Spectral Feature Design In High Dimensional Multispectral Data

Chih-Chien Thomas Chen David A. Landgrebe

TR-EE 88-35
August 1988

School of Electrical Engineering
 Purdue University
 West Lafayette, Indiana 47907

SPECTRAL FEATURE DESIGN IN HIGH DIMENSIONAL MULTISPECTRAL DATA

Chih-Chien Thomas Chen
David A. Landgrebe

School of Electrical Engineering Purdue University West Lafayette, Indiana 47907

This research was supported by National Aeronautics and Space Administration Grant NAGW-925.

TABLE OF CONTENTS

Page
LIST OF TABLES vil
LIST OF FIGURES vili
ABSTRACT
CHAPTER I. INTRODUCTION 1
1.1 Research Objective 1
1.2 Previous Approaches 2
1.3 Current Investigation. 5
1.4 Preliminary Test of the On-board Preprocessing System. 8
1.5 Outline of the Thesis 12
CHAPTER II. KARHUNEN-LOEVE TRANSFORM 13
2.1 Minimum Mean Square Truncation Error. 14
2.2 Uncorrelated Transformed Coefficients. 20
CHAPTER III. SPECTRAL FEATURE DESIGN 22
3.1 Non-Overlapping Band Feature Selection Algorithm. 24
3.2 Walsh Function Approach 28
3.3 Infinite Clipped Optimal Function Approach. 32
3.4 Overlapping Band Feature Selection Algorithm 34
3.5 Experimental System. 37
3.6 Preliminary Results. 40
3.7 Selection of the Best On-Board Preprocessing Scheme. 55
3.8 Canonical Analysis and Ground Station Data Processing 57
Page
CHAPTER IV RESULTS AND DISCUSSIONS. 60
4.1 Vegetation Data. 61
4.2 Soil Data 75
4.3 Hughes Phenomenon 84
4.4 Signal to Noise Ratio Considerations 91
CHAPTER V CONCLUSIONS AND RECOMMENDATIONS 95
5.1 Conclusions 95
5.2 Recommendations 97
LIST OF REFERENCES. 100
APPENDICES
Appendix A - IBM 3083 Macro File 105
Appendix B - Spectral Feature Design System-Program Listing 106

LIST OF TABLES

Table Page
1.1 Data Set Designation for Preliminary Test. 9
3.1 Band Edges Obtained by Infinite Clipping of the Average of the First 12 Eigenvectors for Data Set K2 26
3.2 Absolute Values of Inner Products Between Optimal Functions and Walsh Functions 30
3.3 Similarity Relation Between Optimal Functions and Walsh Functions 31
3.4 Linearly Dependent Bands Found by Overlapping Band Feature
Selection Algorithm for Data Set K2 35
3.5 Linearly Independent Bands Found by Overlapping Band Feature Selection Algorithm for Data Set K2 37
3.6 Bands Found by Non-Overlapping Band Feature Selection Algorithm for Data Set K2 40
3.7 Bands Found by Overlapping Band Feature Selection Algorithm for Data Set K2 41
3.8 Band Edges of Landsat MSS, TM, PA and PB Sensors 42
3.9 Probability of Correct Classification for 6 Data Sets 42
4.1 Vegetation Data Sets 63
4.2 Soil Data Sets 77
4.3 Data Sets Used to Test the Occurrence of the Hughes Phenomenon 86
4.4 Mean Square Representation Error for Data Set K2. 93

LIST OF FIGURES

Figure Page
1.1 Realization of Spectral Feature Design 6
1.2 First 12 Eigenvectors of Data Set K2. 10
3.1 Average of the First 12 Eigenvectors of Data Set K2. 27
3.2 Thresholded Version of Figure 3.1 27
3.3 First 10 Walsh Functions Indexed by Number of Axis Crossings 29
3.4 Infinite Clipping Versions of the First 6 Eigenfunctions for K2 33
3.5 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set K1 43
3.6 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set K2. 44
3.7 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set K3. 45
3.8 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set N1 46
3.9 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set N2. 47
3.10 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set N3. 48
3.11 Performance Comparison for Data Set K1 49
3.12 Performance Comparison for Data Set K2. 50
3.13 Performance Comparison for Data Set K3. 51

Figure

Page
3.14 Performance Comparison for Data Set N1 52
3.15 Performance Comparison for Data Set N2 53
3.16 Performance Comparison for Data Set N3. 54
4.1 Classification Performance for Data Set K1 64
4.2 Classification Performance for Data Set K2. 65
4.3 Classification Performance for Data Set K3 66
4.4 Classification Performance for Data Set N1 67
4.5 Classification Performance for Data Set N2. 68
4.6 Classification Performance for Data Set N3. 69
4.7 Classification Performance for Kansas Multitemporal Data Set. 70
4.8 Classification Performance for N. Dakota Multitemporal Data Set. 71
4.9 Classification Performance for KS/ND Combined Data Set. 72
4.10 Classification Performance for Iowa Multitemporal Data Set. 73
4.11 Classification Performance for S. Dakota Multitemporal Data Set. 74
4.12 Classification Performance for Soil Data Grouped by Soil Order. 79
4.13 Classification Performance for Soil Data Grouped by Organic \# 1 80
4.14 Classification Performance for Soil Data Grouped by Organic \# 2 81
4.15 Classification Performance for Soil Data Grouped by Iron Oxide. 82
4.16 Classification Performance for Soil Data Grouped by Soil Texture 83
4.17 First Experiment of the Hughes Phenomenon : Data Set K1H 87
4.18 Second Experiment of the Hughes Phenomenon: Data Set K1Q. 88
4.19 Third Experiment of the Hughes Phenomenon: Data Set N2H 89
4.20 Fourth Experiment of the Hughes Phenomenon : Data Set N2Q. 90
4.21 Mean Square Representation Error for Data Set K2. 94

Abstract

Chen, Chih-Chien Thomas Ph.D., Purdue University, August 1988. Spectral Feature Design in High Dimensional Multispectral Data. Major Professor: David A. Landgrebe. School of Electrical Engineering.

The High resolution Imaging Spectrometer (HIRIS) is designed to acquire images simultaneously in 192 spectral bands in the 0.4-2.5 $\mu \mathrm{m}$ wavelength region. It will make possible the collection of essentially continuous reflectance spectra at a spectral resolution sufficient to extract significantly enhanced amounts of information from return signals as compared to existing systems. By effectively utilizing these signals, direct identification of the parameters of species can be achieved and their subtle changes can also be observed and measured.

The advantages of such high dimensional data come at a cost of increased system and data complexity. For example, since the finer the spectral resolution, the higher the data rate, it becomes impractical to design the sensor to be operated continuously. Even operating HIRIS in a request only mode, its 512 Mbps raw data rate still constitutes a serious communication challenge. In order to solve this problem, it is essential to find new ways to preprocess the data which reduce the data rate while at the same time maintaining the information content of the high dimensional signal produced.

In this thesis, four spectral feature design techniques are developed from the Weighted Karhunen-Loeve Transforms. They are inon-overlapping band feature selection algorithm, overlapping band feature selection algorithm, Walsh function approach, and infinite clipped optimal function approach. From a simplicity and effectiveness point of view, the infinite clipped optimal function approach is chosen since the features are easiest to find and their classification performance is the best. This technique approximates the spectral structure of the optimal features via infinite clipping and results in transform coefficients which are either $+1,-1$ or 0 . Therefore the necessary processing can be easily implemented on-board the spacecraft by using a set of programmable adders that operate on the grouping instructions received from the ground station.

After the preprocessed data has been received at the ground station, canonical analysis is further used to find the best set of features under the criterion that maximal class separability is achieved.

In this research, both 100 dimensional vegetation data and 200 dimensional soil data are used to test the spectral feature design system. It will be shown that the infinite clipped versions of the first 16 optimal features derived from the Weighted Karhunen-Loeve Transform have excellent classification performance. Further signal processing by canonical analysis increases the compression ratio and retains the classification accuracy. The overall probability of correct classification is over 90% while providing for a reduced downlink data rate by a factor of 10 .

CHAPTER I

INTRODUCTION

1.1 Research Objective

Due to the recent advance in optics and solid state technology, it is now possible to build sensors with much finer spectral resolution. This will provide the opportunity for collecting data for a much enriched information source. For example, the future High resolution Imaging Spectrometer (HIRIS) is planned to have as many as 192 spectral bands [1]. Since the signal dimensionality is tremendously increased, current techniques for analyzing multispectral data would not be adequate. In order to effectively utilize the information collected and achieve these benefits from the high dimensional measurements, it is essential to find new ways to process the data which reduce the data rate while at the same time maintaining the information content of the signals produced.

The fundamental objective of this research is to develop an objective and practical spectral feature design technique for high dimensional multispectral data.

One possible approach that might be used to accomplish the design objective is to tailor the spectral features to the particular analysis problem at hand. Features might be made up by grouping (i.e. summing) the narrow band response functions in particular spectral regions on board the spacecraft, based
upon the particular classes of ground cover parameters that are to be identified. The main advantage of this approach is the possibility of local optimality. Instead of finding optimal features with respect to all possible scenes (global optimal), a more practical and adaptive approach is introduced for each individual situation. The maximal attainable performance of local optimal features is indeed better and at least not worse, than that of global optimal ones. The problem then reduces to finding a means for deciding how to choose these band groupings effectively for each different analysis situation such that the data rate is greatly reduced while the classification performance is preserved or increased.

1.2 Previous Approaches

There have been basically four approaches to this feature design problem. They are (1) in-depth studies of physical considerations, (2) empirical methods, (3) simulation methods, and (4) analytical approaches.

Important physical considerations which have been investigated are atmospheric effects and the interaction of light with various cover types. By evaluating the transmittance of the atmosphere over the spectral interval of interest $[2,3]$, one can eliminate certain portions of the interval, since little or no information content is contained in those regions.

The interaction of electromagnetic radiation with plant leaves [4], soils [5] and waters [6] has been studied in the past to find the most effective spectral features for discrimination. A typical procedure for these studies is to take
measurements with a spectroradiometer on restricted information classes over the entire spectrum. Then the average of the spectral responses is found and the subsequent conclusion is drawn from the average. The basic disadvantage of this approach is that only the mean value is considered. The potential information in the variance and covariance is neglected and lost.

The second method is empirical in that a scanner with many spectral bands is constructed, and the selection of the bands is done experimentally. The studies have been done with agriculture cover types [7] , forest covers [8], and geological applications [9]. The main advantage of the empirical method is the retaining of the information in the variations about the mean. The correlation is considered in the feature design process. However, the spectral sampling is crude and incomplete for representing the whole spectrum.

Simulation methods have been developed [10] to generate typical spectra according to a scene model. These artificial spectral response functions are then used to choose the best set of features. However, due to the complexity of the scene and the interrelations of various parameters [11], an accurate enough model of the scene is not available yet up to present.

The recent advances in optical and solid state technologies make it possible to build high dimensional multispectral sensors such as HIRIS, with a spectral resolution of 10 nm and a spatial resolution of 30 m [1]. In order to effectively utilize, including acquire, archive, retrieve, transmit and analyze the data collected, analytical feature design approaches are sought because of their objective and machine-oriented natures. Early works of this approach are found in Wiswell's and Wiersma's Ph.D dissertations. Wiswell [12] studied the
feasibility of using the maximal average mutual information [13] as a criterion to evaluate the spectral features. The best set of features are chosen so as to obtain the minimal reduchon In uncerlainly aboul lie scene alter lhe observation is made. The research showed that average mutual information is a useful concept to construct the feature sets. However the relationship between average mutual information and global performance criterion such as classification accuracy was not demonstrated. Moreover, the technique was only applied to much lower dimensional signals (about 10); the feasibility for high dimensional signals in the range of one or two hundred spectral bands was not shown.

Wiersma and Landgrebe $[14,15]$ proposed the use of minimum mean square representation error criterion for feature design. It was shown that an analytical feature design procedure can be established by applying a weighted Karhunen-Loeve Transform $[16,17,18]$ to the observation space in which the eigenvectors of the transform are the optimal (though impractically complex) spectral features. The dimensionality in this research was 100 which was much higher than that in Wiswell's work. A manual band feature selection was suggested according to the relative importance of spectral regions as indicated by the eigenfunctions. The concept of spectral dominancy was introduced although the final stages of the feature design process were manually implemented. This appears to be tedious and impractical when the number of cover types is greatly increased. Another drawback in Wiersma's work lies basically in the subjective nature of the manual feature design process.

1.3 Current Investigation

The research results presented here will adopt some procedures to extend Wiersma's work in such a way that objective, machine implemented spectral feature design schemes become feasible. The idea of local optimality is introduced in this thesis. Instead of finding the features that are optimal with respect to all possible scenes (global optimal), it is now proposed to tailor the spectral features to the specific user problem at hand. The maximally attainable performance can then be increased. The new concept of structure similarity and its realization are discussed in this dissertation. This makes the feature design problem more general in the sense that overlapping features become practical and easily implemented.

In this research four methods are developed which in effect lead to suboptimal but now practical versions of the optimal features. These derived spectral features were obtained by combining groups of adjacent spectral samples into bands, usually one or more hundred nanometers wide, that are specially tailored to the analysis task at hand. These features could be implemented by utilizing simple programmable adders at the sensor output as shown in Figure 1.1

Figure 1.1 Realization of Spectral Feature Design

In Figure 1.1, N is the signal dimensionality from the sensor output, and N_{f} is the number of spectral features used. The programmable adders on board the spacecraft act according to the received grouping instruction from the ground station, either adding (+1), subtracting (-1) or omitting (0) bands for each spectral function. The resulting features are then transmitted down to the ground station for further processing.

The first method is based on the dominancy property of the spectral bands. A manually subjective selection process was used previously in Wiersma's work [14,15]. In this research, an objective and machine oriented process is developed. The spectral band edges are found by applying infinite clipping [21] to the average of the first few eigenvectors associated with the largest eigenvalues. This technique is referred to as a non-overlapping (N.O.L.) band feature selection algorithm due to the fact that designed features are not overlapping.

The second approach utilizes a transformation from the optimal feature space to a new space based upon Walsh Functions (W.F.) [19,20]. These functions have the attractive features of being everywhere equal to either +1 or 1 , and being ordered by the number of axis crossings. Thus the transformation can be implemented by either adding or subtracting bands, and the various functions will correspond to spectral ranges of a variety of widths.

The third scheme applies infinite clipping (I.C.) [21] to the original optimal functions derived from the weighted K-L transform. The resulting features are the infinite clipped optimal functions. In this thesis, the experiment concludes
that this scheme is the most promising technique in the sense of best classification performance under the same compression requirement.

The fourth approach extracts the zero crossing information from each optimal function and chooses those spectrum intervals that are in between two zero crossings as band features. Since the band features derived from each optimal function in this way might be linearly dependent [22], special precaution must be taken to get rid of linearly dependent bands. This method is called overlapping (O.L.) band feature selection algorithm because the bands derived by this scheme are overlapping.

1.4 Preliminary Test of the On-Board Preprocessing System

From a simplicity and effectiveness point of view, not all the four developed approaches are ideal for data preprocessing. Six preliminary test data sets are used to select the best technique. The goal is to find the most effective scheme under the simplicity requirement. Of the six sets of high spectral resolution field measurement data, three were taken over Williams County, North Dakota, each with 3 information classes: spring wheat, summer fallow and natural pasture. The other three were taken over Finney County, Kansas, again with 3 information classes each: winter wheat, summer fallow, and grain sorghum or other crops. For convenience, these data sets are referred to with a letter/number designator as shown in Table 1.1.

These data were taken by the Field Spectrometer System (FSS) [23] mounted in a helicopter. The spectral resolution was $0.02 \mu \mathrm{~m}$ for the interval from $0.4 \mu \mathrm{~m}$ to $2.4 \mu \mathrm{~m}$.

Table 1.1 Data Set Designation for Preliminary Test

Location	Date	Designation	\#of Observ.
Kansas	$9 / 28 / 76$	K1	832
Kansas	$5 / 03 / 77$	K2	1551
Kansas	$6 / 06 / 77$	K3	1477
N. Dakota	$5 / 08 / 77$	N1	1265
N. Dakota	$6 / 29 / 77$	N2	1239
N. Dakota	$8 / 04 / 77$	N3	1444

For each of the six data sets, the collection of the spectral sample functions forms the ensemble of a random process. The mean vector and the covariance matrix of this ensemble are first estimated. The estimate of the covariance matrix is used to solve the generalized Karhunen-Loeve equation which results in the eigenvalues and the eigenvectors of the transform. Figure 1.2 shows the magnitude of the first 12 eigenvectors associated with the largest eigenvalues for the data set K2 [15]. They will be used to explain the feature design schemes in chapter III. The spectral interval is $0.02 \mu \mathrm{~m}$ as stated previously. Therefore the dimensionality used in these preliminary tests is 100.

From this preliminary test, it is concluded that the infinite clipped optimal transform is the simplest and most effective method for on-board data preprocessing.

Eigenfunction 3

Eigenfunction 5

Figure 1.2 First 12 Eigenvectors of Data Set K2

Figure 1.2, continued

1.5 Outline of the Thesis

In chapter 2, a theoretical review of the weighted K-L transform is given. Two important properties, minimum mean square truncation error and uncorrelated transformed coefficients are proved for this generalized transform.

Chapter 3 discusses in detail the four schemes developed to design the spectral features in high dimensional multispectral data. Two of them, nonoverlapping band feature selection algorithm and overlapping band feature selection algorithm, are developed from the dominancy concept in eigenfunctions; and the other two, Walsh function approach and infinite clipped optimal function approach are derived from the idea of structure similarity between two sets of functions. Furthermore, a comparison among these data preprocessing schemes is included in this chapter. From the simplicity and effectiveness point of view, it is found that the infinite clipped optimal function approach is the best technique. After the preprocessed data would be received at the ground station, canonical analysis would be applied to the infinite clipped optimal transformed data to obtain maximal class separability.

Chapter 4 shows the final results of this research. Both the vegetation data and the soil data are included in this chapter. The Hughes phenomenon is also discussed.

Chapter 5 summaries the final conclusions and gives recommendations for the future work.

An IBM 3083 Macro file used to run the spectral feature design system and the source code of the system are given in the appendices.

CHAPTER II

KARHUNEN-LOEVE TRANSFORM

The Karhunen-Loeve (KL) expansion [44] was developed to represent random processes. It maps the continuous parameter random process into a sequence of random variables [24]. The expansion generates a set of deterministic orthonormal basis functions. This set has a unique errorminimizing property and uncorrelated transformed coefficients. These properties make it the optimal coordinate system for many feature design problems.

This transform can be generalized $[25,26]$ to include a weighting function to account for certain types of a priori knowledge of the parameter set, and its proper use may have an important impact on the extraction of useful information [15]. Thus using the weighted form of K-L transform may result in more practical and realizable feature design.

In the following we will show that minimum mean square truncation error (MMSE) and uncorrelated coefficients properties, which are directly related to this research, also hold for the generalized K-L transform. The MMSE property ensures that the eigenfunctions associated with the largest eigenvalues derived from the weighted K-L transform are the optimal basis functions in the sense of signal representation. Uncorrelated coefficients property guarantees that the transformed coordinates are independent under Gaussian assumption.

2.1 Minimum Mean Square Truncation Error

Let $X(\lambda)$ be a sample function of a random process. Assume that the random process is continuous in probability and almost every sample function of the random process has finite norm in $L_{2}(\Lambda)$ space [27]. Then $X(\lambda)$ can be represented by an expansion of the form [24]

$$
\begin{equation*}
x(\lambda)=\sum_{i=1}^{\infty} y_{i} \quad \Phi_{i}(\lambda) \tag{2.1}
\end{equation*}
$$

where the functions $\left\{\Phi_{i}(\lambda)\right\}$ are deterministic and the expansion coefficients \{ y_{i} \} are random variables.

Define a weighting function $W(\lambda)$ with real finite positive values. Without loss of generality, the set $\left\{\Phi_{i}(\lambda)\right\}$ will be taken to be orthonormal with respect to $\mathbf{W}(\lambda)$. From the generalized inner product [27] which defines the metric in $L_{2}(\Lambda)$ space, we have

$$
\left(\Phi_{i}, \Phi_{j}\right)_{W}=\int_{\Lambda} \Phi_{i}(\lambda) W(\lambda) \Phi_{i}(\lambda) d \lambda=\left\{\begin{array}{lll}
0 & \text { if } i \neq j \tag{2.2}\\
1, \text { if } i=j
\end{array}\right.
$$

and

$$
\begin{equation*}
y_{i}=\left(\Phi_{i}, X\right)_{W}=\int_{\Lambda} \Phi_{i}(\lambda) W(\lambda) X(\lambda) d \lambda \tag{2.3}
\end{equation*}
$$

If the set $\left\{\Phi_{i}(\lambda)\right\}$ is not orthonormal to begin with, it can be orthonormalized by the Gram-Schmidt procedure [57]. That such sets exists in $\mathrm{L}_{2}(\Lambda)$ space has been demonstrated by the construction of sets such as
complex sinusoids, Legendre polymonials, Chebyshev polymonials, Laguerre functions, Walsh functions and others.

Therefore $Y=\left\{y_{1}, y_{2}, \ldots \ldots\right\}$ is simply an orthonormal transformation of the random function $X(\lambda)$, and is itself a random vector. Each component of Y is a feature which contributes to representing the observed sample function $X(\lambda)$.

Furthermore, we are going to choose a set $\left\{\Phi_{i}(\lambda)\right\}$ which is complete in $L_{2}(\Lambda)$ space. That is, if we define the sequence

$$
\begin{equation*}
c_{n}(\lambda)=\sum_{i=1}^{n} y_{i} \Phi_{i}(\lambda) \tag{2.4}
\end{equation*}
$$

then,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\int_{\Lambda}\left[X(\lambda)-\sum_{i=1}^{n} y_{i} \Phi_{i}(\lambda)\right]^{2} W(\lambda) d \lambda\right\}=0 \tag{2.5}
\end{equation*}
$$

That the sequence $c_{n}(\lambda)$ converges to $X(\lambda)$ in the mean square sense, is denoted by

$$
\begin{equation*}
X(\lambda)=\underset{n \rightarrow \infty}{\operatorname{li.im} .} c_{n}(\lambda) \tag{2.6}
\end{equation*}
$$

This convergence guarantees that the series can be made arbitrarily close to $X(\lambda)$ by increasing n in the expansion.

The problem of designing the optimal sensor then becomes that of selecting the set of complete orthonormal (CON) basis functions $\left\{\Phi_{i}(\lambda)\right\}$ such that the series representation will be optimal with respect to the minimum mean square error criterion. In the stochastic environment, this representation error is taken over the ensemble of the random process. Hence, we need:

$$
\begin{equation*}
E\left\{\int_{\Lambda}\left[X(\lambda)-\sum_{i=1}^{\infty} y_{i} \Phi_{i}(\lambda)\right]^{2} W(\lambda) d \lambda\right\}=0 \tag{2.7}
\end{equation*}
$$

Another desirable property is that the convergence be rapid in the first few terms, that is, each additional term used in the series expansion decreases the representation error by a maximum amount. This property is called energy packing.

In the real applications, however, it is impractical to transmit an infinite or even a very large number of channels to the ground. Therefore only a finite number of terms in the expansion would be used. Let n be a finite number such that the representation error by using the first n terms in the expansion is less than T, the maximal acceptable error. Then we require the selected orthonormal basis functions $\left\{\Phi_{i}(\lambda)\right\}$ to be complete in a finite n dimensional subspace of $L_{2}(\Lambda)$. That is, for any $T>0$, there is an n_{0} such that

$$
\begin{equation*}
E\left\{\int_{\Lambda}\left[X(\lambda)-\sum_{i=1}^{n} y_{i} \Phi_{i}(\lambda)\right]^{2} W(\lambda) d \lambda\right\}<T ; n>n_{0} \tag{2.8}
\end{equation*}
$$

for any $X(\lambda)$ defined in the $L_{2}(\Lambda)$ space.

This completeness property in finite dimensional space can guarantee that if we use the n dimensional subspace of $L_{2}(\Lambda)$, spanned by the first n elements of a complete orthonormal set $\left\{\Phi_{i}(\lambda)\right\}$, for the representation of an arbitrary signal, then the norm of the error can be made arbitrarily small by choosing n sufficiently large.

The objective then is to find the a finite set of orthonormal basis functions that have the above minimum representation error and energy packing properties. In the following, we are going to show that the eigenfunctions derived from the Weighted Karhunen-Loeve transform are just the desired optimal basis functions.

In the above finite n dimensional subspace of $L_{2}(\Lambda)$, suppose only m terms in the expansion will be used to estimate the observed $X(\lambda)$, then the estimate $\dot{\mathbf{X}}(\lambda)$ can be expressed in the following form

$$
\begin{equation*}
\hat{X}(\lambda)=\sum_{i=1}^{m} y_{i} \Phi_{i}(\lambda)+\sum_{i=m+1}^{n} b_{i} \Phi_{i}(\lambda) \tag{2.9}
\end{equation*}
$$

The constants $\left\{b_{i}\right\}$ are preselected. The objective is to find the basis functions and the constants $\left\{b_{i}\right\}$ in such a way that the minimum mean square error can be obtained.

Since we do not use all of the basis functions, the representation error due to truncation is then equal to

$$
\begin{equation*}
\Delta X(\lambda)=X(\lambda)-\hat{X}(\lambda)=\sum_{i=m+1}^{n}\left(y_{i}-b_{i}\right) \Phi_{i}(\lambda) \tag{2.10}
\end{equation*}
$$

We define the weighted mean square error to be

$$
\begin{equation*}
W M S E=E\left((\Delta X, \Delta X)_{W}\right)=E\left(\sum_{i=m+1}^{n}\left(y_{i}-b_{i}\right) \sum_{j=m+1}^{n}\left(y_{j}-b_{j}\right) \int_{\Lambda} \Phi_{i}(\lambda) W(\lambda) \Phi_{j}(\lambda) d \lambda\right) \tag{2.11}
\end{equation*}
$$

Since the basis functions are orthonormal, Eq (2.11) reduces to

$$
\begin{equation*}
\text { WMSE }=\sum_{i=m+1}^{n} E\left(y_{i}-b_{i}\right)^{2} \tag{2.12}
\end{equation*}
$$

The mean square error is minimized when

$$
\begin{equation*}
\frac{\partial E\left(y_{i}-b_{i}\right)^{2}}{\partial b_{i}}=-2 E\left(y_{i}-b_{i}\right)=0 \tag{2.13}
\end{equation*}
$$

That is, the preselected constant b_{i} must be equal to the expected value of the transform component $E\left(y_{i}\right)$.

We are left to show that when $\Phi_{i}(\lambda)$ is a weighted K-L basis, then the weighted mean square error is minimized. We need to minimize

$$
\begin{equation*}
\text { WMSE }=\sum_{i=m+1}^{n} E\left(y_{i}-E\left(y_{i}\right)\right)^{2}=\sum_{i=m+1}^{n} \iint_{\Lambda \Lambda} \Phi_{i}(\lambda) W(\lambda) K_{x}(\lambda, u) W(u) \Phi_{i}(u) d u d \lambda \tag{2.14}
\end{equation*}
$$

where $K_{X}(\lambda, u)$ is the covariance function of the random process.

Using the orthonormality constraint, we can write the mean square error as the quadratic functional [19] of $\Phi_{i}(\lambda)$

$$
\begin{align*}
\text { WMSE }= & \sum_{i=m+1}^{n} \int_{\Lambda} \int_{\Lambda} \Phi_{i}(\lambda) W(\lambda) K_{x}(\lambda, u) W(u) \Phi_{i}(u) d u d \lambda \\
& -\sum_{i=m+1}^{n} \lambda_{i}\left\{\int_{\Lambda} \Phi_{i}(\lambda) W(\lambda) \Phi_{i}(\lambda) d \lambda-1\right\} \tag{2.15}
\end{align*}
$$

Minimizing with respect to $\Phi_{\text {i }}$ yields [19]

$$
\begin{equation*}
\nabla_{\Phi_{i}}(\text { WMSE })=2 \int_{\Lambda} \mathbf{W}(\lambda) K_{x}(\lambda, u) W(u) \Phi_{i}(u) d u-2 \lambda_{i} \mathbf{W}(\lambda) \Phi_{i}(\lambda)=0 \tag{2.16}
\end{equation*}
$$

The set $\left\{\lambda_{i}\right\}$ thus turns out to be the eigenvalues of the covariance function of the observed $X(\lambda)$, and the basis functions satisfy the weighted K-L equation

$$
\begin{equation*}
\int_{\Lambda} K_{x}(\lambda, u) W(u) \Phi_{i}(u) d u=\lambda_{i} \Phi_{i}(\lambda) \quad i=1,2, \ldots, n \tag{2.17}
\end{equation*}
$$

From equations 2.14 and 2.17, we have

$$
\begin{equation*}
\text { WMSE }=\sum_{i=m+1}^{n} \int_{\Lambda} \Phi_{i}(\lambda) W(\lambda)\left[\lambda_{i} \Phi_{i}(\lambda)\right] d \lambda \tag{2.18}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { WMSE }=\sum_{i=m+1}^{n} \lambda_{i} \tag{2.19}
\end{equation*}
$$

If we rank the optimal functions according to the magnitudes of their associated eigenvalues from the largest to the smallest, then using the first few optimal functions in the series representation will results in the desired weighted minimum mean square error. Furthermore, the energy packing property will also be satisfied since the mean square error reduction for using each additional term in the expansion will be maximized.

2.2 Uncorrelated Transformed Coefficients

The generalized K-L transform results in uncorrelated coefficients. This property can be derived as follows. Since

$$
\begin{equation*}
Y=\left\{y_{1}, y_{2}, \ldots ., y_{n}\right\} \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{i}=\int_{\Lambda} \Phi_{i}(\lambda) W(\lambda) X(\lambda) d \lambda \tag{2.21}
\end{equation*}
$$

and the covariance between y_{i} and y_{j} is defined as

$$
\begin{equation*}
\sigma_{i, j}=E\left(y_{i}-E\left(y_{i}\right)\right)\left(y_{j}-E\left(y_{j}\right)\right) \tag{2.22}
\end{equation*}
$$

Using Eq.(2.21), Eq.(2.22) becomes

$$
\begin{equation*}
\sigma_{i, j}=\iint_{\Lambda \Lambda} \Phi_{i}(\lambda) W(\lambda) K_{x}(\lambda, u) W(u) \Phi_{j}(u) d u d \lambda \tag{2.23}
\end{equation*}
$$

From the Weighted Karhunen-Loeve Equation derived in Eq.(2.17), we get

$$
\sigma_{i, j}=\int_{\Lambda} \Phi_{i}(\lambda) W(\lambda)\left[\lambda_{j} \Phi_{i}(\lambda)\right] d \lambda=\left\{\begin{array}{cc}
\lambda_{i} & \text { if } i=j \tag{2.24}\\
0 & \text { if } i \neq j
\end{array}\right.
$$

Therefore the transformed coefficients are uncorrelated. If the underlying distribution of the random process is Gaussian, the coefficients are then independent.

CHAPTER III

SPECTRAL FEATURE DESIGN

From the discussion in chapter 2, we know the weighted K-L transform preserves the minimum weighted mean square error (MWMSE) and ordered uncorrelated coefficients properties. In fact, the K-L transform is a special case of its generalized form with unity weight matrix. The fundamentals in remote sensing indicate $[14,15]$ that the eigenfunctions derived in the K-L transform with unity weight matrix can not be used satisfactorily for feature design. The reason for this is basically the fact that the reflectance around the two water absorption bands has high variance and thus tends to dominate the formation of the basis functions. Therefore the spectral response in these two regions is not information-bearing. Indeed, the spectral radiance emanates mostly from the atmosphere and must be considered as noise. Understanding this important a priori knowledge about the scene, we can incorporate a weighting function into the calculation process to eliminate the effect of noise. The generalized K-L transform is then the solution. The resulting optimal functions can be used to transform the original observation space into a new feature space.

In this chapter, four spectral feature design techniques will be presented first. Using simplicity and effectiveness as criteria, the most promising technique is then selected from these four schemes for our final feature design system. The four techniques developed in the course of this research are

1. Non-overlapping band feature selection algorithm,
2. Walsh function approach,
3. Infinite clipped optimal function approach, and
4. Overlapping band feature selection algorithm.

The non-overlapping and overlapping band feature selection algorithms are derived from the shape of the optimal features. The Walsh function approach and the infinite clipped optimal function approach are developed from the structure of the optimal features.

After performing the generalized K-L transformation to the data [15], where a weight function is incorporated into the transform to avoid portions of the spectrum where the atmosphere is known to be opaque, the eigenfunctions can be found. These eigenfunctions serve as optimal features that linearly transform the original measurement space to the new space in a minimum mean square error sense [18]. However, because of the inherently complex nature of the optimal functions, an easy and fast implementation directly using them to process the tremendous amount of information collected must be found. Therefore, more realistic features are sought in order to achieve this requirement. More realistic features can be found by carefully studying the shapes of the first few eigenfunctions. The importance of a wavelength region for the purpose of accurately representing the ensemble of functions is indicated by the magnitude of the eigenfunctions in that region. It is hypothesized that the importance of a region in an ensemble-representational sense is positively correlated with (though not identical to) its importance with respect to classification accuracy. Referring to Figure 1.2, it is observed that each eigenfunction thus points to the more important regions.

For instance, the magnitude of the first eigenfunction indicates that there are 3 important regions over the entire spectrum: 0.4-1.28 $\mu \mathrm{m}, 1.48$-1.78 $\mu \mathrm{m}$ and 1.98-2.4 $\mu \mathrm{m}$, the magnitude of the second eigenfunction indicates that important regions are approximately 0.4-0.66 $\mu \mathrm{m}, 0.66-1.28 \mu \mathrm{~m}, 1.48-1.78 \mu \mathrm{~m}$ and 1.98-2.4 $\mu \mathrm{m}$, etc. From the fact that the magnitude of the first eigenfunction is very similar to the soil response function, and the magnitude of the second eigenfunction is similar to the vegetation curve, it is observed that the dominant portion of the ensemble, i.e. summer fallow, winter wheat and unknown crops for this data set K2, can be shown in the first few eigenfunctions derived from the weighted K-L transform. Therefore, it is desired to choose the regions with larger magnitude in the eigenfunctions, especially from those with largest eigenvalues, as sensor bands since these regions contribute most to reduction of representation error as well as increasing of classification performance.

However, such a subjective process is difficult to carry out objectively due to the spectral detail in the eigenfunctions and the number of eigenfunctions to be examined. A machine implemented band selection algorithm based on this dominancy concept in the eigenfunctions is thus sought.

3.1 Non-Overlapping Band Feature Selection Algorithm

Infinite clipping is a procedure used to transform the signal into its signed form [21]. There is evidence in various circumstances that the axis crossings of a signal carry a substantial portion of the information that the signal carries. For example, in the field of speech recognition [28-33], the infinite clipping procedure can been used to extract zero crossing information and perform
speech recovery very successfully. For example, Ewing and Taylor [29] showed that zero-crossing information from a speech signal is a feasible way for computer speech recognition; and Niederjohn, et al [30] showed that the set of zero-crossings of a speech waveform represents a nearly minimal set of informational attributes in the sense that any reordering or averaging of the zero-crossing intervals has a detrimental effect upon speech intelligibility.

Some other examples of using zero-crossing information of a signal can also be found in the fields of radar target detection [51-52], biomedical engineering [53], communications [54-55] and image processing [56]. Rainal [52] described a zero-crossing principle for detecting weak narrow-band signals immersed in Gaussian noise. An application of the zero-crossing principle to the detection problem of a stationary radar target in clutter was discussed. Masuda, et al [53] demonstrated in a biomedical context that the muscle fiber conduction velocity, which is known to be an index of the degree of muscle fatigue or muscle disease, can be accurately measured by using zero-crossing information from a surface electromyogram signal. In conventional communications, Voelcker [54] showed that an angle-modulated signal can be demodulated given only its zero-crossings; Wiley, et al [55] proposed an iterative demodulation procedure for very wide-band FM by use of a zerocrossing discriminator. Haralick [56] showed that the zero-crossing of second directional derivatives within the pixel's area can be used to detect the step edges in the image.

Thus, one possible approach to finding the desired procedure would be to apply infinite clipping to extract the zero crossing information. The input to this algorithm will be the average of the first few eigenfunctions. The output of
this algorithm is to be the band edges showing how the bands should be chosen. We will refer to this procedure as the non-overlapping (N.O.L.) band feature selection algorithm. Figure 3.1 shows the average of the first 12 eigenfunctions. After thresholding, the data of Figure 3.1 become as in Figure 3.2 where +1 represents the positive portions of Figure 3.1, -1 represents the negative portions, and 0 represents the water absorption bands centered at 1.4 and $1.9 \mu \mathrm{~m}$ respectively. It should be noted that there is no response over the above water absorption bands due to the use of the weight function in the K-L transform, which has been set 1.0 over the entire spectrum and a very small positive value in the water bands.

The band edges are found as follows: whenever a transition in sign or magnitude occurs in Figure 3.2, the wavelength of the associated band is recorded. Table 3.1 shows the results after transition operation. The band edges in Table 3.1 can be used to set up the suboptimal basis functions for data compression [refer to the 2nd column in Table 3.6].

Table 3.1. Band Edges Obtained by Infinite Clipping of the Average of the First 12 Eigenvectors for Data Set K2

Band	wavelength $(\mu \mathrm{m})$
1	$0.40-0.68$
2	$0.68-0.90$
3	$0.90-0.92$
4	$0.92-0.94$
5	$0.94-1.00$
6	$1.00-1.06$
7	$1.06-1.12$
8	$1.12-1.26$
9	$1.26-1.28$
10	$1.48-1.78$
11	$1.98-2.40$

Figure 3.1 Average of the First 12 Eigenvectors of Data Set K2

Figure 3.2 Thresholded Version of Figure 3.1

3.2 Walsh Function Approach

By carefully viewing the structure of the eigenfunctions in Figures 1.2, one may also observed that the eigenfunctions corresponding to the larger eigenvalues tend to have coarser structure than those with smaller eigenvalues. A similar effect exists in the Walsh functions indexed by the number of zerocrossings. The higher the index of the Walsh function, the finer the structure of the function $[19,20$]. The first 10 Walsh functions indexed by the number of axis crossings are shown in Figure 3.3, where curve 0 is the first Walsh function with no axis crossing, curve 1 is the second Walsh function with one axis crossing, etc.

The inner product of the two functions may be thought of as a mathematical measure of similarity of the two functions. The absolute values of the inner products of the first 16 eigenfunctions with the first 64 Walsh functions are calculated. Table 3.2 shows part of the results. Absolute values of the inner product are used since the polarity is not significant here. Table 3.3 shows the similarity relation between these two sets of functions. For example, the number "1" in the (1,1) matrix position indicates that the first eigenfunction is more similar to the first Walsh function than to any other 63 Walsh functions since the value 0.84 in Table 3.2 is the largest in the " first " column. The numbers " 2 ", " 3 " and " 4 " in the $(1,2),(1,3)$ and $(1,4)$ matrix positions indicate that the 2nd, 3rd and 4th eigenfunctions mostly look like the 2nd, 3rd and 4th Walsh functions respectively in the sense of signal structure similarity. Therefore, the structure of the first 4 eigenfunctions can be approximated by that of the first 4 Walsh functions. By observing the first two rows of Table 3.3, it can be concluded that the first 16 eigenfunctions and the first 16 Walsh functions have approximately
the same structure. The structure in the eigenfunctions is related to the axis crossings in the signals. The coarser the structure, the less the number of axis crossings; and vice versa. These axis crossings are hypothesized to contain important information that can be used for classification. Therefore, it is feasible to use the first few Walsh functions as spectral features in high dimensional multispectral data.

Figure 3.3 First 10 Walsh Functions Indexed By Number of Axis Crossings

Table 3.2 Absolute Values of Inner Products Between Optimal Functions and Walsh Functions

Optimal\#	1	2	3	4	5	6	7	8
Walsh\#								
1	0.84	0.21	$\begin{aligned} & 0.21 \\ & 0.42 \end{aligned}$	0.09 0.12	0.01 0.24	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.03 \end{aligned}$
2	0.21 0.04	$\begin{gathered} 0.68 \\ 0.23 \end{gathered}$	$\begin{aligned} & 0.42 \\ & 0.66 \end{aligned}$	0.12 0.05	0.24 0.43	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	0.13 0.17	0.03 0.17
4	0.09	0.03	0.09	0.78	0.12	0.01	0.03	0.09
5	0.04	0.39	0.13	0.05	0.40	0.03	0.13	0.17
6	0.11	0.32	0.09	0.01	0.28	0.14	0.33	0.25
7	0.06	0.11	0.13	0.09	0.20	0.35	0.23	0.10
8	0.03	0.10	0.15	0.06	0.03	0.03	0.52	0.36
9	0.25	0.07	0.03	0.05	0.29	0.14	0.16	0.28
10	0.12	0.05	0.26	0.24	0.27	0.02	0.20	0.14
11	0.13	0.15	0.21	0.06	0.15	0.08	0.18	0.15
12	0.03	0.15	0.05	0.32	0.09	0.07	0.21	0.02
13	0.02	0.18	0.00	0.04	0.08	0.00	0.09	0.03
14	0.15	0.10	0.04	0.15	0.00	0.07	0.09	0.10
15	0.08	0.03	0.09	0.16	0.09	0.15	0.01	0.14
16	0.03	0.04	0.03	0.04	0.20	0.18	0.05	0.10

Optimal\#	9	10	11	12	13	14	15	16
Walsh\#								
	0.01	0.00	0.01	0.01	0.03	0.04	0.01	0.05
	0.00	0.03	0.08	0.08	0.07	0.04	0.02	0.06
	0.00	0.04	0.06	0.00	0.07	0.02	0.06	0.09
	0.12	0.18	0.18	0.14	0.06	0.04	0.02	0.00
	0.13	0.21	0.02	0.09	0.04	0.14	0.14	0.19
	0.09	0.24	0.03	0.07	0.29	0.02	0.16	0.16
	0.07	0.09	0.05	0.10	0.02	0.39	0.23	0.03
	0.03	0.05	0.10	0.03	0.06	0.15	0.15	0.13
	0.22	0.06	0.08	0.29	0.21	0.19	0.13	0.07
	0.07	0.10	0.32	0.00	0.06	0.27	0.12	0.17
	0.14	0.16	0.08	0.10	0.14	0.07	0.01	0.40
	0.21	0.00	0.05	0.23	0.08	0.14	0.11	0.16
	0.01	0.11	0.33	0.19	0.13	0.08	0.00	0.09
	0.11	0.00	0.24	0.12	0.08	0.10	0.07	0.08
	0.27	0.06	0.06	0.05	0.18	0.07	0.05	0.04
	0.12	0.24	0.19	0.01	0.01	0.07	0.02	0.05

Table 3.3 Similarity Relation Between Optimal
Functions and Walsh Functions

Optimal\#	1	2	3	4	5	6	7	8
Rank	Walsh\#							
1	1	2	3	4	3	7	8	8
2	57	5	2	12	5	36	6	9
3	9	6	59	60	9	16	7	6
4	2	3	10	10	6	40	28	22
5	14	1	11	15	10	35	12	18
6	11	58	1	14	2	19	10	24
7	10	13	58	2	7	23	25	64
8	33	11	8	52	16	15	11	3
9	6	12	27	29	21	63	3	5
10	58	59	7	7	59	9	24	50
11	47	7	5	35	58	32	9	11
12	4	42	50	1	11	6	64	19
13	25	8	35	50	26	20	30	25
14	15	14	4	17	28	54	2	36
15	42	25	15	43	45	47	19	10
16	18	18	26	57	49	57		17

3.3 Infinite Clipped Optimal Function Approach

If one studies the Walsh functions more carefully, it is found that although the Walsh functions approximate the optimal functions in the sense of structure similarity, they do distort some of the spectral spacing information in the optimal functions. The axis crossing separation in the optimal functions is a relatively irregular pattern, while it is quite regular in the Walsh functions.

One way that can be applied to avoid this information loss is to use the infinite clipped optimal functions as spectral features. The infinite clipped optimal function approach preserves the zero-crossing information in the optimal functions which is hypothesized to contain important spectral information that can be used for classification.

Furthermore, the Walsh function approach is less flexible than the infinite clipped optimal function approach since the spectral features using the Walsh functions tend to be fixed for all analysis situations; while, on the other hand, the infinite clipped optimal function approach does give some degree of adaptability. Figure 3.4 shows the infinite clipping versions of the first 6 eigenfunctions for data set K2.

The infinite clipped optimal functions, derived from the signs of the optimal functions, are then used as spectral features (i.e., basis functions) to linearly transform the high dimensional multispectral data to the ground station for further processing.

Sign of First Elgenfunction

Sign of Third Elgenfunction

Sign of Fitth Elgenfunction

Sign of Second Elgenfunction

Sign of Fourth Eigenfunction

Sign of Sixth Elgenfunction

Figure 3.4 Infinite Clipping Versions of the First 6 Eigenfunctions for K2

3.4 Overlapping Band Feature Selection Algorithm

The overlapping band feature selection algorithm originates from the inherent overlapping property of the optimal functions. This property suggests that overlapping bands might be even more powerful for spectral feature design. The idea of this algorithm is to find the locations of the important spectral bands without imposing the additional restriction that the bands be non-overlapping. The basic procedures used are very similar to those in the non-overlapping band feature selection algorithm. In the non-overlapping band feature selection algorithm, the infinite clipping procedure is applied to the average of the first few eigenfunctions in order to extract the information of the important spectral bands; while in this overlapping case, the infinite clipping procedure is applied to each individual eigenfunction.

The first step is to find the band edges of each individual eigenfunction. Table 3.4 shows part of the results for data set K2. In Table 3.4, comparing to Figure 1.2, it is found that there are 3 important bands for the first eigenfunction, 4 for the $2 n d$ one, 8 for the 3rd one, etc.

It should be noted that the band features derived in this way are not all linearly independent. For example, the first and second band feature from the second eigenfunction, that is, $0.40-0.66 \mu \mathrm{~m}$ and $0.66-1.28 \mu \mathrm{~m}$, are linearly dependent on the first band feature from the first eigenfunction (0.40-1.28 $\mu \mathrm{m}$). Another example is the identical band features (1.48-1.78 and 1.98-2.40 $\mu \mathrm{m}$) derived from the first 5 eigenfunctions. Indeed, these repeated bands and the bands which are linearly dependent on the previously selected bands can not
be used as spectral features since linearly dependent features will result in singular class covariance matrix.

Table 3.4 Linearly Dependent Bands Found by Overlapping Band Feature Selection Algorithm for Data Set K2

EigenVector\#	1	2	3
BAND			
1	$0.40-1.28$	$0.40-0.66$	$0.40-0.94$
2	$1.48-1.78$	$0.66-1.28$	$0.94-1.00$
3	$1.98-2.40$	$1.48-1.78$	$1.00-1.02$
4		$1.98-2.40$	$1.02-1.12$
5			$1.12-1.16$
6			$1.16-1.28$
7			$1.48-1.78$
8			$1.98-2.40$

EigenVector\#	4	5	6
BAND			
1	$0.40-0.92$	$0.40-0.70$	$0.40-0.44$
2	$0.92-1.26$	$0.70-0.92$	$0.44-0.50$
3	$1.26-1.28$	$0.92-0.96$	$0.50-0.52$
4	$1.48-1.78$	$0.96-1.06$	$0.52-0.66$
5	$1.98-2.40$	$1.06-1.28$	$0.66-0.84$
6		$1.48-1.78$	$0.84-0.92$
7		$1.98-2.40$	$0.92-0.94$
8			$0.94-1.00$
9			$1.00-1.04$
10			$1.04-1.12$
11			$1.12-1.28$
12			$1.64-1.64$
13			$1.98-2.78$
14			$2.20-2.40$
15			

An algorithm is developed to automatically choose the linearly independent bands from the first 6 eigenfunctions. Table 3.5 shows the result. Basically, this algorithm checks the rank of the matrix consisting of the bands
derived in Table 3.4. First, the linearly dependent bands in Table 3.4 are ranked from the widest to the narrowest. Then, starting from the widest band, this algorithm checks the matrix rank. If the rank is less than the total number of the band features, the band features in the matrix are linearly dependent, the widest linearly dependent band in the matrix is then eliminated from the set. On the other hand, if the rank is equal to the total number of the band features, increase the matrix rank by one and test the next widest band.

The procedure used in the above overlapping band feature selection algorithm can find the largest set of smallest bands that are linearly independent. This procedure can be summarized as follows:
(1) Find the band edges of each individual eigenfunction
(2) Rank these linearly dependent bands from the widest to the narrowest, then set rank $n=1$
(3) Starting from the widest band, check the rank of the feature matrix
(4) If the rank is less than the total number of the bands, eliminate the widest linearly dependent band in the matrix, then go to step (3) to test the next widest band;
(5). If the rank is equal to the total number of the bands, increase n by 1 , then go to step (3) to test the next widest band
(6) Set up the final feature set

Table 3.5 LInearly Independent Bands Found by Overlapping Band Feature Selection Algorithm for Data Set K2

Band	wavelength $(\mu \mathrm{m})$
1	$0.70-0.92$
2	$1.98-2.20$
3	$2.20-2.40$
4	$0.66-0.84$
5	$1.48-1.64$
6	$0.52-0.66$
7	$1.64-1.78$
8	$1.16-1.28$
9	$0.96-1.06$
10	$1.04-1.12$
11	$0.94-1.00$
12	$0.44-0.50$
13	$1.12-1.16$
14	$0.92-0.96$
15	$0.40-0.44$
16	$1.00-1.04$
17	$1.00-1.02$
18	$1.26-1.28$
19	$0.50-0.52$
20	$0.92-0.94$

3.5 Experimental System

In order to process the data in a digital computer, the spectral reflectance function $X(\lambda)$, the weight function $W(\lambda)$, the optimal basis function $\Phi_{i}(\lambda)$ and the sequence of the optimal basis functions $\Phi(\lambda)$ are represented by their discrete approximations, vector \mathbf{X}, diagonal matrix \mathbf{W}, basis vector Φ_{i} and the matrix Φ respectively.

An experimental software system has been set up to test the four approaches developed in the previous sections. This system has been
implemented on IBM 3083 computer. A collection of field data consisting of spectral sample functions on three dates from Williams County, ND, and three dates from Finney County, KS, was available from the field measurement library at Purdue/LARS. The spectral functions were sampled at $0.02 \mu \mathrm{~m}$ over the range 0.4 to $2.4 \mu \mathrm{~m}$, therefore, the dimensionality is 100 .

The optimal features are found numerically by estimating the covariance matrix from the sample functions. Maximum likelihood estimates of the mean and covariance matrix are given [34] by

$$
\begin{equation*}
M_{x}=E(X)=\bar{X}=\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} X_{i} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{x}=\frac{1}{N_{s}-1} \sum_{i=1}^{N_{s}}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\top} \tag{3.2}
\end{equation*}
$$

where N_{s} is the number of the sample functions and X_{i} is the i th sample vector. The covariance matrix is then used to solve the discrete form of the generalized Karhunen Loeve Equation [14,15] :

$$
\begin{equation*}
\mathbf{K}_{\mathrm{x}} \mathbf{W} \Phi=\Phi \Gamma \tag{3.3}
\end{equation*}
$$

where the Φ, Γ and W are the eigenvectors, eigenvalues and the weight matrix, respectively. The solutions of the equation are the optimal features.

In order to find appropriate non-overlapping bands used in feature design, the non-overlapping band feature selection algorithm is applied to the
average of the first few eigenvectors. Three cases were studied, tests using the first 6,12 or 24 eigenvectors in the algorithm. For the illustrative example shown in section 3.1, the second case is considered.

For overlapping band features, the infinite clipping procedure is applied to each individual eigenfunction. In this preliminary test the first 6 eigenfunctions from each of the 6 data sets are used. The locations of the important spectral bands are then extracted. After applying the overlapping band feature selection algorithm to the spectral bands derived above, the desired linearly independent (L.I.) band features are found.

The bands found by the above two algorithms, the Walsh functions or the infinite clipped optimal features developed from the structure similarity property are then used as spectral features to perform the linear transformation on the data sets.

$$
\begin{equation*}
y_{i}=\Phi_{i}^{\top} W X \tag{3.4}
\end{equation*}
$$

In order to test the spectral features thus determined, the probability of correct classification is estimated using them. To do so, the class-conditional statistics are first computed using the transformed data. An algorithm based on the maximum likelihood estimator [34] is then applied, where the class conditional statistics are assumed to be multivariate Gaussian.

3.6 Preliminary Results

After applying the N.O.L. band feature selection algorithm to the average of the first 6,12 or 24 eigenvectors of the six test data sets, the band edges are found. Table 3.6 shows the results for the data set K 2 for three different number of eigenvectors. These three feature sets are named as proposed sensor C 1 , C 2 and C 3 respectively. For brevity, they are denoted PC1, PC2 and PC3. On the other hand, the O.L. band feature selection algorithm is applied to the first 6 eigenfunctions, the result of the first 16 linearly independent bands is shown in Table 3.7 for data set K2.

Furthermore, the probabilities of correct classification using Landsat (LS) MSS bands, Thematic Mapper (TM) bands and the two sensors proposed in Wiersma's work (PA and PB) [14,15] are also computed here. Table 3.8 shows the band edges associated with each sensor [15].

Table 3.6 Bands Found by Non-Overlapping Band Feature Selection Algorithm for Data Set K2

Band		PC1	PC2
1	$0.40-0.68$	$0.40-0.68$	$0.40-0.66$
2	$0.68-0.84$	$0.68-0.90$	$0.66-0.80$
3	$0.84-0.90$	$0.90-0.92$	$0.80-0.88$
4	$0.90-0.96$	$0.92-0.94$	$0.88-0.94$
5	$0.96-1.00$	$0.94-1.00$	$0.94-1.00$
6	$1.00-1.06$	$1.00-1.06$	$1.00-1.04$
7	$1.06-1.12$	$1.06-1.12$	$1.04-1.16$
8	$1.12-1.28$	$1.12-1.26$	$1.16-1.26$
9	$1.48-1.74$	$1.26-1.28$	$1.26-1.28$
10	$1.74-1.78$	$1.48-1.78$	$1.48-1.54$
11	$1.98-2.40$	$1.98-2.40$	$1.54-1.64$
12			$1.64-1.74$
13			$1.74-1.78$
14			$1.98-2.20$
15			$2.20-2.26$
16			$2.26-2.40$

Table 3.7 Bands Found by Overlapping Band Feature Selection Algorithm for Data Set K2

Band	wavelength $(\mu \mathrm{m})$
1	$0.70-0.92$
2	$1.98-2.20$
3	$2.20-2.40$
4	$0.66-0.84$
5	$1.48-1.64$
6	$0.52-0.66$
7	$1.64-1.78$
8	$1.16-1.28$
9	$0.96-1.06$
10	$1.04-1.12$
11	$0.94-1.00$
12	$0.44-0.50$
13	$1.12-1.16$
14	$0.92-0.96$
15	$0.40-0.44$
16	$1.00-1.04$

Figures 3.5 to 3.10 are the classification performance comparisons of the optimal functions (Optimal), Walsh functions (Walsh) and the infinite clipped optimal functions (Clipped) for the 6 data sets. Figure 3.11 to 16 are the comparisons of the LS, TM, Wiersma's proposed sensor PA, non-overlapping band features (NOL) derived from the first 24 eigenfunctions (i.e., PC3), overlapping band features (OL), Walsh functions, infinite clipped optimal functions and optimal functions for the 6 preliminary test data sets. From the implementation point of view, since there are only two values $(+1,-1)$ for the Walsh functions and three values $(+1,-1,0)$ for the infinite clipped optimal functions, it can be concluded from Figures 3.5 to 3.16 that representing the optimal features using their infinite clipping versions or using the first 16 Walsh functions produces the more practical features used for classification which
provide a classification accuracy quite near that of optimal features. The classification performances estimated for the above sensors are shown in Table 3.9, where PC1, PC2 and PC3 represent the sensors derived from N.O.L. band feature selection algorithm using the first 6, 12 and 24 eigenvectors as their input respectively; Optimal, Walsh and Clipped stand for the sensors using the first 16 optimal functions, the first 16 Walsh functions and the first 16 infinite clipped optimal functions as spectral features respectively.

Table 3.8 Band Edges of Landsat MSS, TM, PA and PB Sensors

Band	LS	TM	PA	PB
1	$0.50-0.60$	$0.45-0.52$	$0.42-0.54$	$0.42-0.66$
2	$0.60-0.70$	$0.52-.060$	$0.56-0.66$	$0.68-0.70$
3	$0.70-0.80$	$0.63-0.69$	$0.68-0.70$	$0.72-0.92$
4	$0.80-1.10$	$0.76-0.90$	$0.72-0.90$	$0.94-1.04$
5		$1.55-1.75$	$0.92-1.00$	$1.06-1.10$
6		$2.08-2.35$	$1.02-1.30$	$1.12-1.30$
7			$1.52-1.74$	$1.52-1.74$
8			$1.96-2.40$	$1.96-2.40$

Table 3.9 Probability of Correct Classification for 6 Data Sets

SENSOR	K1	K2	K 3	N 1	N 2	N 3
LS	0.90	0.78	0.85	0.77	0.83	0.96
TM	0.92	0.79	0.93	0.89	0.95	0.99
PA	0.94	0.86	0.95	0.92	0.96	0.99
PB	0.94	0.85	0.94	0.89	0.96	0.96
PC1	0.94	0.87	0.96	0.92	0.97	0.99
PC2	0.96	0.88	0.97	0.94	0.97	0.99
PC3 (NOL)	0.96	0.94	0.98	0.96	0.98	0.99
OL	0.97	0.94	0.98	0.97	0.99	0.99
Walsh	0.98	0.95	0.98	0.95	0.98	0.99
Clipped	0.98	0.97	0.99	0.97	0.99	0.99
Optimal	0.98	0.97	0.98	0.97	0.99	0.99

Figure 3.5 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set K1

Figure 3.6 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set K2

Figure 3.7 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set K3

Figure 3.8 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set N1

Figure 3.9 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set N2

Figure 3.10 Performance Comparison of Optimal, Infinite Clipped Optimal and Walsh Functions for Data Set N3

Figure 3.11 Performance Comparison for Data Set K1

Figure 3.12 Performance Comparison for Data Set K2

Figure 3.13 Performance Comparison for Data Set K3

Figure 3.14 Performance Comparison for Data Set N1

Figure 3.15 Performance Comparison for Data Set N2

Figure 3.16 Performance Comparison for Data Set N3

3.7 Selection of the Best On-Board Preprocessing Scheme

From Table 3.9 and Figures 3.5 to 3.16 , it is seen that the four approaches developed in this research, two based on the " shape " of the optimal features and the other two from their "structure" similarity with the optimal functions, are feasible ways for feature design.

The fundamental objective of this research is to develop an objective and practical spectral feature design technique for high dimensional multispectral data. There are two important factors, simplicity and effectiveness, which must be considered in this respect.

First of all, from simplicity point of view, the overlapping band feature selection algorithm is harder to perform than the other three because of the existence of linear dependence problem. In order to find appropriate overlapping band features, we have to check the rank of the matrix for each newly selected band. This procedure needs more time than the other three approaches. However, its classification performance [referring to Figure 3.11 to 3.16] does not indicate much advantage over the other three, especially the infinite clipped optimal function approach.

For example, Figure 3.11 and 3.12 show that for Kansas September and Kansas May data the performances of the overlapping band feature selection algorithm are the 3rd best among the four techniques. The infinite clipped optimal function approach and the Walsh function approach have better performances than that of the overlapping band feature selection algorithm. Figure 3.13 to 3.16 indicate that the performances of the overlapping band feature selection algorithm are never better than those of the infinite clipped
optimal function approach. Therefore, from simplicity point of view, the overlapping band feature selection algorithm would not be used in this thesis as the best technique for the final data preprocessing system.

On the other hand, from effectiveness point of view, referring to Table 3.9 and Figure 3.5 to 3.16 again, it is shown that the infinite clipped optimal transform has better performance than the Walsh transform and the nonoverlapping band feature selection algorithm.

For instance, Figure 3.5 to 3.10 indicate that the infinite clipped optimal features have better classification accuracy than the Walsh features for all the six preliminary test data sets in Kansas and North Dakota. Figure 3.11 to 3.16 show that the infinite clipped optimal features perform better than the nonoverlapping band features for all the 6 test data sets except for North Dakota August data (Figure 3.16) where these two techniques have the same performance.

Therefore, from simplicity and effectiveness point of view, the infinite clipped optimal transform is chosen to be the best scheme in the data preprocessing stage of the spectral feature design system.

The processing up to this point, consisting of the optimal features calculation, the infinite clipping, and the data transform is based solely upon the ensemble statistics of the field data. Additional a priori knowledge that might be used to improve the performance is the class statistics of the scene. The objective is then to find the best features under the criterion of maximal class separability.

3.8 Canonical Analysis and Ground Station Data Processing.

Canonical Analysis is a technique that can be used to find the optimal features under a maximal separability criterion [36-41]. Unlike principal component analysis, which is based on the global covariance matrix of the full data set, canonical analysis utilizes the class structure of the data. The advantage of canonical analysis is its ordering property on the separability measure. By using the features derived from canonical analysis to further process the received transformed data, the classification performance should, therefore, be improved.

Let M_{i} and S_{i} be the $i^{\text {th }}$ class mean vector and covariance matrix of a data set with L classes. In canonical analysis one first finds the within-class scatter and the among-class scatter matrices S_{w} and S_{a} respectively :

$$
\begin{equation*}
S_{w}=\sum_{i=1}^{L} \frac{\left(N_{i}-1\right)}{N_{s}} * S_{i} \tag{3.5}
\end{equation*}
$$

where N_{i} is the number of samples of the $i^{\text {th }}$ class data and N_{s} is the total number of samples of the ensemble. And,

$$
\begin{equation*}
S_{a}=\frac{1}{L} \sum_{i=1}^{L}\left(M_{i}-M_{0}\right)\left(M_{i}-M_{o}\right)^{\top} \tag{3.6}
\end{equation*}
$$

where M_{0} is the global mean, given by

$$
\begin{equation*}
M_{0}=\sum_{i=1}^{L} \frac{N_{i}}{N_{s}} * M_{i} \tag{3.7}
\end{equation*}
$$

The within class scatter matrix, S_{w}, is an average quantity that describes how closely the samples are distributed around their class means while the among class scatter matrix, S_{a}, is a quantity measuring the average degree of closeness between the ensemble mean and each class mean. The optimally separable feature is a feature such that S_{w} is minimized and S_{a} is maximized after the transformation. Define a quantity r and let the desired feature be vector d. Then the objective is to find the r and d that result in maximal class separability. That is,

$$
\begin{equation*}
r=\frac{d^{\top} S_{a} d}{d^{\top} S_{w} d} \tag{3.8}
\end{equation*}
$$

must be maximized. The ratio of variances in the new space is maximized by the selection of feature \mathbf{d} if,

$$
\begin{equation*}
\frac{\partial \mathbf{r}}{\partial \mathbf{d}}=0 \tag{3.9}
\end{equation*}
$$

The above equation can be reduced to

$$
\begin{equation*}
\left(S_{a}-r * S_{w}\right)^{*} d=0 \tag{3.10}
\end{equation*}
$$

which is called a generalized eigenvalue equation and must be solved now for the unknown \mathbf{r} and \mathbf{d}. The first canonical axis will be in the direction of \mathbf{d}, and \mathbf{r} will give the associated ratio of among-class to within-class variance for that axis.

The development to this stage is usually referred to as discriminant analysis. One more step is included in the case of canonical analysis where the derived canonical features are normalized with respect to the within class scatter matrix. That is,

$$
\begin{equation*}
D^{\top} * S_{W}^{*} D=I \tag{3.11}
\end{equation*}
$$

where D is the matrix of canonical features d. This says that the within class scatter matrix after the transformation must be the identity matrix. In other words, after transformation, the classes should appear spherical.

CHAPTER IV
 RESULTS AND DISCUSSIONS

In the previous chapter, we have introduced the four spectral feature design techniques developed in the course of this research. Six preliminary test data sets in Kansas and North Dakota were used to test the schemes. From a simplicity and effectiveness point of view, the infinite clipped optimal transform is chosen as the better means for data preprocessing. Furthermore, canonical analysis is applied to the above received transformed data on the ground station to achieve the maximal class separability. In this chapter, both the vegetation and the soil data will be used to find the classification performance for the final spectral feature design system. The spectral range for the vegetation data is from $0.4 \mu \mathrm{~m}$ to $2.4 \mu \mathrm{~m}$ with resolution $0.02 \mu \mathrm{~m}$ while the range for the soil data is from $0.45 \mu \mathrm{~m}$ to $2.45 \mu \mathrm{~m}$ with resolution $0.01 \mu \mathrm{~m}$. Therefore the dimensionality for the vegetation data and the soil data is 100 and 200 respectively. The final results of these data will be presented in section 4.1 and 4.2. Moreover, due to the limited sample size of the data set to estimate the covariance matrix, different degree of Hughes phenomenon occurs in some of the one-day Kansas and North Dakota vegetation data sets as well as in all soil data sets. This effect will be discussed in section 4.3.

4.1 Vegetation Data

Four sets of multitemporal multispectral data collected in Kansas, North Dakota, lowa and South Dakota are acquired to test the proposed spectral feature design system. Table 4.1 show the species, the dates on which the data were collected, and the total numbers of sample functions for each information class. In Table 4.1, the numbers appearing in the parentheses are the total numbers of sample functions collected for that class. Furthermore, W.Wheat and S.Wheat stand for winter wheat and spring wheat respectively.

Figure 4.1 to 4.6 show the probability of correct classification, Pc, using the optimal features, infinite clipped optimal features and features that are derived from infinite clipped optimal transform and canonical analysis for the six preliminary test data sets. These 6 data sets are part of the multitemporal data in Kansas and North Dakota (referring to Table 1.1 and Table 4.1). Each one of them consists of the sample functions collected on one single date and has 3 informational classes. The results indicate that using the first 16 infinite clipped versions of the optimal functions, 95% classification accuracy can be achieved.

Another important point is the occurrence of Hughes phenomenon $[42,43]$ shown in Figure 4.1 to 4.4 . It says that for data set $K 1, K 2, K 3$ and $N 1$, increasing the computational complexity [11] does not always increase the classification performance. For example, Figure 4.1 shows that canonical analysis improves the accuracy for the first 3 features, but it does not help beyond this complexity for data set K1. Figure 4.2 to 4.4 show that canonical analysis can only have better performance for the first 4 features for data sets $K 2, K 3$ and $N 1$ respectively.

For data set N2 and N3, it is found in Figure 4.5 and 4.6 that Hughes phenomenon does not occur, and the classification performance using the features derived from infinite clipped optimal transform and canonical analysis is always better than those of the optimal features and the infinite clipped optimal features. It is also shown that only 2 features are needed to have about 94% and 99% classification accuracy for these 2 data sets respectively.

Figure 4.7 and 4.8 show the results for Kansas and North Dakota multitemporal data. Each one has 9 information classes collected on 3 different dates from 1976 to 1977. The results indicate that canonical analysis improves the accuracy by about 15% to 25% for the first feature and about 1% for the first 16 features. Figure 4.9 is the results of Kansas and North Dakota combined data with 18 information classes. It is used to show the robustness property of this spectral feature design system. The results show that the technique is not overly sensitive for spatially and temporally combined data.

Figure 4.10 and 4.11 are the results for 25 -class lowa and 42 -class South Dakota multi-temporal data. They are used to show the capability of this spectral feature design system for complex data sets. It can be seen that the system is very successful in this respect.

Table 4.1 : Vegetation Data Sets. Numbers in the parenthesis are the total numbers of samples.

Kansas Vegetation Data Set : 9 classes

$9 / 28 / 76$	$5 / 3 / 77$	$6 / 26 / 77$
W.Wheat (141)	W.Wheat (658)	W.Wheat (677)
Summer Fallow (414)	Summer Fallow (211)	Summer Fallow (643)
Sorghum (277)	Unknown Class (682)	Sorghum (157)

North Dakota Vegetation Data Set : 9 classes

$5 / 8 / 77$	$6 / 29 / 77$	$8 / 4 / 77$
S.Wheat (664)	S.Wheat (787)	S.Wheat (931)
Summer Fallow (437)	Summer Fallow (291)	Summer Fallow (330)
Pasture (164)	Pasture (161)	Pasture(183)

Iowa Vegetation Data Set : 25 classes collected on 9 different dates of 1979;

| $5 / 15 / 79$ | $5 / 23 / 79$ | $6 / 11 / 79$ | $6 / 29 / 79$ | $7 / 16 / 79$ | $7 / 17 / 79$ | $8 / 30 / 79$ | $10 / 25 / 79 / 11 / 2 / 79$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Corn | Corn
 (514) | Com | Corn | Corn | Corn | Corn | Corn | Corn |
| | Soybeans | (621) | (610) | (437) | (190) | (650) | (435) | (393) |
| | (36) | (517) | Soybeans
 (485) | Soybeans
 (377) | Soybeans
 (172) | Soybeans
 (568) | Soybeans
 (417) | Soybeans
 (267) |
| Oats | |
| (41) | (32) | (45) | (21) | (22) | (25) | (42) | (44) | |

South Dakota Vegetation Data Set : 42 classes collected on 6 different dates of 1978 and 1979

9/21/78	10/26/78	6/1/79	6/21/79	7/25/79	8/11/79
Pasture (225)	Pasture (217)				
Alfalfa (61)	Alfalta (51)			Alfalfa (45)	Alfalta (42)
W.Wheat (292)	W. Wheat (393)				
S.Wheat (469)	S.Wheat(441)	S.Wheat(118)	S.Wheat(121)	S.Wheat (102)	S.Wheat (119)
Barley (82)	Barley (80)	Barley (43)	Barley (44)	Barley (66)	Barley (69)
Oats (182)	Oats (88)			Oats (89)	Oats (76)
IdleLand (63)					
Sorghum (103)	Sorghum (88)			Sorhgum (78)	Sorhgum (96)
Sunflower (39)	Sunflower (41)			Sunflower (53)	Sunflower (107)
Com (39)	Com (32)			Corn (147)	Com (154)
	Millet (26)			Millet (39)	Millet (28)
				Safflower (24)	Safflower (19)

Figure 4.1 Classification Performance for Data Set K1

Figure 4.2 Classification Performance for Data Set K2

Figure 4.3 Classification Performance for Data Set K3

Figure 4.4 Classification Performance for Data Set N1

Figure 4.5 Classification Performance for Data Set N2

Figure 4.6 Classification Performance for Data Set N3

Figure 4.7 Classification Performance for Kansas Multitemporal Data Set

Figure 4.8 Classification Performance for N. Dakota Multitemporal Data Set

Number of Features

Figure 4.9 Classification Performance for KS/ND Combined Data Set

Figure 4.10 Classification Performance for Iowa Multitemporal Data Set

Figure 4.11 Classification Performance for S. Dakota Multitemporal Data Set

4.2 Soil Data

In addition to the above FSS vegetation data, a soil data base with 571 soil samples collected by Eric Stoner [45] in 1979 was acquired to test the system. The soil reflectance functions were measured by an EXOTECH-C spectrometer in the laboratory. In this research, five data sets grouped by soil order, organic matter content \#1, organic matter content \#2, Iron oxide content and soil texture $[46-50]$ were formed respectively to test the spectral feature design system. They are designated as data sets SO, OM1, OM2, IO and ST respectively. It should be noted that the same soil samples are used in the data sets, but they are only grouped differently into classes. The soil data set designated as organic matter content \#1 is from the soil orders Mollisol and Alfisol [48] only, while the soil data set designated as organic matter content \#2 is from all soil orders. These 5 soil data sets are shown in Table 4.2

Table 4.2(a) shows the 10 soil orders in American Soil Taxonomy [48]. Since the total numbers of sample functions for Spodosol, Vertisol, Histosol and Oxisol are very limited, in this research, these soils are not used to form the data set SO. Only the data in the first 6 soil orders are included in SO. Table $4.2(b)$, (c) and (d) indicate the ranges of organic matter content \#1, organic matter content \#2 and iron oxide content respectively. Six classes are chosen in these 3 data sets: OM1, OM2 and IO. Table 4.2(e) shows the 6 soil texture classes used in data set ST where some of the classes consist of more than one soil texture group. For example, class 1 in data set ST includes clay and silty clay; class 2 includes sandy clay loam, clay loam and silty clay loam; etc.

The results of these 5 soil data sets are shown in Figure 4.12 to 4.16. Taking a general view of these graphs, it is found that the cumulative
performances of these soil data sets are less like a standard error function compared to those found in vegetation data sets (referring to Figure 4.1 to 4.11). The reason for this is that the total numbers of sample functions used to estimate the covariance matrices in the soil data sets are very limited, from a little more than the dimensionality in data set OM1, that is, 255 sample functions with dimensionality 200 , to about 2.5 times the dimensionality in SO, OM2, 10 and ST, that is about 500 sample functions for each data set; while on the other hand at least 8 times the dimensionality are available in the vegetation data sets. For example, the smallest data set K1 has 832 sample functions with dimensionality 100 and data sets other than K1 have more than 1000 sample functions to estimate the covariance matrix. Therefore, the estimates of the covariance matrices for the vegetation data sets are likely to be much more accurate than those for the soil data sets. The subsequent Gaussian model thus becomes more valid for the vegetation data and the cumulative classification curves are more like a standard error function.

Furthermore, Figure 4.12 to 4.16 show that the infinite clipped optimal functions are very effective to extract the information for soil classification. For instance, Figure 4.12 to 4.13 indicate that using the first 16 infinite clipped optimal functions, over 90% accuracy can be achieved while Figure 4.14 to 4.16 tell that over 85% accuracy is obtained. Due to the limited sample size for each of the soil data sets, different degrees of the Hughes phenomenon occur. Figure 4.12 to 4.14 show that canonical analysis improves the performance for the first 5 features while Figure 4.15 to 4.16 show that improvement is possible up to the first 7 features.

Table 4.2 Soil Data Sets :
(a) SO by Soil Order

Sample size for the first 6 classes : 479

class \#	Order Name	\# of Sample Functions
1	Mollisol	154
2	Alfisol	113
3	Entisol	78
4	Aridisol	52
5	Ultisol	45
6	Inceptisol	37
7	Spodosol	30
8	Vertisol	11
9	Histosol	8
10	Oxisol	11
11	Unclassified	32

(b) OM1 by Organic \#1

Soil from Mollisol and Alfisol only. Sample size : 255

Class \#	Organic Matter Range \%	\# of Sample Functions
1	$0.11 \sim 1.5$	51
2	$1.5 \sim 2.0$	54
3	$2.0 \sim 2.5$	33
4	$2.5 \sim 3.5$	45
5	$3.5 \sim 5.0$	39
6	$5.0 \sim 10.12$	33

(c) OM2 by Organic \#2

Soil from all orders. Sample size : 514

Class \#	Organic Matter Range $\%$	\# of Sample Functions
1	$0.08 \sim 1.0$	82
2	$1.0 \sim 2.0$	135
3	$2.0 \sim 3.0$	120
4	$3.0 \sim 4.0$	54
5	$4.0 \sim 6.0$	59
6	$6.0 \sim 84.79$	64

Table 4.2, continued

(d) 10 by Iron Oxide Content

 Sample size : 467| Class \# | Iron Oxide Range \% | \# of Sample Functions |
| :---: | :---: | :---: |
| 1 | $0.02 \sim 0.4$ | 102 |
| 2 | $0.4 \sim 0.6$ | 73 |
| 3 | $0.6 \sim 0.8$ | 69 |
| 4 | $0.8 \sim 1.2$ | 105 |
| 5 | $1.2 \sim 1.6$ | 52 |
| 6 | $1.6 \sim 25.6$ | 66 |

(e) ST by Soil Texture

Total sample size : 483 excluding the unclassified

Class \#	Soil Texture Group/Groups	\# of Sample Function	Class Sample Size
$\mathbf{1}$	Clay	19	
	Silty Clay	21	40
$\mathbf{2}$	Sandy Clay Loam	6	
	Clay Loam	25	63
	Silty Clay Loam	32	
$\mathbf{3}$	Coarse Sand	3	
	Large Coarse Sand	6	
	Sand	13	
	Large Sand	16	76
	Large Fine Sand	18	
	Fine Sand	20	
$\mathbf{4}$	Coarse Sandy Loam	5	93
	Very Fine Sandy Loam	12	68
	Sandy Loam	24	
5	Fine Sandy Loam	52	143
6	Loam	68	88
7	Silt	4	

Figure 4.12 Classification Performance for Soil Data Grouped by Soil Order

Soil Data Set Grouped by Organic Matter\#1

Figure 4.13 Classification Performance for Soil Data Grouped by Organic \#1

Soil Data Set Grouped by Organic Matter\#2

Figure 4.14 Classification Performance for Soil Data Grouped by Organic \#2

Soil Data Set Grouped by Iron Oxide Content

Figure 4.15 Classification Performance for Soil Data Grouped by Iron Oxide

Soil Data Set Grouped by Soil Texture

Figure 4.16 Classification Performance for Soil Data Grouped by Soil Texture

4.3 Hughes Phenomenon

In 1968, Hughes [42] showed theoretically that the mean recognition accuracy for the statistical pattern classifiers did not always increase as the measurement complexity increased so long as the number of training samples was fixed and finite. This result was experimentally demonstrated in a remote sensing context by Fu, Landgrebe and Phillips [43] in 1969. The conclusion of these investigations was that for a fixed number of training samples, there is an optimal measurement complexity. More complexity is undesirable from the standpoint of expected classification accuracy.

Kalayeh, Muasher and Landgrebe $[51,52$] developed a criterion to predict the occurrence of the Hughes phenomenon. They suggested that a number of sample functions equal to about 8 to 10 times the dimensionality must be available for the ensemble in order to avoid the Hughes phenomenon.

In this section, four experiments are described to show that the Hughes phenomenon did occur in the data sets with limited training samples. The data sets K1 and N2 were chosen for this purpose because K1 has the least training samples (referring to Table 1.1) among all vegetation data sets and N 2 (referring to Figure 4.5) indicated some possibility for the occurrence of the Hughes phenomenon. Tables 4.3(a) to (d) show the data used for these 4 experiments and Figures 4.17 to 4.20 show the results. In the above tables and figures, K 1 H and N 2 H are the data sets with about one half of the original training samples while K1Q and N2Q represent those with approximately one quarter of the training samples.

Figure 4.17 and 4.18 show that for data set K 1 , the Hughes phenomenon has occurred (referring to Figure 4.1). If the size of the training samples is reduced to half or even to quarter, the effect of this phenomenon becomes more and more serious. On the other hand, for data set N2, there is no Hughes phenomenon (referring to Figure 4.5). If the size of the training samples becomes one half of the original N 2 , the Hughes phenomenon might or might not occur. Figure 4.19 indicates that for data set N 2 , reducing the size of the training samples to approximately one half, that is 630 samples with dimensionality 100 , the estimate of covariance matrix is still accurate enough, and the Hughes phenomenon does not occur.

However, if the training size of the data set N 2 is reduced to one quarter, the Hughes phenomenon does occur. Figure 4.20 says that the optimal number of features in this data set N2Q with 315 training samples is only 2. The maximal classification accuracy that can be achieved is about 85%. Furthermore, more than 2 features used for classification would not help the performance and in some cases even reduce the accuracy.

The four experiments in this section indicate that for data set K1, more than 832 samples are needed in order to avoid the effect of Hughes phenomenon; on the other hand, for data set $\mathrm{N} 2,1239$ samples are enough to accurately estimate the covariance matrix. From the classification performances of data sets $\mathrm{K} 1, \mathrm{~K} 2, \mathrm{~K} 3$ and N 1 , shown in Figure 4.1 to 4.4 , it is suggested that more than 15 times dimensionality sample functions may be required to avoid the effect of the Hughes phenomenon.

Table 4.3 Data Sets Used to Test the Occurrence of the Hughes Phenomenon :
(a) Kansas September Data With Half Training Samples :

Data Set K1H

K1H	Winter Wheat	Summer Fallow	Grain Sorghum	Total Samples
Training	70	200	140	410
Testing	71	214	137	412
Total	141	414	277	832

(b) Kansas September Data With Quarter Training Samples : Data Set K1Q

K1Q	Winter Wheat	Summer Fallow	Grain Sorghum	Total Samples
Training	35	100	70	205
Testing	106	314	207	627
Total	141	414	277	832

(c) North Dakota June Data With Half Training Samples : Data Set N2H

N2H	Spring Wheat	Summer Fallow	Natural Pasture	Total Samples
Training	400	150	80	630
Testing	387	141	81	609
Total	787	291	161	1239

(d) North Dakota June Data With Quarter Training Samples : Data Set N2Q

N2Q	Spring Wheat	Summer Fallow	Natural Pasture	Total Samples
Training	200	75	40	315
Testing	587	216	121	924
Total	787	291	161	1239

Figure 4.17 First Experiment of the Hughes Phenomenon : Data Set K1H

Figure 4.18 Second Experiment of the Hughes Phenomenon : Data Set K1Q

Figure 4.19 Third Experiment of the Hughes Phenomenon : Data Set N2H

Figure 4.20 Fourth Experiment of the Hughes Phenomenon : Data Set N2Q

4.4 Signal to Nolse Ratio Considerations

In the previous sections, the classification results obtained by using the spectral features developed in this research are presented for 100 dimensional FSS vegetation data and 200 dimensional Exotech-C soil data. It is found (referring to Figure 4.1 to 4.16) that about 10 to 1 compression ratio can be achieved while maintaining satisfactory classification accuracy. One question an Earth scientist user of the algorithm may have is that the 10 to 1 downlink data rate reduction is not at a severe cost to the usefulness of the data. Thus, in this section, we will discuss the data volume reduction issue from the Earth scientist point of view, that is, from signal-to-noise ratio considerations.

Weighted Karhunen-Loeve transform rotates the original N -dimensional signal space to a more favorable orientation. This orientation is one in which the source energy is redistributed such that a larger percentage of the energy is distributed over fewer coordinates. Table 4.4 and Figure 4.21 show how the source energy is redistributed over the first 25 transformed coordinates for 100 dimensional vegetation data set K2.

In Table 4.4, the first row shows that the magnitude of the total source energy is 3497, which is the sum of all eigenvalues; Further, the mean square representation error (MSE) and percent mean square representation error (\%MSE) are 3497 and 100% respectively if 'none' of the optimal feature is used to transform the data. The second row indicates that the magnitude of the first eigenvalue is 2779.8; If the first optimal feature is used to transform the data, the representation error and percent representation error will be 717 and 20.5% respectively, that is, the first transformed coordinate contains about 79.5%
source energy in it. Similarly, it can be found that using the first 2 optimal features, about 97.5% of the total source energy can be preserved, and using the first 10 optimal features to transform the data in the measurement space, the percent mean square representation error, that is 0.17%, is indeed negligible. Figure 4.21 shows graphically how fast the representation error can be reduced by using the first few optimal features. It should be noticed that the representation error (MSE) is plotted in logarithmic scale.

The practical values of the signal to noise ratio in a typical remote sensing system are from 50 to 200 in most of the 0.4 to $2.5 \mu \mathrm{~m}$ spectrum range [1]. This indicates that the maximal noise level in the system is only $1 / 50$, that is, 2%. Since using the first 10 optimal features derived from the Weighted K-L transform preserves almost all the signal energy in the original measurement space; Further, the representation error level is 0.17% which is much lower than the noise level in the system. Hence, the effect on the signal to noise ratio due to compression is quite limited even as the signal to noise ratio is down to 20. Therefore, a data volume reduction by a factor of 10 is achieved with essentially no loss of information.

Table 4.4 Mean Square Representation Error for Data Set K2

Eigenvalue	Magnitude of Eigenvalue	Mean Square Emror	\% Mean Square Error
0	3497.0691	3497.0691	100.0000
1	2779.8821	717.1870	20.5082
2	627.0327	90.1543	2.5780
3	39.0218	51.1325	1.4622
4	18.4108	32.7217	0.9357
5	14.0425	18.6792	0.5341
6	4.9193	13.7599	0.3935
7	2.5450	11.2149	0.3207
8	1.8422	9.3727	0.2680
9	1.7561	7.6166	0.2178
10	1.3731	6.2435	0.1785
11	0.8927	5.3508	0.1530
12	0.8225	4.5283	0.1295
13	0.6291	3.8993	0.1115
14	0.4818	3.4175	0.0977
15	0.4498	2.9676	0.0849
16	0.3778	2.5898	0.0741
17	0.3469	2.2429	0.0641
18	0.3266	1.9163	0.0548
19	0.2328	1.6835	0.0481
20	0.2192	1.4643	0.0419
21	0.1696	1.2947	0.0370
22	0.1499	1.1448	0.0327
23	0.1268	1.0181	0.0291
24	0.1174	0.9006	0.0258
25	0.0904	0.8103	0.0232

Figure 4.21 Mean Square Representation Error for Data Set K2

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The fundamental objective of this research is to develop an objective and practical spectral feature design technique for high dimensional multispectral data. In this thesis, four spectral feature design techniques have been developed. Two of them, non-overlapping band feature selection algorithm and overlapping band feature selection algorithm, are derived from the spectral dominancy concept of the optimal functions; the other two, Walsh function approach and infinite clipped optimal function approach, are derived from the spectral similarity concept of the optimal functions. These four approaches have been proved effective for data compression and classification purposes in high dimensional multispectral data.

A comparison among these four techniques indicates that the infinite clipped optimal function approach is the best scheme since the features are easiest to find and their classification performance is the best under the same compression requirement. This technique approximates the spectral structure of the optimal features via infinite clipping and results in transform coefficients which are either $+1,-1$ or 0 . Therefore the necessary processing can be easily implemented on-board the spacecraft by using a set of programmable adders that operate on the grouping instructions received from the ground station.

After the preprocessed data has been received, canonical analysis is further used to find the best set of features under the criterion that maximal class separability is achieved

Both vegetation and soil data have been tested in this research. For vegetation data, four sets of multitemporal multispectral vegetation data collected in Kansas, North Dakota, lowa and South Dakota respectively with 9 to 42 information classes in 1976 to 1979 are used to test the spectral feature design system. One spatially and temporally combined data set is also formed by combining the Kansas and North Dakota Data sets to test the robustness property of the scheme. The results indicate that the system is not overly sensitive to spatial and temporal variation.

Furthermore, a soil data base collected by Eric Stoner in 1979 was also acquired and used to test the system. In this research, five different soil data sets grouped by the soil order, organic content \#1, organic content \#2, iron oxide content and soil texture are formed. The classification performances are then found. It is shown that soil order, organic content percentage, iron oxide content percentage and soil texture can be delineated and predicted by the proposed technique.

It is concluded that the infinite clipped versions of the first 16 optimal functions derived from the Weighted Karhunen-Loeve Transform have excellent classification performance. Further signal processing by canonical analysis increases the compression ratio while retains the classification accuracy. The overall probability of correct classification of the proposed system is over 90% while providing for a reduced downlink data rate by a factor of 10 .

5.2 Recommendations

The spectral feature design system developed in this research has been demonstrated for the FSS vegetation data and the Exotech-C soil data. In the future, it is proposed to test AVIRIS and HIRIS data. The following procedure is recommended :
(A) Pre-Flight Stage:
(1) Collect enough representable samples from all reference sources available, for example, the field data base collected in the past, to form the ensemble of a specific problem (Ground Truth Gathering)
(2) Calculate the mean vector and covariance matrix of this ensemble
(3) Find the eigenvectors of the covariance matrix
(4) Run the spectral feature design system on the ground to find the grouping coefficients (either $+1,-1$, or 0)
(B) On-Board Preprocessing Stage :
(5) Send up these grouping coefficients (instructions) to the spacecraft for on-board data preprocessing
(C) Post-Flight Stage :
(6) Receive the preprocessed low dimensional data
(7) Run the spectral feature design system on the ground to find the canonical features
(8) Use these canonical features to further transform the received data into the final signal space where the data classification is performed

In this procedure, there are basically 3 processing stages involved : pre-flight stage, on-board preprocessing stage and post-flight stage. The preflight stage, which consists of step 1 to step 4, is used to gather ground truth information, estimate ensemble statistics and find appropriate grouping coefficients from one of the four developed schemes. This stage would be done before the data take by the aids of aerial photography, topographical maps, historical information, field data base collected in the past or other reference sources available. One more comment about this stage is the problem of the sample size, it is suggested from the experience in this research that the total number of samples used to estimate the ensemble statistics needs to be at least 15 times their signal dimensionality in order to accurately estimate the covariance matrix.

The second stage, on-board preprocessing stage, which contains step 5, performs band groupings on board the spacecraft, either summing $(+1)$, subtracting (-1) or omitting (0) bands for each spectral function according to the grouping instructions sent by the ground user. Since this data preprocessing stage would be done on board the spacecraft, from implementation point of view, the algorithm simplicity is then required and important. The spectral feature design system developed in this research makes this simplicity possible. Figure 1.1 shows how the data preprocessing can be implemented on board the spacecraft by a set of programmable adders.

Finally, the post-flight stage, which includes step 6 to step 8 , is applied to further process the received transformed data such that the maximal class
separability is achieved. Since this stage and the pre-flight stage would be done at the ground station, the algorithm simplicity is therefore less important than that in the on-board preprocessing stage. Hence, it might be more effective to use the overlapping band feature selection algorithm to design the features in some future situations although it's the most complex among the four techniques developed in this research.

LIST OF REFERENCES

[1] A. F. H. Goetz and M. Herring, "The High Resolution Imaging Spectrometer (HIRIS) for EOS," Proceedings of IGARSS '87 Symposium, pp 367-372, Ann Arbor, 18-21 May 1987.
[2] C. L. Korb, "Physical Considerations in the Channel Selection and Design Specification of an Airborne Multispectral Scanner," Purdue Centennial Year Symposium on Information Processing, Purdue University, West Lafayette, Indiana, pp 646-657, 1969
[3] R. L. Hulstrom, "Spectral Measurements and Analyses of Atmospheric Effects on Remote Sensor Data," Proceedings of the Society of PhotoOptical Instrument Engineers, Vol. 51, Scanners and Imagery Systems for Earth Observation, San Diego, California, pp 90-100, 1974
[4] J. L. Harnage and D. A. Landgrebe, "Landsat-D Thematic Mapper Technical Working Group - Final Report," NASA/Johnson Space Center Report No. JSC-90797, Houston, Texas, 1975
[5] G. A. May and G. W. Petersen, "Spectral Signature Selection for Mapping Unvegetated Soils," Remote Sensing of Environment, Vol. 4, pp 211220, 1975.
[6] L. A. Bartolucci, B. F. Robinson, and L. F. Silva, " Field Measurements of the Spectral Response of Natural waters, " Photogrammetric Engineering and Remote Sensing, Vol. 43, pp 595-598, 1977.
[7] D. A. Landgrebe, L. L. Biehl and W. R. Simmons, "An Empirical Study of Scanner System Parameters, " IEEE Transaction on Geoscience Electronics, Vol. GE-15, pp 120-130, 1977
[8] M. E. Coggeshall and R. M. Hoffer, "Basic Forest Cover Mapping Using Digitized Remote Sensor Data and Automatic Data Processing Techniques," LARS Information Note 030573, Laboratory for Application of Remote Sensing, Purdue University, West Lafayette, Indiana, 1973
[9] R. K. Vincent and F. Thompson, "Spectral Compositional Imaging of Silicate Rocks, " J. of Geophysics, Res., Vol. 77, pp 2465-2472, 1972.
[10] W. A. Malila, J. M. Gleason, and R. C. Cicone, "Multispectral System Analysis through Modeling and Simulation," Proceedings of 11th International Symposium on Remote Sensing, Ann arbor, Michigan, pp 1319-1328, 1977.
[11] P. H. Swain and S. M. Davis, Remote Sensing : the Quantitative Approach, McGraw-Hill, New York, 1978.
[12] E. R. Wiswell, " Analytical Techniques for the Study of Some Parameters of Multispectral Scanner Systems for Remote Sensing," Ph.D thesis, Purdue University, West Lafayette, Indiana, 1978.
[13] R. Ash, Information Theory, Wiley Interscience, New York, 1967
[14] D. J. Wiersma and D. A. Landgrebe, "Analytical Design of Multispectral Sensors," IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-18, No. 2, pp 180-189, 1980.
[15] D. J. Wiersma, "The Analytical Design of Spectral Measurements for Multispectral Remote Sensor System," Ph.D. dissertation, Purdue University, 1979
[16] K. Karhunen, "Uber Lineare Methoden in der Wahrscheinlichkeitsrechnung," American Acad. Sci. Fennicade, Ser. A, I, Vol. 37, pp 3-79, (Translated by RAND Corp., Santa Monica, Calif., Rept. T-131, August 1960).
[17] M. Loeve, " Probability Theory," Princeton, N. J., Van Nostrand, 1963.
[18] H. L. VanTree, Detection, Estimation, and Modulation Theory-Part I, New York: Wiley, 1968
[19] L. E. Franks, Signal Theory, Dowden \& Culver, 1981.
[20] K. G. Beauchamp, Walsh Functions and their Applications, Academic Press, New York, 1975
[21] B. Pyron and F. Williams, Jr., "Signal Processing by Infinite Clipping and Related Techniques," Georgia Institute of technology, Atlanta, Georgia, Final Report, Project A-727, U.S. Government Contract DA 49-092-ARO21, April 1964
[22] B. Noble and J. W. Daniel, Applied Linear Algebra, Prentice-Hall, N. J., 1977.
[23] L. L. Biehl, "Listing of LARSPEC Formatted Field Research Spectroradiometer-Multiband Radiometer, " Internal Paper, Laboratory of Application of Remote Sensing, Purdue University, West Lafayette, Indiana, Jan. 1983.
[24] B. H. Bharucha and T. T. Kadota, "On the representation of Continuous Parameter Process by a Sequence of Random Variables," IEEE Transaction on Information Theory, Vol. IT-16, pp 139-141, 1970.
[25] S. Watanabe, "Karhunen-Loeve Expansion and Factor Analysis, Theoretical Remarks and Applications," Proceedings of the Four Prague Conference on Information Theory, Statistical Decision Functions, and Random Processes," Prague, pp 635-660, 1965.
[26] Y. T. Chien and K. S. Fu, "On the Generalized Karhunen-Loeve Expansion," IEEE Transaction on Information Theory, Vol. IT-13, pp 518520, July 1967.
[27] J. T. Oden, Applied Functional Analysis, Prentice-Hall, N. J., 1979.
[28] R. W. A. Scarr, "Zero Crossing as a Means of Obtaining Spectral Information in Speech Analysis," IEEE Transaction on Audio and Electroacoustics, Vol. AU-16, No. 2, pp 247-255, June 1968.
[29] G. D. Ewing and J. F. Taylor, "Computer Recognition of Speech Using Zero-Crossing Information, " IEEE Transactions on Audio Electroacoustics, Vol. AU-17, pp37-40, Mar. 1969
[30] R. J. Niederjohn, M. W. Krutz and B. M. Brown, " An Experimental Investigation on the Perceptual Effects of Altering the Zero-Crossing of a Speech Signal ", IEEE Transaction on Acoustics, Speech, and Signal Processing, Vol. ASSP-35, No. 5, pp618-625, May 1987
[31] F. E. Bond and C. R. Cahn, "On Sampling the Zeros of Bandwidth Limited Signals," IRE Transaction on Information Theory, Vol. IT-4, pp 110-113, September 1958.
[32] M. S. Scivier and M. A. Fiddy, "Phase Ambiguities and the Zeros of Multidimensional Band-limited Functions," Optical Society of America, Vol. 2, No. 5, pp 693-697, May 1985.
[33] R. J. Niederjohn, " A Mathematical Formulation and Comparison of ZeroCrossing Analysis Techniques Which Have Been Applied to Automatic Speech Recognition," IEEE Transaction on Acoustics, Speech and Signal Processing, Vol. ASSP-23, No. 4, pp 373-380, August 1975.
[34] K. Fukunaga, Introduction to Statistical Pattern Recognition, New York: Academic, 1972
[35] C-C Thomas Chen and D. A. Landgrebe, "Spectral Feature Design for Data Compression in High Dimensional Multispectral Data ", 1987 International Geoscience and Remote Sensing Symposium ('87 IGARSS), pp 685-690, May 1987
[36] T.W. Anderson, An Introduction to Multivariate Statistical Analysis, New York, Wiley 1978
[37] John A. Richards, Remote Sensing Digital Image Analysis, An Introduction, Springer Verlag, pp 206-224.
[38] H.M. Lachowski, " Canonical Analysis Applied to Interpretation of Multispectral Scanner Data ", MS Thesis, Pennsylvania State University, University Park, PA, 1973
[39] B.F. Merembeck and F.Y. Borden, " Principal Component and Canonical Analysis for Reduction of Dimensionality of the Large Data Sets", ORSER Technical Report 5-78, Office for Remote Sensing of Earth Resources, Pennsylvania State University, University Park, PA, 1978
[40] B.F. Merembeck, F.Y. Borden, M.H. Podwysocki and D.N. Applegate, " Application of Canonical Analysis to Multispectral Scanner Data ", Proceedings, the 14th Annual Symposium on Applications of Computer Methods in the Mineral Industries, Oct. 4-8, University Park, PA, pp867879, 1976
[41] B.F. Merembeck \& B.J. Turner, "Directed Canonical Analysis and the Performance of the Classifiers under its associated Linear Transformation," IEEE Transaction on Geoscience and Remote Sensing, GE-18, 190-196, 1980.
[42] G.F. Hughes, " On the Mean Accuracy of Statistical Pattern Recognizers ", IEEE Transaction on Information Theory, vol. IT-14, no. 1, pp55-63, 1968
[43] K.S. Fu, D.A. Landgrebe and T.L. Phillips, " Information Processing of Remotely Sensed Agriculture Data ", Proceedings of IEEE, vol. 57, no. 4, pp639-653, 1969
[44] Davenport and Root, Random Signals and Noise, McGraw-Hill Book Co., 1958
[45] Eric Stoner, " Physicochemical, Site, and Bidirectional Reflectance Factor Characteristics of Uniformly-Moist Soils ", Ph.D. Dissertation, Department of of Agronomy, Purdue University, 1979
[46] Soil Survey Staff, " Soil Taxonomy - A basic system of soil classification for making and interpreting soil survey ", Soil Conservative Service, US Department of Agriculture, Agriculture Handbook No. 436, Washington, DC, 1975
[47] Eric Stoner, " Atlas of Soil Reflectance Properties ", Agriculture Experiment Station, Research Bulletin, Purdue University, West Lafayette, Indiana, 1979
[49] Marion F. Baumgardner, LeRoy F. Silva, Larry L. Biehl, and Eric R. Stoner, " Reflectance Properties of Soils ", Purdue University, West Lafayette, Indiana, Advances in Agronomy, vol. 38, 1985
[50] R. M. Hoffer and C. J. Johannsen, Remote Sensing Ecology, P.L. Johnson, ed., pp1-29, University of Georgia Press, Athens, 1969
[51] A.J. Rainal, "Zero-Crossing Principle for Detecting Narrowband Signals, " IEEE Transaction on Instrumentation and Measurement, Vol. IM-15, pp38-43, March/June 1966
[52] A.J. Rainal, "Another Zero-Crossing Principle for Detecting Narrowband Signals," IEEE Transaction on Instrumentation and Measurement, Vol. IM-16, pp135-138, June 1967
[53] T. Masuda, H. Miyano, and T. Sadoyama, " The Measurement of Muscle Fiber Conduction Velocity Using a Gradient Threshold Zero-Crossing Method, " IEEE Transaction on Biomedical Engineering, Vol. BME-29, pp673-678, Oct. 1982
[54] H. B. Voelcker, " Zero-Crossing Properties of Angle Modulated Signals, " IEEE Transaction on Communication, Vol. COM-20, pp307-315, June 1972
[55] R. G. Wiley, H. Schwarzlander, and D. D. Weiner," Demodulation Procedure for Very Wide-band FM, " IEEE Transaction on Communication, Vol. COM-25, pp 318-327, March 1977
[56] R. M. Haralick, " Digital Step Edges from Zero-Crossing of Second Directional Derivatives, " IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, pp 58-68, Jan. 1984
[57] Courant and Hilbert, Mehods of Mathematical Physics, International Publisher Ltd, London, 1955

Appendix A IBM 3083 Macro File

```
/* RUN A FORTRAN PROGRAM USING IMSLSP OR IMSLDP SUBROUTINES */
ARG FN FN1 FN2 FN3 FN4 FN5 FN6 FN7 FN8 FN9 FN10 FN11
LINKTO IMSL
GLOBAL TXTLIB IMSLSP IMSLDP PFORTLIB VSF2FORT CMSLIB
GLOBAL LOADLIB VSF2LOAD
FORTVS2 FN
LOAD FN
FILEDEF 11 DISK FN1 DATA Cl
FILEDEF 12 DISK FN2 DATA Cl
FILEDEF 13 DISK FN3 DATA C1
FILEDEF 14 DISK FN4 DATA C1
FILEDEF 15 DISK FN5 DATA Cl
FILEDEF 16 DISK FN6 DATA C1
FILEDEF }17\mathrm{ DISK FN7 DATA. C1
FILEDEF }18\mathrm{ DISK FN8 DATA C1
FILEDEF 19 DISK FN9 DATA C1
FILEDEF 20 DISK FN10 DATA C1
FILEDEF 21 DISK FN11 DATA C1
START
```


Appendix B Spectral Feature Design System - Program Listing


```
        DO 50 K=1,NP2
    50 VCV (IND) =VCV (IND) + (X (K,I)*X (K,J) -XM (I) *XM (J))
    DO }60\textrm{I}=1,\textrm{NP}
    60 VCV (I) =VCV (I)/FLOAT (NP2-1)
    PRINT*,' COV. MATRIX FOUND '
C INTERNAL CHECKING FOR ALGORITHM ACCURACY
C INTERNAL CHECKING FOR ALGORITHM ACCURACY
C
    DO }80\mathrm{ I=1,NP1
    IND=I* (I+1)/2
    IF (VCV (IND).LT.0.0) GO TO 70
    GO TO 80
    70 WRITE (* , 2)I,VCV (IND)
    2 FORMAT('ACCURACY OF ALGORITHM IS POOR AT I =',I5,
        +' WHERE VCV(I,I) = ',E15.7)
        VCV (I) =-VCV (I)
        IFLAG1=IFLAG1+1
    80 CONTINUE
    PRINT THE COMMENTS FOR ACCURACY
    IF(IFLAG1.GT.0)GO TO 90
    PRINT*,' POSITIVE VARIANCES CHECK DONE '
    WRITE(*,4)
    GO TO 100
    90 WRITE (*,3) IFLAG1
        3 FORMAT(' THERE ARE ',I5,' VARIANCES LESS THAN O.0'')
        3 FORMAT(' THERE ARE ',I5,' VARIANCES LESS THAN 0.0'')
C
C SEND THE RESULTS TO OUTPUT DATA FILE
C
    100 DO 110 I=1,NP1/NF3
    110 WRITEE (12,5) (XM (J),J=1+ (I-1)*NF3,I*NF3)
    5 FORMAT (5E15.7)
        DO 120 I=1,NP3/NF3
    120 WRITE (12,5) (VCV (J), J=I + (I-1)*NF 3,I*NF 3)
        STOP
        END
```

 MV 00510
 MV 00520
 MV 00530
 MV 00540
 MV 00550
 MV 00560
 MV 00570
 MV 00580
 MV 00590
 MV 00600
 MV 00610
 MV 00620
 MV 00630
 MV 00640
 MV 00650
 MV 00660
 MV 00670
 MV 00680
 MV 00690
 MV 00700
 MV 00710
 MV 00720
 MV 00730
 MV 00740
 MV 00750
 MV 00760
 MV 00770
 MV 00780
 MV 00790
 MV 00800
 MV 00810
 MV 00820
 MV 00830
 MV 00840
 MV 00850
 MV 00860
 MV 00870
 MV 00880

EV 00010
C
C
EV 00010
EV 00020
EV 00030
EV 00040
EV 00050
EV 00060
EV 00070
EV 00080
EV 00090
EV 00100
EV 00110
EV 00120
EV 00130
EV 00140
EV 00150


```
            WRITE (* 8) TRACE,SUM EV 00740
            GO TO 110 EV 00750
    100 WRITE (*, 7) TRACE,SUM EV 00760
        7 FORMAT(' ACCURACY OF "EIGRS" IS POOR, TRACE =',E15.7,
        +' SUM =',E15.7) EV 00780
        8 FORMAT(' ACCURACY OF "EIGRS" IS GOOD, TRACE =',E15.7,
            +' SUM =',E15.7)
C
            C SEND THE RESULTS TO THE OUTPUT DATA FILE
C
    110 WRITE (12,9) TRACE, SUM
        9 FORMAT (2E15.7)
        DO 120 I=1,NP1/NF3
    120 WRITEE (12,1) (D (NP1+1-J),J=1+(I-1)*NF3,I*NF3)
        DO 130 J=1,NP1
        DO 130 I=1,NP1/NF3
130 WRITE (12,1)(Z (K,NP1+1-J),K=1+(I-1)*NF 3,I*NF 3) EV 00900
        STOP
        END
        EV 00770
        EV 00790
    EV 00800
EV 00840
    EV 00850
    EV 00860
EV 00810
EV 00820
EV 00830
EV 00870
EV 00880
EV 00890
EV 00910
EV 00920
    PROGRAM NOLBS BS 00010
    PARAMETER(NP1=100,NTERM=6,NV=50,NZ1=NP1*NV,N1=1,N2=100) BS 00020
C
C FOR FSS VEGETATION DATA : N1 = 1; N2 = 100
    FOR SOIL DATA : N1 = 4; N2 = 192
    BS 00030
    BS 00040
C
C
C
C
C
    FOR SOIL DATA ( FROM EFFECTIVE WAVELENGTH 0.52 TO 2.32UM:180 DIM )BS 00070
    N1=1, N2=180 BS 00080
    REAL X (NP1,NTERM),AVE (NP1),S1 (NP1), Z (NP1,NV)
    BS 00090
    BS 00100
    DATA Z/NZ1*0.0/
BS 00110
    NP1 : RAW DATA DIMENSIONALITY
    BS 00120
    BS 00130
    NTERM : TOTAL NUMBER OF OPTIMAL FUNCTIONS USED IN THE ALGORITHM BS 00140
    NV : PRESET MAX NUMBER OF N.O.L. BANDS, INCREASE IT IF NEEDED BS 00150
    N1 : THE STARTING WAVELENGTH POINT BS 00160
    N2 : THE ENDING WAVELENGTH POINT BS 00170
    X BS 00180
    X : EIGENVECTOR ( INPUT ) BS 00190
    AVE : AVERAGE OF THE FIRST 'NTERM' EIGENVECTORS BS 00200
    S1 : SIGNED VERSION OF AVE (NP1) BS 00210
    Z : DESIRED N.O.L. BAND FEATURES ( OUTPUT ) BS 00220
    BS BS 00230
    11 : INPUT EIGENVECTOR FILE; 12. : OUTPUT N.O.L. BAND FILE BS 00240
    BS 00250
        OPEN(11) BS 00260
        OPEN (12) BS 00270
        REWIND 11 BS 00280
        REWIND 12 BS 00290
        READ (11,*)X1,X2 BS 00300
        DO 10 I=1,NP1/5 BS 00310
    10 READ (11, \star) X1, X2, X3, X4, X5 BS 00320
C
BS 00330
```

CC	READ IN EIGENVECTORS	BS	00340
	READ IN EIGENVECTORS	BS	00350
	DO 20 ITERM $=1$, NTERM	BS	00360
	DO $20 \mathrm{~J}=1$, NP1/5	BS	00370
20	READ ($11, *$) (X (I, ITERM) , $\mathrm{I}=1+(\mathrm{J}-1) * 5, \mathrm{~J} * 5)$	BS	00380
		BS	00390
c	FIND THE AVERAGE Of THE FIRST 'NTERM' EIGENVECTORS AND	BS	00400
C	ITS SIGNED VERSION	BS	00410
C		BS	00420
	DO $40 \mathrm{~J}=1, \mathrm{NP1}$	BS	00430
	AVE (J) $=0.0$	BS	00440
	DO 30 ITERM $=1$, NTERM	BS	00450
30	AVE (J) $=$ AVE (J$)+\mathrm{X}(\mathrm{J}$, ITERM) /FLOAT (NTERM)	BS	00460
	IF (NP1.NE.100) GO TO 35	BS	00470
	IF (J.GE.45.AND.J.LE. 54) AVE (J) $=0.0$	BS	00480
	IF (J.GE. 70. AND.J.LE. 79) AVE (J) $=0.0$	BS	00490
35	IF (AVE (J) .LT 0.0) S1 (J) =-1.0	BS	00500
	IF (AVE (J).GT.0.0) SI (J) =1.0	BS	00510
	IF (AVE (J) . EQ O O O S S (J = =0.0	BS	00520
C 40	CONTINUE	BS	00530
		BS	00540
c	the next 3 LINES CAN BE USED TO PLOT AVE(I) AND S1(I)	BS	00550
c		BS	00560
c	D $50 \mathrm{I}=1, \mathrm{NP} 1$	BS	00570
C 50	WRITE (12,51) AVE (I) , I, Sl (I)	BS	00580
C 51	FORMAT (E15.7,I5, F5.0)	BS	00590
	IVEC=1	BS	00600
	$\mathrm{Z}(\mathrm{N} 1, \mathrm{IVEC})=\mathrm{ABS}(\mathrm{S} 1$ (N 1$)$)	BS	00610
C		BS	00620
c	FIND N.O.L. BAND FEATURES FROM S1	BS	00630
c		BS	00640
	DO $60 \mathrm{I}=\mathrm{N} 1+1$, N 2	BS	00650
	IF (NP1.NE.100) GO TO 55	BS	00660
	IF (I.GE.45.AND.I.LE.54)GO TO 60	BS	00670
	IF (I.GE.70.AND.I.LE.79) GO TO 60	BS	00680
55	IF (S1 (I-1).NE.S1 (I)) IVEC=IVEC+1	BS	00690
	WRITE ($12, *$ I, IVEC	BS	00700
	IF (IVEC.GE.NV) GO TO 120	BS	00710
	Z ($\mathrm{I}, \mathrm{IVEC}$) $=\mathrm{ABS}$ (S 1 (I))	BS	00720
	CONTINUE	BS	00730
c		BS	00740
C	NORMALIZE THE FEATURES AND SEND THEM TO THE OUTPUT FILE	BS	00750
C		BS	00760
	DO $100 \mathrm{~J}=1$, IVEC	BS	00770
	$\mathrm{XN1} 1=0.0$	BS	00780
	DO $70 \mathrm{I}=1, \mathrm{NP} 1$	BS	00790
70	XN1 $=$ XN1 $+2(I, J) * 2(I, J)$	BS	00800
	DO $80 \mathrm{I}=1, \mathrm{NP} 1$	BS	00810
80	$\mathrm{Z}(\mathrm{I}, \mathrm{J})=\mathrm{Z}(\mathrm{I}, \mathrm{J}) / \mathrm{SQRT}(\mathrm{XN1})$	BS	00820
	DO 90 I1 $=1$, NP1/5	BS	00830
90	$\operatorname{WRITE}(12,91)(2(I, J), I=1+(I 1-1) * 5, I 1 * 5)$	BS	00840
91	FORMAT (5E15.7)	BS	00850
100	CONTINUE	BS	00860
120	PRINT*,' TOTAL NUMBER OF N.O.L. BAND FEATURES =', IVEC	BS	00870
	STOP	BS	00880
	END	BS	00890

PROGRAM INFCLIP INF00010
PARAMETER (NP1=100, NTERM=16, IEV=1) INF00020
REAL X(NP1) INF00030
NR1 : RAW DATA DIMENSIONALITY
INF00040
INF00050
NTERMS : TOTAL NUMBER OF OPTIMAL FUNCTIONS USED IN THE ALGORITHMINF00060
$\mathrm{X}:$ INPUT AND OUTPUT VARIABLE INF00070
INF00080
IEV : INPUT FILE READING INDEX (CHOOSE EITHER 1 OR 0) INF00090
$\begin{array}{llllll}\text { IEV }=1 & I F \\ I E V & =0 & I F \\ I N P U T \\ \text { FILE CONTAINS TRACE, EIGENVALUES AND THEIR SUM } & \text { INFOO100 }\end{array}$
$\begin{array}{llllll}I E V=1 & I F \\ I N P U T \\ \text { IEV }=0 & \text { IF ILE CONTAINS TRACE, EIGENVALUES AND THEIR SUM } & \text { INFO0100 }\end{array}$
INF00110
INF00120
INF00130
11 : INPUT EV FILE; 12 : OUTPUT INF. CLIPPED OPT. FEATURE FILE INF00140
INF00150

	DO $60 \mathrm{I}=\mathrm{N} 1+1, \mathrm{~N} 2$	OLB00690
	IF (NPI. NE. 100) GO TO 50	OLB00700
	IF (I.GE.45.AND.I.LE.54)GO TO 60	OLB00710
	IF (I.GE.70.AND.I.LE. 79) GO TO 60	OLB00720
50	IF (SI (I-1) . NE. SI (I)) IVEC=IVEC+1	OLB00730
	IF (IVEC.GT.NV) GO TO 350	OLB00740
	$\mathrm{Z}(\mathrm{I}, \mathrm{IVEC})=\mathrm{ABS}(\mathrm{S} 1(\mathrm{I})$)	OLB00750
60	CONTINUE	OLB00760
	NX (J) = IVEC	OLB00770
	IVEC $=$ IVEC +1	OLB00780
70	CONTINUE	OLB00790
C		OLB00800
C	FIND THE BAND EDGES AND BAND WIDTH FOR EACH L.D. BAND FEATURES	OLB00810
C		OLB00820
	NVTOT=NX (NTERM)	OLB00830
	DO $90 \mathrm{~J}=1$, NVTOT	OLB00840
	$\mathrm{I} 1=0$	OLB00850
	I2 $=0$	OLB00860
	DO $80 \mathrm{I}=1, \mathrm{NP} 1$	OLB00870
	$\mathrm{CK1}=\mathrm{Z}(\mathrm{I}, \mathrm{J})$	OLB00880
	IF (CK1.EQ.0.0) GO TO 80	OLB00890
	IF (CK1.NE.0.0.AND. I1.EQ.0) I1 $=1$	OLB00900
	IF (CK1.NE.0.0.AND. I1.NE.0) I2=I	OLB00910
80	CONTINUE	OLB00920
	IF (I2.EQ.0) $12=11$	OLB00930
	NEDGE ($1, J$) = I1	OLB00940
	$\operatorname{NEDGE}(2, J)=I 2$	OLB00950
	NWID (J) =I2-I1+1	OLB00960
90	CONTINUE	OLB00970
C		OLB00980
C	FIND THE WAVELENGTH EDGES AND SEND THEM TO THE FIRST OUTPUT FILE	OLB00990
C		OLB01000
	DO $100 \mathrm{~J}=1$, NTERM	OLB01010
	WRITE (12, *) J	OLB01020
	IF (J.EQ.1) NSI=NX (J)	OLB01030
	IF (J.NE.1) NS1 $=$ NX (J) $-\mathrm{NX}(\mathrm{J}-1)$	OLB01040
	DO $100 \mathrm{I}=1$, NS1	OLB01050
	IF (J.EQ.1) NS2=I	OLB01060
	IF (J.NE.1) NS2=I+NX (J-1)	OLB01070
	I1=NEDGE (1, NS2)	OLB01080
	I2=NEDGE (2, NS2)	OLB01090
	XW1 $=$ W1+FLOAT (I1-1) *DW	OLB01100
	XW2 $=$ W1+FLOAT (I2) ${ }^{\text {® }}$ (${ }^{\text {L }}$	OLB01110
	WRITE (12,101) NS2, I, NEDGE (1, NS2) , NEDGE (2, NS2) , XW1, XW2, NWID (NS2)	OLB01120
100	CONTINUE	OLB01130
101		OLB01140
	PRINT*, ${ }^{\text {'TOTAL }}$ NUMBER OF BANDS $\mathrm{IS}=1$, NVTOT	OLB01150
C		OLB01160
C	RANK THE L.D. BAND ACCORDING TO THEIR WIDTHS IN DESCENDING ORDER	OLB01170
C	AND SEND THE RESULTS TO THE FIRST OUTPUT FILE	OLB01180
C		OLB01190
	DO $110 \mathrm{I}=1, \mathrm{NV}$	OLB01200
110	$\mathrm{TI}(\mathrm{I})=$ FLOAT (NWID (I))	OLB01210
	DO $120 \mathrm{I}=1$, NVTOT	OLB01220
	CALL VABMXF (T1 (1),NV, 1, IMAX, BIG)	OLB01230
	NRANK (I) = IMAX	OLB01240
	WRITE ($12, \star$) I, NRANK (1) , NEDGE (1, IMAX) , NEDGE ($2, ~ I M A X), N W I D ~(I M A X) ~$	OLB01250

```
    120 T1 (IMAX)=0.0 OLB01260
C
C CHECK IF THE L.D. BAND IS REPEATED. IF IT IS, SET NREP(I) = 0
C
    DO 140 I=1,NVTOT
    DO 130 J=1,NVTOT
    IF (I.EQ.J)GO TO }13
    II=NRANK (I)
    I2=NRANK (J)
    I3=NWID (II)
    I4=NWID (I2)
    IF (I3.NE.I4)GO TO 130
    ISTART=NEDGE (1,I1)
    JSTART=NEDGE (1,I2)
    IEND=NEDGE (2,I1)
    JEND=NEDGE (2,I2)
    IF (ISTART.EQ.JSTART.AND.IEND . EQ.JEND. AND.I.GT.J) NREP (I) =0
    130 CONTINUE
    IF (NREP (I).EQ.0) GO TO 140
    IX=NRANK (I)
C
C THE FOLLOWING WRITE STATEMENT CAN BE USED FOR INTERNAL CHECKING
C WRITE (12,131)I,NREP (I),NRANK (I),NEDGE (1, IX) ,NEDGE (2, IX),NWID (IX)
    131 FORMAT(3I4,5X,I4,' -',I4,5X,I4)
    140 CONTINUE
C
C FIND TOTAL NUMBER OF NON-REPEATED L.D. BAND
C
        NDIFF=0
        DO 150 I=1,NVTOT
        IF (NREP (I) .EQ.1) NDIFF=NDIFF+1
    150 MREP (I) =NREP (I)
    PRINT*,'TOTAL NUMBER OF NON-IDENTICAL BANDS IS =',NDIFF
C
C FIND L.I. BAND BY CHECKING THE MATRIX RANK
C
    ILI=1
    JWID=1
    DO 300 J=1,NVTOT
    IF (NREP (J).EQ.0) GO TO 300
    JR=NRANK (J)
    DO 160 I=1,NP1
    160 TEST (I,ILI) = Z (I,JR)
    DO 170 KI=1,NP1
    DO 170 KJ=1,ILI
    170 A (KI,KJ)=TEST (KI,KJ)
C
C REDUCE THE MATRIX A TO ITS ECHELON FORM
C
    CALL ECHEL (A,NP1,NVX,NP1,ILI)
    IEV=0
    DO 190 KI=1,NP1
    DO 180 KJ=1,ILI
    IF (A (KI,KJ).NE.0.0) IEV=IEV+1
    IF (A (KI,KJ).NE.0.0)GO TO 190
    180 CONTINUE
```

OLB01260
OLB01270
OLB01280
OLB01290
OLB01300
OLB01310
OLB01320
OLB01330
OLB01340
OLB01350
OLB01360
OLB01370
OLB01380
OLB01390
OLB01400
OLB01410
OLB01420
OLB01430
OLB01440
OLB01450
OLB01460
OLB01470
OLB01480
OLB01490
OLB01500
OLB01510
OLB01520
OLB01530
OLB01540
OLB01550
OLB01560
OLB01570
OLB01580
OLB01590
OLB01600
OLB01610
OLB01620
OLB01630
OLB01640
OLB01650
OLB01660
OLB01670
OLB01680
OLB01690
OLB01700
OLB01710
OLB01720
OLB01730
OLB01740
OLB01750
OLB01760
OLB01770
OLB01780
OLB01790
OLB01800
OLB01810
OLB01820

190	CONTINUE	OLB01830
C		OLB01840
C	SEND THE RANK INFORMATION TO THE FIRST OUTPUT FILE	OLB01850
C	WHERE 'IEV' IS THE RANK AND 'ILI' IS TOTAL NUMBER OF BANDS TESTED	OLB01860
C		OLB01870
	WRITE (12,*)'IEV=',IEV,'; ILI=',ILI, 'AT J=', J	OLB01880
	IF (IEV.LT.ILI) WRITE ($12, *$) 'IEV.LT. ILI AT $\mathrm{J}=1, \mathrm{~J}$	OLB01890
	IF (IEV.LT.ILI) GO TO 200	OLB01900
C		OLB01910
C	IF RANK IS EQUAL TO TOTAL NO. OF BANDS, TEST THE NEXT WIDEST BAND	OLB01920
C		OLB01930
	IF (IEV.EQ. ILI) ILI $=1 L I+1$	OLB01940
	GO TO 300	OLB01950
C		OLB01960
C	IF RANK IS LESS THEN TOTAL NO. OF BANDS,	OLB01970
C	ELIMINATE THE WIDEST L.D. BAND	OLB01980
C		OLB01990
200	DO 250 JXLD $=1$, ILI	OLB02000
	DO $210 \mathrm{KJ=1,ILI}$	OLB02010
	DO $210 \mathrm{KI}=1, \mathrm{NPI}$	OLB02020
210	$\mathrm{A}(\mathrm{KI}, \mathrm{KJ})=\mathrm{TEST}(\mathrm{KI}, \mathrm{KJ})$	OLB02030
	DO $220 \mathrm{KI}=1$, NP1	OLB02040
220	A (KI, JXLD $)=$ TEST (KI, ILI)	OLB02050
	JI=ILI-1	OLB02060
	CALL ECHEL (A,NP1, NVX,NP1, JII)	OLB02070
	IEV=0	OLB02080
	DO $240 \mathrm{KI}=1, \mathrm{NP} 1$	OLB02090
	DO $230 \mathrm{KJ}=1$, JII	OLB02100
	IF (A (KI, KJ) . NE.0.0) IEV $=1 E V+1$	OLB02110
	IF (A (KI, KJ) .NE.0.0) GO TO 240	OLB02120
230	CONTINUE	OLB02130
240	CONTINUE	OLB02140
C	PRINT*,'IEV=',IEV,'; ILI=',ILI,'AT J=', J	OLB02150
C	IF (IEV.LT.ILI) PRINT*, 'IEV.LT.ILI AT $J=1, J$	OLB02160
	IF (IEV.EQ. JII) J2LD $=$ JXLD	OLB02170
	IF (IEV.EQ. JI) GO TO 260	OLB02180
250	CONTINUE	OLB02190
260	I1 $=0$	OLB02200
	I2 $=0$	OLB02210
	DO $270 \mathrm{KI}=1$, NP1	OLB02220
	CK1=TEST (KI, J2LD)	OLB02230
	IF (CK1.EQ.0.0) GO TO 270	OLB02240
	IF (CK1.NE.0.0.AND. I1.EQ.0) $11=\mathrm{KI}$	OLB02250
	IF (CK1.NE.0.0.AND.I1.NE.0) $12=\mathrm{KI}$	OLB02260
270	CONTINUE	OLB02270
	IF (I2.EQ.0) I2=I1	OLB02280
	DO $275 \mathrm{KI}=1$, NVTOT	OLB02290
	IF (MREP (KI) .EQ.0) GO TO 275	OLB02300
	MAX $=$ NRANK (KI)	OLB02310
	MEDGE1=NEDGE (1,MAX)	OLB02320
	MEDGE2=NEDGE (2, MAX)	OLB02330
	IF (I1.EQ.MEDGE1.AND.I2.EQ.MEDGE2) J1LD=KI	OLB02340
	IF (I1.EQ.MEDGE1.AND.I2.EQ.MEDGE2) GO TO 280	OLB02350
275	CONTINUE	OLB02360
280	MREP (J1LD) $=0$	OLb02370
C		OLB02380
	SEND THE POSITION OF THE WIDEST L.D. BAND FEATURE	OLB02390

C TO THE FIRST OUTPUT FILE WHERE		OLB02400
${ }_{C}$		OLB02410
C	JILD IS THE POSITION ON THE VARIABLES NREP AND MREP	OLB02420
C	J2LD IS THE POSITION ON THE RANK CHECKING MATRIX	OLB02430
c		OLB02440
	WRITE (12,*)'J =', J,'; J1LD =',J1LD,'; J2LD =',J2LD	OLB02450
	DO 290 J1=J2LD, ILI-1	OLB02460
	DO 290 I1 $=1$, NP1	OLB02470
290	$\operatorname{TEST}(\mathrm{I} 1, \mathrm{~J} 1)=\operatorname{TEST}(\mathrm{I} 1, \mathrm{~J}+1)$	OLB02480
300	CONTINUE	OLB02490
C		OLB02500
C	SEND THE L.I. INDEX TO THE FIRST OUTPUT FILE	OLB02510
C		OLB02520
	PRINT*, 'TOTAL NUMBER OF L.I. BANDS IS = ', IEV	OLB02530
	DO $310 \mathrm{I}=1$, NVTOT	OLB02540
310	$\operatorname{WRITE}(12, *) \mathrm{I}, \mathrm{NREP}(\mathrm{I}), \mathrm{MREP}(\mathrm{I})$	OLB02550
C		OLB02560
C	NORMALIZE THE O.L. BANDS AND SEND THEM TO THE SECOND OUTPUT FILE	OLB02570
c		OLB02580
	D $330 \mathrm{~J}=1$, IEV	OLB02590
	$\mathrm{XN1} 1=0.0$	OLB02600
	DO $320 \mathrm{I}=1$, NP1	OLB02610
	IF (TEST (I, J) . EQ . 1) $\mathrm{XN1}=\mathrm{XN} 1+1$	OLB02620
320	CONTINUE	OLB02630
	DO $330 \mathrm{I}=1$, NP1	OLB02640
330	$\operatorname{TEST}(\mathrm{I}, \mathrm{J})=\operatorname{TEST}(\mathrm{I}, \mathrm{J}) / \mathrm{SQRT}(\mathrm{XNL})$	OLB02650
	DO $340 \mathrm{~J}=1, \mathrm{IEV}$	OLB02660
	DO $340 \mathrm{~K}=1$, NP1/5	OLB02670
C	$\mathrm{J}=\mathrm{IEV}-\mathrm{J}+1$	OLB02680
340	WRITE $(13,341)(\operatorname{TEST}(\mathrm{I}, \mathrm{J}), \mathrm{I}=1+(\mathrm{K}-1) * 5, \mathrm{~K}$ * 5)	OLB02690
341	FORMAT (5E15.7)	OLB02700
	GO TO 360	OLB02710
350	PRINT*, 'TOTAL NUMBER OF BANDS IS OUT OF PRESET LIMIT'	OLB02720
360	STOP	OLB02730
	END	OLB02740
	SUBROUTINE ECHEL (A,NP1,NVX, NROW, NCOL)	OLB02750
	REAL A (NP1, NVX)	OLB02760
C		OLB02770
C	THIS SUBROUTINE REDUCES MATRIX A INTO ITS ECHELON FORM	OLB02780
C		OLB02790
	JCOL=1	OLB02800
	IROW=1	OLB02810
5	DO 100 I=IROW, NROW	OLB02820
	IF (A (I, JCOL). EQ. O.O) GO TO 100	OLB02830
C	INTERCHANGE I AND IROW TO GET NONZERO PIVOT	OLB02840
	IF (I.EQ. IROW) GO TO 20	OLB02850
	DO $10 \mathrm{~J}=\mathrm{JCOL}, \mathrm{NCOL}$	OLB02860
	$\mathrm{X} 1=\mathrm{A}(\mathrm{I}, \mathrm{J})$	OLB02870
	A (I, J $=$ = $($ IROW, $J)$	OLB02880
	A (IROW, J) $=\mathrm{XI}$	OLB02890
C	NORMALIZE ROW TO GET POSITIVE NUMBER FOR PIVOT	OLB02900
20	IF (A (IROW, JCOL) . GT . 0.0) GO TO 40	OLB02910
	DO $30 \mathrm{~J}=\mathrm{JCOL}, \mathrm{NCOL}$	OLB02920
30	A (IROW, J$)=-\mathrm{A}($ IROW, J$)$	OLB02930
40	IF (IROW. GE. NROW) RETURN	OLB02940
C	ZERO COLUMN BELOW PIVOT	OLB02950
	IROWX $=$ IROW +1	OLB02960

	DO $60 \mathrm{~K}=1 \mathrm{I}$ OWX, NROW	OLB02970
	$\mathrm{X} 1=A(\mathrm{~K}, \mathrm{JCOL})$	OLB02980
	IF (X1.EQ.0.0) GO TO 60	OLB02990
	DO $50 \mathrm{~J}=\mathrm{JCOL}, \mathrm{NCOL}$	OLB03000
50	$A(K, J)=-X 1 \star A($ IROW, $J)+A(K, J)$	OLB03010
60	CONTINUE	OLB03020
	IROW $=$ IROW +1	OLB03030
	JCOL= $=$ COL +1	OLB03040
	GO TO 5	OLB03050
100	CONTINUE	OLB03060
	IF (IROW. GT . NROW) RETURN	OLB03070
	JCOL=JCOL +1	OLB03080
	GO TO 5	OLB03090
	END	OLB03100

PROGRAM CLST

CLS00010
PARAMETER (NTERM=16, MTERM=NTERM* $(N T E R M+1) / 2, N C L S=3, N P 1=100, \quad$ CLS00020
$+\mathrm{NSET}=1, \mathrm{MSET}=1, \mathrm{NDSET}=1, \mathrm{NTSET}=1, \mathrm{NF} 2=10, \mathrm{NF} 3=5, \mathrm{NSMAX}=1000, \quad$ CLSO0030
$+\mathrm{NKLT}=0, \mathrm{IEV}=0, \mathrm{NLI}=16, \mathrm{VLD}=-0.0, \mathrm{NSAMP}=10, \mathrm{NF}=\mathrm{NF} 2) \quad$ CLSO0040

```
NKLT = 1 : JUST FIND TRANSFORMED DATA XKLT CLS00060
```

NKLT $=0: \quad$ FIND XKLT AND CLASS STATISTICS CLS00070
$\mathrm{NF}=\mathrm{NF} 2=10$ USED TO READ (10F8.3) RAW DATA
$\mathrm{NF}=\mathrm{NF} 3=5$ USED TO READ (5E15.7) CANONICAI TRANSFORMED DATA
WHEN : NF $=\mathrm{NF} 3=5 \rightarrow$ NPI MUST BE REDUCED TO LOWER DIM.
CLS00110
CLS00120
NTERM $=$ TOTAL NUMBER OF FEATURES (MAY NOT ALL BE NUMERICALLY L.I.)CLSOO130
NCLS = TOTOAL NUMBER OF INFORMATION CLASSES CLS00140
NP1 = DIMENSIONALITY OF INPUT DATA CLSO0150
NP1 = RAW DATA DIMENSIONALTY IF USED IN DATA PREPROCESSINGCLSO0160
NP1 = TRANSFORMED DATA DIMENSIONALTY IF USED IN CAN. ANAL.CLS00170
IEV = INPUT FEATURE READING INDEX, EITHER 1 OR 0 CLS00180
IEV $=0$ IF FEATURE FILE DOES NOT CONTAIN TRACE \& EVALUES CLSO0190
IEV $=1$ IF FEATURE FILE CONTAINS TRACE \& EVALUES CLSOO200
NLI = TOTAL NUMBER OF L.I. FEATURES DESIRED CLSO0210
NSMAX = PRESET MAX. NO. OF SAMPLES FOR ONE CLASS CLSO0220
NSAMP $=$ TOTAL NUMBER OF TEST SAMPLES USED TO CHECK POS. DEF. CLSO0230
CLS00240
CLS00250
REAL X (NSMAX, NTERM) , Z (NP1, NTERM), RX (NP1),
$+T 1$ (NP1), T2 (NP1), T3 (NP1), XT (NP1), XM (NP1), D (NP1), CLS00270
+XMCT (NTERM, NCLS) , XMC (NTERM),W(NP1),T(NP1), CLS00280
+VCT (MTERM, NCLS) , VC (MTERM) , CT (NCLS),
+VCIT (MTERM, NCLS) , VCI (MTERM), TEST (NTERM, NTERM), CLSOO300
+VCIF (NTERM, NTERM) , VCF (NTERM, NTERM),
+VCTF (NTERM, NTERM, NCLS) , XMCTF (NTERM, NCLS),
+VCTLI (MTERM, NCLS) , XMTLI (NTERM, NCLS),
+WK (NTERM) , VCV (MTERM) , VEC (NSAMP , NTERM)
INTEGER NBR (6), NST (NCLS, NTSET)
DOUBLE PRECISION DSEED
DATA (NBR (I) , $\mathrm{I}=4,6), \mathrm{W} / 1,0,0, \mathrm{NP} 1 * 1.0 /$
CLSOO370
CLS00380


```
    CLS6 : 5.0% .GT. OM .LE. 10.12% : # 223 ->> # 255
    DATA NST/51,54,33,45,39,33/
    DATA 'S2A' : ANOTHER TEST GROUPED BY THE SAME OM RANGES AS 'OM2'
    OM PERCENTAGE : 0,1; 1,2; 2,3; 3,4; 4,6; 6 AND ABOVE
    DATA NST/26,78,64,32,55/
    THE FOLLOWING DATA 'NST' IS USED FOR 'OM2' DATA SET
    ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT
    CLASS 1 TO 6 : NP2 = 514
    CLS1 : .08% .GE. OM .LE. 1.0% ; # 1 -> # 82
    CLS2 : 1.0% .GT. OM .LE. 2.0% : # 83 -> # 217
    CLS3 : 2.0% .GT. OM .LE. 3.0% : # 218 ->> # 337
    CLS4 : 3.0% .GT. OM .LE. 4.0% : # 338 -> # 391
    CLS5 : 4.0% .GT. OM .LE. 6.0% : # 392 -> # 450
    CLS6 : 6.0% .GT. OM .LE. 84.79% : # 451 -> # 514
    DATA NST/82,135,120,54,59,64/
    DATA NST/82,135,120,54,123/
    DATA NST/44,31,18,23,24,51,37,27/
    DATA NST/83,57,94,31,37,59,103,26,24/
    DATA NST/103,26,24/
    THE FOLLOWING DATA 'NST' IS USED FOR SOIL IRON OXIDE 'IO' DATA SETCLSO1240
    ACCORDING TO THEIR FE2O3 % WEIGHT CLS01250
    CLASS 1 TO 6 : NP2 = 467
    CLS1 : .02%.GE. FE2O3 .LE. 0.4% ; # 1 m # 102 CLS01270
    CLS2 : 0.4% .GT. FE2O3 .LE. 0.6% : # 103 -> # 175 CLS01280
    CLS3 : 0.6% .GT. FE2O3 .LE. 0.8% : # 176 ->> # 244 CLS01290
    CLS4 : 0.8% .GT. FE2O3 .LE. 1.2% : # 245 -> # 349 CLS01300
    CLS5 : 1.2% .GT. FE2O3 .LE. 1.6%: # 350 -> # 401 CLS01310
    CLS6 : 1.6% .GT. FE2O3 .LE. 25.60% : # 402 -> # 467 CLS01320
    DATA NST/102,73,69,105,52,66/
    THE FOLLOWING DATA 'NST' IS USED FOR SOIL TEXTURE 'ST' DATA SET
    ACCORDING TO THEIR SAND-SILT-CLAY % CONTENT
    CLASS 1 TO 6 : NP2 = 483; DETAILS : SEE FILE ( S5L.DATA.C1)
    DATA NST/40,63,76,93,68,143/
    THE FOLLOWING DATA 'NST' IS USED FOR S.D. VEGETATION DATA
    DATA NST/225,61,292,469, 82,182,63,103, 39,39,217,51,
    +393,441,80,88, 88,41,32,26, 118,43,121,44, 45,102,66,89,
    +78,53,147,39, 24,42,119,69, 76,96,107,154, 28,19/
THE FOLLOWING DATA 'NST' IS USED FOR IOWA VEGETATION DATA
CLS01330
CLS01340
CLS01350
CLS01360
CLS01370
CLS01380
CLS01390
CLS01400
CLS01410
CLS01420
CLS01430
CLS01440
CLS01450
CLS01460
CLS01470
CLS01480
CLS01490
CLSO1500
CLS01510
CLS01520
```


	Tl (I) $=\mathrm{XT}$ (I)	CLS02100
	T2 (I) =W (I) *T1 (I)	CLS02110
60	T3 (I) = Z ($\mathrm{I}, \mathrm{JTERM}$)	CLS02120
	CALL VIPRFF (T3, T2,NP1, 1, 1, XIP)	CLS02130
70	X (ISAMP, JTERM) $=$ XIP	CLS02140
C		CLS02150
C	SEND THE RESULTS TO THE TRANSFORMED DATA FILE	CLS02160
C		CLS02170
	IF (NTERM.LT.5) GO TO 90	CLS02180
	DO 80 I1=1, ILP2	CLS02190
80	WRITE (14,91) (X (ISAMP, J1) , J1=1+(I1-1)*5, I1*5)	CLS02200
	IF (IK2.EQ.0) GO TO 100	CLS02210
90	WRITE (14, 91) (X (ISAMP , J1) , J1=IM2, NTERM)	CLS02220
91	FORMAT (5E15.7)	CLS02230
100	CONTINUE	CLS02240
C		CLS02250
C	FIND THE CLASS STATISTICS IF NKLT $=0$	CLS02260
C		CLS02270
	IF (NKLT.EQ.1) GO TO 150	CLS02280
	NBR (1) =LTERM	CLS02290
	NBR (2) $=$ NS	CLS02300
	NBR (3) $=$ NS	CLS02310
	DO $110 \mathrm{I}=1, \mathrm{NP} 1$	CLS02320
110	$\mathrm{T}(\mathrm{I})=0.0$	CLS02330
	CALL BECOVM (X, NSMAX, NBR, T, XMC, VC, IER)	CLS02340
C		CLS02350
C	STORE THE CLASS STATISTICS FOR POSITIVE DEFINITENESS CHECKING	CLS02360
C		CLS02370
	DO $120 \mathrm{I}=1$, LTERM	CLS02380
C	WRITE (*, *) LTERM, I, XMC (I)	CLS02390
120	XMCT ($1, ~ I C L S$) $=$ XMC (I)	CLS02400
	DO $130 \mathrm{I}=1$, KTERM	CLS02410
C	WRITE (*, *) LTERM, I, VC (I)	CLS02420
130	$\operatorname{VCT}(1, I C L S)=\mathrm{VC}$ (I)	CLS02430
	PRINT*,' THE IER MUST BE "O" FOR BECOVM '	CLS02440
	PRINT*, IER	CLS02450
150	CONTINUE	CLS02460
C		CLS02470
C	STOP THE PROGRAM IF ONLY WANT TO FIND TRANSFORMED DATA (NKLT=1)	CLS02480
C		CLS02490
	IF (NKLT.EQ.1) GO TO 650	CLS02500
C		CLS02510
C	STORE THE CLASS STATISTICS INTO FULL STORAGE MODE FOR CHECKING	CLS02520
C		CLS02530
	DO 170 ICLS $=1$, NCLS	CLS02540
	DO $170 \mathrm{I}=1$, NTERM	CLS02550
	DO $160 \mathrm{~J}=1, \mathrm{I}$	CLS02560
	IND $=1 *$ ($\mathrm{I}-1$) $/ 2+J$	CLS02570
	$\operatorname{VCTF}(\mathrm{I}, \mathrm{J}, \mathrm{ICLS})=\mathrm{VCT}(\mathrm{IND}, \mathrm{ICLS})$	CLS02580
	$\operatorname{VCTF}(J, I, I C L S)=\operatorname{VCTF}(I, J, I C L S)$	CLS02590
C	WRITE (*, *) I, J, IND, VCTF ($I, J, I C L S$) , VCTF ($J, ~ I, ~ I C L S) ~$	CLS02600
160	CONTINUE	CLS02610
	$\mathrm{XMCTF}(\mathrm{I}, \mathrm{ICLS})=\mathrm{XMCT}(\mathrm{I}, \mathrm{ICLS})$	CIS02620
170	CONTINUE	CLS02630
C		CLS02640
C	START CHECKING THE POSITIVE DEFINITENESS OF THE COV. MATRICES	CLS02650
C	IF 'LTERM'TH FEATURE IS L.D. ON THE OTHER FEATURES, THE RELATED	CLS02660

```
C ELEMENTS IN THE MEAN VECTORS AND COVARIANCES WILL BE REMOVED CLSO2670
C
            ILI=1
            JLI=ILI* (ILIN+1)/2
            DO }600\mathrm{ LTERM=1,NTERM
            KTERM=LTERM* (LTERM +1)/2
            DO 400 ICLS=1,NCLS
            IX=0
            DO 200 IROW=1,LTERM
            V1=0.0
            DO 180 JCK=1,LTERM
    180 V1=V1+VCTF (IROW, JCK, ICLS)
            VCK=VLD*ITERM
            IF(V1.EQ.VCK)GO TO 200
            IX=IX+1
            IY=0
            DO 190 JCOL=1,LTERM
            V2=VCTF (IROW, JCOL, ICLS)
            IF(V2.EQ.VLD)GO TO 190
            IY=IY+1
            VCF (IX,IY)=V2
    190 CONTINUE
    200 CONTINUE
C WRITE (15,*)IX,IY,ILI
C PRINT*,'IX,IY,ILI MUST BE THE SAME',IX,IY,ILI
    CALL VCVTFS (VCF,ILI,NTERM,VC)
    WRITE (*,*)ICLS,VC(1)
    OPEN(16)
    REWIND }1
    DO 210 I=1, JI
    WRITE (16,211)VC(I)
    VCV (I) = VC (I)
    210 VCTLI (I,ICLS)=VC(I)
    211 FORMAT (E13.5)
        OPEN (16)
        REWIND }1
        DO 220 I=1, JLI
    220 READ (16,211)VCV (I)
    DO 230 I=1,NTERM
    230 WK (I)=0.0
    DSEED=5.DO
C
C SECOND TEST ON NUMERICAL POSITIVE DEFINITENESS OF THE MATRICES
    CALL GGNSM(DSEED,NSAMP,ILI,VCV,NSAMP,VEC,WK,IER)
    IF (IER.NE.0)GO TO 440
C WRITE (*,*)ICLS,VCTLI (1,ICLS),VC (1)
C
C
C
C
    CHECK IF ALL CLASS COVARIANCES HAVE INVERSE MATRICES
    VC WILL BE CHANGED AFTER LINVIP
    CALL LINV1P(VC,ILI,VCI,IDGT,D1,D2,IER)
C WRITE(*,*)ICLS,VCI (1)
C PRINT*,' THE FOLLOWING IER MUST BE O FOR LINV1P'
C PRINT*,ISET,ITERM,ICLS,'; IER =',IER
    IF (IER.NE.0)GO TO 450
    DO 240 I=1,JLI
```

CLS02670
CLS02680
CLS02690
CLS02700
CLS02710
CLS02720
CLSO2730
CLS02740
CLS02750
CLS02760
CLS02770
CL.S02780

CLS02790
CLS02800
CLS02810
CLS02820
CLS02830
CLS02840
CLS02850
CLS02860
CLS02870
CLS02880
CLS02890
CLS02900
CLS02910
CLS02920
CLS02930
CLS02940
CLS02950
CLS02960
CLS02970
CLS02980
CLS02990
CLS03000
CLS03010
CLS03020
CLSO3030
CLS03040
CLS03050
CLS03060
CLS03070
CLS03080
CLS03090
CLS03100
CLS03110
CLS03120
CLS03130
CLS03140
CLS03150
CLS03160
CLS03170
CLS03180
CLS03190
CLS03200
CLS03210
CLS03220
CLS03230

c^{240}	$\operatorname{VCIT}(\mathrm{I}, \mathrm{ICLS})=\mathrm{VCI}(\mathrm{I})$	CLS03240 CLS03250
C	StORe BaCK the values of vCVC from vcvce	CLS03260
c		CLS03270
	CALL VCVTFS (VCF, ILI, NTERM, VC)	CLS03280
	CALL VCVTSF (VCI, ILI, VCIF, NTERM)	CLS03290
	DET=D1*2.**D2	CLS03300
	$\mathrm{CX}=(2 . * 3.14159) * *$ (FLOAT (ILI) $/ 2$.	CLS03310
	$\mathrm{C}=1 . /(\mathrm{CX} * \mathrm{SQRT}$ (DET))	CLS03320
	CT (ICLS $)=C$	CLS03330
	IF (ICLS.NE.NCLS) GO TO 400	CLS03340
C		CLS03350
C	SEND THE FINAL RESULTS TO THE CLASS STATISTICS FILE	CLS03360
C		CLS03370
	DO $250 \mathrm{KCLS}=1$, NCLS	CLS03380
	IX=0	CLS03390
	DO 250 I=1,LTERM	CLS03400
	$\mathrm{V} 3=\mathrm{XMCTF}$ (I , KCLS)	CLS03410
	IF (V3.EQ.VLD) GO TO 250	CLS03420
	IX $=1 \mathrm{X}+1$	CLS03430
	XMTLI (IX, KCLS $)=$ V3	CLS03440
250	CONTINUE	CLS03450
	D $280 \mathrm{I}=1$, ILI	CLS03460
	IF (NCLS.LT.6)GO TO 270	CLS03470
	D 260 IL=1, ILP1	CLS03480
260	WRITE (13, 321) (XMTLI (I, LCLS), LCLS $=1+($ IL-1)*6, IL*6)	CLS03490
	IF (IK1.EQ.0) GO TO 280	CLS03500
270	WRITE (13, 321) (XMTLI (I, LCLS) , LCLS=IM1, NCLS)	CLS03510
280	CONTINUE	CLS03520
	DO $310 \mathrm{I}=1$, JLI	CLS03530
	IF (NCLS.LT.6) GO TO 300	CLS03540
	D 290 IL=1, ILP1	CLS03550
290	$\operatorname{WRITE}(13,321)$ (VCTLI (I, LCLS) , LCLS $=1+(\mathrm{IL}-1)$ * 6, IL* 6)	CLS03560
	IF (IK1.EQ.0) GO TO 310	CLS03570
300	WRITE (13,321) (VCTLI (I, LCLS) , LCLS=IM1, NCLS	CLS03580
310	continue	CLS03590
	IF (NCLS.LT.6) GO TO 330	CLS03600
	DO 320 IL=1, ILP1	CLS03610
320	WRITE (13, 321) (CT (LCLS) , LCLS=1+(IL-1)*6, IL* ${ }^{\text {) }}$	CLS03620
321	FORMAT (6E13.5)	CLS03630
	IF (IK1.EQ.0) GO TO 340	CLS03640
330	WRITE (13, 321) (CT (LCLS) , LCLS=IM1, NCLS)	CLS03650
340	DO $370 \mathrm{I}=1$, JI	CLS03660
	IF (NCLS.LT.6)GO TO 360	CLS03670
	DO 350 IL=1, ILP1	CLS03680
350	WRITE (13,321) (VCIT (I, LCLS) , LCLS $=1+($ IL-1) *6, IL*6)	CLS03690
	IF (IK1.EQ.0) GO TO 370	CLS03700
360	WRITE (13, 321) (VCIT (I, LCLS) , LCLS=IM1, NCLS)	CLS03710
370	CONTINUE	CLS03720
400	CONTINUE	CLS03730
c		CLS03740
C	INTERNAL CHECKING FOR ACCURACY OF MATRIX INVERSION	CLS03750
C		CLS03760
	DO 430 ICLS $=1$, NCLS	CLS03770
	DO $410 \mathrm{I}=1$, JII	CLS03780
	$\mathrm{VC}(\mathrm{I})=\mathrm{VCTLI}(\mathrm{I}, \mathrm{ICLS})$	CLS03790
	$\operatorname{VCI}(\mathrm{I})=\mathrm{VCIT}(\mathrm{I}, \mathrm{ICLS})$	CLS03800

		CLS03810
	DO $420 \mathrm{I}=1, \mathrm{ULI}$) VCI (I)	CLS03820
	CALL VMULSS (VC,VCI,ILI,TEST,NTERM)	CLS03830
C		CLS03840
c	The following 3 STATEMENTS CAN BE USED FOR MATRIX INVERSION CHECK	CLS03850
C		CLS03860
c	PRINTネ, ' THE FOLLOWING MATRIX MUST BE AN IDENTITY MATRIX	CLS03870
C	DO $430 \mathrm{I}=1$, ILI	
C	WRITE (*, 421) (TEST ($1, J$,,$J=1$, ILI $)$	
$\begin{aligned} & 421 \\ & 430 \end{aligned}$	FORMAT (16F5.2)	$\begin{aligned} & \text { CLSO } 3900 \\ & \text { CLS03910 } \end{aligned}$
	CONTINUE	CLS03920
		CLS03930
	JII=ILI* (ILI +1$) / 2$	CLS03940
	IF (ILI.GT.NLI) GO TO 650	CLS03950
	GO TO 600	CLS03960
		CLS03970
C	SEND THE INFORMATION OF L.D. FEATURES \& REASONS FOR	CLS03980
C	NON-POSITIVE-DEFINITENESS OF COV. MATRICES TO THE FILE 'LDBAND'	CLS03990
C		CLS04000
	WRITE ($15, *$) 'GGNSM HAS IER.NE. 0^{\prime}	CLS04010
450	WRITE ($15, *$) 'ISET $=1$, ISET, '; LTERM $=1$, LTERM, $;$ ICLS $=1$, ICLS	CLS04020
	PRINT*, 'ISET $=1$, ISET, '; ITERM $=1$, LTERM, ';ICLS $=1$, ICLS	CLSO4030
	DO 500 JCLS $=1$, NCLS	CLS04040
		CLS04050
C	THE FOLLOWING 5 StATEMENTS ARE USED FOR INTERNAL CHECKING	CLS04060
		CLS04070
C	WRITE (15,*)'JCLS $=$ ', JCLS	CLS04080
C	DO 460 I=1,NTERM	CLS04090
C 460	WRITE ($15, *$) I, XMCTF ($I, ~ J C L S)$	CLS04100
C	DO 470 I=1, NTERM	CLS04110
C 470	WRITE (15,471) I, (VCTF (I, J, JCLS) , J=1, NTERM)	CLS04120
471	FORMAT ($14.8 \mathrm{F9.2}$)	CLS04130
C		CLS04150
c	RESET THE VARIABLES TO '0.0' FOR FUTURE USE	CLSO4150
C		CLS04160
	XMCTF (LTERM, JCLS $)=\mathrm{VLD}$	CLS04170
	DO $480 \mathrm{I}=1$, NTERM	CLS04180
480	$\operatorname{VCTF}(\mathrm{I}, \mathrm{LTERM}, \mathrm{JCLS}$) = VLD	CLS04190
	DO $490 \mathrm{~J}=1$, NTERM	CLSO4200
490		CLSO4210
500	CONTINUE	$\begin{aligned} & \text { CLSO4220 } \\ & \text { CLS04230 } \end{aligned}$
c	THE FOLIOWING 7 STATEMENTS ARE USED FOR INTERNAL CHECKING	CLS04240
C	THE FOLLOWING 7 STATEMENS ARE USED FOR	CLSO4250
C	DO 550 JCLS $=1$, NCLS	CLS04260
C	WRITE ($15, \star$) ' JCLS $=1$, JCLS	CLSO4270
C	DO $530 \mathrm{I}=1$, NTERM	CLSO4280
C 530	WRITE ($15, *$) I , XMCTF ($1, ~ J C L S$)	CLSO4290
C	DO 540 I=1, NTERM	CLS04300
C 540	WRITE (15,421) I, (VCTF (I, J, JCLS) , J=1, NTERM)	CLSO4310
	CONTINUE	CLS04320
600	CONTINUE	CLSO4330
650	CONTINUE	CLSO4340
	STOP	CLS04350
	END	CLSO4360
	SUBROUTINE SR1 (IFILE, NP1, NFX, RX)	CLSO4370


```
    5 M2614N2 1239 SW:787 SF:291 NP:161 770629 77102217 2777-4141 CAN00380
    6 M2614N3 1444 SW:931 SF:330 NP:183 770804 77102217 5426-6993 CAN00390
                                    CANOO400
    DATA NST/141, 414,277,658,211,682,677,643,157/
    DATA NST/141,414,277,658,211,682,677,643,157,
    +664,437,164,787,291,161,931,330,183/
    DATA NST/664,437,164,787,291,161,931,330,183/
    DATA NST/141, 414,277,658,211,682,677/
    DATA NST/587,216,121/
    DATA NST/658,211,682/
    THE FOTONTNG DATA 'NST' ARE USED FOR SOII ORDER DATA SET. 'SO' CAN00490
    CNONO0510
    NP2=479; MOL ALE EN AR UL IN SP VE H OX UNCLASSIFIED CANO0520
    DATA NST/154,113,78,52,45,37,30,11,8,11,32/ CAN00530
    DATA NST/154,113,78,52,45,97/ CAN00540
    DATA NST/154,113,78,52,45,37/ CAN00550
    CANOO560
    CAN00570
    CANOO580
    THE FOLLOWING DATA 'NST' IS USED FOR SOIL 'OM1' DATA SET CAN00590
    I.E. (1) MOLLISOL, OR (2) ALFISOL, AND GROUP SAMPLES CAN00600
    ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT CAN00610
    CLASS 1 TO 6 : NP2 = 255
    CLS1 : .11% .GE. OM .LE. 1.5% : # 1 -> # 51 CAN00630
    CLS2 : 1.5% .GT. OM .LE. 2.0% : # 52 -> # 104 CAN00640
    CLS3 : 2.0% .GT. OM .LE. 2.5% : # 105 -> # 138 CAN00650
    CLS4 : 2.5% .GT. OM .LE. 3.5% : # 139 -> # 183 CAN00660
    CLS5 : 3.5% .GT. OM .LE. 5.0% : # 184 -> # 222 CAN00670
    CLS6 : 5.0% .GT. OM .LE. 10.12% : # 223 -> # 255 CAN00680
    CAN00690
    DATA NST/51,54,33,45,39,33/
    CAN00700
    CAN00710
    DATA 'S2A' : ANOTHER TEST GROUPED BY THE SAME OM RANGES AS 'OM2' CANOO720
    OM PERCENTAGE : 0,1; 1,2; 2,3; 3,4; 4,6; 6 AND ABOVE CANO0730
        CANO0740
    DATA NST/26,78,64,32,55/
        CANO0750
        CAN00760
        CAN00770
        CAN00780
    THE FOLLOWING DATA 'NST' IS USED FOR 'OM2' DATA SET
        CAN00790
    ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT
        CAN00800
    CLASS 1 TO 6 : NP2 = 514
    CLS1 : .08% .GE. OM .LE. 1.0% : # 1 -> # 82 CANO0820
    CLS2 : 1.0% .GT. OM .LE. 2.0% : # 83 -> # 217 CAN00830
    CLS3 : 2.0% .GT. OM .LE. 3.0% : # 218 ->> # 337 CAN00840
    CLS4 : 3.0% .GT. OM .LE. 4.0% : # 338 -> # 391 CANO0850
    CLS5 : 4.0% .GT. OM .LE. 6.0% : # 392 -> # 450 CAN00860
    CLS6 : 6.0% .GT. OM .LE. 84.79% : # 451 -> # 514 CAN00870
    DATA NST/82,135,120,54,59,64/
    DATA NST/82,135,120,54,123/
    DATA NST/44,31,18,23,24,51,37,27/
    DATA NST/83,57,94,31,37,59,103,26,24/
    DATA NST/103,26,24/
CAN00880
CAN00890
CAN00900
CAN00910
CAN00920
CAN00930
CAN00940
```



```
C CAN02090
C SEND THE ACCURACY COMMENTS TO THE SCREEN
C
    IF (IER.NE. O.OR.WK (1).GE.1.0) GO TO 140
    WRITE (* 3) IER, WK (1)
    GO TO 150
    140 WRITE (*,2)IER,WK (1)
    1 FORMAT (5E15.7)
    2 FORMAT(' PERFORMANCE OF "EIGZS" IS POOR, IER =',I5,
        +'; WK(1) =',E15.7)
    3 FORMAT(' PERFORMANCE OF "EIGZS" IS GOOD, IER =',I5,
        +'; WK(1) =',E15.7)
    150 DO 170 I=1,NTERM
        IF (D (I).LE.O.0)GO TO 160
        GO TO 170
    160 WRITE (* 4) I,D(I)
    4 FORMAT(' EIGEN VALUE IS "< = 0.0" AT I =', I5,
        +' WHERE D(I) =',E15.7)
            IFLAGI=IFIAGI+1
    170 CONTINUE
    IF(IFLAG1.GT.0)GO TO }18
        WRITE (*,6)
            GO TO 190
    180 WRITE (*,5) IFLAG1
    5 FORMAT (' THERE ARE',I5,' NEGATIVE OR ZERO EIGEN VALUES ') CAN02330
    6 FORMAT (' ALL EIGEN VALUES ARE GREATER THAN ZERO ')
    190 CALL VABSMF (D,NTERM,1,SUM)
    IF (ABS (TRACE-SUM) .GT.1.OE-1)GO TO 200
        WRITE (*, 8) TRACE,SUM
        GO TO 210
    200 WRITE (* , 7) TRACE, SUM
    7 FORMAT(' ACCURACY OF "EIGZS" IS POOR, TRACE =',E15.7,
        +'; SUM =',E15.7)
    8 FORMAT(' ACCURACY OF "EIGZS" IS GOOD, TRACE =',E15.7,
        +'; SUM =',E15.7)
C SEND THE FINAL RESULTS TO THE CANONICAL FEATURE FILE
C
    210 WRITE (12,9) TRACE, SUM
    9 FORMAT (2E15.7)
        IF (NTERM.LT.5)GO TO 230
        DO 220 I=1,ILP2
    220 WRITE (12,1) (D (NTERM+1-J),J=1+(I-1)*5,I*5)
        IF (IK2.EQ.0)GO TO 240
    230 WRITE (12,1) (D (NTERM+1-J),J=IM2,NTERM)
    240 DO 270 J=1,NTERM
        IF (NTERM.LT.5)GO TO 260
        DO 250 I=1,ILP2
    250 WRITE (12,1) (2 (K,NTERM+1-J),K=1+(I-1)*5,I*5)
    IF(IK2.EQ.0)GO TO 270
    260 WRITE (12,1) (Z (K,NTERM+1-J),K=IM2,NTERM)
    270 CONTINUE
    CALL VMULSE (WCS,NTERM, Z,NTERM,NTERM,TEST,NTERM)
    NTM=NTERM
        CALL VMULFM(Z,TEST,NTM,NTM,NTM,NTM,NTM, T,NTM,IER)
C
C SEND THE ACCURACY COMMENTS TO THE SCREEN
CAN02100
    CAN02110
    CAN02120
    CAN02130
    CANO2140
    CAN02150
    CANO2160
    CAN02160
    CAN02170
    CAN02180
    CAN02190
    CANO2200
    CANO2210
    CANO2220
    CAN02230
    CANO2240
    CANO2250
    CAN02260
    CAN02270
    CAN02280
    CANO2290
    CAN02300
    CANO2310
    CANO2320
NN
    CAN02340
CAN02350
CAN02360
CAN02370
CAN02380
CAN02390
SEND THE FINAL RESULTS TO THE CANONICAL FEATURE FILE
    CANO2400
    CAN02410
    CANO2420
    CAN02430
    CANO2440
    CANO2450
    CANO2460
    0
    CAN02470
    CANO2480
    CANO2490
    CAN02500
CANO2510
CANO2520
CANO2530
CANO2540
CANO2550
CAN02560
CAN02570
    CANO2580
CANO2590
CANO2600
CAN02610
CANO2620
CANO2630
CAN02640
CAN02650
```

```
C
    PRINT*,' THE FOLLOWING MATRIX MUST BE AN IDENTITY MATRIX'
    IF (NTERM.LT.16)GO TO 290 CANO2680
    DO 280 IL=1,ILP3 CAN02690
    DO 280 I=1,NTERM
    280 WRITE (*,281) (T (I,J),J=1+(IL-1)*16,IL*16) CAN02710
    281 FORMAT (16F5.2)
    IF(IK3.EQ.0)GO TO }31
    290 DO 300 I=1,NTERM
    300 WRITE (*, 281) (T (I,J),J=IM3,NTERM)
    310 STOP
    END
    SUBROUTINE FWCS (VCVT,MTERM,NST,NCLS,WCS)
    THIS SUBROUTINE FINDS WITHIN CLASS SCATTER MATRIX
    REAL VCVT (MTERM,NCLS),WCS (MTERM)
    INTEGER NST (NCLS)
    NX1=0
    DO 10 I=1,NCLS
    10 NX1=NX1+NST (I)
    DO 30 I=1,MTERM
    X1=0.0
    DO 20 J=1,NCLS
    X2=FLOAT (NST (J)) -1.0
    20 X1=X1+X2*VCVT (I,J)/FLOAT (NX1)
    30 WCS (I) =X1
    RETURN
    END
    SUBROUTINE FACS (XMT, NTERM,MTERM,NST,NCLS, ACS, XMO)
    THIS SUBROUTINE FINDS AMONG CLASS SCATTER MATRIX
    REAL XMT (NTERM, NCLS),ACS (MTERM), XMO (NTERM)
    INTEGER NST (NCLS)
    NX1=0
    DO 10 I=1,NCLS
    10 NX1=NX1+NST (I)
    DO 30 I=1,NTERM
    X1=0.0
    DO 20 J=1,NCLS
    X2=FLOAT (NST(J))
20 X1=X1+X2*XMT (I,J) /FLOAT (NXI)
30 XMO (I) =X1
    DO 50 I=1,NTERM
    DO 50 J=1,I
    IND=(I-1)*I/2+J
    XI=0.0
    DO 40 ICLS=1, NCLS
    X2=FLOAT (NST (ICLS))/FLOAT (NX1)
40 X1=X1+X2* (XMT (I, ICLS) -XMO (I)) * (XMT (J,ICLS) -XMO (J))
50 ACS (IND) =X1
    RETURN
    END
    SUBROUTINE FTRACE (TEST,NTERM, TRACE)
    REAL TEST (NTERM, NTERM)
    TRACE=0.0
        CAN02660
        CAN02670
    IF (NTERM.LT.16)GO TO 290 CANO2680
    DO 280 IL=1,ILP3 CAN02690
    CAN02700
C
C
C
CAN02720
CAN02730
CANO2740
CANO2750
CAN02760
CAN02770
CANO2780
CANO2790
CAN02800
CAN02810
CAN02820
CANO2830
CANO2840
CAN02850
CAN02860
CANO2870
CAN02870
CANO2890
CANO2900
CAN02910
CAN02920
CANO2930
CAN02930
C
C
CaN02950
    CAN02960
C

```

DO $10 \mathrm{I}=1, \mathrm{NTERM}$	CANO3230
10 TRACE=TRACE+TEST (I, I)	CANO3240
RETURN	CANO 3250
END	CANO3260

```
    PROGRAM PCFIND
    PARAMETER(NTSET=4,NTERM=16,MTERM=NTERM* (NTERM+1)/2,NCLS=3,
    +NSET=1,MSET=1,NDSET=1,NSMAX=100,NZ1=NCLS*NCLS*NTERM,
    +IRES=0, IFIND=1, ICKMV=0,NDTRM=1,NZ2=NCLS*NTERM,NTERMC=15)
C IFIND = 1 ---> NDTRM CONTROL : LTERM=1,NTERM,NDTRM
C IFIND = 0 --> NDTRM DISABLE : LTERM = NTERM ONLY
C-->> IRES = 1 ---> NSMAX MUST EXCEED MAX(NST (I)) <<----- NOTES!!!
    IRES = 0 ---> NSMAX CONTROL : SUBROUTINE GGNSM
    NTERMC > OR = NTERM , WHERE NTERMC IS USED TO READ ENTIRE
                TRANSFORMED DATA; WHILE NTERM IS USED TO DECIDE
        HOW MANY OF THEM WILL BE CONTRIBUTED TO PC
```

C
NTERM = TOTAL NUMBER OF FEATURES USED
NCLS $=$ TOTAL NUMBER OF INFORMATION CLASSES
NSMAX = PRESET MAX. NO. OF SAMPLES FOR ONE CLASS
REAL XMT (NTERM, NCLS) , VCVT (MTERM, NCLS), CT (NCLS),
+VCVIT (MTERM, NCLS) , TVEC (NSMAX, NTERM, NCLS),
+VCVIF (NTERM, NTERM) , VCV (MTERM) , VCVI (MTERM) , XM (NTERM),
+PC (NTERM) , QP (NCLS, NTERM) , PR (NCLS, NTERM) , PX (NCLS),
+VEC (NSMAX, NTERM) , WK (NTERM) , X (NTERM) , TI (NTERM)
REAL XMCK (NTERM) , VCVCK (MTERM) , TX (NTERM) , Y (NTERM)
REAL RVEC (NSMAX, NTERMC, NCLS) , AP (NCLS)
INTEGER NBR (6) , NPC (NCLS, NCLS, NTERM) , NST (NCLS)
CHARACTER*2 XC1
DOUBLE PRECISION DSEED
DATA XCI/' '/
DATA PC/NTERM*0.0/
DATA QP, PR, PX/NZ2*0.0, NZ2*0.0, NCLS*0.0/
DATA DSEED,NPC/5.D0,N21*0/
DATA (NBR (I) , $\mathrm{I}=4,6$) , IOPT, NIN, NOUT/ $1,0,0,3,0,6 /$
C XMT = MEAN VECTORS FOR ALL CLASSES
C VCVT $=$ COV. MATRICES FOR ALL CLASSES
C CT = M.L. DECISION RULE PARAMETER
C VCVIT = INVERSE COV. MATRICES FOR ALL CLASSES
C TVEC = GENERATED SAMPLE VECTORS
C VCVIF = INVERSE COV. MATRIX IN FULL STORAGE MODE
C VCV $=$ COV. MATRIX
C VCVI = INVERSE COV. MATRIX IN SYMMETRIC STORAGE MODE
C XM $=$ MEAN VECTOR
C PC = PROBABILITY OF CORRECT CLASSIFICATION
C XMCK = CHECKING VECTOR FOR MEAN
C VCVCK = CHECKING MATRIX FOR COVARIANCES
C NBR = IMSL ROUTINE-USED PARAMETER VECTOR
C NPC $=$ CLASSIFICATION RESULT MATRIX

PCF00010
PCF00020
PCF00030
PCF00040
PCF00050
PCF00060
PCF00070
PCF00080
PCF00090
PCF00100
PCF00110
PCF00120
PCF00130
PCF00140
PCF00150
PCF00160
PCF00170
PCF00180
PCF00190
PCF00200
PCF00210
PCF00220
PCF00230
PCF00240
PCF00250
PCF00260
PCF00270
PCF00280
PCF00290
PCF00300
PCF00310
PCF00320
PCF00330
PCF00340
PCF00350
PCF00360
PCF00370
PCF00380
PCF00390
PCEOO400
PCF00410
PCF00420
PCF00430
PCF00440
PCF00450
PCF00460
PCF00470
PCFO0480


```
    CLS2 : 1.0% .GT. OM .LE. 2.0% : # 83 -> # 217 PCF01060
    CLS3 : 2.0% .GT. OM .LE. 3.0% : # 218 -> # 337 PCF01070
    CLS4 : 3.0% .GT. OM .LE. 4.0% : # 338 -> # 391 PCF01080
    CLS5 : 4.0% .GT. OM .LE. 6.0% : # 392 -> # 450 PCF01090
    CLS6 : 6.0% .GT. OM .LE. 84.79% : # 451 -> # 514 PCF01100
    DATA NST/82,135,120,54,59,64/
    DATA NST/82,135,120,54,123/
    DATA NST/44,31,18,23,24,51,37,27/
    DATA NST/83,57,94,31,37,59,103,26,24/
    DATA NST/103,26,24/
    THE FOLIOWING DATA 'NST' IS USED FOR SOIT IRON OXIDE 'IO' DATA SE
    IS USED FOR SOIL IRON OXIDE IO DATA 
    ACCORDING TO THEIR FE2O3 % WEIGHT PCF01200
    CLASS 1 TO 6 : NP2 = 467
    CLS1 : .02% .GE. FE2O3 .LE. 0.4% : # 1 -> # 102
    CLS2 : 0.4% .GT. FE2O3 .LE. 0.6% : # 103 -> # 175
    CLS3 : 0.6% .GT. FE2O3 .LE. 0.8% : # 176 -> # 244
    CLS4 : 0.8% .GT. FE2O3 .LE. 1.2% : # 245 -> # 349
    CLS5 : 1.2% .GT. FE2O3 .LE. 1.6% : # 350 -> # 401
    CLS6 : 1.6% .GT. FE2O3 .LE. 25.60% : # 402 -> # 467
    DATA NST/102,73,69,105,52,66/
    THE FOLLOWING DATA 'NST' IS USED FOR SOIL TEXTURE 'ST' DATA SET
    ACCORDING TO THEIR SAND-SILT-CLAY % CONTENT
    CLASS 1 TO 6 : NP2 = 483; DETAILS : SEE FILE ( S5L.DATA.CI)
    DATA NST/40,63,76,93,68,143/
    THE FOLLOWING DATA 'NST' IS USED FOR S.D. VEGETATION DATA
    DATA NST/225,61,292,469, 82,182,63,103, 39,39,217,51,
    +393,441,80,88, 88,41,32,26, 118,43,121,44, 45,102,66,89,
    +78,53,147,39, 24,42,119,69, 76,96,107,154, 28,19/
    THE FOLLOWING DATA 'NST' IS USED FOR IOWA VEGETATION DATA
    DATA NST/514,41, 517,36,32, 621,517,45, 610,485,21,
    +437,377,22, 190,172,25, 650,568,42, 435,417,44, 393,267/
    11 = TRANSFORMED DATA; 12 = CLASS STATISCTICS; 13= PC
    OPEN (11)
    OPEN (12)
    OPEN (13)
    REWIND }1
    REWIND }1
    REWIND }1
    NX2=0
    DO 1 I=1,NCLS PCF01620
PCF01210
PCF01220
PCF01230
PCF01240
PCF01250
PCF01260
PCF01270
PCF01280
PCF01290
PCF01300
PCF01310
PCF01320
PCF01330
PCF01340
PCF01350
PCF01360
PCF01370
PCF01380
PCF01390
PCF01400
PCF01410
PCF01420
PCF01430
PCF01440
PCF01450
PCF01460
PCF01470
PCF01480
PCF01490
PCF01500
PCF01510
PCF01520
PCF01530
PCF01540
PCF01550
PCF01560
PCF01570
PCF01580
PCF01590
PCF01600
PCF01610
```

```
    1 \mp@code { N X 2 = N X 2 + N S T ~ ( I ) ~ P C F 0 1 6 3 0 }
    IF(IRES.EQ.0)GO TO 3 PCF01640
    DO 2 I=1,NCLS PCF01650
    NX1=NST (I) PCF01660
    2 AP (I)=FLOAT (NX1)/FLOAT (NX2) PCF01670
    GO TO 5
    3 DO 4 I=1,NCLS
    4 AP (I)=1.0/FLOAT (NCLS)
    5 IK=MOD (NCLS,6)
    SET THE INPUT&OUTPUT DO LOOP PARAMETERS
    IM=6* (NCLS/6) +1
    IK1=MOD (NCLS,3)
    IM1=3* (NCLS/3) +1
    IK2=MOD (NCLS,15)
    IM2=15* (NCLS/15) +1
    ILP1=NCLS/6
    IF(ILP1.EQ.0) ILP1=1
    ILP2=NCLS/3
    IF(ILP2.EQ.0) ILP2=1
    ILP3=NCLS/15
    IF (ILP3.EQ.0) ILP3=1
    IF (IRES.EQ.0) NSAMP=NSMAX
    DO 550 ISET=NSET,MSET,NDSET
    IF (IRES.EQ.I) CALL RDATA (ISET, RVEC,NSMAX,NTERMC,NCLS,NST)
C
C READ IN CLASS STATISTICS
C
    DO 500 LTERM=1,NTERM
    KTERM=LTERM* (LTERM+1)/2
    DO 30 ITERM=1,LTERM
    IF (NCLS.IT.6)GO TO 20
    DO 10 IL=1,ILP1
10 READ (12, *) (XMT (ITERM, JCLS) ,JCLS=1+(IL-1)*6,IL* 6)
    IF (IK.EQ.0)GO TO 30
20 READ (12,*) (XMT (ITERM, JCLS) ,JCLS=IM,NCLS)
30 CONTINUE
    DO 60 ITERM=1,KTERM
    IF (NCLS.LT. 6)GO TO }5
    DO 40 IL=1, ILP1
    40 READ (12,*) (VCVT (ITERM, JCLS) ,JCLS=1+ (IL-1)*6,IL* 6)
    IF(IK.EQ.0)GO TO 60
50 READ (12,*) (VCVT (ITERM, JCLS) , JCLS=IM, NCLS)
6 0 ~ C O N T I N U E ~
    IF (NCLS.LT.6)GO TO }8
    DO 70 IL=1,ILPI
70 READ (12,*) (CT (ICLS), ICLS=1+(II-1)*6,IL*6)
    IF(IK.EQ.O)GO TO 90
80 READ (12,*) (CT (ICLS) ,ICLS=IM, NCLS)
90 DO }120\mathrm{ ITERM=1, KTERM
    IF (NCLS.LT.6)GO TO 110
    DO 100 IL=1, ILP1
100 READ (12,*) (VCVIT (ITERM, JCLS), JCLS=1+(IL-1)*6,IL*6)
    IF(IK.EQ.0)GO TO 120
110 READ (12,*) (VCVIT (ITERM, JCLS) ,JCLS=IM,NCLS)
120 CONTINUE
```

PCF01630
PCF01640
PCF01650
PCF01660
PCF01670
PCF01680
PCF01690
PCF01700
PCF01710
PCF01720
PCF01730
PCF01740
PCF01750
PCF01760
PCF01770
PCF01780
PCF01790
PCF01800
PCF01810
PCF01820
PCF01830
PCF01840
PCF01850
PCF01860
PCF01870
PCF01880
PCF01890
PCF01900
PCF01910
PCF01920
PCF01930
PCF01940
PCF01950
PCF01960
PCF01970
PCF01980
PCF01990
PCF02000
PCF02010
PCF02020
PCF02030
PCF02040
PCF02050
PCF02060
PCFO2070
PCF02080
PCF02090
PCF02100
PCF02110
PCF02120
PCF02130
PCF02140
PCF02150
PCF02160
PCF02170
PCF02180
PCF02190

```
    IF (IFIND.EQ.1)GO TO 125 PCF02200
    IF (LTERM.NE.NTERM)GO TO 500
    IF(IFIND.EQ.0)GO TO 128
C
C
    125 NX1=LTERM+ (NDTRM-1)
    NX2=MOD (NX1, NDTRM)
C PRINT*,NX1,NX2
    IF (NX2.NE.0)GO TO 500
    128 DO 170 JCLS=1,NCLS
    DO 130 I=1, KTERM
    130 VCV (I) =VCVT (I,JCLS)
    CALL UGETIO (IOPT,NIN,NOUT)
C CALL USWSM(' THE MATRIX IS ',15,VCV,LTERM,1)
C NOTE : WK(1) MUST BE 0.0 EVERY TIME TO INITIALIZE ' GGNSM '
C NOTE : VCV WILL BE CHANGED AFTER ' GGNSM'
    IF (IRES.EQ.1) NSAMP=NST (JCLS)
    IF(IRES.EQ.1)GO TO 145
    DO 140 I=1,NTERM
    140 WK (I)=0.0
    DSEED=5.DO
C
C GENERATE GAUSSIAN SAMPIES ACCORDING TO THE CLASS STATISTICS
C
    145 DO 155 I=1,NSAMP
    DO }155\textrm{J}=1,LTER
    IF (IRES.EQ.1) GO TO 150
    VEC (I,J) =VEC (I,J) + XMT (J,JCLS)
C
C STORE THE SAMPLES INTO ARRAY 'TVEC'
C
    TVEC (I, J, JCLS ) =VEC (I,J)
    GO TO 155
    150 TVEC (I, J, JCLS) =RVEC (I, J, JCLS)
    VEC (I,J) =RVEC (I,J, JCLS)
C PRINT*,JCLS,I,J,TVEC (I,J,JCLS)
    155 CONTINUE
    IF(ICKMV.EQ.0)GO TO }17
C
C CHECK THE MEAN VECTOR AND COV. MATRIX OF THE GENERATED SAMPLES
C
C
    160 TX (I) =0.0
    NBR (1)=LTERM
    NBR (2) =NSAMP
    NBR (3) =NSAMP
C IF(LTERM.GT.1)GO TO 600
    CALL BECOVM (VEC,NSMAX,NBR,TX,XMCK,VCVCK,IER)
C
C
C
C
C
    CALL USWFV(' THE VECTOR IS ',15,XMCK,LTERM,1,1)
    CALL USWSM(' THE MATRIX IS ',15,VCVCK,LTERM,1)
170 CONTINUE
```

PCF02200
PCF02210
PCF02220
PCF02230
PCF02240
PCF02250
PCF02260
PCF02270
PCF02280
PCFO2290
PCF02300
PCF02310
PCF02320
PCF02330
PCFO2340
PCF02350
PCF02360
PCF02370
PCF02380
PCF02390
PCF02400
PCF02410
PCF02420
PCF02430
PCE02440
PCF02450
PCF02460
PCF02470
PCF02480
PCF02490
PCF02500
PCF02510
PCF02520
PCF02530
PCF02540
PCF02550
PCF02560
PCF02570
PCF02580
PCF02590
PCF02600
PCF02610
PCF02620
PCF02630
PCF02640
PCF02650
PCF02660
PCF 02670
PCF02680
PCF02690
PCF02700
PCF02710
PCF02720
PCF02730
PCF02740
PCF02750
PCF02760

C START CLASSIFICATION JOB FOR EACH CLASS SAMPLES
DO 230 JCLS $=1$,NCLS
IF (IRES.EQ.1) NSAMP=NST (JCLS)
PRINT*, LTERM, JCLS, NSAMP
DO 230 ISAMP $=1$, NSAMP
DO $180 \mathrm{~J}=1$, LTERM
$180 \mathrm{Y}(\mathrm{J})=$ TVEC (ISAMP, J, JCLS $)$
DO 220 KCLS=1,NCLS
C THE FOLLOWING IS NEEDED SINCE X HAS BEEN CHANGED FOR EVERY KCLS!
DO $190 \mathrm{I}=1$, LTERM
$190 \mathrm{X}(\mathrm{I})=\mathrm{Y}(\mathrm{I})$
DO 200 I=1, KTERM
$200 \operatorname{VCVI}(I)=\operatorname{VCVIT}(I, K C L S)$
CALL VCVTSE (VCVI, LTERM, VCVIF, NTERM)
DO 210 I=1, LTERM
$210 \mathrm{XM}(\mathrm{I})=\mathrm{XMT}(\mathrm{I}, \mathrm{KCLS})$
CALL SAXPY (LTERM, -1. XM, 1, X, 1)
CALL VMULFM (X,VCVIF, LTERM, 1, ITERM, NTERM, NTERM,T1, 1, IER)
CALL VMULFF (T1, X, 1, LTERM, 1,1, NTERM, T2, 1, IER)
$\mathrm{T} 3=\operatorname{EXP}(-0.5 * T 2)$
$220 \mathrm{PX}(\mathrm{KCLS})=\mathrm{AP}(\mathrm{KCLS}) * C T($ KCLS $) * T 3$

CALL VABMXF (PX (1), NCLS , 1, IMAX, BIG)
NPC (JCLS, IMAX, LTERM) $=$ NPC (JCLS, IMAX, LTERM) +1
C CALL VABSMF (PX,NCLS, 1, DEN)
C $\quad \mathrm{Q}=\mathrm{BIG} / \mathrm{DEN}$
C WRITE $(13, *)$ JCLS, ISAMP, IMAX, NPC (JCLS, IMAX, LTERM)
C $\operatorname{WRITE}(13, *)(P X(I), I=1, N C L S)$, IMAX, BIG
230 CONTINUE
FIND PROBABILITY OF CORRECT CLASSIFICATION PC FROM NPC
$\mathrm{NCl}=0$
NC2 $=0$
DO $240 \mathrm{I}=1$, NCLS
IF (IRES.EQ. O) NST (I) =NSMAX
$\operatorname{PR}(\mathrm{I}, \operatorname{LTERM})=(\operatorname{FLOAT}(\operatorname{NPC}(\mathrm{I}, \mathrm{I}, \operatorname{LTERM}))) / \operatorname{FLOAT}(\operatorname{NST}(I))$
$\mathrm{NC} 1=\mathrm{NC} 1+\mathrm{NPC}$ ($\mathrm{I}, \mathrm{I}, \mathrm{LTERM}$)
$240 \mathrm{NC} 2=\mathrm{NC} 2+\mathrm{NST}$ (I)
IF (IRES.EQ.0) NC2=NSMAX*NCLS
$\operatorname{PC}(\operatorname{LTERM})=(F L O A T(N C 1)) / F L O A T(N C 2)$
IF (NCLS.LT. 3) GO TO 260
C
C SEND THE RESULTS TO THE SCREEN
c
DO 250 IL=1, ILP2
$250 \operatorname{WRITE}$ ($*, \star$) ISET, LTERM, (PR (I, LTERM) , I=1+(IL-1)*3, IL* 3)
IF (IK1.EQ.0) GO TO 270
260 WRITE ($*, \star$) ISET, LTERM, (PR (I, LTERM), I=IM1, NCLS)
270 PRINT*, ISET, LTERM, PC (LTERM)
C
C SEND THE RESULTS TO THE PC FILE

PCFO3320
PCF03330

```
    WRITE (13,*)' LTERM = ',LTERM PCF03340
    IF (NCLS.LT.6)GO TO 290
    DO 280 IL=1,ILP1
    280 WRITE (13,301) (PR (I,LTERM),I=1+(IL-1)*6,IL*6)
    IF (IK.EQ.0)GO TO 300
    290 WRITE (13, 301) (PR (I,LTERM) ,I=IM,NCLS)
    300 WRITE (13, 301) PC (LTERM)
    301 FORMAT (6F13.5)
C
C---< RESET ALI, RELATED VARIABLES >-----
C THE FOLLOWING ZEROING PROCEDURES ARE 'ABSOLUTELY' NEEDED!!
C THIS IS DONE FOR EVERY " LTERM = 1, NTERM "
C
    DO 310 K=1,NCLS
    DO 310 I=1,NSMAX
    DO 310 J=1,NTERM
    310 TVEC (I, J,K)=0.0
    DO 320 I=1,NCLS
        DO 320 J=1,NTERM
    QP}(I,J)=0.
    320 PR(I,J)=0.0
    DO 330 I=1,NTERM
    330 PC (I) =0.0
            IF(NCLS.LT.15) GO TO 360
C
C SEND THE FINAL CLASSIFICATION MATRIX NPC TO THE PC FILE
C
    DO 350 J=1,ILP3
    DO }340\textrm{I}=1\mathrm{ ,NCLS
    340 WRITE (13,341)I, (NPC (I,K,LTERM) ,K=1+(J-1)*15,J*15)
    341 FORMAT (I3,2X,15I5)
    WRITE (13,342) XC1
    342 FORMAT (A2)
    350 CONTINUE
    IF(IK2.EQ.0)GO TO }50
    360 DO 370 I=1,NCLS
    370 WRITE (13,341)I, (NPC (I,K,LTERM),K=IM2,NCLS)
    5 0 0 ~ C O N T I N U E ~
        DO }510\textrm{I}=1\mathrm{ ,NCLS
        DO }510\textrm{J}=1\mathrm{ ,NCLS
        DO 510 K=1, NTERM
    510 NPC (I,J,K)=0
    550 CONTINUE
C
C
C
C 600 STOP
    STOP
    END
    SUBROUTINE RDATA (LSET, RVEC,NSMAX,NTERMC,NCLS,NST)
    REAL RVEC (NSMAX,NTERMC,NCLS)
    INTEGER NST (NCLS)
    IKX=MOD (NTERMC,5)
    IMX=5* (NTERMC/5)+1
    ILPX=NTERMC/5
    IF (ILPX.EQ.0) ILPX=1
    IFILE1=11+(LSET-1)*10
PCF03350
PCF03360
    PCF03370
    PCF03380
PCF03390
C THE FOLLOWING STATEMENT IS USED FOR INTERNAL CHECKING
PCF03400
PCF03410
PCF03420
PCF03430
PCF03440
PCF03450
PCF03460
PCF03470
PCF03480
PCF03490
PCF03500
PCF03500
PCF03520
PCF03530
*
PCF03540
PCF03550
PCF03560
PCF03570
PCF03580
PCF03580
PCF03590
PCF03600
PCF03610
PCF03620
PCF03630
PCF03640
PCF03650
PCF03660
PCF03670
PCF03680
PCF03690
PCF03700
PCF03710
PCF03720
PCF03730
PCF03740
PCF03750
PCF03760
PCF03770
PCF03780
PCF03790
PCF03800
PCF03810
PCF03820
PCF03830
PCF03840
PCF03850
PCF03850
PCF03870
PCF03880
PCF03890
```


