.

The paper is organised as follows. Section 2 describes our framework of distri
buted system transfer functions and state-space realizations. Section 3, on spectral
factorization and the operator Riccati equation first gives a spectral factorization
existence condition in our transfer function framework (Theorem I); this leads to the
existence of normalized coprime fractions of any possibly unstable transfer function
(Corollary I); next, in the context of our state-space realizations we consider the
(transfer function) coprime fraction (power spectral density) spectral factorization
problem (see (48) below): we discuss the structure of any spectral factor using Riccati
based LQ-optimal state-feedback (Theorem 2), which in turn determines normalized
coprime fractions of the transfer function (Corollary 2). Finally in § 4 on spectral
factorization based LQ-optimal regulation, we find an alternative way of solving the
LQ-problem using spectral factorization and a diophantine equation (Theorem 3): the
diophantine equation here determines the optimal state feedback operator (controller)
given the spectral factor (closed-loop dynamics), playing its usual role in transfer
function feedback system design: controller determination given the closed-loop
dynamics (e.g. Kucera 1979, Chapter 3, Callier and Desoer 1982, equation (6.2.32),
Vidyasagar 1985, equation (5.1.27)).
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Spectral factorization and LQ-optimal regulation 57

2. Transfer function and state-space system framework
The following classes of distributed system transfer functions are described by

Callier and Desoer (1978, 1980 a, b):
Let <7";; O. An impulse response f E LTD+ is said to be in sI(<7) if and only if for

I < 0, f(/) = 0, and for I ~ 0, f(/) = !a(/) + f.,,(/) where the regular functional part
fa E L,o and the singular atomic partfsa ,= r.[';of/>(· -I,), where to = 0, Ii> 0 for i =
I, 2, ... and I. E C for i = 0, I, .,. with r.['; 0 11.1 exp ( - <7t,) < co,

An impulse response f is said to be in sI_ if and only iffE sI(<7) for some a < O.
sI(a) and sI_ are convolution algebras. d _ (the class of Laplace transforms of
elements in sI_) is our selected class of distributed proper-stable transfer functions.
It contains the multiplicative subset d"'., i.e. of transfer functions that are bounded
away from zero at infinity in C +, i.e. that are biproper-stable. Possibly open-loop
unstable transfer functions are selected to be in the algebra iB, where]E iB if and
only if] = Ii· a-I with Ii Ed _ and aEd"'.. Note that by Theorem 3.3 of Callier and
Desoer (1978), a transfer function is in iB if and only if it is the sum of a completely
unstable strictly proper rational function and a stable function in .r#_; hence aabove
can always be chosen biproper-stable rational (e.g. Vidyasagar 1985 Fact 20 p. 13).
Multivariable plants have transfer matrices Pin Mat (iB) described by a right matrix
fraction P= N15 -, where Nand 15 are in Mat (d_)and det 15 is in d"'.; if this holds
and there exist 0 and Ii in Mat (d_) such that ON + Ii15 = I (the Bezout identity),
(or equivalently [N(S)T 15(s)Ty has full column rank in C +), then we say that P in
Mat (iB) has a right coprime fraction (r.c.f.) (N, 15) in Mat (d_); r.c.f.s are unique up
to multiplication on the right by a factor in Mat (d_) together with its inverse;
moreover 15 above can always be chosen biproper-stable rational such that 15(cr:» = I
(Callier and Desoer 1980 b proof of Theorem 2.1).

Warning

None of the impulse responses below has any delayed impulses. Hence it is import
ant to consider the sub-class L/i +(a) of sI(<7) given by

L/i+(a)'={fEsI(a):f=fa(') + for -), fa( ')E L 10 andfo EC} (I)

where the following fact holds.

Fact I: Properties of L/i + (a) c s1(<7)

Let a ,,;; O. Then

(a) sI(a) is a commutative convolution Banach algebra with unit element 0(')
under the norm

II f 11."(01'= f' I!aU)1 exp (-a/) dt + ito 11.1 exp (-ali)

(b) LIJ. +(a) given by (I) is a closed sub-algebra of sI(a)

(e) If1=la( • ) + 100( . )E L/i +(<7), then

(i) ] is uniformly continuous in c..
(ii) ] is holomorphic in C~+

(iii) irs) - 10 as lsi- co in C, +

(2)

(3)

(4)

(5)
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58 F. M. Callier and J. Winkin

where in particular

1!a(0'1 + jw)I->O as Iwl-> 00 uniformly in 0'1 e [0',0"]
for any 0" ~ 0' (Riemann-Lebesgue) (6)

(d) F = Fa ( • ) + F0<>( . ) is invertible in Mat(L~ +(0')) c Mat(d(O'))

if and only if

inf {ldet F(s)l: s e Ca. }> 0

or equivalently with det F0"# 0,

detF(s)"# 0 If s e Ca.

(7 a)

(7 b)

(e) Let F = Fa ( • ) + F0<>( .) be in Mat(L~ +(0'd) for some 0'1 < 0 and hence in
Mat (d_). Then

F- I e Mat (d_) i.e. F- I e Mat (a+(0')) for some 0' < 0

if and only if

inf {ldet F(s)l: s e C+} > 0

or equivalently with det F0"# 0,

det F(s) "# 0 If s s C +

(8 a)

(8 b)

Comment I

(a) The proof of Fact I follows by a straightforward adaptation of results due to
Callier and Desoer (1978 p. 652, 1980 a). For Banach algebras, see, for example,
Rudin (1970). For matrix algebras, see also Vidyasagar (1985 Fact 26 p. 393).

(b) L~ +(0) is denoted !l by Vidyasagar and Anderson (1989 p. 96) where it is
shown that an impulse response f in d(O) can be well-approximated by a lumped
impulse response if and only if f e L~ +(0). a +(0) is denoted iJt+ by Krein (1962
p. 173) and Gohberg and Krein (1960 p. 231) and has been used extensively.

(c) The impulse responses below have no delayed impulses, i.e. they have the form
f = far • ) + fo<>( • ) e Mat (LTD ") where far .) is a function and fo is a complex con
stant. Hence under this condition we have

(i) Je d(O') if and only ifJe a +(0');

(ii) Jed_ (ed~ respectively) ifand only ifJea+(O') for some 0' <O(and more
over fo"# 0);

(iii) Je rj if and only iffe rjp;

where rjp is the sub-algebra of constantly proper elements of rj, i.e.

rjp,=Uerj }(s) -> K eC as Isl-> 00 in C +} (9)

(d) Every constantly proper plant P in Mat (rjp) has an r.c.f.(N, 6) in Mat (a+(0'))
for some a < 0, where

N(t) = Na(t) + No<>(t)

D(t) = Da(t)+ l<>(t)

(10 a)

(10 b)

with N a ( ' ) and Da ( ' ) in Mat (L l a ) for some 0' < O. This structure is necessary as soon
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Spectral factorization and LQ-optimal regulation 59

as one requires the denominator distribution D( .) to have no delayed impulses with
a singular atomic part Dsa (·) = Ib(·). Hence by Vidyasagar and Anderson (1989
Theorems 4.2 and 5.1) such a P can be approximated and stabilized by lumped
systems. Note finally that the power spectral density F = N.N + 0.0 originates from
a correlation distribution FE Mat (LTD) of the form F(t) = Fa(t)+ Fob(t) where
r:(.)is in Mat (Lt.) for some a < 0 and F0 is a constant hermitian positive definite
matrix. The spectral factorization of such an F is handled below.

The state-space systems below are of class 8GB (i.e. semigroup systems with
bounded sensing and control); see, for example, Curtain and Pritchard (1978) for the
details. We shall denote the domain of the operator A by D(A) and the uniform
operator norm by 11'11.

Definition I

An m-input p-output 8GB state-space system is described by the equations

{

X(t) = Ax(t) + Bu(t) for x(O) = Xo E D(A)
t~O

y(t) = Cx(t)

where

(a) x(t) E X, a real Hilbert space with inner product <., .>; u(t) E IRm, y(t) E IRP;

(b) A: D(A) c X -+ X is the infinitesimal generator of a Co-semigroup (exp
(At)),;>o of bounded linear operators in X, i.e. exp (At) E .'t'(X) for all t ~ 0;
and

(c) Band C are bounded linear operators, i.e. BE 2(lRm
, X) and C E 2(X, IRP).

A 8GB semigroup system has a transfer function

P(s) = C(sI - A)-t B (II)

where (sI - A)-t is the resolvent of A (usually denoted by R(s, A), i.e. the Laplace
transform of t f-+ exp (At)): it is a bounded linear operator from X into D(A) c X for
all s in an open right half-plane; as a function of s it is there a holomorphic (2(X)
operator valued) function. Hence P(s), given by (II), is a well-defined p x m-matrix
valued transfer function hoIomorphic in an open right half-plane.

The following definitions are important to ensure that P is in Mat (~) and for
obtaining a well-defined LQ-optimal regulation problem.

Definition 2

Consider any 8GB system.
(a) 8GB is said to be internally exponentially stable if and only if the semigroup

(exp (At)),;>o is exponentially stable, i.e. there exist a < 0 and M > 0 such that
[exp (At)11 ,,:; M exp (rrt) on t ~ O.

(b) The operator pair (A, B) is said to be exponentially stabilizable if and only if
there exists a stabilizing feedback K E 2(X, IRm

) , i.e. such that the semigroup
(exp (A + BK)t),;>o is exponentially stable.

(c) The operator pair (C, A) is said to be exponentially detectable if and only if
there exists a stabilizing injection FE 2(IRP, X), i.e. such that the semigroup
(exp (A + FC)tho is exponentially stable.
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60 F. M. Callier and J. Winkin

The following obvious lemma plays a fundamental role.

Lemma I

Consider any SGB system. Then if (A, B) is exponentially stabilizable with
K E !.f(X, IRm

) any stabilizable feedback, then

(a) (K, A + BK) is exponentially detectable;

(b) (A + BK, B) is exponentially stabilizable;

(e) (K, A) is exponentially detectable.

Lemma 2 below follows by a paramount characterization of joint stabilizability
and detectability in infinite-dimensional space given by Jacobson and Nett (1988
Theorem 3.2) (see also Nefedov and Sholokhovich 1986); for parts (e) and (d) see
Jacobson (1986 Theorem 2 pp. 25-30).

Lemma 2
Consider an SGB system with transfer function Pgiven by (II). Assume that

(A, B) is exponentially stabilizable and (C, A) is exponentially detectable (12)

Then

(a) PE Mat (~) (13)

(b) the SGB is internally exponentially stable if and only if the SGB is externally
stable, i.e. PE Mat (.s#_);

(e) for any stabilizing feedback K E !.f(X, IRm
) , the pair (N, D) given by

(N, D) = (C(sI -A - BK)-l B, I +K(sI -A - BK)-lB) (14a)

is in Mat (.s#_) and is an r.c.f of P;

(d) (15)

i.e. PIs) is strictly proper, or equivalently P(t) E Mat (LTO+) contains no impulses.

Comment 2
(a) Recall the stable-unstable sum decomposition of Callier and Oesoer (1980 b

Proof of Theorem 2.1) or Curtain and Pritchard (1978 pp. 75 et seq.) with
(Au, Bu. Cu) a matrix minimal realization of the unstable rational part of P above:
one can always reduce the feedback K in (14 a) to a finite-dimensional state feedback
matrix K; applied to this unstable part: (14 a) then reads

where

(N, D) =(PD, D) (14 b)

D(s) = [1- Ku(sI _A.j-l Bu] - 1 (14e)

is biproper-stable rational with D(<XJ) = I, (D(s) - 1 is the control-loop return difference).

(h) The structure of (N, D) given by ( 14 a) is as in (10) where No = 0 because Pin
Mat (£8) is strictly proper.
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Spectral factorization and LQ-optimal regulation 61

3. Spectral factorization and the operator Riccati equation
In this section we first report the solution of a standard spectral factorization

problem delivering a bistable spectral factor in Mat (,,1_) originating from a distri
bution on t;:;' 0 with no delayed impulses, i.e. in Mat (a+(a)) for some a < 0 (see (I)
for a definition of Ll1"(o) and Fact I for properties). In order to consider the spectral
density f on the imaginary axis, or equivalently the correlation distribution F, it is
natural to introduce the following definitions and facts.

Definition 3

Let a <i; 0 and Ll1"(o) be given by (\).

Ll1-(a)'={fELTD-:f(- ')ELl1+(a)} (16)

Ll1(a),= {fE LTD:f = fa +fo~( .), with fo E C and far .)

a C-valued function such that f~oo Ifa(t)1 exp (-altl) dt < OCJ} (17)

We have

Ll1(a)= Ll1 + (a) + Ll1- (a)

Ll1(ad c Ll1(a2) Val <i; a2 <i; 0

(\8)

(\9)

We equip Ll1(a) with a two-sided convolution product and a norm 11'111. as follows.
Let f = fa( . ) + fo~( .) and g = gal .) + go~( . ) be in Ll1(a), then

(f *g)(t) ,= f~00 fa(t - s)ga(s) ds + fog.(t) + fa(t)go + fogo~(t)

=, f~oof(t - s)g(s) ds for 1 E R (20)

and

IlfI11.'= f~oo Ifa(t)1 exp (-aI11) dt + Ifol (2\ )

Recall here the preliminary remark and the norm II 11.<f(Q) given in (2). We have for all
f, g in Ll1(a),

and

Note that Ll1+(0), Ll1-(0), and Ll1(O), respectively, are denoted fJI+, fJI- and fJI by
Krein (1962 p. 173).

The observations above induce important properties: see Callier and Winkin (1987
Fact 3.\) for some details.
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62 F. M. Callier and J. Winkin

(26 b)

(27)

Fact 2: Properties of distributions in LtJ.(u)

Let a ,;;; O. Then

(a) LtJ.(u) is a commutative convolution Banach algebra with unit element b(')
under the norm 11'111. given by (21);

(b) LtJ. "(e) and LtJ. "(e) given by (I) and (16) are closed sub-algebras of LtJ.(u);

(c) iff = f.(') + fob(') E LtJ.(u), then

(i) 1 is uniformly continuous in S. (22)

(ii) 1 is holomorphic in S~ (23)

(iii) l(s) -> fo as Isl-+ 00 in S. (24)

where in particular

11a(ul + jw)I-+O as Iwl-> 00 uniformly in U 1 E [u, -u] (25)

(d) F = Fa(') + Fob(') is invertible in Mat (LtJ.(u» if and only if

inf {ldet P(s)1 :s E S.} > 0 (26 a)

or, equivalently, with det F0 ;6 0,

det P(s) ;6 0 'V s E S.

We are now ready for the spectral factorization inspired by Callier and Wink in
(1987 Definition 3.1).

Definition 4

Let F = Fa ( ' ) + Fob(·) E Mat (LTD) where the following assumptions hold:

(a) F.(·) is a function and Fo is a constant hermitian positive definite matrix;

(b) F is parahermitian self-adjoint, i.e.

F(t) = F.(t) = F(- t)·

or equivalently

F+ = (F -). = Fa+ ( , ) + 2- 1 F0 b( , )

(c) P+ E Mat (d_) or equivalently under (b)

FE Mat (LtJ.(u)) for some a < 0

(d) P is positive semi-definite on the imaginary axis, i.e.

P(jwl( = P.(jw) = P(jw)·);;. 0 'V w E R (28)

We say that a square matrix-valued function R= R.(·)+ Ro E Mat (LTD + ),

(where Ra ( ' ) is a function and Ro is a constant non-singular matrix), is a (right)
spectral factor of P(invertible in Mat (d_» if and only if

F(jw) = R.(jw)R(jw) V w E R (29 a)

where

Rand R- 1 are in Mat (d_) (29 b)

Comment 3
(i) In (a) above, Fo > 0 is a well-posedness condition at w = ± 00 in (28).

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 U
ni

v 
D

e 
N

am
ur

] 
at

 0
6:

35
 2

4 
A

pr
il 

20
13

 



Spectral factorization and LQ-optimal regulation 63

(ii) In (b) F(t) = F.(t) reads more precisely Fa(t)= Fa.(t) and F0 = F~.

(iii) The equivalence in (c) follows easily using (b). By Comment I (c) and (16),
ft+ E Mat (d_) implies F± E Mat (LL'1 ±(a)) for some a < 0, whence F =
F+ + F- E Mat(LL'1(a)) for some a < 0 (use (18)).

(iv) In the scalar case our concept of 'invertible spectral factor' is called the
'O-outer spectral factor' by Callier and Winkin (1987).

A A ____

(v) In Definition 4, 'R = Ra ( ' ) + Ro E Mat (LTD+)' means that R has no delayed
impulses, whence R in Mat (d_) has a singular atomic part R,. = Rob( -).
That this is necessarily true follows by the fact that the invertibility of R in
Mat (d_) results in the invertibility of R,. in Mat (d_) (use, for example,
Callier and Desoer 1978 Fact 2.2(i) applied to det R). Hence the singular
atomic part of (29 a), i.e. Fo = R,••(jw)R,.(jw), leads to the identity

Fa I R,••(jw) = R,~ 1 (jw)

which can be extended to an entire bounded function. lt follows by Hille
(1959 Theorem 8.2.2) that R,. is a constant matrix Ro, which is non-singular
because F0 > O.

(vi) Since R has no delayed impulses we have:

a spectral factor invertible in Mat (d_) is invertible in Mat (LA +(a))
for some a < 0 (30)

(see Comment I(c) and Fact I (b)).

(vii) Much insight is gained if in Definition 4 F0 = I. See, for example, Gohberg
and Krein (l960). This is easily obtained by considering in Definition 4
(Fa I/Z)F(Fa liZ) instead of F.

The following is important.

Theorem I: Existence of spectral factors

Let F = Fa(') + Fob(') E Mat (LTD) satisfy assumptions (a)-(d) of Definition 4.
Then,

(a) ft has a spectral factor R= Ra ( • ) + Ro invertible in Mat (sf_) if and only if

detF(jw) # 0 V wEIR (31 )

Moreover, if (30) holds, then

(b) all spectral factors of ft are unique up to left multiplication by a constant
unitary matrix U;

(c) if F0 = I then Ro is a unitary matrix and ft has a unique standard spectral
factor; i.e. such that Ro is the unit matrix.

Comment 4
(a) The proof of parts (b) and (c) above are left as an exercise. The main tool for

part (b) is the analytic extension to a bounded entire function of the identity
RI R>:l = Ri,; R z., where R1 and R z are two spectral factors, and (30) and
the properties of Fact I (c) are used. For part (c) use also Fact 2 (c) as s =
jw ..... OCJ in (29 a).
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64 F. M. Callier and J. Winkin

(b) The crux of the proof of part (a) above is that under the assumptions of
Definition 4,

(i) by Gohberg and Krein (1960 Theorem 8.2), condition (31) is necessary and
sufficient for the existence ofa spectral factor invertible in Mat (a+ (0));

(ii) this spectral factor is actually invertible in Mat (a+(0-)) for some 0- < 0,
and hence also in Mat (d_).

Proof of part (a) of Theorem 1

Necessity. If R is a spectral factor of F, then by (29), (30) and R.(jw) = R(jw)·,
we have, using Fact I (d), det F(jw) = [det R(jwW ;i°for all wEIR. Hence (31) holds.

Sufficiency. We proceed in two steps.

Step I
Assumptions (a)-(d) from Definition 4 and condition (31) imply the existence of

a square matrix-valued function R= Ra ( • ) + Ro E Mat (CfD +), with Ro a constant
non-singular matrix, such that

(a)

(b)

F(jw) = R.(jw)R(jw) V wEIR

R E Mat (a+ (0)) and det R(s);i 0 VSEC +

(32)

(33 a)

or equivalently

Rand R-1 are in Mat (a+ (0)) (33 b)

Indeed this follows (Gohberg and Krein 1960 Theorem 8.2) by assumptions (a)-(d)
of Definition 4, where

(34)

oHence F has a spectral factor R.

(i) in (27) FE Mat (L~(O)) by (19), and

(ii) in (28) F(jw) > 0 for all WEIR by condition (31).

Note finally that by Fact I (d), (33 a) and (33 b) are equivalent since Ro is non-singular.

Step 2
The square matrix-valued function R in (32)-(33) satisfies:

Rand R-' are in Mat(d_)

Indeed denote by Sia , 0-2), (SO(o-to 0-2) respectively) the vertical strip {s E C :0-, ,;;
Re (s),;; 0-2), ({s E (::0- 1 < Re (s)< 0-2} respectively). Rewrite (32) as

R = R;I F (35)

Observe (33 b) where R; I(S) = R- '(- s)·, and consider also (27). Then by (3)-(4) and
(22)-(23),

(a) the RHS of (35) is holomorphic in SO(o-,O) and continuous in S(o-,O),

(b) the LHS of (35) has the same properties w.r.t. C~ and C +, respectively.

Hence Theorem 7.7.1 of Hille (1959) may be applied to (35) such that by analytic
extension (continuous up to the boundary), (35) holds in the strip S(o-, 0). This implies

R(a + .) = R;' (a + . )F(o- + .) on the jw-axis (36)
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Spectral factorization and LQ-optimal regulation

Note now that in (36),

65

, /'...

F(u + .) E Mat (L,1(O)) (37)

or equivalently exp (-ut)F E Mat (L,1(O)), because of (27) and (17); similarly,
using (16)

R; 1 (u + .) E Mat (13- (0)) (38)

or equivalently exp (ut)R - [ E Mat(Ld + (0)) because of (33 b) and (I). Hence by
(36)-(38) using the convolution (20) in L,1(O), it follows by Fact 2 (a) that
R(u + -] E Mat (13(0)). Now note that exp (-ul)R has its support on t;;' O. Hence
we get R(u + .) E Mat (13+ (0)) or equivalently by (I)

RE Mat (13 +(u)) for some a < 0 (39)

Finally observe that Ro is non-singular and that by (33 a) det R(s),p 0 for all s E C+:
this together with (39) implies (34) by Fact I (e). 0

Comment 5

(a) The analytic extension technique in Step 2 above is similar to that of Krein
(1962 Proof of Theorem 3.1).

(b) Assumption (27) and condition (31) are necessary and sufficient for f to be
invertible in Mat (U(u)) for some a < 0 (use Facts 2 (e) and (d)). Hence (29 a) can be
extended analytically to read

f = R. Rand f - [ = R - 1R; 1 on some strip S.

(c) The philosophy of the proof above in Comment 4 (b) and §§ 6-8 of Gohberg
and Krein (1960) show that, if F0 = I in Theorem I, then the search for the standard
spectral factor R=R.( .)+ I of f is equivalent to the following.

Let 6.= f -1 =.6.( .) + I. Find the solution R.(·) of the Wiener- Hopf integral
equation

R.(t) + t" R.(s)G.(r - s) ds = - G.(t) on I;;' 0 (40)

such that R.(·) E Mat (L1 ) and det (/ + R.(s)) ,p0 for all SEC +. Approximate
methods of solution of the Wiener- Hopf equation have been studied (see, for exam
ple, Stenger 1972). Other methods for solving vaguely related spectral factorization
problems are also known (see, for example, Youla and Kazanjian 1978, Wilson 1978).

(d) Generalizations of Theorem I are known in some special cases. For the mono
variable case of a correlation distribution giving a spectral factor invertible in.91_ with
delayed impulses, see Callier and Wink in (1987 Theorem 3.1); for the multivariable
case giving a spectral factor invertible in Mat (.91_) with equally spaced delays (e.g.
transmission lines) see Winkin (1989 Theorem 3.1M). The multivariable case with
delays that are not equally spaced is an open question (e.g. Gohberg and Fel'drnan
1974 p. 252 Comments on Chapter VIII). For the case of bistable spectral factors of
exponential order (Callier and Wink in 1986 Algebra .ff), see Winkin (1989 Theorem
3.2) for the multi variable case with equally spaced delays.

The following concept is important for defining the graph distance of two possibly
unstable systems and for obtaining robustness estimates of feedback stability (see, for
example, Vidyasagar 1985, Callier and Winkin 1987).
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66 F. M. Callier and J. Winkin

Definition 5
Let PE Mat (~) have an r.c.I, (N, 0) in Mat (sf_). We say that (N, 0) is normalized

if and only if

We call the expression

F=N*N +0*0
the coprimefraction power spectral density.

(41)

(42)

(43)

Comment 6
Normalized r.c.f.s of a plant PE Mat (~) are unique up to right multiplication by

a constant unitary matrix.

By Theorem I, we have the following corollary.

Corollary I

Every constantly proper plant PE Mat (~p) has normalized r.c.f.s unique up to
right multiplication by a unitary matrix.

Proof
Consider any r.c.f (N, 0) in Mat(U + (u))c Mat(sf_) as described by (10). The

power spectral density F given by (42) satisfies assumptions (a)-(d) of Definition 4.
Moreover coprimeness implies that (31) holds. By Theorem I, F has a spectral factor
R invertible in Mat(U + (u)) c Mat(sf_). Hence (NR-', OR-1 ) is a normalized r.c.f.
of P. 0

Comment 7
The denominator 0 of any normalized r.c.f. of a plant PE Mat (~p) cannot be

chosen rational unless P is rational: see (41). .

Consider now for any SGB system of Lemma 2 the following problem.

Problem: LQ-optimal regulation

For any initial state Xo E X, find a square integrable control Uo that minimizes
the cost functional

J(xo, u) = L''' (Cx(t), Cx(t) + (u(t), u(t)) dt

The solution of this problem is obtained by finding the positive semi-definite self
adjoint operator QE 2'(X) which solves the operator Riccati equation (ORE):

Q(D(A)) c D(A*)

and

[A*Q + QA + C*C - QBB*Q]x = 0 V X E D(A)

(see Zabczyk 1976, Curtain and Pritchard 1978 Chapter 4).

(44 a)

(44 b)
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Spectral factorization and LQ-optimal regulation 67

Lemma 3

For any SGB system with (A, B) exponentially stabilizable and (C, A) exponen
tially detectable, the (ORE) has a unique non-negative self-adjoint solution Qo E .!t'(X)
and for any initial state Xo E X the quadratic cost (43) is minimized by the unique
control

uo(t) =Kox(t) = - B*Qox(t) on t;> 0

where the optimal state feedback operator

K o = - B*Qo E .!t'(X, IRm
)

is stabilizing, i.e. the feedback semigroup

(exp (A + BKo)t),;,o is exponentially stable

For semigroup systems, we prove now the following theorem.

(45)

(46)

(47)

Theorem 2: LQ-regulation dictated spectral factorization

Let PE Mat (.'kp ) be the strictly proper transfer Function of an SGB system with
(A, B) exponentially stabilizable and (C, A) exponentially detectable as in Lemma 2.

Let (N, 6) be any r.c.f in Mat (&1_) of Pdescribed by (10) where No = O.
Consider the coprime fraction spectral factorization problem

f,=N*N+6*6=R*R (48)

where R= Ro ( • ) + Ro is a spectral Factor of f invertible in Mat (d_).
Let Ko E .!t'(X, IRm

) be the LQ-optimal Feedback of Lemma 3 given by (46). Then

(a) f satisfies the assumptions and condition of Theorem I with F0 = I, whence
f has spectral Factors with Ro unitary, the standard spectral factor with Ro = I
being unique.

(b) All spectral factors of f are related to Ko by

R(s) = U[l - Ko(sl - A)-l B]6(s) (49 a)

= U[l + Ko(sl- A - BKo)-1 B]-16(s) (49 b)

where U is a unitary constant matrix and 1- Ko(sl - A)-l B in Mat (.'kp ) is
the LQ-optimal control-loop return difference. The standard spectral Factor is
obtained For U = I.

Comment 8
(a) Set U = I in (49 a) and observe that

C(sl- A - BKo)-1 B = NR- 1 E Mat (d_)

is the optimal closed-loop transfer Function. Hence as usual (49 a) describes the spec
tral Factor R(s) (closed-loop dynamics) as the product of the (control-loop) return
difference times the open-loop dynamics (6(s)).

(b) Equation (49 a) suggests the identification of Ko through a spectral Factor R,
see Example I et seq. Ko dictates also a spectral factor: an example involving a
controlled delay differential equation is given by Winkin (1989 Example 4.2).

(c) The proof of (49) below Follows closely the reasoning of Kucera (1981 Proof
of Theorem I up to Eq. (14)).
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68 F. M. Callier and J. Winkin

(d) In (49) above O(s) can be chosen rational, see Comment 2 (a).
(e) In view of Lemma 2 (c) and (47) we can apply Theorem 2 in particular to the

r.c.f.
... ,. - 1 -1

(NOp' Dop),= (C(sl - A - BK o) B, I + Ko(sl - A - BK o) B) (50)

(49 b) reads then R(s)= U, such that in (48) f = I. Hence by Definition 5, we have
the following corollary.

Corollary 2: Characterization of normalized r.cf's
Let Pand K o be as in Theorem 2. Then any normalized r.c.I of Preads

(N(s), O(s)) = (C(sl - A - BKo)-' B, I + Ko(sl - A - BKo)-' B)U (51)

where U is an arbitrary unitary matrix.

Comment 9

(a) This result is a generalization of the lumped case (Meyer and Franklin 1987,
Callier and Winkin 1987 Appendix C).

(b) More general state-space versions of (51) are known (Zhu 1988, Curtain 1988).

Proof of Theorem 2
Part (a) follows by the proof of Corollary I. Note especially here that in (48)

F = Fa( .) + /(5( .) E Mat (L~(O')) for some 0' < 0, i.e. F0 = I.
From part (b) observe that by Lemma 3, K o is stabilizing whence by Lemma 2 (c)

the pair (NOp' Oop) in Mat (d_) given by (50) is an r.c.f. of P.
Moreover, by Lemmas I and 2

OOp(S)-1 = I - Ko(sl - A)-I B E Mat (.@p)

and therefore has only a finite number of poles in a right half-plane containing
the jw-axis in its interior (Callier and Desoer 1978, 1980 a). Furthermore, since
(sl - A)-l Bu E D(A) for all UE IRm

, it follows by the ORE that

J + BO(- jwl - AO)- 1 [ -( -jwl - AO)Qo - Qo(jw/ - A) + COC- QoBBoQoJ

x (jwl - A)-IB= /

whence by (46)

(52)

Consider now F in (48) where (N, 0) is also an r.c.f of P. By the uniqueness of the
• •• • ••• •• • I •

r.c.f.'s of P, (N, D) = (N Op' Dop)R where R is invertible in Mat (d_) and R = Dop D.
Moreover, by (52) F= Rok Hence R is a spectral factor. The conclusion (49)
follows by the uniqueness of spectral factors. 0

Example I

Consider an exponentially stabilizable and detectable single input, single output
SGB system as in Definition I. In that case, C and K o are bounded linear functionals
such that by the Riesz representation theorem (see e.g. Rudin 1970), Cx = (c, x) and
Kox = (ko, x) for all x E X for some c and ko in X (', .) is the inner product of X).

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 U
ni

v 
D

e 
N

am
ur

] 
at

 0
6:

35
 2

4 
A

pr
il 

20
13

 



Spectral factorization and LQ-optimal regulation 69

Moreover Bu = bu for all u E IR for some b E X. The transfer function of such a system
reads P(s) = (c, (sl - A) - 1b> E i4p and has the properties of Lemma 2. Assume in
addition that X is separable (i.e. contains a countable dense subset), and that A is
self-adjoint with compact resolvent. Then the spectrum of A consists only of real
eigenvalues )'0 > )'1> ... > Ai > ... (assumed to be of multiplicity one, for simplicity);
and A has a complete orthonormal set of eigenvectors 4>i' Furthermore, the resolvent
of A reads

00

(sl-A)-I X= L (S-A.)-I(X,4>i>4>i VXEX
i=O

(see Curtain and Pritchard 1978 Example 2.40). If Ao;;'0 is the only unstable
eigenvalue of A, then an r.c.I, of P is, for example, (N, D)= (P(s)(s - AO)(S - A)-',
(s - ;'o)(s - ;.) - 1), where ), < O. By Theorem 2, any spectral factor of f in (48) reads

R(S)=V[I-l (ko,4>i>(b,4>i>(S-A.)-I]D(s) (53)

where IVI = 1. This applies in particular to A = i;2/a~2 operating on X = L 2([0, I]),
for modelling heat diffusion in a finite rod of unit length (Winkin 1989 Example 4.3),
with

{
2 • a2

x 2 • ax }
D(A) = x E L ([0, I]). ae E L ([0, I]), a~ = 0 at ~ = 0, I

and

b(~) = ~"'(~) for ~ E [0, I], c(~) = b(l -~) for ~ E [0, I]

where for w > 0 small,

{

w - 1 for~E[O,w)
~"'(~) ,=

o elsewhere

one has eigenvalues AO = 0 and A. = _i2 n2 for i = 1,2, ... and corresponding eigen
vectors 4>0(~) == I and 4>J~) =)2 cos (in~). In this case, (53) reads with D(s) =
s(s - A)-I.

R(s) = V [I - (ko• 4>0> -.fi f (sin inw)(ko, 4>i )s ]
S - A i=' (inw)(s + (in)2)(s - A)

4. Spectral factorization based LQ-optimal regulation
We prove an infinite-dimensional generalization of Kucera (1981 Theorem 2): viz.

given a spectral factor (closed-loop dynamics), then the LQ-optimal feedback K o,
given by (46) (controller) can be obtained by a diophantine equation generated by a
coprime fraction of the input-state transfer function, see below.

For technical reasons we need the following (Nakagiri and Yamamoto 1989).

Definition 6

Consider any SGB system with bounded linear reachability operator G" E
Y(L 2 [0. I,; IRm

] , X) given by

G" u = f~' exp (A(tl - s)) Bu(s) ds VII> 0 (54)
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70 F. M. Callier and J. Winkin

(a) We say that the operator pair (A, B) is approximately reachable (on t > 0) if
and only if for all xI E X and for all e > 0 there exists a time t I > 0 and a control
u E L2[0, t l ; IRm] such that

IlxI-G"ullx<~

or equivalently

where

X = R(A, B)

R(A, B).= cl [ U Ra[G,.J]
1,>0

(55 a)

(55 b)

is the (A, B)-approximately reachable subspace (where 1I'lix is the norm of X,
Ra[G,,] c X is the range of G" and cl[D] denotes the X-closure of a subset Dc X).

(b) We say that the (dual) operator pair (B*, A*) is observable (on t > 0) if and
only if

B* exp (A*t) p =0 on t > 0 implies p =0

or equivalently,

NO(B*, A*) = {OJ

where

NO(B*, A*).= {p EX: B* exp (A*t) p = 0 on t > 0)

is the (B*, A*)-lIIlObservable subspace.

(56 a)

(56 b)

The following result is a standard exercise (see Curtain and Pritchard 1978
Theorem 3.1I and Proof of Theorem 3.15).

Lemma 4

Consider any SGB system. Then

(a) (A, B) is approximately reachable if and only if (B*, A*) is observable, or
equivalently (55)<0>(56).

(b) If in addition (A, B) is exponentially stabilizable and K E Y(X, IRM
) is any

stabilizing feedback, then, the pair (A, B) is approximately reachable if and only if
the pair (A + BK, B) is approximately reachable, or equivalently

B*[(A + BK)*r l / + lip = 0 V1=0,1,2, ... implies p = 0 (57)

Note

Observe also above that if K EY(X, IRm
) is stabilizing then [(A + BK)*] - I is a

bounded operator since 0 is in the resolvent set of (A + BK)*.

We now have the following theorem.

Theorem 3: LQ-optimal regulation by spectral factorization

Consider any system SG B such that

(A, B) is exponentially stabilizable and (C, A) is exponentially detectable (12)

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 U
ni

v 
D

e 
N

am
ur

] 
at

 0
6:

35
 2

4 
A

pr
il 

20
13

 



Spectral factorization and LQ-optimal regulation 71

and assume moreover that

(A, B) is approximately reachable (58)

As in Lemma 2, let K E .:l'(X, IRm
) be any stabilizing feedback and let

(IV(s), D(s)) ,= (C(sI - A - BK)-I B, 1+ K(sI - A - BK) -I B) (14)

such that the pair (N, D) in Mat (d _) is an r.c.f. of the strictly proper transfer function
P in Mat (.@) of SGB. Define also

.%(s) ,= (sI - A - BK)-I B (59)

Consider now as in Theorem 2 any solution of the spectral factorization problem

F= N.N + 15.15 = .%.C·C.% + 15.15 = R.R on s = jw (60)

where R is a spectral factor invertible in Mat (d_). Consider finally the LQ-optimal
feedback Ko E .:l'(X, IRm

) given by (46) in Lemma 3.
Then, the LQ-optimal feedback Ko E .:l'(X, IRm

) is also given by

K o = _t1)j-I"I/ = -t1)j."I/ (61)

where (t1)j, 1/") E .:l'(lRm) x .:l'(X, IRm) , with t1)j a unitary matrix, is the unique constant
solution of the operator diophantine equation

t1)j D(s)+ "1/.%(s) = R(s) E Mat (d_) (62)

induced by the operator right coprime fraction over d _ of the input-state transfer
function

(sI - A)-I B = .%(s)D(s)-1

with operator Bezout identity over d _ given by

D(s) - K.%(s) = I

(63)

(64)

The last statements are clarified in the proof. As noted in Comment 2 (a), D(s) in
(14) can be chosen rational.

Proof of Theorem 3

The input-state transfer function (sI - A)-I B is an .:l'(lRm
, X)-valued meromorphic

function in a half-plane containing C + by the characterization of the stabilizability
of (A, B) (see Nefedov and Sholokhovich 1986). In (59) )r(s) originates from %(t) =

exp ((A + BK)t) B where K E .:l'(X, IRm
) is stabilizing, hence

f' exp (-crt) [exp ((A + BK)t) BII~(R•..n dt

converges for some (J < O. Hence .%(s) is an .:l'(lRm
, xj-valued .S#_-function holo

morphic in a half-plane containing C +. The latter property also holds for
D(s) E Mat (d_) given by (14), where det 15 E d~ (it equals one at infinity in C +).
Observe now that with K E .:l'(X, IRm

) stabilizing

(sI - A)(sI - A - BK)-I B = [lsi - A - BK) + BK](sI - A - BK)-I B

is justified because for all x E X, (sI - A - BK)-I X E D(A) for Res e (J for some (J < 0
(note that D(A + BK) = D(A)). Hence (14) and (59) lead to

(sI - A).%(s) = BD(s) (65)
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72 F. M. Callier and J. Winkin

in some half-plane containing C+, from which (63) follows and is valid similarly
except at a finite number of poles. Equation (64) is an easy consequence of (14) and
(59) and valid in a half-plane containing C+. Note finally that in (64) K E 2'(X, IRm

)

can be viewed as a constant operator valued d _-function. Therefore (64) reads as a
Bezout identity over d _ and (63)-(64) can be seen as the expression of the fact that
(%, ~) is an operator r.c.f. of (sl - A) -1 B over";;_.

Consider now the diophantine equation (62) in which the given data R,.Ai', 6 and
the solution pair ("ll, 1') are viewed as d _-functions.

Observe now that by Theorem 2, i.e. (49 a), and (63), any spectral factor R of P
in (60) is given by

R(s) = V 6(s) - V K 0 %(s) (66)

where V is a unitary constant matrix. Hence (''It, "I/')=

(V, - V K o) E 2'(lRm
) x 2'(X, IRm

) is a constant solution of (62). We show now that
this constant solution is unique. Thus assume that ("lI, 1') is any constant solution of
(62) and assume without loss of generality that R is the standard spectral factor of
P, whence V = I (cf. Theorem 2 (b)). We must prove that ("lI, 1') = (I, - K o).

By (62), (66) and (63) we have

''It + 1'(sl - A)-l B=I - Ko(sl _A)-l B (67)

where both sides are in Mat (~p) with the second terms strictly proper. This follows
by Lemmas I and 2 for the RHS since by (46)-(47) K o is a stabilizing feedback. For
the LHS, observe that by (63), 1'(sl - A)- 1 B = "I'.Ai'6 -1 where, using the structure
of l' E 2'(X, IRm

) and A'" above, l',AI' E Mal (Lin) for some (J < 0, moreover 6 E

Mat (d_) with det 6(jrJ:)) = I by (14). Hence (67) is equivalent to

"lI = I (68)

and

W + Ko)(sl -A)-I B=O

where the last equation holds in a half-plane containing C+ except at a finite number
or poles. Hence by the injectivity of the Laplace transform

("I/'+ Ko)exp(At) B=O on t ~O

or, equivalently, taking the adjoint and noting that 1'* and K~ E 2'(lR m
, X)

B* exp (A*t) (1'* + K~)v = 0 V t ~ 0, V v E IRm (69)

Hence, by the reachability assumption (58), using Lemma 4 (a),

("I/'* + K6)v = 0 V v E IRm

i.e. "I/'* + K~ = 0, or, equivalently, l' + K o = O. This, together with (68), shows that
necessarily with V = [any constant solution of (62) reads ("lI, 1') = (I, - K o), or, with
V in (66) a fixed unitary matrix, ("ll, "I/') = (V, - V K o) is the unique constant solution
of (62). Hence (61) holds. 0

Comment 10

(a) The coprime fraction equations (63)-(64) and the diophantine equation (62)
should be viewed as generalizations of Kucera (1981 Equations (16) and (19) rc
spectively) with the same purpose: given a spectral factor R (closed-loop dynamics).
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determine the (LQ-optimal constant) controller (K o). The same philosophy leads to
the similar results of Kucera (1981 Theorem 2) and Theorem 3 modulo exchanging
polynomial algebra for the 'distributed proper-stable algebra' .if_.

(b) The unique standard spectral factor of (60) is obtained for 11/1 = V = I. Hence
without loss of generality, (61)-(62) and (64) and (59) give

R.(s) = R(s)- I = (K - Ko)(sI - A - BK) - [B E Mat(.if_) (70)

where (Callier and Desoer 1978 Fact 2.3), the LHS and RHS are holomorphic in a
neighbourhood of s = 0. Hence follows the Taylor series matrix coefficient identifi
cation scheme

[IW 1 R~)(O) = (K - Ko)(A + BK) -(1+ 1)B II 1=0, 1,2, ... (71)

which determines Ko - K and hence Ko uniquely by the reachability condition (58).
This is an analogue of the usual polynomial matrix coefficient identification scheme
used to define Ko by Kucera (1981 Theorem 2).

(e) Equation (71) is probably of theoretical interest since, with 11/1 = V = I, (49 a)
gives rise to

R(s)D(s)-1 = I - Ko(sI - A)- [B E Mat (~p) (72)

where in many cases both sides are meromorphic in C. Ko E Y(X, [Rm) is then recov
ered simply by residue calculus at the open-loop poles. Of course, this idea also
applies at the 'stabilized open-loop poles' (eigenvalues of (A + BK)) in (70).

(d) Tn the particular case of Example I above, the LQ-optimal gain vector
«ko, <Pi»;";0 can be obtained from any spectral factor provided that the pair (A, B)
is approximately reachable or, equivalently, by Curtain and Pritchard (1978 Proof
of Proposition 3.13)

<b,<Pi>#O lIi=0,1,2, ... (73)

Indeed, from (72) on comparing with (53) for all i = 0, 1,2, ... ,

<ko, <Pi> = -Res (R(s)D(s)-I; Ai)<b, <Pi>-I (74)

where Res (J; i.) is the residue of the function Jat i. and R is the standard spectral
factor (V = I).

(e) For the specific case at the end of Example I, cb, <Pi> in (73) reads

{

I for i = °
cb, <Pi> = r:; sin (i1tw). (75)

v 2 (i1tw) for all I = 1,2, ...

where (73) is satisfied only if w is irrational. Hence the approximate reachability
condition is not robustly satisfied. Therefore an adaptation of Theorem 3 is in order.
Preliminary analysis shows that an adaptation of Theorem 3 leads to the identifi
cation of the approximately reachable restriction of the LQ-optimal feedback oper
ator Ko, which is still optimal for any approximately reachable initial state and
stabilizing. Moreover, if B* = C and A is self-adjoint, as is practically the case in the
specific example above, then this restricted operator K° is the optimal feedback
operator owing to the fact that the (C, A)-unobservable subspace is in the null space
of the solution of the ORE.

(f) One author (F. M. Callier) has studied the spectral factorization problem for
the specific example above. It turns out that it is realizable by searching for the closed-
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loop spectrum (pole placement of a few dominant modes); the feedback operator
determination by (74) is performed by almost finite-dimensional residue calculus.

5. Conclusion
The essential contribution of this paper on spectral factorization of multi variable

distributed systems with no delays and LQ-optimal regulation of semigroup state
space SG B systems is Theorem I on the existence of a spectral factor. It turns out to
be the regularization of a well-known result by Gohberg and Krein (1960 Theorem
8.2). Once this is done, Corollary I on the existence of normalized coprime fractions
of transfer functions in Mat (ajp) is rather straightforward.

Another important philosophical fact is the ability to generalize to our context
Kucera's approach (Kucera 1981) to connect the structure of a (coprime fraction
power spectral density) spectral factor with the LQ-optimal state feedback. This
results in Theorem 2 on the structure of the considered spectral factor and Theorem
3 on the solution of an LQ-problem by spectral factorization and a diophantine
equation. Furthermore one should observe that Corollary 2 on the determination
of a normalized coprime fraction by an LQ-optimal state feedback is cheap once
Theorem 2 is known.

The most urgent needs at this point are computational procedures for spectral
factorization of physically motivated examples, showing connections between spectral
factorization and the solution of an LQ-problem as, for example, in work by Davis
and Barry (1977), indicating what the physics dictates as approximations. Another
important viewpoint is the hamiltonian operator method (Kwakernaak and Sivan
1972 Theorem 3.8, Gibson 1983).
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