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Spectral Factorization of Time-Varying
Covariance Functions

BRIAN D. O. ANDERSON, MEMBER,IEEE,JOHN B. MOORE, MEMBER,IEEE,ANDSONNY

Abstract-The determinationof the state-spaceequationsof a
time+uying tide-dimensional linear system with a prescribed
outputcovariancematrixis consideredwhen the systemis excited
by Gaussian white-noise inputs. It is shown that a symmetric
state covariancematrixprovidesthe key link between the state-
space equationsof a system and the system output covariance
matrix.Furthermore,such a matrixsatisfiesa linearmatrixdiffer-
entialequationif thestate-spaceequationsof thesystemareknown,
and a matrixRiccatiequationif the outputcovariancematrixof the
systemis given.Existenceresultsare givenfor the Riccatiequation
solution,and discussionof asymptoticsolutionsof the differential
equationsis also included.

I. INTRODUCTION

T

HE CONCEPT of spectral factorization has become
increasingly more important since Wiener’s original
work on optimal filtering, and hss appeared in such

diverse areas as network theory, Lyapunov stability and
optimal control. A simple statement of the spectral
factorization problem, but certainly not the only one, is
the following.

Suppose that a linear system is driven by white Gaussian
noise and that the covariance of the output is known;
state the equations that describe the system.

In its more common form, the problem is confined to
stationary situationa; the systems under consideration
must be time-invariant and excitation by white noise
must have commenced infinitely far back in the past.
In order that the output covariance be well-defined under
these excitation conditions, the system must be asymp-
totically stable, and, as a consequence, initial conditions,
be they stochastic or deterministic, play no part in atYect-
ing the output covariance.

It is also more common than not for the system under
consideration to be finite-dimensional; this implies that
the system possesses a transfer function matrix rational
in the Laplace transform variable s, and that the Laplace
transform of the output covariance should also have this
property.

When the output covariance is a scalar rather than a
matrix, and possesses a rational Laplace transform,
apectication of a system which will generate this co-
variance is a simple matter, In the matrix case, the prob-
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several extended algor-
ithms are available for solving the spectral factorization
problem [1]-[4].

The spectral factorization problem is still of interest if
either the time-invariance or the finite-dimenaionality
constraints are relaxed. In this paper, finite-dimension-
ality is retained, but the systems considered are per-
mitted to be timevarying and the covariances permitted
to be nonstationary.

We believe that it is important to regard the situation
where the input noise is applied from infinitely far back
in time 55 a special case of a more general situation,
namely, one where the noise is applied from some initial
finite time to and the system is in some initial state,
possibly nondeterministic. It seems that this viewpoint
may be necessary in some applications, while the tO= — ~
case can be recovered from the finite to case by a limiting
operation.

The time-varying spectral factorization problem as
applied to finite-dimensional systems hss received atten-
tion in several places. Darlington [5] has achieved results
for very limited classes of systems; Batkov [6] has at-
tempted a recursive method of solution, which is alleged
by Stear [7] to break down; Stear offers a reformulation
of the problem as one requiring the solution of simul-
taneous nonlinear integral equations. Both Stear and
Zadeh [8] provide good summaries of the work on the
problem. Zadeh’s formulation of the spectral factoriza-
tion problem is to seek a scalar function h(t, ~), satisfying

!

+-
h(t,A)h(r,A)d?i= R“(t,r) (1)

--

with h(t, r) = O for t < T and l?,(t, r) = ZIV(~,t) known.
This amounts to seeking the impulse response of a system
which, when driven by white noise, has output covariance
R“(t, T). Zadeh thus does not seek to characterize the
system via its state-space equationa, in contrast to the
technique to be described here.

Both the requirement of solving an equation such as
(l), or an equation of the form

/

T

Rv(t, r)a(T) dr = m(t) O<l<T (2)
o

where m(. ) and R.(., .) are known and a(. ) is unknown,
and the requirement of constructing whitening filters
are generated by a number of communication theory
problems; examples include the deteetion of signals in
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noise, and least squares filtering, prediction and smooth-
ing. Quite commonly the time-varying nature of the
problem arises because the stochastic processes considered,
even though stationary, may only be of interest, or in-
deed measurable, over a finite amount of time. As for
time-invariant problems, the key to solving such prob-
lems lies in the spectral factorization of R,(t, s).

A discussion of such problems for R. (t, s) of the form
f(t)g(s)l(s – t) + j(s)g(t)l(t – s) may be found in [9].
The Kalman–Bucy filter [10] is essentially a whitening
filter [11], [12] for a process with covariance R,(t, T) =
Rn(t, ~) + R,(t, T); here Rn(t, T) is a delta function and k
the covariance of white noise added to a signals, which
is generated by passing white noise into a linear system
of known form, so that the output covariance of this
system is R, (t, T). Since it is critical to the construction
of the Kalman–Bucy filter that the structure of a system
generating R, (t, T) be known, linear least squares esti-
mation via the Kalman–Bucy filter is not a complete gen-
eralization of the corresponding time-invariant (Wiener)
problem.

Reference [13], which is an application of the present
paper, considers the problem of estimating a signal s
whose covariance R, (t, r) is known [without knowledge
of a system generating R, (t, T)] given the measurements
y of s, (consisting of s with additive white noise), when
y is not available over (– o, ~), or R, (t, T) is not station-
ary, or the additive noise is not stationary.

An advantage of solving the time-varying spectral
factorization problem by specifying the generating sys-
tem with state-space equations is that the subsequent
specification of a whitening filter is much easier, in fact,
no inversion of an integral kernel is required, and the
parameters of a whitening filter can be given in terms of
those of the generating system with calculations no more
diflicult than matrix inversion [14].

In Reference [15], abstract procedures for whitening
filter construction are given, and the emphasis given in
these procedures to the state vector suggests that state-
space equations are the logical system descriptions to
work with to achieve greatest simplicity.

In the material that follows, we first review the pro-
cedure for psssing from the description of a system via
state-space equations together with its input statistics
to the covariance of its output. Emphasis is given to the
calculation of the covariance P(t) of z(t),where z(t),
is the state of the system at time t.This is because such
a covariance constitutes the key link between the state-
space equations of a system and the system output co-
variance, both when passing from the system to the
covariance, and when passing from the covariance to
the system.

It turns out that, given a description of the system,
P(t) satisfies a linear dMerential equation, and the system
output covariance can be simply written in terms of P(t)
and the matrices appearing in the state-space equations
of the system. Conversely, given a knowledge of the

covariance of the system output, P(t) satisfies a nonlinear
differential equation (actually a matrix Riccati equation),
and the system can be written in terms of P(t) and ma-
trices appearing in the prescribed covariance. The exis-
tence of solutions of the nonlinear differential equation
for P(t) is also discussed.

Attention is paid to both finite initial time problems
and to problems where the initial time toapproaches — ~.
The procedures of course work for the time-invariant
spectral factorization problem, and have recently been
discussed in the literature [16].

The layout of the paper is as follows. Section II reviews
earlier work on covariances, with emphasis on passing
from a system described in state-space form to the co-
variance of the output [17], [18]. Section HI considers
the inverse problem of obtaining a system description
from a covariance, and extends the earlier results of one of
the authors [19]. Section IV reviews some results of
optimal control [20], [21]. Section V establishes the exis-
tence of solution to the nonlinear d~erential equations
appearing in Section III by using the optimal control
results and the following observation.

If R(t, T) is a covariance matrix on the interval [T,, TJ
in the sense that

T, T,

H u’(t)R(t, T)U(T) dt dr > 0, (3)
T, T,

for all U(.), then ~(t, ~) is also a covariance on [– T,, – T,]
where

l?(t,r) = R(–t, –T). (4)

Section VI is an example illustrating some of the theory.
Since the original submission of this paper, a number

of further references have come to light [30]–[36]. Refer-
ence [30] provides a scheme for solving (1) when R,(t, T)
is the sum of a delta function and a completely continuous
kernel. The theory, using a number of results concerning
Fredholm integral equations, was applied by Geesey in
[31] to the finite-dimensional problem considered here,
and he obtained essentially the same results as this paper,
with d%erent existence proofs. Reference [32] contains
further results along the same lines, including a large
number of results dealing with a singular version of the
spectral factorization problem (see also [28]). The solution
of (2) is considered in [33]. Connections between the
infinite-dimensional solution [30] of (1) and the finite-
dimensional solution are touched upon briefiy in an im-
portant paper of %hurnitzky [34]. That the solution of (1)
is closely related to generalizing the Kalman filter tc
make it a smoother is a point of view taken by Kailath
[35], for whose valuable insights we are immensely grate-
ful. Kailath also drew our attention to the existence of
[36], which contains results indispensable in a considera-
tion of singular problems; Geesey has made use of these
results in [31]. Finally, unpublished work of Silverman
and Anderson deals with the factoring of matrix rather
than scalar covariances, including singular problems.
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II. OUTPUTCOVARIANCEMATRICESOF LINEARSYSTEMS

Consider a linear finite-dimensional dynamical system
described by the equations

i(t) = F(t)z(t) + G(t)u(t) (5a)

~(t) = H’(t)x(t) + .l(t)u(t) (5b)

where x(. ), U(.), and y(s) are the state, input, and output
vectors of dimensions n X 1,r X 1,and m X 1,respectively,
and 3’(.), G(.), H(o), and J(. ) are continuous matrices of
dimensions n )( n, n X r, n X m, and m X r, respectively.
The superscript prime denotes matrix transposition. An
alternative description for the system (5) is the impulse-
response matrix

S(t, r) = H’(t)@ (t, 7)G(r)l(t – ~) + J(t) d(t – ~) (6)

where ~(t) is the Dirac delta function, 1(t) is the unit step
function and @(t,T) is the state transition matrix de-
fined by

$ @(t, T) = F(t)@ (t, ,) @(T, r) = 1. (7)

where In k an n-dimensional identity matrix.
It is well known that the state vector of the system

is given by [15]

z(t) = @(t, tO)x(tO)+ /’ @(t, u)G(u)u(u) da. (8)
t.

Let the initial state z(to)be a random variable. Without
loss of generality, it will be assumed that x(tO) has zero
mean and symmetric covariarme matrix PO. Note that
if x(t.) is deterministic, we may view this situation as
being a particular case of the stochastic situation. Let
the input u(t) be Gaussian white noise with zero mean
and covariance matrix

R“(t,T) = 1, a(t– r). (9)

Furthermore, assume that z(tJ is statistically inde-
pendent of u(t)for all t so that the expected value of the
product of Z(tO) and u(t) is equal to zero.

Direct calculation based on (8) and (9) yields

E[z(t)z’(T)] = @(t, T)P(T)l(t – T)

+ P(t)@’(T, t)l(r – t) (lo)

where

P(t) = E[z(t)x’(t)]

= @(t, to)Po@’(t, to)

+ /’ *(L u)G(u)G’(u)@(t, u) da. (11)
t.

Equations (10) and (11) hold for tand ~ > t,.
When (9) and (10) are combined with (5b) there obtains

Rv(t, r) = H’(t)@(t, ~)K(7)l(i – ~)

+ K’(t)@’(T,t)H(T)l(T – /)

+ J(t)J’(t)a(t– T) (12)
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where

K(t) = P(t)H(t) + G(t) J’(t). (13)

Of course, R. (t, T) is only defined for t, r > tn.
The calculation of Rv from F, G, H, and J (or equiva-

lently, Q, G, H, and J) can be viewed as a calculation in
the first instance of P(t), the covariance of z(t),followed
by a calculation of Rv(t, T). The latter follows with no
difllculty from @, G, H, J, and P, while P is given by
(11). It may also be verified that the following equation
defines P.

P=pF’+FP+GG’ (14)

with initial condition P (tO) = PO.
By defining

A’(t) = H’(t)@ (t, t,) (15a)

B(r) = @(t,,T)K(T) (15b)

C(t) = J(t) J’(t) (15C)

where t~ > toand is arbitrary but fixed, the covariance
l?.(t, r) becomes simply

R.(t,T) = A’(t)B(r)~(t – T)

+ B’(t) A(r)l(T – t) + C(t)ti(t – ;). (16)

This form highlights the fact that R,(t, r) results from
passing white noise into a jinite-dimensional system: the
multipliers of 1(.! — T) and 1(~ — t) are separable func-
tions of tand r. Finally, note that the original continuity
assumptions on F(o), G(o), H(o), and J(*) guarantee
that A(.), B(.), and C(. ) are continuous.

III. SPECTRALFACTORIZATION

The conveme situation in which the output covariance
matrix is assumed known and the system has to be found
will now be considered for covariances of the form R, (t, r)
in (16). Note that a covariance of this form could result
by passing white noise into a linear finite-dimensional
system with no feedthrough term, and adding white noise
to the output of this system. This would require
A’(t)B(r)1(t– T) + B’(t)A (r) 1(r – t)to be a covariance
in its own right, and one could pose the problem of
finding a system to generate this covariance. Noting
though that even if R,(t,r) in (16) is a covariance,
A’(t) n(r) 1(t – ~) + B’(t)A (T)1(~ – t)need not be, we
shall seek a system generating R, (t, T) in the form of
(5a) -(5c).

It is evident that the known data are the three matrices
A(.), II(.), and C(.); it will be assumed that the matrices
are continuous and without loss of generality, that A(. )
and B(o) have a number of rows which is minimal (i.e.,
linearly independent) over the time interval for which
Rv(t, T) is defined. (If this is not initially the case, A(. )
and B(. ) may be replaced by matrices with the minimalit y
property, with the replacement leaving R.(t, T) unaltered.)
The spectral factorization problem requires the determi-
nation of F, G, H, J, and P, such that (12) and (13) hold
subiect to the constraint of (14).
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It is immediately evident that there can be no unique
solution, because R,(t, T) contains no information about
the coordinate basis used for describing the state vector.
This means (see [22]) that J’(t) is totally unspecified except
for its dimension and a continuity constraint, and an
arbitrary choice for F(t) may be made. However some
choices may be more natural than others; thus if R.(t, r)
is stationary, so that R.(t, T) = R, (t — T), then F would
normally be chosen such that F, K, and H in (12) were
constant. Again, it seems more natural to choose F to be
bounded, and K and H also if possible (see [23]). The
system theory literature dealing with state-space realiza-
tions of prescribed impulse responses, e.g., [15], [23], and
[24] constitutes a good guide to techniques and reasons
for selecting a particular F. The fact that there is no
unique solution to the spectral factorization problem in
the time-varying case is not especially surprising; even
in the time-invariant case, there is an infinity of systems
which will generate a prescribed stationary covariance
with, in the scalar case, the transfer functions differing
by an arbitrary all-pass factor. If a unique solution to the
spectral factorization problem is desired, it becomes neces-
sary to specify some extra constraint on the generating
system; for example, usually in the time-invariant case
the generating system is required to be minimum phase
(thus guaranteeing stability of the associated whitening
filter), and of minimum order.

The spectral factorization problem now becomes one of
finding matrices P, G, H, and J, given matrices A, B, C,
and F, (or equivalently O), such that (13)–(15) hold. The
initial condition for (14) should be of the type P(tO) = PO,
with PO some nonnegative definite symmetric matrix.
The time t,should be such that the system (5) need only
be defined for t > t,.

A constructive procedure will now be given that is
valid provided that C(t) is nonsingular for values of t

in the range of interest. In the case where C(t)issingular,
the covariance (16) can be associated in a natural way
with singular problems of optimal control [26] and with
singular problems in detection theory [27]. We shall con-
sider the singular spectral factorization problem else-
where [28] as diflerent techniques are required.

With the assumption that C“’ exists, we proceed as
follows. The matrices H(. ) and K(. ) follow immediately
from (15a) and (15b); we take J(t) as C“’(t), the unique
positive definite symmetric square root of C. The matrix
P(t) is the solution at time t of the matrix Riccati equation

P = P(F’ – HC-’K’) + (F – KC-’H’)P

+ PHC-’H’p + KC-lK! (17)

defined for t > t,,with initial condition P(t,) = P,, with
PO nonnegative definite symmetric. Finally,

G(t) = [K(t) – P(t) H(t)] C-1’2(t). (18)

Leaving aside the question of existence of solutions to
(17), to be discussed later, let us check other aspects of
the correctness of the procedure. Clearly, (15a)-(15c)

and (13) all hold. It remains to check that (14) holds. To
see this observe that (17) may be written as

P = PF’ + FP + (K – PH)C-’(K – PH)’ (19)

which, on using (18), is observed to be (14). The initial
condition for (17), viz. P(tO) = PO, forces the same initial
condition on (14).

By taking different initial conditions for the Riccati
equation (17), and assuming the existence of solutions to
(17) for these ditYerent initial conditions, different P and
thus G matrices result. Thus there is a whole class of
systems, differing in their G matrix and initial state co-
variance matrix, which have the same output covariance.
The contribution in the output covariance of the non-
deterministic nature of the initial state is in some way
traded off against the contribution of the input white noise.

For arbitrary PO, standard results from differential
equation theory guarantee the existence of a unique
solution to (17) in the neighborhood of tobecause F, H,
etc., are continuous and finite-valued. However a more
sophisticated approach is required to demonstrate that
there is no escape time for the solution, i.e., that the solu-
tion exists outside of a (small) neighborhood of to.

Section V is devoted to showing that ~rovided the co-
variance R, (t, r) satisfies one of two meaningful but
simple restrictions (listed as A2) and A3) in that section),
a solution to (17) exists for the initial condition P(tO) = O
over the entire interval for which R.(t, r) is a covariance.
It follows from the continuity of the coefficients in (17)
that the solutions depend continuously on the initial
condition; consequently (17) also has solutions outside of
a small neighborhood of to for nonzero, sufficiently small,
nonnegative definite symmetric PO.

We can now show that solutions cannot normally exist
for arbitrary PO.Let us proceed on the bssis that a spectral
factorization has been carried out for a prescribed R.(t, r)
and a certain nonnegative definite symmetric PO. We
shall show that with PO # O, the existence of a generating
system for Rv(t, T) implies that Rv(t, T) satisfies a condi-
tion over and above being a covariance. It will become
evident that not all covariances R, (t, r) can satisfy this
property.

Accordingly, suppose (5a) and (5b) have been de-
termined m a generating system, with li’[z(.tD)z’(t,)] = P,.
Equation (11) shows that

P(t) = P,(t) + P,(t) (20)

where for t > to,P,(t) and Pz (t) are both nonnegative
definite symmetric, being given by

P,(t) = @(t, to)Pow(t, t,) (21a)

P,(t) = /’ @(t, u)G(u)G’(u)@’(t, a) da. (21b)
t,

Further, R, (t, T) can be expressed as

R.(t,r) = R#,(t, T) + R.,(t) T), (22)

where Rv, is the covartince that would result if the input
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noise were removed [equivalently G = O], and is given by
replacing K(t) in (12) by Kl (t) = Pi (W(t); RV2 is the
covariance that would result if PO were zero, and is given
by replacing K(t) in (12) by K,(t)= P,(t)H(t) +G(t)J’(t)
[see (13)].

The covariance R., is actually

Rv,(t, r) = H’(t)@ (t, t,)PO@’(r, t,)H(~)

. [l(t – T) + 1(T — t)]

= H’(t)@(t, to)Po@’(T, to)H(T) . (23)

Now return to the implementation of the spectral
factorization procedure. If a Po # O is assumed, R.,(t, r)
can immediately be written down, since @ and H are
both known. Then the operator R.~ can be written down
as Rv — Rvl. However, if Po is chosen arbitrarily, Rv — Rvl
cannot be guaranteed to be a covariance. Indeed for
large enough P,, one would not expect R, – R,, to be a
covariance. We then observe the following. Suppose Po
is such that the constructive procedure works; then a
system generating R“(t, r) exists with this Po, and there-
fore R., = Rv – R., is a covariance. On the other hand,
if P. were such that Rv — R,l was a priori not a m-
invariance,the constructive procedure would have to fail.
The conclusion is therefore that a necessary condition
for (17) to have a solution outside of a neighborhood of
t, with initial condition Po is that R,(L 7) – R., (t, T)

[with R., given by (23)] be a covariance. Section V shows
that, if in addition condition A2) or A3) of Section V
holds when applied to R“,, then the constructive
cedure will work.

Practical computation procedures for solving (19)
arbitrary initial conditions are discussed in [29].

IV. REVIEW OF OPTIMALCONTROLRESULT

In [20] the minimization of the performance index

/

1,
V(zo, ‘u, t,, to) = (U’& + 2x’~u) dt

1.

for the system

X= PZ+PU

pro-

with

(24)

(25)

is considered with finite to and ~,. The transition matrix
amociated @th (25) will be denoted by ~.

In connection with the solution of this problem, it is
necessary to lay down a number of assumptions as follows.

Al) ~, 2?, l?, and ~ are continuous and finit~valued,
and (? is positive definite symmetric on [& ~,].

32) There exists a time To and extensions of F, P, l?,
and (? defined on [& — To, io] such that the
extended P, etc., are continuous and

fi(t, T) = d(t) $(t – T) + &(t)@(t, T)@T)l

. (t – 7) + &(t)&q7, t)Z?(7)l(T – t) (26)

is a covariance on [to — TO, 11]; simultaneously
all states at & are reachable. This restricts ~
and 1? in a certain way (see [24]).
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i13) Z?(t, T) – ql ?i(t– 7) isa covariance on [~o, t,]
for some positive q, i.e., I?(t,T)ispositive definite
rather than merely nonnegative definite.

We comment that ~3) is shown to imply ~2) in [20].
The reverse implication may also be demonstrated. Note
also that condition A2) may well hold w a result of I?(t,r)

being a covariance on a larger interval than [&, ~,], say
[/0 – 2’0, /0], while the reachability condition reduces to
requiring simply that F be of minimal dimension on
[~, – TO, &] (see [24]). Moreover, if the dimension of F
is minimal over [;O — TO, /,], itwill be often minimal over
[i. – TO, &], for example, if Z?(t, T) is time invariant, or
if P and 2? are periodic or analytic.

It is shown in connection with the derivation of a
control law minimizing (24) that if Al) and either ~2) or
h3) hold, the following Riccati equation has a solution
defined on [/,, /,].

-P = P(P – I?(?-’R’) + (P – lle-’ll’)P

– Pl?i?’l?’p – fl&’&’ (27)

with initial condition ~(~,) = O.
Reference [21] discusses problems where in (24) ~omay

be – m, or ~, may be + co, or both. The specific extra
assumptions required, and the conclusions therefrom,
will not be mentioned here.

V. EXISTENCETHEORY

To make connection between the optimal control re-
sults and the material of Section III, we use the matrices
of Section III to define an optimal control problem by

F(t) = F’(– t) (28a)

P(t) = H(– t) (28b)

R(t) = K(– t) @8c)

(?(t) = C(-t). (28d)

Associated with this optimal control problem are matrices
&(t, T), fi(t, T), ~(t), times & and ~, and conditions
A1)-A3). It is not hard to show that

$(t, 7) = ‘@’-’(–t, ‘T). (29)

It then follows on comparing the definition of &(t, r)
[see (26)], and R,(t, r) [see (12)], that

l?(t,r) = R“(–t, –T). (30)

As remarked in the Introduction, if R“(t, r) is a covariance
on (G, tJ,then R,(—t, —r) or g (t, T) is a covariance on
(-t,,- to).This means that under appropriate conditions
there exists a matrix P(o) satisfying (27). Make the
definition

P(t) = –P(–t) (31)

and then it may be checked that, if P(”) satisfies (27) in
& < t < ~, with initial condition ~(~,) = O, then P(”)
satisfiea(17) in – ~1 < t < –& with initial condition
P(– i?,) = O. We therefore make the identifications i. = – ~,
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Fig. 1. Systemdiscussedin example.
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and tl = –f,.Evidently, the existence of a solution to
(17) depends on certain of the following conditions being
satisfied (these represent conditions equivalent to ~1)-A3),
the equivalences being derived using (28)-(31)).

Al) F, H, K and C are continuous and finit~valued,
and C is positive definite symmetric on [to, tl].

A2) There exists a time T, and extensions of F, H, K
and C defined on [t,,t,+ T1] such that the ex-
tended F, etc., are continuous, and Rv(t, r) given
by (12) is a covariance on [to,t,+ T,]; simul-
taneously all states of the system x = Fx at
time t, must be observable from the output
H’z over [t,,L + 2’,].

A3) Rv(t, ~) – ~1 a(t – 7) is a covariance on [tO,tl]
for some positive q, i.e., R(t, r) is positive definite
rather than merely nonnegative definite.

Since Al) has been assumed throughout it follows that the
constructive procedure of Section III is valid if either
A2) or A3) holds.

One can regard A2) as giving a condition for the exis-
tence of a solution to the Riccati equation over the interval
[to, t, – 7’,] for some T,, if R“(t, r) is a covariance on
[t,, t,],and if [F, H] is an observable pair over [t, – T,, i!,].
Since A(. ) and B(. ) in R,(t, T) have been assumed to
have a minimal number of rows over [to,t,],it may well
occur that this minimum number is the same as that
which would apply if A(. ) and B(c) were defined only
over [tl- T,, t,]. Then (see [24]), the observability condi-
tion will be satisfied.

Condition A3) will hold if R.(L r) is actually generated
by passing white noise into a linear finite-dimensional
system without direct feedthrough and then white noise
(independent of the input noise) is added at the output
of the system, to make y the sum of the system output
and the additional added noise.

Let us now consider cases whereto = – m, or t,= + co,

or both. As for finite-time interval problems, it is possible
to dualize the appropriate optimal control results of [21].
In carrying out the dualizing procedure, it is helpful
to note that (29) implies that F is uniformly asymptotically
stable if and only if F is uniformly asymptotically stable.
The main conclusions follow.

The constructive procedure with initial condition
lim,o+_m P(tO) = O is valid if F, H, K, C, and C-’ are
continuous and finitevalued with C = C’ > 0, and either
Ry(t, r) – qI ~(t – ~) is a covariance on (– co, t,), F is
uniformly asymptotically stable, F and H are bounded,
or F, H, K, and C can be chosen on (t,,tl+ Tl) for some
T, so that R,(t, ~) is a covariance on (– m, t,) and F, H
possesses the observability property defined in A3).

Note: As remarked in Section III, in passing from
R.(t, T) to a generating system, the F may be selected
arbitrarily. In particular, it may be selected to be uni-
formly asymptotically stable (see [23] for approaches to
ensuring that simultaneously F and H are bounded, etc.).

With F uniformly asymptotically stable and F and H
bounded, it is clear intuitively (and may be checked by
letting toapproach – cu in some of the Section II formu-
las), that the initial condition P(LJ = PO as to ~ – co
has vanishingly small effect on P(t) and R,(t, ~).
Thk means that a boundary condition of the form
lim, .+.-. P(t) = P,, where PO is an arbitrary nonnegative
definite symmetric matrix, will yield the same P(t), and
thus the same system generating R.(t, T).

To distinguish the P(t) resulting from this limiting
operation, we shall call it II(t). A further parallel with
the optimal control results is: with II(. ) existing, with
F uniformly asymptotically stable and F and H bounded,
~ = [1’ — HC-l(K’ – H’II)]z is asymptotically stable.
(This may be shown to define the zero-input response of a
whitening filter for R.(t, T) (see [14]). Its stability is
analogoue to having a minimum phase generating system
for R.(t, ~) in the scalar, tim~invariant spectral factori-
zation problem.)

Other optimal control results may be used to give
comparatively uninteresting bounds on P(t), II(t) and
m’(t).

VI. EXAMPLE

We consider the problem of constructing a whitening
filter for a Gaussian process with covariance

Rv(t, r) = ~(t – r) – Ie-’’l(tl(t – ~)

–#e’’e-’’l(r – t). (32)

The filter is to commence operation at time zero, rather
than time – o. (Fig. 1.) Note that R.(t, 7) may be com-
puted to be the output covariance of a single-input, single-
output time-invariant system driven by white noise of
covariance ~(t— r),the transfer function of the system
being (.s + 1)/(s + 2). Note also that Rv(t, ~) cannot be
represented as the sum of a white-noise term and another
covariance not involving a white-noise term, because

—~e‘z~ezrl(t — r) — ~ez~e–zrl(r — t)

isnot a covariance.
One might be tempted to use as a whitening filter the

system

x. = —~. + ~. (33a)

I/. = z. +U., (33b)
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which has a transfer function (s + 2)/(s + 1). We shall
check however. that no matter what initial value of
ll[ZW(0)Z~(0)] is taken, (33) will not sufllce to whiten the
covariance (32). We shall then define a time-varying
filter which will carry out the whitening function effec-
tively, by using the earlier theory.

Let us represent the system with transfer function

(S + 1)/(s + 2) by the state-space equations,

~= –2x + u, (34a)

y=–x+u. (34b)

It is easy to establish that with u white noise applied
from time – m, J!7[x(0)x’(0)] = ~. Using the fact that
u., the input of the whitening filter, is the same as y,
the output of the generating system, for t > 0, we have

from

with

X= —2X+U (35a)

X.= —x.—x+u (35b)

yw=xw–x+u, (35C)

which,

g (x. – x) = –(x. — x) (35d)

these equations holding for t > 0. It is immediately
evident from (35c), that y. will only be white noise
(i.e., u) if XW = z for all t.From (35d), this requires
x. = z at time zero. The conclusion is that unless the
states of the whitening filter and the generating system
can be matched at time zero, true whitening is impossible.
However, situations may readily be envisaged where the
matching cannot be done for physical reasons; we shall
now define a whitening filter that will operate even in
these situations.

We shall obtain in state-space forma system generating
R.(t,T),with the property that 13[z(0)z’(0)] = O, i.e.,
P(0) = O in the notations of earlier sections. In terms of
the symbols of Section III; F = –2, K = 1, H = –~,
C = 1, and (17) becomes

P=&P2–;P+L

The solution of this equation satisfying

The G matrix of the generating system,

(36)

P(0) = O is

(37)

from (18), is

(38)

and for t > 0, the covariance of (32) may be generated by

4(3e21 – 1)~=
‘2X+ 9e2’–l u

(39a)

g=–:~+~ (39b)

with 17[x(0)x’(0)] = O, i.e., x(0) = O and u white noise of
covariance d(t– T).

The following system will now be shown to be a
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whitening filter. (The procedure for deducing the system
from (39) is given in [14].)

k. =
[

-2 + 3$y_--++‘$:’ - %.
–1

(40a)

y. = :x. +%, (#b)

with Xw = O. Identifying u. and y, it follows from (39b)
and (40a) that

3(3e2’ – 1) x + 4(3e2’ – 1) ~—
9e2t– 1 9e2’ – 1 “

(41)

Now subtracting this from (39a), there obtains

1X—X.)=~~ ( [
–2 + gf_-ll) 1(x–x.). (42)

Since x(0) = z.(O) = O, x = x. for all t,and from (39b)
and (40b), immediately y. = u, i.e., yW is white noise.

Note that, as expected, the whitening filter behaves as
t ~ co like (33). Note also that correct operation of the
whitening filter is independent of the actual system used
to generate the covariance (32). We have constructed
one such system, namely (39), merely for the purpose
of defining the whitening filter.
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