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ABSTRACT

If a known linear system is excited by Gaussian white noise, the calculation of the
output covariance of the system is relatively straightforward. This paper considers the
harder converse problem, that of passing from a known covariance to a system which
will generateit.TheproblemissolvedforcovariancesRJ1, 7)with l~Y(t,r)l< cofor all r
and such that the y-process is Gauss-Markov, i.e., it may be obtained as the output
of a linear finite-dimensional system excited by white noise.

1. Introduction

A simple statement of the spectral factorization problem is the following.
Suppose that a linear system is driven by white Gaussian noise and that the
covariance of the output is known; state the equations that describe the system.

This problem has been solved in a number of ways for the case when the system
is finite-dimensional and time-invariant [1,2, 3]and has a wide area of application.
For the more general case when the system is finite-dimensional, time-varying
(with the time-variation such that no actual changes in system structure occur
as time evolves) and with the ouput containing a white noise component, the
spectral factorization problem has recently been solved [4]. The various theorems
involved have also found application in areas of whitening filter theory [5],
state-estimation theory [6] and impedance synthesis [7].

This paper complements [4]by considering time-varying spectral factorization
results for the case when the specified output covariance, call it RY(t,7), does not
contain a white noise component (so that R)(t, T) is finite for all t). This situation
will be referred to as the singular case. We comment that the solution of the
singular problem is more difficult than that of the nonsingular problem (where
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4. Synthesis Results. Nonsingular Case

A re-interpretation of some of the results discussed in the two preceding
sections gives the solution to the time-varying spectral factorization problem for
the nonsingular case (see also [4]). These results are now given for later reference.

THEOREM 1. ~ RY1(f, 7) is specified as in (3) (i.e., h,(.), k,(.), j,(”),
0(.,. ) and thus I’(. ) are gioen), then for each P(to) chosen such that (1) has a well

dejined solution P(” ) (or such that (A 1) and either (A2) or (A3) are satisfied), there
is a system dejined by the quadruple F(.), g(”), hl(” ), jl (. ) hao@ the form Of(5)

(with g(. ) given in terms of P(. ); see (6)) and having the following properties: with
an initial state covariance P(tO) and a white noise zero mean input having a co-
variance S(t – 7), the system state covariance E[x(t)x’(t)] is P(t), the solution of
(l), and the output covariance is the specified covariance RY1(t, r).

We note that if the covariance RY1(t, ~) is specified in the following form

(lo) RY1(t, T) = .4‘(t)B(7)l(t – r) + B’(?)A(T)l(T – t)+j~(t)~(t – I-),

then an F(”), hl( ) and /cl(”) may be determined from A(. ) and B(. ) as discussed
in [4].

5. Synthesis Results. Singular Case

The spectral factorization problem is now considered for the case when the
specified covariance is

(11) R},(t, r) = h’(t)~(t, r)k(T)l (t – T)+k’(t)O’(r, t)h(r)l(T – t),

where h and k are n-vectors. It is assumed that Ry(t, T) k differentiable in the
sense that the tJ2RY(t, 7)/8t87 exists. Since RY(t, T) is a covariance and ~zl?y(t,T)/
~rthexists then ~2RY(t, 7)/t?ti37 also is a covariance [10]. Explicit calculation yields

~2RY(t, r)

at&-
= [k’(t)h(t)–2k’( t) F(t)h(t)–)J(t)k( t)]8(t – T)

(12) + [it’(c)+ h’(t)F(t)]@(t, T)[k(7) – F(7)k(T)] l(t – ~)

+ [k’(t) – k’(t)F’(?)]@’(T, t)[/r(7) + F’(T)h(T)]l(T – t).

With “theidentifications

(13) hl = /l+F’h; k, = k–Fk; j, = Jk;h-h;k,

the covariance 62RY(r, r)/8t& becomes identical with the covariance RY~(t, T) of
(3).

We now state and prove the key lemma.

LEMMA 1. Consider the case when R,(t, ~) is specified as in (11) (h(. ), k(.),
0(.,. ) attd thus F(. ) are given) over an interual [to, t ~], and i?2RY(t, T)/~t& exists
and is written in the form (3) with the identl$cations (13) holding and with (Al)
satisjied. Then a necessary and suficient condition for the solut ion P of ( 1) (assumed
to be wel[ dejirted) to satisfy

(14) Ph = k
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for all t ~ [to, t,] is that the non-negative definite sytnmetric initiai colldilioll p(t~)
jor (1) satisfj

(15) P(fJh(tJ = k(tJ.

Furthermore, zf (15) holds, the system (8) (see also (6)) with an initial state co-
variance P(to) when driven by white noise having a covariance ~(t – T) has as its
state covariance E[x(t)x’(t)] = P(t) the solution o~(l ), and as its output covariance
the spec~ed covariance (11).

Proof If (14) holds, (15) obviously holds. For the converse, suppose that
P(t) is the solution of (1) with non-negative definite symmetric initial condition
P(to) satisfying (15). Some elementary manipulations using (l), (6), (13) and
(14) yield

(16) (): (k-Ph) = F-gf (k-Ph); (k–Ph)l, =tO = O.

This means that Ph = k for all t=[to,tl].
The output covariance of the system (8) is given from the analysis results

of the previous section as Ry(t,T)in (9). When (15) holds, so does (14), and then
(9) rewritten using the substitution Ph = k becomes the specified covariance
RY(t, T) given in (11). This establishes the lemma.

Following on from the previous lemma, we give two further lemmas which
are useful in constructing a non-negative definite symmetric P(to) satisfying (15)
and such that the solution of(1) will be well defined, When such a P(fo) is found,
then the problem of passing from the covariance (11) to the system (8) with
output covariance equal to (11) is solved. The particular P(to)constructed is the
minimal non-negative definite symmetric P(to), written Pm(to),which satisfies(15)
and has the property that [P(to) – PJto)] is non-negative definite symmetric for
all non-negative definite symmetric P(to) satisfying (15). To see that such a Pm(to)
exists, we have

LEMMA 2. Suppose we are given n-vectors h(to) and k(to) for which there exists
at least one non-negative definite symmetric matrix P(to) for which (15) holds.
Then a non-negative de)nite symmetric PJto), minimal in the sense above, exists
such that PJto)h(to) = k(to). Moreover PJtO) = O 1~h ‘(to)k(to) = O and other-
wise

(17) pm(b)= Mto)[k’(fo)h(to)l - ‘k’(b).

Proof For the case h’(to)k(to) = O, we have that for any P(to) satisfying (15),
h’(to)P(to)h(tO) = O and thus P(to)h(to) = O, i.e., k(ro) = O. Then clearly
PJto) = O has the required properties.

For the case h’(to)k(to) # O, it is readily checked that PM(?O)given by (17)
satisfies (15). Consider now an arbitrary n-vector z resolved into the sum of a
vector parallel to k(to)and a vector in the manifold orthogonal to k(to),i.e.,

(18) Z = ak(to) + M~

(19) M’k(fo) = O,
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where a is a scalar, ~ is an (n – 1)-vector and A4 is an n x (n – 1) matrix of rank

(n – 1) whose columns form a basis in the manifold orthogonal to /c(to). The

vector h(ro) may also be resolved in a similar manner as

(20) h(fo) = yk(fo) I- Ma,

where y is a scalar and 8 an (n – 1)-vector. Now y # O,since otherwise h ‘(tO)k(tO)
= 0, This means that z may be written as

(21) z = &h(to)+ M~

where & = a/y and j = ~ – ai$/y. Let P(tO) be any non-negative definite symmetric
matrix satisfying (15); then from (17) and 21),

z’[P(to) –Pm(LJ]Z = [h’(to)c$+/? M’] {P(to)

(22) –k(to)[k ‘(to)h(to)]- lk’(to) }[dl(to) + J’@]

= /3’M ‘P(to)Mp.

The second equality follows when we expand and use(15) and (19). Since P(tO)
is non-negative definite symmetric, we may conclude that [P(tO)– P~(tO)] is
non-negative definite symmetric and thus P~(tO) given by (17) is the required
minimal P(tO) satisfying (15).

A further result, established in [11], relates the existence of solutions to the
Riccati equation (1) with differing initial conditions: as a consequence of the
non-negativity in (1) of h, h~/j~, the “coefficient” of the term involving P quad-
ratically, the existence of a solution to (1) with a symmetric initial condition
Pl(to) implies the existence of a solution for any symmetric initial condition
P2(tO) for which PI (to) – Pz(to) is non-negative definite. This result immediately
establishes:

LEMMA 3. If there is one non-negative dejinite symmetric P(tO), call it Pl(to),
satisfying (15) and such that the solution of(1) with initial condition PI (to) is well
dejined, then the solution of (1 ) with initial condition P~(tO) as defined above will be
well defined.

Lemma 1 may now be modified using the results of Lemmas 2 and 3 to yield:

‘ THEOREM 2. Suppose a covariance Ry(t, T) is specj?ed in (11) (h(.), k(”),
@(... ) and thus F(. ) are given) over an interval [to, t ~]; suppose RP(t, r) is dlJ7erenti-
able with RY1(t, T) = 82RY(t, ~)/~t& given by (3), with the identifications (13)
holding and condition (A 1) satisfied. if it is kno wn that the solution of(1) is well
dejined for some (unkno)iw) non-negative dejirrite symmetric initial condition
P(tO) which also satisfies Pal = k(to), then an initial condition PJtO) may
be chosen as zero for the case h’(tO)k(tO) = Oandas (17)for the case h’(to)k(to) # O,

and the solution oJ( 1) }tith this initial condition PJtO) ~cillbe well dejined. Moreover,
if the system (8) (see also (6)) resulting from this solution has an initial state co-

cariance p~(to), and the system is driven by ~{yhitenoise having a covariance 8(?– T),

the system will have as its output covariance the spec!jied covariance (1 1).
This theorem provides a solution to the spectral factorization problem under

the following conditions:
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(a) The prescribed Ry(t, T) is known to have resulted from some system with
the F matrix and h vector as predicted from RY(t, r), or:

(a’) The prescribed R$t, 7) is known to have resuhed from some system,
and in (11), the pair F, k is completely reachable at every time t and the
pair F, h completely observable at every time t, (Condition (a’) implies
condition (a), because the constraints on F, k and h guarantee definition
of the state-vector of a system generating RY(t, r) to within an arbitrary
coordinate basis change [12], and the existence of solutions to the
Riccati equations associated with RY(t, ~) is a coordinate free property;
see [13].)

(b) The ~(t – r) term in 82RY(t, r)/8t& is identically nonzero.

The reasoning used to see that these two conditions guarantee solvability of
the spectral factorization problem is as follows. By (b), the Riccati equation (1)
can be formed since jf(t)in (l), which is the a(t – r) term in 821?Y(t,7)/~ttk (see
(13)) is everywhere nonzero. By (a), there is some non-negative definite symmetric
P(GJ for which P(tO)h(tO) = k(to) and which serves as an initial condition for
(l)—otherwise there could be no system generating R,(I, 7). The ability to form
the Riccati equation and its solvability are the two conditions set out in the
theorem which guarantee the constructability of a system generating l$,(r, 7).

The physical interpretation of condition (b) is that a system generating
RY(t, T) must have at least one integration in each feedforward path between
input and output, and the sum of all path gains through paths consisting of
precisely one integration must be nonzero. If this sum is zero (or if there is no
path with only one integration), then jl(t) = O for all t; this situation will be
considered in the next section. A situation where jl(t) is zero for some t and
nonzero for other t is ruled out on the grounds that this would imply a structural
change of the underlying system differential equation. Admittedly one can con-
ceive of a time-varying system where such structural changes occur; but the
theory here cannot cope with such difficulties.

6. More General Results

In the previous section, the spectral factorization constructive procedure
required that the derivative 82Ry(t,T)/dt&of the specified covariance RY(t, ~)
include a term j~(t)~(t – T)withjl(t) nonzero for all t. We now consider the more
general case where we require the mth differentiation of RY(t, r) with respect to
t and T to yield a covariance RYJt, r) = 22”1RY(t,r)/8tm&m having the form

(23)
RYJt, T) = h~(t)@(t, T)kJr)l(t – T)+k;(t)@’(T, f)hm(T)l(T – t)

+j:(t)8(t – T)

where fori= 1,2,. ... m

(24) hi = ~i-l+F’lli_l; ki = ki_l– Fki_l; ji = ~k~hi-l-h~ki_l.

(Note: ho = h, k. - k.)

We further require that

(A5) F(.), km(”), hJ”) and j.,(.) are finite valued and continuous with j~(r)
nonzero for all t andji(t) = O (i = 1, 2,” ““, m– 1) for all t.
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We shall find that this situation can be handled in principle like that considered
earlier (nr = 1), but the algebra becomes much more involved.

A linear system excited by white noise with an output covariance possessing
the above properties must be such that the sum of all path gains through paths
including precisely m series integrations is nonzero, and the sums of all path gains
through paths including precisely 1,2,0 “”, m – 1integrations are zero. If ji(. ) = O,
~=l,z,..., m —1 and j~(t) is zero for some t,nonzero for other t, this corre-
sponds to the earlier disallowed situation where there are structural changes in
the linear system differential equation.

LEMMA 4. Let m be such that RY.(t, r) exists and has the form of (23), (24)
with (A5) satisfied. Then

(25) k:h, = k:h,

for O<p<m–l, O<q<m–landforp = m, O<q<m–2.
Proo$ We can assume without loss of generality that p –q >0. Clearly the

result (25) holds for p —q = O trivially, and for p –q = 1 for O<ps m – 1 and
()<q~m– 1 by the fact that ji(.) = O, i = (1, 2, 0.., m–1) (see (24)). Assume

that (25) holds forp–q = O, 1, 2, “., r (O<p<m–1, O<q<m– l); we shall
show by induction that if r> 1, (25) holds for p–q = r+ 1, (OSp< m– 1,
()<q<m-l). Now

(26a) k;+rhq = k;hq+r

and we may assume that q + r + 1< m – 1. Differentiating (26a) and using (24)
and (26b), we obtain

(27) k ~+,+lhq = k~h~+,+l,

and it now becomes clear that (25) may be established for Os ps m – 1 and
O<q< m– 1 using induction.

Now differentiate (25) with p = m – 1, q = O, 1,0.., m –2. we obtain

Now’ k~_ ,h~+, = k;+ ,h~- ~ since qs m – 2, and the desired result follows.
We now define H~ = [h, h,, hz,. . . . h~_l] and & = [k, k,, kz,. . . . k~_l]

and establish a more general form for Lemma 1.

LEMMA 5. Consider the case when R,(/, T) is specified asin(11) (h( ), k(.),
(”, ”) and thus F(” ) are given) over an interval [to, t,] and 82mRY(t, r)/8tm&m exists
and is written in theform (23) with the identljications (24) holding and (A5) satisfied.

Then necessary and suficient conditions for the solution P of the Riccati differential

equation

(28) ,=p(Fl_y)+@’_y)p+pU!!$X+y

with a non-negative definite symmg(ric initial condition P(to) to satisfy Ph = k for
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all t ~ [to, (,] are that the solution of (28) with initial condition P(to) be welf defined
and that P(to) satisfy

(29) Plum = Km(fO).

For the case when Ph = k is satisfied for all t, the system

(30) ~ = Fxi-gu; y = h’x

with initial state covariance P(to) and

(31)
km–Ph.

g=

L ‘

when driven by white noise having a covariance 8(t —r), has as its state covariance
E[x(t)x’(t)] the solution of (28) and as its output covariance the specljied covariance
(11).

ProoJ Consider the derivative of (ki –Phi) where i = O, 1, 2,. ‘ ., m – 1:

; (ki–pl,i) = ~i–l%i-Phi

(32)
Ph,nk~hi + k~,h~,Phi

= ki+l+Fki –FPhi-Phi+ l+- —
j); j;

k~k~hi PhJl~Phl. — (using (24) and (28)).
j; j:

Application of Lemma 4 (k~l/?i = h~ki for 0< i < m – 2) and (31) yields

()(33) ~ (ki–Phi) = F–”% (ki–Phi)+(ki+l –Phi+,) for O<i<m–2.

For the case i = m – 1, the relation j; = k~h,n_ ~– h;k~., yields, from (32),

(34) ():(k.-, –-f%. -,) = F–gf (k._, –Ph,._l).

We shall now show using (33) and (34) that a necessary and sufficient con-
dition for P(t)h(t) = k(t) to hold for all t is that (29) hold. Necessity follows by
observing from (33) in turn that Ph = k,. . . , Ph~_, = km-, for all t.Thus these
equations hold for to and (29) holds. Conversely with (29) holding, (34) yields
P/I,n_, = km_, for all t,and then (29) and (33) yield in sequence Phm_ ~ = km_ ~,

“.”, Ph=kforallt.
The second part of the lemma is a straightforward generalization of the result

in Lemma 1.
We now give a constructive procedure for determining a particular P(to)

satisfying (29); this is a generalization of the results of Lemma 3.

LEMMA 6. Given the n x m matrices HJto) and KJto) such that (29) is

satisfiedfor some non-negative dejinite symmetric P(to), then HnJ(tO)KJto) is non-
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negatiue definite symmetric, and a non-negative definite solution of (29) is provided
by

(35) Pm(to) = O if H~(to)K([o) = O

and otherwise by

(36) Pm(t~)= ~m(tO)[lim(tO)Kni(fO)l # ‘nXtO)>

where # denotes a pseudo-inverse, i.e., if H~(to)KJto) is nonsingular, this is the
ordinary inverse, and f H~(to)KJto) is singular, the pseudo-inverse is defined as
follows. With V any orthogonal matrix such that

(37) [1As O
H;(tO)Km(to) = V’ o 0 V

where As is a diagonal nonsinguiar matrix, then

(38) [H~(to)KJto)] # = V’
r:’ w

Moreover, P(to) –PJtO) is non-negative definite for all non-negative dejinite synl-
metric P(to) satisfying (29).

Proof Let P(to) be a non-negative definite symmetric matrix satisfying (29).
Then H~(to)P(to)H~(to) = H~(to)KJto) is non-negative definite symmetric.

If H~(tO)KJtO) = O, then P(?O) HJtO) = O, i.e., KJto) = O, and it is clear
that PJto) as specified by (35) has all the desired properties.

If H~(tO)KJto) is nonsingular, it is straightforward to verify that Pm(to)as
given by (36) satisfies (29).

If HJ(tO)KJto) is singular and nonzero, we define

(39) [~m, : ~mzl = Hm(to)v’; [L% : KJ = KJto) V’.

This means that (37) may be written as

and thus H~2K.2 = 0,
Since there is some non-negative definite P(to) satisfying (29), O = HJ2K~z =

H~2P(to)Hm2implies

(41) P(to)H~z = K~2 = O.

Moreover,

f’,,,(to)H.,(fo) = Kn(to)[fI;,(fo)K,n( to)l # KJto)H,n(to) (using (36))

(using (38))[1
A; 1

= Kn,(to)v’ o 0 Viy;,(to)H,”(to)

‘[KJnl:Knr~l‘Wm.-v’ (using (39))

= KtnlAjlK,:,[H,.l V: H~JV]

= [K.ll V: O] (using (40) transposed)

= Knl(to) (using (39) and (41)).
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It remains to be shown that P(lO)–PJtO) is non-negative definite, The proof
is a generalization of that given in Lemma 3.

Let z be an arbitrary n-vector. Observing that H; ~K,,,, = .\, and that A, is
nonsingular, we see that the n xs matrix Km~has ranks. Let M be an n x (n –s)-
matrix whose columns span the manifold orthogonal to that spanned by the
colums of K~l. Then

(42) .7 = K.lU+M/3; M’K.l = O

for some s-vector a and (n –s)-vector ~. Moreover,

(43) H.l = K.l C+MD

for some s xs matrix C and (n –s) xs matrix D; the matrix C is nonsingular
because multiplication of (43) on the left by K~l gives

(44) K~,lH.l = K:lK.lC

and both K~lH~ 1 and K;, ~K~l have full rank, viz. s. Hence we may write

(45) z = H.1y+M6

for some s-vector Y and (m – s)-vector 8. Now let P(tO) be an arbitrary matrix
satisfying (29). It follows that P(to)ll,,,, = Km1. Moreover,

Z’[P((0)–Pm(to)]z

(46)
= (y ’Hj,l + 8’M’)[P(to)-K.,l(K~,, H,,,, )- ‘K,:,l(If.,,Y + J’@!

= (Y’H;l+8‘M’)P(+J(Hm,Y + MO - Y’H;,,KmIY

= 8’M’P(tO)MS.

The second equality follows from M ‘K~l = O, and the final equality from
P(tO)H~l = Km~ and M ‘K~l = O. We conclude that [P(tO)– PJzO)] is non-
negative definite and this establishes the lemma.

The results of Lemmas 2, 5, and 6 may now be applied to yield the main
result of this section.

THEOREM 3. Consider the case when R,(t, r) is specified as in (1 1), (h(.),
K(”), @(., ”) and thus F(” ) are given) over an interval [to, t,], and RY(t, r) is dz~eren-
tiable with RYJt, T) = 22mRY(t, r)/~tm 2r’” given as in (23) tt’ith the identl~cations
(24) holding and (A5) satisjied. Then if it is knot~n that the solution of (28) is well
defined for some non-negative definite symmetric initial condition, the initial
condition Pn,(to) given by (35) or (36) is such that the associated solution of (28) is
bi’elldefined. Moreover, if the system (30) and(31 ) result ingfrom this solution has an

initial state covariance PJto) and is driven by \i’bite noise having a covariance
8(t – r), the system will have as its state covariance the solution of (28) and as its

output covariance the specified covariance (11).

The same remarks, mutatis mutandis, as were made following Theorem 2
may now be made,

Theorem 3 thus essentially completes the solution of the spectral factorization
problem, save for the few remarks following on the significance of m.
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8. Conclusion

In this paper, the spectral factorization problem has been solved for linear
systems with the following constraints:

(a) The systems are finite-dimensional, with at least one integration in every
feedforward path between input and output;

(b) The systems are single-output, and as a consequence of the synthesis
procedure are single-input;

(c) No structural changes are allowed in the differential equations of
underlying systems.

The natural question arises as to whether any of these assumptions can be
removed. There appears to be no straightforward way of extending the ideas of
this paper to cope with infinite dimensional systems; indeed, the gap between
the difficulties of solving infinite dimensional and finite dimensional problems
would have to parallel the gap for the corresponding time-invariant problems;
for infinite dimensional problems, sophisticated results of complex variable
theory are required while for finite dimensional problems, polynomial factoriza-
tion will suffice.

The extension of the ideas to multiple-output systems is, by contrast, com-
paratively straightforward. The main idea is again to use Riccati equations,
and again differentiation of a prescribed RY(t,T) is needed in order to generate a
8(r– r) term. Because RY(t,7) is now a matrix, so is the coefficient of the i$(t– T)
term, and for the Riccati theory to work, this matrix must be nonsingular. This
implies that integers ml, mz, ”““,m, must be selected, where RY(t,r) is r x r, such
that the matrix with i –j term

* (Ry(f,7))i, j

has a nonsingular matrix coefficient of the 8(t – 7) term, The matrix

~mi+mj

= (Ry(t,‘))i, j

is the covariance of the set

‘$#(i=1,2,.,., r).

As will be appreciated, the definition of PJtO) becomes considerably more
complex, though in principle the same, as for the single output case.

A spectral factorization procedure involving structural changes would appear
to be possible if these changes occurred at discrete instants of time. It would be
necessary to solve Riccati equations over the time interval between two structural
changes, and somehow match boundary conditions for the equations at the end
of these intervals.
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