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Spectral Flows Associated to Flux Tubes

Giuseppe De Nittis and Hermann Schulz-Baldes

Abstract. When a flux quantum is pushed through a gapped two- dimen-
sional tight-binding operator, there is an associated spectral flow through
the gap which is shown to be equal to the index of a Fredholm operator
encoding the topology of the Fermi projection. This is a natural math-
ematical formulation of Laughlin’s Gedankenexperiment. It is used to
provide yet another proof of the bulk-edge correspondence. Furthermore,
when applied to systems with time reversal symmetry, the spectral flow
has a characteristic Z2 signature, while for particle–hole symmetric sys-
tems it leads to a criterion for the existence of zero energy modes attached
to half-flux tubes. Combined with other results, this allows to explain all
strong invariants of two-dimensional topological insulators in terms of a
single Fredholm operator.

1. Overview

For the explanation of the quantum Hall effect, Laughlin suggested a
Gedankenexperiment during which an extra magnetic flux is inserted adia-
batically into a two-dimensional system exposed to a constant magnetic field.
This allows to argue for a quantized Hall conductance [21]. Actually, adiabat-
ics is only needed to establish a connection to the Hall conductance and it
is possible to understand the main topological insight of Laughlin’s argument
in purely spectral terms, namely as a spectral flow. For example, exactly N
states flow through the gap above the Nth Landau level of the Landau opera-
tor as a flux is inserted, as can be seen by explicit calculation when modeling
the singular flux either by the Aharonov–Bohm gauge or by adequate half-line
boundary conditions [6]. Viewed from the perspective of [7] also taken in the
present paper, the spectral flow N through the Nth gap of the Landau oper-
ator is equal to the Chern number of the associated Fermi projection (on the
lowest N Landau bands) which in turn can be calculated as the index of the
Fredholm operator

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-014-0394-5&domain=pdf


2 G. De Nittis and H. Schulz-Baldes Ann. Henri Poincaré

T = P F P , F =
X1 + ıX2

|X1 + ıX2|
, (1)

where X1, X2 are the components of the position operator and P is the Fermi
projection. Indeed, this operator is well known to be Fredholm if the Fermi
level lies in a gap (or even in a region of dynamical localization [8]), namely
its kernel and cokernel are finite dimensional so that its index Ind(T ) =
dim(Ker(T )) − dim(Ker(T ∗)) is well defined. In this manner, the Laughlin
argument appears as a special case of the general connection between the
index of a given Fredholm operator and the spectral flow of a wide class of
associated unitary dilations, as outlined in Appendix A following Phillips work
[25] which is also rederived in a companion paper [11]. Once this perspective is
taken, the Laughlin argument acquires a remarkable stability and is not based
on any explicit calculation as in [6]. Here, it is presented for gapped tight-
binding models with constant magnetic fields and with basically arbitrary
hopping elements and potentials (Theorem 1). While such a statement, even
in the natural generality presented below, is a folk theorem both in the physics
and mathematical physics communities [7,8], a detailed proof does not seem to
be in the literature. Closest (but not identical and actually slightly weaker) to
ours is a statement in an unpublished manuscript of Macris [23], however, there
the proof again involves adiabatics which in our opinion is unnatural due to
the comments above. Here, the general theorem from [11,25] connecting index
to spectral flow is applied, and as preparation a careful analysis of the mag-
netic translations associated to constant magnetic fields perturbed by a flux
tube is carried out. These operators lie in a certain extension of the rotation
algebra by the compact operators, see Appendix B. It seems perceivable to us
that there exists an extension of Theorem 1 to operators with no gap at the
Fermi level, but for which the Fermi level lies in a region of dynamical Ander-
son localization. However, already the statement of such an extension would
require a carefully formulated definition of spectral flow (presumably using
finite volume approximations) and this goes beyond the scope of this work.

As an application of Theorem 1, a short and intuitive proof of the Elbau–
Graf version [13] of the bulk-edge correspondence is given in Theorem 2 in
Sect. 4. The basic idea of the argument is due to Macris [23], but the details in
that manuscript are flawed at several crucial points (in particular, the proof of
his Lemma 2) and several simplifications are made here (e.g., the gauges for flux
tubes are chosen differently). As this argument is based on spectral flow, it is
presently not clear how to adapt it for a proof of the bulk-edge correspondence
in presence of a mobility gap as stated in [14]. It is then shown in Sect. 5
how Theorem 2 also implies one of the main results of [19,32] which concerns
the bulk-edge correspondence for families of covariant operators. Needless to
say, even though these arguments circumvent the use of K-theory and cyclic
cohomology as explained in [19], we believe the K-theoretic interpretation to
be of great conceptual interest and value.

Section 6 discusses the fate of index of the Fredolm operator T and of the
Laughlin argument in systems which have supplementary discrete symmetries,
namely time reversal symmetry (TRS), particle–hole symmetry (PHS) and/or
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Table 1. List of symmetry classes ordered by TRS, PHS and
SLS as well as the CAZ-label

TRS PHS SLS CAZ STI Effect

0 0 0 A Z QHE
0 0 1 AIII
0 +1 0 D Z TQHE, ZM
−1 +1 1 DIII Z2 SCS, DZM
−1 0 0 AII Z2 QSHE, SCS
−1 −1 1 CII
0 −1 0 C 2 Z SQHE
+1 −1 1 CI
+1 0 0 AI
+1 +1 1 BDI

Then follow, for dimension d = 2, the possible values of the STI, and finally the physical
effects tied to them. A more detailed discussion is given in the text

sublattice symmetry (SLS, also called a chiral symmetry). The TRS and PHS
can be either even or odd and combinations of all three symmetries lead to
the so-called ten universality or symmetry classes which, following Altland
and Zirnbauer [1], are often labeled by a corresponding Cartan label denoted
by CAZ in Table 1. The theory of topological insulators [20,31] distinguishes
different topological ground states within the CAZ classes. These topological
phases are labeled by the so-called strong toplogical invariants (STI) which
are usually understood by K-theory [16,20,35]. As will be discussed below,
these K-theoretic invariants can take values either in Z or Z2. For the case
of two-dimensional systems these STI are listed in Table 1. In this work, the
K-theoretic point of view is not further developed, but rather a complemen-
tary concrete approach for the labeling of the phases is proposed. Actually,
the remarkable fact is that all values of the STI can be computed by analyz-
ing merely one Fredholm operator, namely T defined in (1). This is possible
because the various physical symmetries lead to symmetries of the Fredholm
operator showing that its index is an arbitrary integer in Class A and D, an
even integer in Class C, and vanishes in the other class, but has a Z2 index as
a secondary invariant in Class DIII and AII. To explain this in detail is the
object of Sect. 6. It can be summarized as follows.

Classification Scheme. Suppose that the Fermi level lies in a region of dynam-

ical localization in the sense of [8]. In each of the CAZ classes, the strong

invariant of [20,31] can be calculated as the index Ind(T ) or the Z2-index

Ind2(T ) = dim(Ker(T ))mod 2 of the Fredholm operator T given in (1). If there

is a gap at the Fermi level, all these indices can furthermore be calculated as

a spectral flow in the spirit of the Laughlin argument.

Let us give some further explanation as to what the STI actually are in
translation invariant and periodic systems, based on [16,20,35]. In Class A
and AIII, the STI are given by the complex K-groups K0(C0(R

2)) = Z

and K1(C0(R
2)) = 0 where R

2 is to be interpreted as the two-dimensional
momentum space. As the one-point compactification of R

2 is the sphere S
2,



4 G. De Nittis and H. Schulz-Baldes Ann. Henri Poincaré

the group Kj(C0(R
2)) coincides with the reduced K-group K̃j(C(S2)). In the

tight-binding solid state systems analyzed in this work, the sphere S
2 should

be replaced by the torus T
2 and this may (and does in some cases) produce

supplementary the so-called weak invariants [20], which are not analyzed here.
These comments transpose verbatim to the remaining 8 cases. There are Real
K-groups KRj(C0(R

2)τ ) introduced in [3] where τ is the involution induced by
τ(k) = −k for k ∈ R

2, stemming from complex conjugation in physical space,

and j = 0, . . . , 7. Again KRj(C0(R
2)τ ) ∼= K̃Rj(C0(S

2)τ ). These KR groups
are well known to be 0, 0, Z, Z2, Z2, 0, 2 Z, 0 for j = 0, . . . , 7, respectively. By
the above classification scheme, these values correspond again precisely to the
possible values of the index of T . Let us stress though that the above classifi-
cation scheme based on the invariants of T (Ind and Ind2) applies to systems
with broken translation invariance and merely requires dynamical localiza-
tion which by [8] assures that T is indeed a Fredholm operator. The groups
0, 0, Z, Z2, Z2, 0, 2 Z, 0 are also the homotopy groups (modulo Bott periodicity)
of the classifying spaces for Real K-theory, given by skew-adjoint Fredholm
operators on a real Hilbert space [4]. This connection will be further discussed
in an upcoming work which will also contain an extension of the classification
scheme to other dimensions.

Let us now discuss case by case the invariants of T in some more detail,
together with the associated physical effects. This list is also a summary of the
main results of Sect. 6.

• Class A contains systems without further symmetries and thus, in particu-
lar, electronic systems which exhibit a quantum Hall effect (QHE). This is
already discussed above. The operator T has no particular symmetry and
Ind(T ) can take arbitrary integer values.

• Chiral unitary systems (Class AIII) have a vanishing spectral flow in dimen-
sion d = 2. Here T has vanishing index, and no secondary invariant.

• Class D contains Bogoliubov–de Gennes (BdG) Hamiltonians with even
PHS, but no further symmetry. This symmetry does not imply any particu-
lar symmetry of the Fredholm operator T though, and rather connects it to
its conjugate Fredholm operator (1−P )F (1−F ). Hence, the spectral flow
and Ind(T ) can take any integer value. For covariant operators, these inte-
gers are equal to the Chern number of the Fermi projection which in turn
appear in the Kubo formula for the thermal quantum Hall effect (TQHE)
as a prefactor in the Wiedemann–Franz law [36]. Furthermore, in these
systems an inserted half-flux quantum is of physical interest as it mod-
els a vortex of the pair creation field. The operator at half-flux has again
an even PHS. Attached to these vortices are zero modes (ZM) whenever
Ind(T ) is odd. In second quantization, the associated creation operators
are self-adjoint so that one also speaks of Majorana modes. While this fact
is common knowledge in the physics community [29], also for tight-binding
models [15,30], Theorem 4 seems to provide the first mathematical proof
and also establishes the stability of these zero modes for a wide class of
operators, containing, e.g., random perturbations.
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• Class C contains BdG Hamiltonians with odd PHS and all the above state-
ments of Class D hold. The physical effect in Class C systems is the spin
quantum Hall effect (SQHE) [29], and Ind(T ) is actually equal to the spin
Hall conductance as given by the Kubo formula [29]. The crucial difference
w.r.t. Class D is that Ind(T ) is always even in Class C systems (Theo-
rem 5). Let us stress that this evenness is not related to the fact that Class
C models appear as a pair when obtained as SU(2)-invariant models of a
Class D system (as in [1]). Our claim is that each of these two Class C
models already has an even index, so the even nature is topological as also
noted in [20,31], see Table 1. This has important implications for the zero
modes. Actually, due to the evenness of Ind(T ) such zero modes are not

stable in Class C, other than claimed in [30].
• Systems in Class AII have an odd TRS (half-integer spin). In this class,

the most prominent toy model with non-trivial topology is the Kane–Mele
model [18], and it has a Z2 invariant. The physical effects associated to
it are the quantum spin Hall effect (QSHE) and a spin–charge separation
(SCS) [27,28]. It was shown in [34] that the odd TRS implies that the
Fredholm operator T is odd symmetric (in a sense recalled below) and
therefore Ind2(T ) = dim(Ker(T )) mod 2 ∈ Z2 is a well-defined secondary
invariant (the index Ind(T ) itself vanishes). Indeed, it is shown in Sect. 6.3
that Ind2(T ) = 1 for the Kane–Mele model. Theorem 6 then shows that
such a non-trivial index leads to a characteristic spectral flow, which is
intimately related to spin–charge separation [27]. This theorem follows from
a general result on the spectral flow of dilations of odd symmetric Fredholm
operators, proved in [11] and recalled in Appendix A.

• Class DIII comprises models with even PHS and odd TRS. These models
inherit from Class AII the possibility to have non-trivial Z2 indices. Indeed,
it is shown in Sect. 6.4 how models with such non-trivial topology can
be constructed by a doubling procedure, similar as the Kane–Mele model
is obtained from two Haldane models. Theorem 7 states that non-trivial
topology leads to Kramers’ degenerate double zero modes (DZM) at half-
flux. In principle, also models in Class CII could have Z2 invariants due to
the odd TRS, but as the odd PHS already leads to even indices in Class C
(Theorem 5), this Z2 index is trivial.

• In the remaining Classes CI, AI and BDI, the even TRS implies that
the Fredholm operator T is even symmetric in the sense of [34] and thus
Ind(T ) = 0 and there is no naturally associated secondary invariant because
all Fredholm operators with the corresponding symmetry lie in one con-
nected component (see Theorem 5 in [34]).

2. Gauges for Flux Tubes

The purpose of this section is to write out explicit formulas for two gauges of
a flux tube though one cell of the square lattice Z

2. One is a discrete version
of the standard Aharonov–Bohm gauge, the other one has the vector potential
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Figure 1. Spanning tree on the lattice Z
2 for the standard

gauge Ast

concentrated on a half-line and has already been used in other works [15,22,23].
These gauges have different properties which are crucial for the arguments
below. As a preparation, some generalities about vector potentials, magnetic
fields and gauges on the square lattice are collected in Sect. 2.1.

2.1. Magnetic Potentials, Magnetic Fields and Gauge Transformations

Let us view Z
2 as the vertices of an oriented graph, with oriented edges given

by the line segments [n, n + ej ] between nearest vertices. Here, n ∈ Z
2, and

e1 = (1, 0) and e2 = (0, 1) denote the two unit vectors of Z
2. A magnetic

potential on an oriented graph is a real-valued function on the oriented edges,
hence in the present case a function A : Z

2 × Z
2 → R satisfying A(n, m) = 0

for |n−m| �= 1 and A(m, n) = −A(n, m). Associated to the magnetic potential
A is a magnetic field BA(n) ∈ R through the cell (n, n+ e1, n+ e1 + e2, n+ e2)
attached to the upper right at n, see Fig. 1:

BA(n) = A(n, n + e1) + A(n + e1, n + e1 + e2)

+A(n + e1 + e2, n + e2) + A(n + e2, n).

This can be interpreted as the holonomy of A along the path around the
cell. Only A and BA mod 2π will be relevant, but it will be convenient to
maintain real values. Let us point out that the map A �→ BA is linear, namely
BA+αA′ = BA + αBA′ . If x ∈ R

2 �→ A(x) ∈ R
2 is a (conventional) vector

potential in continuous two-dimensional space, then an associated discretized
magnetic potential on Z

2 in the above sense is obtained by the line integrals:
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A(n, n + ej) =

∫ n+ej

n

dx · A(x). (2)

Any magnetic field can be realized by a magnetic potential and two magnetic
potentials realizing the same magnetic fields are gauge transformation of each
other, as shows the following result.

Proposition 1. (i) Given B : Z
2 → R, there exists a magnetic potential A

such that B = BA.

(ii) If A and A′ are two magnetic potentials on Z
2 satisfying BA = BA′ , then

there exists the so-called gauge transformation G : Z
2 → R such that

A′(n, m) = A(n, m) + G(n) − G(m), |n − m| = 1. (3)

Proof. It is known (e.g., [9]) that a vector potential can be constructed using
a spanning tree for the lattice. For sake of concreteness, let us choose one such
tree (see Fig. 1) which then leads to what we call the standard gauge

Ast(n, n + ej) = δj,1

⎛
⎝δn2<0

|n2|∑

k=1

B(n1,−k) − δn2>0

n2−1∑

k=0

B(n1, k)

⎞
⎠ ,

where n = (n1, n2) ∈ Z
2. (ii) Choose G(n) as the sum of A′ − A along a path

from 0 to n. As BA′−A = 0, this is independent of the choice of the path. �

Next let us introduce the magnetic translations operators SA
1 and SA

2 on
ℓ2(Z2) associated to the magnetic potential A:

SA
j = eıA(X+ej ,X)Sj =

∑

n∈Z2

e−ıA(n−ej ,n) |n − ej〉〈n| = Sje
−ıA(X−ej ,X), (4)

where j = 1, 2.

With A given by (2), this is precisely the formula given in [2, Theo-
rem 3.2]. From the definition of SA

j , it is clear that indeed only the values of

A mod 2π are relevant for the magnetic translations. On the other hand, SA
j

depends on the choice of the magnetic potential A and not only on B. The fol-
lowing commutation relation states that a phase factor given by the magnetic
field is recovered by circulating around one cell:

SA
2 SA

1 (SA
2 )∗ (SA

1 )∗ = eıBA(X), (5)

where BA(X) denotes the self-adjoint multiplication operator defined by
BA(X)|n〉 = BA(n)|n〉. The second main property of magnetic translations
is their behavior under the gauge transformation given in (3):

SA′

j = e−ı G(X) SA
j eı G(X), (6)

where G(X) denotes again the multiplication operator given by G. Another
property that is obvious from (4) is its behavior under complex conjugation:

SA
j = S

(−A)
j . (7)
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2.2. Some Explicit Gauges

Let us begin by recalling two standard gauges for a constant magnetic field
B(n) = B ∈ R. The symmetric gauge Asym and Landau gauge ALan are given
by

ASym(n, n + ej) = − 1
2 B n2 δj,1 + 1

2 B n1 δj,2, ALan(n, n + ej) = −B n2 δj,1.

Note that, ALan is actually the standard gauge used in Proposition 1 and that
the gauge transformation for the difference ASym − ALan is given by G(n) =
−B

2 n1n2.

Next, let us consider the central object of this work, the discrete flux
tube of flux α ∈ R through the cell (m, m + e1, m + e1 + e2, m + e2) attached
to m. The magnetic field of this flux tube is B(n) = 2π α δn,m. One possible
gauge, termed half-line for sake of concreteness, is

AHL(n, n + ej) = − 2π α δn1,m1
δn2>m2

δj,1.

A second gauge is obtained via (2) from the standard singular Aharonov–Bohm
gauge in R

2 attached at m′ = m + (1
2 , 1

2 ):

AAB(x) =

(
−α

x2 − m′
2

(x1 − m′
1)

2 + (x2 − m′
2)

2
, α

x1 − m′
1

(x1 − m′
1)

2 + (x2 − m′
2)

2

)
.

(8)
Integration then leads to

AAB(n, n + ej) = − α

[
arctan

(
n1 + 1 − m′

1

n2 − m′
2

)
− arctan

(
n1 − m′

1

n2 − m′
2

)]
δj,1

+ α

[
arctan

(
n2 + 1 − m′

2

n1 − m′
1

)
− arctan

(
n2 − m′

2

n1 − m′
1

)]
δj,2.

(9)
Using the identity arctan(a) + arctan(a−1) = π

2
a

|a| for a ∈ R/{0}, it is indeed

possible to check that the magnetic field associated with AAB is exactly 2π α
δn,m. Alternatively, one can use the well-known properties of AAB(x) to verify
this. The gauge transformation in AAB(n, m) − AHL(n, m) = α(G(n) − G(m))
is explicitly given by

G(n) = −
[
π δn1>m′

1
+ arctan

(
n2 − m′

2

n1 − m′
1

)]
. (10)

2.3. Magnetic Translations With Flux Tubes

If A = ASym with magnetic field B, the associated (Zak) magnetic translations
are denoted by SB

j . For A = 0 so that B = 0, we also write Sj instead of SB
j .

Next, let us introduce the magnetic translations with constant magnetic field
B and flux tube α at m by

SB,α
j = SA

j , where A = ASym + AAB. (11)

In the following, note that there is a slight modification of the definition of F
w.r.t. (1).
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Proposition 2. The operator differences SB,α
j − SB

j are compact. The operator

functions α ∈ R �→ SB,α
j are norm continuous. Furthermore,

SB,α+1
j = F SB,α

j F ∗, F = − X1 + m′
1 + ı(X2 + m′

2)

|X1 + m′
1 + ı(X2 + m′

2)|
, (12)

where m′ = (m′
1, m

′
2) = m + (1

2 , 1
2 ). The commutators [F, SB,α

j ] are compact

operators.

Proof. It follows from (9) that lim|n|→∞ AAB(n + ej , n) = 0. Thus,

eıAAB(X+ej ,X) − 1 is a multiplication operator with factor decaying to 0 at
infinity and finitely degenerate eigenvalues, so that it is a compact operator.
Due to (4) this implies the first claim. As to the second, it follows again from
the relation (4) and equation (9) which shows that the gauge AAB is linear in
α with uniformly bounded coefficients, which is sufficient to insure the norm
continuity.

To verify (12), let us introduce the gauged magnetic shifts ZB,α
j = eıαG(X)

SB,α
j e−ıαG(X) where G is the gauge transformation given in (10). Since the

α-dependance in ZB,α
j is given by the exponential in the half-line gauge AHL,

one deduces that ZB,α+a
j = ZB,α

j for all integers a ∈ Z. In particular, this
implies that

SB,α+1
j = e−ı(α+1)G(X) ZB,α

j eı(α+1)G(X) = F SB,α
j F ∗

where the unitary F , written out using (10), is given by

F = e−ıG(X) = − X1 − m′
1

|X1 − m′
1|

e
ı arctan

(
X2−m′

2

X1−m′

1

)

= − X1 + m′
1 + ı(X2 + m′

2)

|X1 + m′
1 + ı(X2 + m′

2)|
,

where the following identities, holding for x1, x2 ∈ R/{0}, were used

x1 + ıx2

|x1 + ıx2|
= exp

(
−ı arctan

(x1

x2

)
+ ı

π

2
sgn(x2)

)

= exp

(
ı arctan

(x2

x1

)
+ ı

π

2
(sgn(x1) − 1)

)
.

For the last claim, let us rewrite using (12)

[F, SB,α
j ] = (SB,α+1

j − SB,α
j )F = (SB,α+1

j − SB
j )F + (SB

j − SB,α
j )F,

so that the above allows to conclude. �

Appendix B analyzes the C∗-algebra generated by SB,α
1 and SB,α

2 . It is
an extension of the rotation algebra by the compact operators and this allows
to calculate its K-theory.

Remark 1. The above proof shows how the unitary F depends on the gauge
transformation G of (10). More generally, let us set

Fα = e−ıαG(X) = e
ıαπδX1>m′

1 e
ıα arctan

(
X2−m′

2

X1−m′

1

)

.
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With this notation, the relation between the translations ZB,α
j in the half-line

gauge and the translations SB,α
j in the Aharonov–Bohm gauge for α are given

by SB,α
j = Fα ZB,α

j F−α. From the definition ZB,α
j = eıAHLeıASymSj =

eıAHLSB,0
j and the explicit form of AHL, it is evident that ZB,α

2 = SB,0
2 for all

α ∈ R which, in particular, implies SB,α
2 = FαSB,0

2 F−α. However, a similar
relation is not true for j = 1. In fact,

Lα = ZB,α
1 − SB,0

1

=
(
eı2πα − 1

) ∑

n2>m2

e−ıASym((m1,n2),(m1+1,n2)) |m1, n2〉〈m1 + 1, n2| (13)

is non-vanishing and not even compact, and one has SB,α
1 = Fα (SB,0

1 +
Lα) F−α. Hence inserting the flux α is not simply implemented by the unitary
transformation with Fα, but it really introduces compact perturbations. More

precisely, the algebra generated by SB,α
1 and SB,α

2 is a genuine extension of the
rotation algebra (generated by the unperturbed magnetic translations SB

1 and
SB

2 ) by the compact operators. This is explained in more detail in Appendix B.

Remark 2. The claims of Proposition 2 also hold if ASym is replaced by ALan.
On the other hand, replacing AAB by AHL is not allowed because the half-line
gauge is actually a non-compact perturbation of the magnetic translations. Let

us make this more explicit by analyzing the operator S̃B,α
j defined by

S̃B,α
j = SA

j , where A = ALan + AHL. (14)

The difference between ZB,α
j and S̃B,α

j is only in the choice for the gauge of the
constant magnetic field B, while the gauge for the flux tube is concentrated on

the half-line in both cases. Then S̃B,α
2 = S2, but S̃B,α

1 is not compact pertur-
bation of the magnetic translation in the Landau gauge given by e−ıBX2 S1.
Indeed, the replacement of ASym with ALan in (13) provides

S̃B,α
1 = e−ıBX2 S1 S∗

1 eıAHL(X+e1,X) S1

= e−ıBX2 S1

(
1 + (e2πı α − 1)

∑

n2>m2

|m1 + 1, n2〉〈m1 + 1, n2|
)

.

In particular, S̃B,α
1 − e−ıBX2 S1 is not compact. In spite of this unpleasant

feature, the half-line gauge is of crucial importance in Sect. 4.

3. Spectral Flow of the Laughlin Argument

In this section, Hamiltonians on ℓ2(Z2) of the following form will be considered

Hα(λ) =
∑

n=(n1,n2)∈Z2

tn(α) (SB,α
1 )n1 (SB,α

2 )n2 + λ V, (15)

where tn(α) ∈ K∼ (where K denotes the ideal of compact operators on ℓ2(Z2)
and A∼ is the unitalization of an algebra A obtained by adding multiples of the
identity C1) and V =

∑
n∈Z2 vn |n〉〈n| is a uniformly bounded potential and
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λ ∈ [0, 1] a coupling constant. It will be assumed that the hopping amplitudes
decrease sufficiently fast so that

∑

n∈Z2

‖tn(α)‖ < ∞ (16)

Moreover, for any n ∈ Z
2 the conditions

t−n(α) = (SB,α
2 )−n2 (SB,α

1 )−n1 tn(α)∗ (SB,α
2 )n2 (SB,α

1 )n1 ,

F tn(α)F ∗ = tn(α + 1),
(17)

are supposed to hold. They guarantee, respectively, Hα(λ)∗ = Hα(λ) and
FHα(λ)F ∗ = Hα+1(λ).

Remark. Definition (15) combined with conditions (17) may seem a little
unnatural at first glance. However, Proposition 2 implies that the commu-

tator [SB,α
1 , SB,α

2 ] is a non-vanishing compact operator when α �= 0, and thus

the ordering of the magnetic shifts SB,α
1 and SB,α

2 becomes relevant. In (15) a
particular choice of ordering has been made and this requires (17). Of course, if
there are only nearest neighbor hopping terms like in the Harper Hamiltonian
this is not an issue. Furthermore, for α = 0 the commutator is just a number
which can be absorbed in tn(0) ∈ C1.

At λ = 1, the Hamiltonian is simply denoted by Hα = Hα(1), and for
α = 0 the notations H = H0 and tn = tn(0) are used. If te1

= t−e1
= te2

=
t−e2

= t1 with t ∈ R are the only non-vanishing hopping amplitudes, then
the Hamiltonian H = H0 is the two-dimensional representation of the Harper
Hamiltonian with constant magnetic flux B through each unit cell, and V
allows, e.g., to add a random potential or a compactly supported scattering-

type potential. Furthermore, in Hα the magnetic translations SB,α
j given by

(11) add an extra flux through the unit cell attached at m ∈ Z
2.

Let us begin by collecting a few basic mathematical properties of the
Hamiltonian (15) which follow rather directly from the properties of the mag-
netic translations.

Proposition 3. Let g : R → C be continuous. Then the following properties

hold:

(i) Hα − H0 and g(Hα) − g(H0) are compact.

(ii) σess(Hα) = σess(H0)
(iii) g(Hα+1) = Fg(Hα)F ∗ with unitary F as in (12).
(iv) σ(Hα+1) = σ(Hα)
(v) The commutators [F, g(Hα)] are compact.

(vi) α ∈ R �→ g(Hα) is norm continuous.

All claims also hold for Hα(λ) with λ �= 1.

Proof. By Proposition 2, SB,α
j − SB

j is compact for j = 1, 2. Thus (SB,α
1 )n1

(SB,α
2 )n2 − (SB)n is compact for all n = (n1, n2) ∈ Z

2 and the summability
hypothesis (16) then implies that Hα−H0 is compact. Furthermore, telescoping
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(Hα)k − (H0)
k =

k−1∑

l=1

(Hα)k−l(Hα − H0)(H0)
l

shows that also (Hα)k − (H0)
k is also compact for any k ≥ 1 and combined

with Weierstraß theorem and the norm closedness of the compact operators
this implies (i). By Weyl’s theorem also (ii) follows. Furthermore (12) and
FV F ∗ = V lead first to Hα+1 = FHαF ∗, and combined with Weierstraß
approximation to (iii). Item (iv) is then a direct consequence of (iii), and (v)
combines (iii) and (i):

[F, g(Hα)] =
(
g(Hα+1) − g(H0) + g(H0) − g(Hα)

)
F ∈ K.

Finally, the continuity (vi) follows from the norm continuity of SB,α stated in
Proposition 2. �

The focus will now be on operators satisfying the following

Gap hypothesis: The Fermi level μ ∈ R lies in a spectral gap of H0 and in a

gap of the essential spectrum of H0(λ) for all λ ∈ [0, 1].

The second part of the hypothesis can be slightly weakened by allowing also
μ to depend on λ, but for sake of simplicity this is not written out here. Let
us point out that the Gap hypothesis does not exclude that H0(λ) has bound
states close to μ (namely, discrete spectrum resulting, e.g., from a compact
potential V ). Due to Proposition 3, as function α ∈ [0, 1] of only the dis-
crete spectrum of Hα(λ) is changing and may lead to eigenvalues passing by
μ. In fact, these eigenvalues vary real analytically in α due to the analytic
dependence of Hα(λ) on α. The operators at α = 0 and α = 1 are isospectral
by Proposition 3. Counting the eigenvalue passages along the path weighted
by the multiplicities and a positive or negative sign pending on whether the
eigenvalues increase or decrease allows to define the integer-valued spectral
flow Sf(α ∈ [0, 1] �→ Hα by μ) by μ. This is illustrated in Fig. 2. As here
the eigenvalue curves of the discrete spectrum are real analytic, the intuitive
notion of spectral flow indeed leads to mathematically sound definition. Let
us note that one may suspect there to be a problem defining the spectral flow
in case μ happens to be an eigenvalue of H0(λ), but actually there is no issue
because α ∈ [0, 1] �→ σ(Hα(λ)) is really a closed loop by Proposition 3(iv) so
that the flow by μ is well defined. A definition of spectral flow for the more
general case of norm continuous families of self-adjoint operators can be found
in [11,25]. These references also discuss further properties of the spectral flow,
such as its homotopy invariance. To familiarize the reader with the notion of
spectral flow, let us provide an alternative formula which will also be used
below.

Proposition 4. Suppose that the closed interval ∆ ⊂ R lies in a gap of H and

let g : R → [0, 1] be a smooth non-increasing function which is equal to 1 on

the left of ∆ and 0 on the right of ∆. Then for μ ∈ ∆
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Figure 2. Typical pattern of the spectral flow associated
with a flux tube insertion α �→ Hα

Sf
(
α ∈ [0, 1] �→ Hα by μ

)
= −

∫ 1

0

dα Tr
(
g′(Hα) ∂αHα

)
. (18)

Also the r.h.s. is manifestly gauge invariant.

Proof. Let El(α), l = 1, . . . , L, denote the finite number of eigenvalues of Hα

lying in ∆ with normalized eigenvectors ψl(α) where L is the maximal number
of eigenvalues in ∆ for all α’s. These eigenvalues and eigenvectors are real
analytic in α. As the support of g′ lies in ∆, the operator

g′(Hα) =

L∑

l=1

g′(El(α)) |ψl(α)〉〈ψl(α)|

is finite rank. By the Fundamental Theorem,

Sf
(
α ∈ [0, 1] �→ Hα by μ

)
= −

∫ 1

0

dα

L∑

l=1

g′(El(α)) ∂α El(α).

Using ∂α El(α) = ∂α 〈ψl(α)|Hα|ψl(α)〉, one readily concludes the proof. For

the final claim, let H̃α = eıGα(X)Hαe−ıGα(X) be the Hamiltonian in another
gauge. Then

Tr
(
g′(Hα) ∂αHα

)
= Tr

(
e−ıGα(X)g′(H̃α)eıGα(X) ∂α

(
e−ıGα(X)H̃αeıGα(X)

))

= Tr
(
g′(H̃α) ∂αH̃α

)
,

where in the last equality the cyclicity of the trace is used to cancel out 2
terms. �

The following theorem connecting the spectral flow to an index is the
central result of this paper. Due to the preparations in Proposition 3, it is a
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corollary of a general statement of [25], also proved in [11], and recalled in
Appendix A.

Theorem 1. Suppose the Gap hypothesis holds and let Pμ(λ) = χ(H0(λ) ≤ μ)
be the Fermi projection of H0(λ) on energies below μ. Then Pμ(λ)FPμ(λ) is a

Fredholm operator on Pμ(λ) ℓ2(Z2) and for all λ ∈ [0, 1] its index is given by

Sf
(
α ∈ [0, 1] �→ Hα(λ) by μ

)
= Ind(Pμ(λ)FPμ(λ)). (19)

Moreover, these expression is constant in λ ∈ [0, 1].

Proof. By the Gap hypothesis there exists a continuous and non-increasing
function g : R → [0, 1] such that Pμ(λ) = g(H0(λ)). Therefore, by Proposi-
tion 3(v) the operators Pα = g(Hα(λ)) have compact commutators [F, Pα].
This implies the claimed Fredholm property and the constancy of the index
on the r.h.s. of (19) follows from the homotopy invariance of the index. Fur-
thermore, all the hypotheses of Theorem 8 in Appendix A are verified. Thus

Sf
(
α ∈ [0, 1] �→ g(Hα(λ)) by 1

2

)
= Ind(Pμ(λ)FPμ(λ)). (20)

However, the spectral flow on the l.h.s. is precisely equal to the spectral flow
in (19). �

The following complement to Theorem 1, used in the Sect. 4 below, shows
that one also may cut out finite portions of the physical space Z

2 without
changing the spectral flow. Roughly reformulated, this means that also com-
pactly supported, infinite potentials do not change the spectral flow.

Proposition 5. Suppose the Gap hypothesis holds. For Λ ⊂ Z
2 set ΠΛ =∑

n∈Λ |n〉〈n| and ΠΛc = 1−ΠΛ. Then, for Λ finite and HΛ
α = ΠΛcHαΠΛc , one

has

Ind(PμFPμ) = Sf
(
α ∈ [0, 1] �→ HΛ

α by μ
)

= −
∫ 1

0

dα Tr
(
g′(HΛ

α ) ∂αHΛ
α

)
,

(21)
where Pμ = χ(H ≤ μ) is the Fermi projection of H. The r.h.s. is still gauge

invariant.

Proof. First of all, HΛ
α is again a compact perturbation of Hα so that the

essential spectra coincide. Furthermore, the projection ΠΛ commutes with F .
Now, the proof of the first equality is a modification of the proof of Theorem 1
using the homotopy β ∈ [0, 1] �→ (1−βΠΛ)Hα(1−βΠΛ). The second equality
follows by the same argument as Proposition 4. �

Let us conclude this section by analyzing what happens if several flux
tubes are inserted simultaneously.

Proposition 6. Suppose the Gap hypothesis holds. Let α ∈ [0, 1] �→ H(α) denote

the family of Hamiltonians with a flux α through the lattice cells attached to

m(1), . . . , m(L) ∈ Z
2. Then

Sf
(
α ∈ [0, 1] �→ H(α)(λ) by μ

)
= L Ind(PμFPμ),

where Pμ = χ(H ≤ μ) is the Fermi projection on energies below μ lying in the

gap.
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Proof. Associated to each l = 1, . . . , L there is a Dirac phase F(l) defined as
in formula (12). Setting F ′ = F(1) · · · F(L), one then verifies all the claims
of Proposition 3, in particular, the identity H(1) = F ′H(0)(F

′)∗ as well as
compactness of H(α) − H(0). Now the proof of Theorem 1 shows

Sf
(
α ∈ [0, 1] �→ H(α) by μ

)
= Ind(PμF ′Pμ).

Furthermore, [F(l), Pμ] is compact so that

PμF ′Pμ = (PμF(1)Pμ) · · · (PμF(L)Pμ) + K,

for some compact operator K. The multiplicative property of the index and
its invariance under compact perturbations implies

Ind(PμF ′Pμ) =

L∑

l=1

Ind(PμF(l)Pμ).

But all of the indices on the r.h.s. are equal to Ind(PμFPμ), concluding the
proof. �

4. Flux Tube Proof of The Bulk-Edge Correspondence

This section is about the half-space operator Ĥ acting on ℓ2(Z × N) simply
obtained by restriction from the Hamiltonian H given in (15) with α = 0 and
λ = 1. This corresponds to imposing Dirichlet boundary conditions on the
half-plane Z×N. In principle all the below also holds for other local boundary
conditions, but this is not analyzed in detail (non-local boundary conditions
like the spectral boundary conditions of Atiyah–Patodi–Singer are not allowed
though). For sake of simplicity, it will be assumed that the sum in (15) is finite
by imposing the constraint |n| ≤ R for some finite range R ∈ N. The half-plane

operator Ĥ describes the boundary of a quantum Hall system and therefore
there are chiral edge currents. The edge current density operator is defined as

the commutator ı [Π<, Ĥ] where the quarter plane projection Π< is given by

Π< =
∑

n1<0

∑

n2>0

|n1, n2〉〈n1, n2|. (22)

The following theorem states that the boundary current density is well defined
and quantized by a number which depends on the topology contained in the
Fermi projection of the Hamiltonian H acting on the plane.

Theorem 2. Suppose that the closed interval ∆ ⊂ R lies in a gap of H and let

g : R → [0, 1] be any smooth non-increasing function which is equal to 1 on the

left of ∆ and 0 on the right of ∆. Then

Tr
(
g′(Ĥ) ı [Π<, Ĥ]

)
= − 1

2π
Ind(PμFPμ), (23)

whereas above Pμ = χ(H ≤ μ) is the Fermi projection on energies below μ ∈ ∆.
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Figure 3. Illustration of the geometry in the proof of Theorem 2

A version of Theorem 2 in the context of covariant operators was proved
in [19,32] where the l.h.s. also contains a disorder average. It is shown how
this result can be recovered in Sect. 5. The pointwise equality (23) was first
proved in [13]. The rough idea for the proof given below is due to Macris [23],
but as already indicated in the introduction his argument contained several
imprecisions which are corrected below.

Proof. of Theorem 2. The proof begins by exploiting that (21) holds for all
Hamiltonians within the class (15) provided the Gap hypothesis holds, and also
for all choices of the gauge. Here, we choose ΛN = {(n1, n2) | |n1| ≤ N, −N ≤
n2 ≤ 0} and the gauge (14) for a flux α attached to m = (m1, m2) = (−1,−1),

see the illustration in Fig. 3. Hence the magnetic translations S̃B,α
j defined in

(14) are used in (15) so that the Hamiltonian will be

H̃α =
∑

|n1|≤R, |n2|≤R

tn(α) (S̃B,α
1 )n1 (S̃B,α

2 )n2 + V,

and the restriction to Λc
N = Z

2\ΛN is as above

H̃N
α = ΠΛc

N
H̃α ΠΛc

N

The tilde and N on the Hamiltonian H̃N
α indicate the choice of half-line gauge

and the dependence on physical space. With these notations, (21) becomes

Ind(PμFPμ) = −
∫ 1

0

dα Tr
(
g′(H̃N

α ) ∂αH̃N
α

)
. (24)
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Next let us set Πr =
∑

n2≥0 |r, n2〉〈r, n2| and Π[−R,R] =
∑R

r=−R Πr. With

these notations, the formula after (14) reads

S̃B,α
1 = e−ıBX2S1(1 + (e2πıα − 1)Π0)

and it follows

∂αS̃B,α
1 = 2πı e2πıα e−ıBX2 S1 Π0 = 2πı S̃B,α

1 Π0, ∂αS̃B,α
2 = 0.

As S1Π0 = S1(S
∗
1Π<S1 − Π<) = [Π<, S1] and Π< commutes with any multi-

plication operator, one obtains S̃B,α
1 Π0 = [Π<, S̃B,α

1 ] so that

∂αS̃B,α
1 = 2πı [Π<, S̃B,α

1 ], ∂αS̃B,α
2 = 0. (25)

As Π< commutes with S̃B,α
2 as well as any potential, one concludes using the

derivative properties of both sides of the equality (Leibniz rule) that

∂αH̃N
α = 2πı [Π<, H̃N

α ].

As the sum in the Hamiltonian H̃N
α is restricted to |n| ≤ R and [Π<, S̃B,α

1 ] =

Π−1S̃
B,α
1 Π0 leading to a similar identity for powers of S̃B,α

1 , one has

∂αH̃N
α = Π[−R,R] ∂αH̃N

α Π[−R,R].

Furthermore, let Ĥα = H̃∞
α be the half-space restriction of H given by (15)

with the magnetic translations S̃B,α
j . Then, for N ≥ R, one furthermore has

∂αH̃N
α = Π[−R,R] ∂αĤα Π[−R,R] and similarly for the commutators with Π<.

Hence (24) becomes

Ind(PμFPμ) = −2π

∫ 1

0

dα Tr
(
Π[−R,R] g

′(H̃N
α )Π[−R,R] ı [Π<, Ĥα]

)
. (26)

Now, Lemma 1 below shows that Π[−R,R] g
′(H̃N

α )Π[−R,R] is trace-class uni-

formly in N and that H̃N
α can be replaced by Ĥα. Hence, taking the limit

N → ∞ of (26) shows

Ind(PμFPμ) = −2π

∫ 1

0

dα Tr
(
Π[−R,R] g

′(Ĥα)Π[−R,R] ı [Π<, Ĥα]
)
.

Finally, the projections Π[−R,R] can be dropped again because they are con-

tained in ı [Π<, Ĥα] anyway. Now the Hamiltonian Ĥα does depend on α
through the gauge for the flux quantum at (−1,−1), but the half-line gauge
on the upper half-plane Z × N does not lead to a magnetic field there. Thus,

there exists a gauge transformation from Ĥα to Ĥ, the latter of which has
only a gauge potential for the constant magnetic field (e.g., the flux α can
be realized by a half-line type potential in the lower half-plane). As again the
trace on the r.h.s. is invariant under gauge transformation one may set α = 0.
This completes the proof of Theorem 2. �

Lemma 1. Π[−R,R] g
′(H̃N

α )Π[−R,R] converges in the limit where N → ∞ to

Π[−R,R] g
′(Ĥα)Π[−R,R] in trace norm.



18 G. De Nittis and H. Schulz-Baldes Ann. Henri Poincaré

Proof. First, let us recall the argument from the appendix of [13], see also

Section 5 in [33], showing that Π[−R,R] g
′(Ĥα)Π[−R,R] is traceclass. By the

Helffer-Sjörstrand formula:

g′(Ĥα) =

∫
dz

2π
g̃(z, z) (z − Ĥα)−1.

Here, g̃ is the derivative of an adequate quasi-analytic extension of g′ and
the two-dimensional integral is over a rectangle in the complex plane, the
x-axis of which is contained in the support of g′. In particular, g̃ decreases
arbitrarily fast on the real axis. By a Combes–Thomas estimate the resolvent
decays exponentially and this allows to conclude by the arguments in [13,33].
Furthermore,

g′(H̃N
α ) − g′(Ĥα) =

∫
dz

2π
g̃(z, z) (z − H̃N

α )−1
(
H̃N

α − Ĥα

)
(z − Ĥα)−1.

The crucial fact is now that H̃N
α − Ĥα has vanishing matrix elements only in

the lower half-plane Z × (−N) and outside of ΛN . Therefore, again a Combes–
Thomas estimate, now for both resolvents, allows to conclude. �

5. Covariant Hamiltonians

Let Ω be a compact space furnished with an action T of Z
2 and an invariant

and ergodic probability measure P. A family of operators A = (Aω)ω∈Ω on
ℓ2(Z2) is called covariant w.r.t. the magnetic translations SB

1 , SB
2 if and only

if

(SB
j )∗ Aω SB

j = ATjω,

where Tj = Tej
for j = 1, 2 are the two generators of the actions of Z. The finite

range covariant operators form an algebra and its closure is a C∗-algebra A
which has the structure of a crossed product algebra [8] and its von Neumann
closure w.r..t. ‖A‖ = P-esssup‖Aω‖ is denoted by L∞(A,P). For a covariant
projection P = (Pω)ω∈Ω with sufficient decay of matrix elements off the diago-
nal (so that, in particular, the commutators [Xj , Pω] are bounded), the Chern
number is defined by [8]

Ch(P ) = 2πı

∫
P(dω) 〈0|Pω[[X1, Pω], [X2, Pω]]|0〉.

One of the main results of [8] is that, with F defined in (12), the operators
PωFPω are almost surely Fredholm operators on Pωℓ2(Z2) and the indices are
P-almost surely constant and given by

Ch(P ) = Ind(PωFPω),

Furthermore, if P is the Fermi projection, then Ch(P ) is equal the zero tem-
perature Hall conductance as given by the Kubo formula.

Now, the equality (23) connecting the index to the boundary current
density holds pointwise, that is for every realization ω. The following theorem
is the version of the bulk-edge correspondence proved in [19,32].
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Theorem 3. Suppose that the closed set ∆ ⊂ R lies in an almost sure gap of

a covariant family H = (Hω)ω∈Ω of Hamiltonians of the form (15). Further

let g : R → [0, 1] be any smooth non-increasing function which is equal to 1 on

the left of ∆ and 0 on the right of ∆. Then

∑

n2≥0

∫
P(dω) 〈0, n2|g′(Ĥω) ı [X1, Ĥω]|0, n2〉 = − 1

2π
Ind(Pμ,ωFPμ,ω), (27)

where Pμ,ω = χ(Hω ≤ μ) is the Fermi projection on energies below μ ∈ ∆ and

on the r.h.s. the almost sure index is taken.

Proof. Let us begin by extending the notation (22) a bit by setting

Π<n1
=

∑

n′

1
<n1

∑

n2>0

|n′
1, n2〉〈n′

1, n2|, ΠN =
∑

|n1|≤N

∑

n2>0

|n1, n2〉〈n1, n2|.

With these notations, one has

Tr
(
g′(Ĥω) ı [Π<, Ĥω]

)
= Tr

(
g′(ĤT

n1

1
ω) ı [Π<n1

, ĤT
n1

1
ω]

)

= Tr
(
ΠN g′(ĤT

n1

1
ω) ı [Π<n1

, ĤT
n1

1
ω] ΠN

)
,

for N > |n1| + R where R is the range of Hω. Now let E denote the average
w.r.t. P. Using the invariance of P it follows that

E Tr
(
g′(Ĥω) ı [Π<, Ĥω]

)

= E
1

2N + 1
Tr

(
ΠN+R g′(Ĥω) ı

[ ∑

|n1|≤N

Π<n1
, Ĥω

]
ΠN+R

)
.

Now ΠN+R g′(Ĥω) is traceclass, and

w − lim
N→∞

[ ∑

|n1|≤N

Π<n1
, Ĥω

]
= [X1, Ĥω].

Furthermore, by Birkhoff’s theorem for any covariant operator family A =
(Aω)ω∈Ω in the 1-direction, summable in the 2-direction, one has

lim
N→∞

1

2N + 1
Tr

(
ΠN+R Aω ΠN+R

)
=

∑

n2≥0

∫
P(dω) 〈0, n2|Aω|0, n2〉.

Combining these facts concludes the proof. �

6. Spectral Flows in Presence of Symmetries

In this section, the fate of the flux tube argument in presence of fundamen-
tal discrete symmetries SLS, TRS and PHS is analyzed. The implementation
of these symmetries in two-dimensional tight-binding models and some basic
consequences are discussed in Sect. 6.1. In the following sections, a flux tube
is inserted into such systems and this breaks these symmetries. Nevertheless,
the associated spectral flow has signatures which are characteristic for the
underlying symmetry.
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6.1. Review of Fundamental Discrete Symmetries

For the implementations of the symmetries, one supposes given (one of more
of) three commuting unitaries Itr, Kph and Ksl with real Itr and Kph satisfying
(Itr)

2 = ηtr1 and (Kph)
2 = ηph1 with ηtr, ηph ∈ {−1, 1}, and furthermore

(Ksl)
2 = 1. Then the Hamiltonian is said to have, respectively, TRS, PHS,

SLS if

(Itr)
∗ H Itr = H, (28)

(Kph)
∗ H Kph = −H, (29)

(Ksl)
∗ H Ksl = −H. (30)

Here, H denotes the complex conjugate of H associated to a given real struc-
ture on the Hilbert space. The TRS and PHS are said to be even or odd pending
on the signs in ηtr and ηph. As the SLS does not involve a complex conjugate
it is not necessary to consider the case of even and odd SLS (because one can
remove the sign by considering ıKsl instead of Ksl). Let us also point out that,
if both TRS and PHS are given, then one has a SLS by setting Ksl = ItrKph

or Ksl = ı ItrKph pending on the signs. Therefore, it is possible to obtain the
following combinations of TRS, PHS and SLS [31]: no symmetry, only SLS,
only PHS (2 cases), only TRS (2 cases), both PHS and TRS (4 cases). In total,
there are therefore 10 classes which are listed in Table 1. Following [20], the
10 classes are separated in one group (A and AIII) of cases which do not use
complex conjugation, and the remaining 8 which do. These latter 8 are ordered
according to the K-theoretic considerations given in the introduction.

Example. In two-dimensional tight-binding models, the symmetries are typi-
cally implemented in the enlarged Hilbert space H = ℓ2(Z2) ⊗ C

L where the
finite dimensional fiber C

L allows to describe further degrees of freedom. The
most general fiber is of the form C

L = C
2s+1 ⊗ C

2
ph ⊗ C

2
sl ⊗ C

N where C
2s+1

is associated to the spin degree of freedom of a spin s ∈ 1
2 N0, C

2
ph and C

2
sl

are the particle–hole and sublattice degrees of freedom, and C
N describes any

further internal degrees of freedom over each site of the lattice Z
2, like larger

elementary cells or possibly several orbitals. It is, however, also possible that
C

L only contains fewer factors, say only one of them. On the fibers C
2s+1, C

2
ph

and C
2
sl now act unitary matrices which naturally extend to H by tensorizing

with the identity. On the spin component acts the rotation Itr in spin space
by 180 degrees. Let sy be a purely imaginary irreducible representation of the
y-component of the spin on C

2s+1. Then a real unitary is

Itr = eıπsy

, (Itr)
2 = (−1)2s

1.

On the particle–hole and sublattice fibers act

Kph =

(
0 ηph

1 0

)
, Ksl =

(
1 0
0 −1

)
, K2

ph = ηph1 , K2
sl = 1. (31)

In concrete models, the symmetries appear naturally. Of course, the above
representation is not unique and it may be better to work in different one. ⋄
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Remark 1. By going into the spectral representation of Kph, it is always pos-
sible by an orthogonal change of basis to find a grading of the Hilbert space H
such that Kph is of the form given in (31). Then H = H′⊗C

2
ph and the PHS (29)

is equivalent to the Hamiltonian being of the following form in particle–hole
grading:

H =

(
h ∆

− ηph ∆ −h

)
. (32)

This is the conventional Bogoliubov–de Gennes (BdG) form of the Hartree–
Fock approximation to BCS models and ∆ is then called the pair creation
potential. The even PHS ηph = 1 covers BdG operators having no further
symmetry, whereas the odd PHS ηph = −1 appears for reduced operators for
fully spin-rotation invariant systems [1]. In [10], there is a list of standard BdG
models, and the topologically non-trivial ones are used as examples below. ⋄
Remark 2. It is often useful to pass to the so-called Majorana representation
obtained by doing a Cayley transformation in the particle–hole space

HMaj = Ct H C, C =
1√
2

(
1 − ı1
1 ı1

)
. (33)

Then the particle–hole symmetry (29) becomes (C∗KphC)∗HMaj(C
∗KphC) =

−HMaj. For ηph = 1, one finds C∗KphC = 1 and thus

HMaj = H∗
Maj = −HMaj = −Ht

Maj,

namely HMaj is purely imaginary and antisymmetric. More explicitly, in terms
of the matrix entries of (32) for ηph = 1

HMaj = ı

(
im(h) + im(∆) re(h) − re(∆)
−re(h) − re(∆) im(h) − im(∆)

)
, (34)

with real operators re(h) = 1
2 (h+h) and im(h) = 1

2ı
(h−h) which are symmetric

and skew-symmetric respectively.

Now, let us collect a few basic spectral implications of the various sym-
metries. Both the SLS and the PHS (even or odd) imply that the spectrum
of the Hamiltonian satisfies the reflection property σ(H) = −σ(H). Less well
known, but equally elementary, is that the essentially gapped BdG models fall
into two classes. This requires no spacial structure of the Hamiltonian and is
merely related to the PHS. The argument leading to the Z2 invariant below is
essentially the same as the one used by Atiyah–Singer to introduce a Z2 index
for real skew-symmetric operators [4].

Proposition 7. The BdG Hamiltonians with 0 �∈ σess(H) and even PHS fall into

two classes which are labeled by Ind2(H) = dim(Ker(H)) mod 2
∈ Z2, which cannot be homotopically connected without closing the central

gap.

Proof. The spectrum of the Hamiltonian satisfies σ(H) = −σ(H) ⊂ R and
the gap hypothesis implies that H is a Fredholm operator. Eigenvalues come
in pairs E,−E which may merge under a homotopy into 0 and thus change
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the dimension of the kernel by 2. However, under any homotopy Ind2(H) is
invariant as claimed. �

The argument of Proposition 7 also applies to an odd PHS, but then the
kernel of H is always even dimensional by an argument similar to the following
well-known Kramers’ degeneracy.

Proposition 8. Suppose H has odd TRS. Then any discrete eigenvalue is even

multiplicity and the eigenspace is left invariant under ψ �→ Itrψ.

Proof. If Hψ = Eψ, then also HItrψ = E Itrψ. Let us show that the vectors
ψ and Itrψ are linear independent. Indeed, suppose ψ = λItrψ for some λ ∈ C.
Then ψ = λ ItrλItrψ = −|λ|2ψ which implies λ = 0. This argument can be
extended to deal with higher dimensional eigenspaces. �

6.2. Particle–Hole Symmetric Systems

In this section, the Hilbert space is H = ℓ2(Z2) ⊗ C
N ⊗ C

2
ph and Kph is of

the form (31). Thus one has the BdG representation (32), and the operators
h = h∗ and ∆ = −ηph∆

t therein act on ℓ2(Z2)⊗C
N . Now a family (Hα)α∈[0,1]

of compact perturbations of H = H0 of the form

Hα =

(
hα ∆α

− ηph ∆−α −h−α

)
. (35)

will be considered which is, moreover, supposed to satisfy

F Hα F ∗ = Hα+1. (36)

where again F = F ⊗1 denotes the natural extension from ℓ2(Z2) to H. Further
below several models and physical contexts will be discussed that lead to such
families of Hamiltonians and, of course, the α then also corresponds to flux
tubes. Let us now first go on with the analysis of such a family (Hα)α∈[0,1] of
operators. The form of (35) combined with (36) implies

K∗
ph Hα Kph = −H−α = −F ∗ H1−α F,

so that the spectra satisfy

σ(Hα) = −σ(H−α) = −σ(H1−α). (37)

These identities were already used in [15,30] as the basic tool to study the
spectral flow of operators with PHS. For α = 0 and α = 1

2 , this is the well-
known spectral symmetry of BdG operators. Let us point out that for α �=
0, 1

2 , 1, the operator Hα does not have PHS, and for α = 1
2 there is a modified

PHS with a unitary which is neither real nor does it square to a multiple of the
identity. Nevertheless, the argument of Proposition 7 applies so that Ind2(H 1

2

)

is well defined.

Theorem 4. Let H = H0 be a two-dimensional BdG Hamiltonian with either

even or odd PHS. Suppose that 0 lies in a gap of H and let P = χ(H ≤ 0) be

the Fermi projection. Let H 1

2

the Hamiltonian obtained by setting α = 1
2 in a

family of the form (35) and (36). Then

Ind(PFP ) mod 2 = Ind2(H 1

2

).
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Figure 4. Typical pattern of the spectral flow associated
with a flux tube insertion α �→ Hα subjected to a symme-
try of type (37)

In particular, if Ind(PFP ) is odd, then the half-flux operator H 1

2

has at least

one zero energy eigenvalue.

Proof. The relation (37) for the spectrum of Hα implies

Sf
(
α ∈ [0, α∗] �→ Hα by 0

)
= Sf

(
α ∈ [1 − α∗, 1] �→ Hα by 0

)
= N,

for all 0 < α∗ < 1
2 where N is some integer depending on α∗. This equality is

evident from (37), see also Fig. 4. Then one has

Ind(PFP ) = Sf
(
α ∈ [0, 1] �→ Hα by 0

)

= 2N + Sf
(
α ∈ [α∗, 1 − α∗] �→ Hα by 0

)
.

Now the choice of α∗ is arbitrary and it is possible to consider the limit
α∗ ↑ 1

2 . This implies that an odd value of Ind(PFP ) is possible if and only
if 0 is an eigenvalue of odd multiplicity for H 1

2

, see again Fig. 4 for an

illustration. �

Remark 1. Theorem 4 is a pointwise statement for a given fixed BdG operator
H. If one has a covariant family of BdG Hamiltonians, the indices Ind(PFP )
are almost surely equal to the Chern number Ch(P ) and the hypothesis of the
theorem is on the parity of the Chern number, just as in [15,30].

Remark 2. One may be tempted to apply Theorem 4 to Hα = FαH0F
−α

with an H0 having BdG symmetry and an odd index. However, clearly there
is no spectral flow and no zero mode for H 1

2

. Indeed, this is no contradiction

because Hα − H0 is not compact.

Example 1. The importance of the above theorem is rooted in the influential
paper of Read and Green [29]. It claims that when a vortex solution of the
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Landau–Ginzburg equation for the pair creation potential ∆ is used in p + ip
superconductor, then the associated BdG operator has a zero energy mode
leading to a Majorana fermion in the second quantized representation. Theo-
rem 4 provides a rigorous proof for the existence of such zero energy modes
for a wide class of tight-binding models. Modeling a vortex of ∆ in a tight-
binding model is a delicate issue, see the discussions in [36]. Here we choose
the operators hα and ∆α in (35) to be

hα =
∑

|n|≤R

tn(α) (SB,α
1 )n1(SB,α

2 )n2 + V,

∆α =
∑

|n|≤R

dn(α) (S0,α
1 )n1(S0,α

2 )n2 + W,
(38)

where tn(α), dn(α) ∈ K∼ ⊗ Mat(N × N, C) with tn(α) satisfying (17) and

dn(α) = − ηph(S
0,α
2 )n2 (S0,α

1 )n1 dn(−α)∗ (S0,α
2 )n2 (S0,α

1 )n1 ,

Fdn(α)F ∗ = dn(α + 1),

and V and W being matrix-valued potentials, e.g., W =
∑

n∈Z2 wn |n〉〈n|.
These conditions assure that Hα is self-adjoint and that (36) holds. Further-
more, the compacticity of Hα − H0 follows from Proposition 2. Hence The-
orem 4 implies the existence of a zero mode for H 1

2

provided Ind(PFP ) is

odd.
A concrete model for which all this is satisfied is a tight-binding p+ip wave

superconductor with h = S1+S∗
1 +S2+S∗

2 −μ and ∆ = δ(S1−S∗
1 +ı(S2−S∗

2 ))
with μ, δ �= 0. For this model the Chern number is equal to ±1 pending on
the signs of μ and δ, as shown, e.g., in [10]. This remains valid for small
random V and W . Furthermore, the Chern number is well known to be equal
to Ind(PFP ). Hence, inserting a half-flux as in (38) produces a zero energy
mode. This is a discrete analog of [29].

Example 2. The Wilson–Dirac operator H from [15] can be written in the
form (32) with

h = S2 − S∗
2 , ∆ = S1 − S∗

1 + μ + λ(4 + S1 + S∗
1 + S2 + S∗

2 ),

with λ, μ ∈ R. For μ
λ

�= 0, 4, 8 the system is gapped. This Hamiltonian is in the
Majorana representation (34) of an operator with even PHS. For μ

λ
∈ (0, 4)

the Chern number is equal to the sign of −λ and for μ
λ

∈ (4, 8) is equal to the
sign of λ. For all other parameters the Chern number vanishes [15]. Two simple
techniques to check these results are explained in [10]. Now one can again insert
a half-flux which then carries a zero mode. This provides a rigorous proof of
[15], but also shows the stability of the zero modes under perturbations (e.g.,
a small random potentials).

Example 3. As another lattice BdG model let us consider a d+ id wave super-
conductor (just one spin component of it). Here

h = S1 + S∗
1 + S2 + S∗

2 − μ

∆ = ıδ(S1 + S∗
1 − S2 − S∗

2 + (S1 − S∗
1 )(S2 − S∗

2 )).
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Now, ∆t = ∆ so this model has an odd PHS (Class C). The Chern
number and hence also Ind(PFP ) is even, as shows a direct computation [10].
Hence by Theorem 4 there is no stable zero mode for H 1

2

.

Actually, the last example is a manifestation of the general fact that any
model from Class C has an even index Ind(PFP ). Consequently, there is no
stable zero mode attached to a half-flux inserted in a Class C model, other
than claimed in the literature [30].

Theorem 5. Let H be a gapped two-dimensional BdG Hamiltonian with odd

PHS with Fermi projection P = χ(H ≤ 0). Then

Ind(PFP ) ∈ 2 Z.

Proof. First of all, let us show that

F : Ker(PFP ) → Ker((1 − P )F ∗(1 − P )),

is a unitary map. Indeed, let ψ1, . . . , ψN be an orthonormal basis of
Ker(PFP ). Then ψn = Pψn implies (1 − P )Fψn = Fψn so that Fψn ∈
(1 − P )H. Hence

(1 − P )F ∗(1 − P )Fψn = (1 − P )F ∗Fψn = (1 − P )ψn = 0.

Hence Fψ1, . . . , FψN is an orthonormal set in Ker((1 − P )F ∗(1 − P )). This
argument can be reversed showing that F is a bijection.

Second, the hypothesis on H implies that for any odd function f : R →
R one has K∗

phf(H)Kph = −f(H). Therefore, the Fermi projection satisfies

K∗
phPKph = 1 − P . Consequently, using F = F ∗ and [Kph, F ] = 0,

Ker(PFP ) = Kph Ker(KphPFPKph) = Kph Ker
(
(1 − P )F ∗(1 − P )

)
.

Hence if C denotes the complex conjugation, then this establishes an anti-linear
bijection

Kph C : Ker(PFP ) → Ker((1 − P )F ∗(1 − P )).

Combining the two maps, one obtains an anti-unitary F ∗Kph C : Ker(PFP )
→ Ker(PFP ) which satisfies (F ∗Kph C)2 = −1, namely F ∗Kph C is a quater-
nionic structure on the finite dimensional vector space Ker(PFP ). It follows
that Ker(PFP ) is even dimensional (an explicit argument for this conclusion
uses that F ∗Kph is a skew-symmetric unitary matrix on Ker(PFP )). The same
argument also implies that Ker(PF ∗P ) is even dimensional and therefore also
Ind(PFP ) is even. Let us point out that for even PHS all arguments transpose,
except that (F ∗Kph C)2 = 1 so that there is no restriction on the dimension of
Ker(PFP ). �

6.3. Time Reversal Symmetric Systems

The class of Hamiltonians on H = ℓ2(Z2) ⊗ C
L with C

L = C
N ⊗ C

2s+1 con-
sidered here is of the form

Hα =
∑

|n|≤R

tn (SB,α
1 )n1(SB,α

2 )n2 + V, (39)
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where the tn are now compact operators with values in the L × L matrices
satisfying (17), and the potential V =

∑
n∈Z2 vn |n〉〈n| also has coefficients

vn in the self-adjoint L × L matrices. For α = 0, the notation H = H0 will
be used as above. Hence Hα is nothing, but a matrix-valued version of (15).
This framework allows to model operators on the hexagon lattice with spin
orbit coupling terms, beneath others [5]. In particular, a disordered Kane–Mele
model [18] is in this class (with N = 2 and s = 1

2 ).

By (7) one has SB,α = S−B,−α, so that TRS of H imposes B = 0. Let
now P = χ(H ≤ μ) be the Fermi projection associated to a Fermi energy μ ∈ R

lying in a gap of H. It then satisfies I∗
trP

tItr = P where At = (A)∗ denotes the
transpose of an operator. This implies that also the Fredholm operator PFP
on PH satisfies

I∗
tr (PFP )t Itr = PFP.

This implies that kernel and cokernel of the Fredholm operator T = PFP are
of same dimension and consequently the index of PFP vanishes. For integer
s, one has (Itr)

2 = 1 so that the operator T lies in the set of so-called even
symmetric Fredholm operators which is path-connected [34]. Therefore, it will
be supposed from now on that s is half-integer and that H has odd TRS (28),
in particular, B = 0. In this case (Itr)

2 = −1 and T is an odd symmetric
Fredholm operator and has a well-defined homotopy invariant [34] given by

Ind2(PFP ) = dim(ker(PFP ))mod 2 ∈ Z2.

In the following, one consequence of a non-trivial Z2 index is discussed, namely
the existence of a Kramers’ degenerate bound state for a half-flux Hamiltonian

associated to H. As I∗
tr S0,α

j Itr = S0,−α
j and H has TRS, it follows that

I∗
tr Hα Itr = H−α = F ∗ H1−α F. (40)

This shows that Hα for α �= 0 does not have TRS in the sense of (28), but at
α = 1

2 one has

(ItrF
∗)∗ H 1

2

(ItrF
∗) = H 1

2

.

This resembles an odd TRS, but the unitary V = ItrF
∗ is neither real nor

does it square to a multiple of the identity. On the other hand, it satisfies
V V = −1 and this is sufficient to run the Kramers’ degeneracy argument in
the proof of Proposition 8. Of course, the Kramers’ degeneracy also holds for
H0 (and H1). Furthermore, one can immediately read off from (40) that the
spectral curves of α ∈ [0, 1] �→ Hα have a reflection property about α = 1

2 .
Combined these facts imply that there are two classes of spectral flows which
cannot be deformed into each other [5,11] within the set of spectral curves
having the symmetry (40) and Kramers’ degeneracy at α = 0, 1

2 , 1. Figures 5
and 6 give examples for each of the two classes. The invariant distinguishing
between them is denoted by Sf2(α ∈ [0, 1] �→ Hα) ∈ Z2. One way to define
this Z2 invariant is as the number of spectral intersection of α ∈ [0, 1

2 ] �→ Hα

through some (any) μ in the gap modulo 2. The following result shows that
the Z2 index Ind2(PFP ) allows to predict which spectral flow one has.
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Figure 5. Typical example of spectral flows associated with
flux insertions α �→ Hα subjected to an odd TRS with non-
trivial invariant Ind2(PFP ) = 1. By homotopy within the
spectral flows with odd TRS it can be deformed to a cross
with spectral multiplicity 1, except for the Kramers doublet
at α = 1

2 . Note that the Kramers doublet need not lie at the
Fermi level as the right figure may suggest

Figure 6. Typical example of spectral flows associated with
flux insertions α �→ Hα subjected to an odd TRS with non-
trivial invariant Ind2(PFP ) = 1. By homotopy within the
spectral flows with odd TRS it can be deformed into a trivial
spectral flow not having any spectrum an the Fermi level
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Theorem 6. Suppose that μ ∈ R lies in a gap of the Hamiltonian H which has

odd TRS. Then

Sf2(α ∈ [0, 1] �→ Hα) = Ind2(PFP ).

Hence, if Ind2(PFP ) = 1, the Hamiltonian H 1

2

has an odd number of

Kramers’ degenerate eigenvalues in the gap and, in particular, at least one

of them.

Proof. As in the proof of Theorem 1, let g : R → [0, 1] be a non-increasing
function such that P = g(H0) and set Pα = g(Hα). Again by Proposi-
tion 3(v) the operators Pα − P are compact and furthermore (40) implies
P1−α = (ItrF

∗)∗(Pα)tItrF
∗. Hence all the hypotheses of Theorem 9 are satis-

fied (with T = PFP and UT = F ). Thus the result follows. �

Example. It is well known that the Kane–Mele model is an example with a
non-trivial Z2 index and that this model can be obtained by perturbing a direct
sum of two Haldane models [18]. Let us slightly generalize this construction
and calculate the associated Z2 index. Suppose given a two-dimensional tight-
binding Hamiltonian h on ℓ2(Z2)⊗ C

N for which Ind(pFp) with p = χ(h ≤ μ)
is odd, but for which the constant magnetic field B vanishes (for example, a
Haldane model). Then let us consider a Hamiltonian on H = ℓ2(Z2)⊗C

N ⊗C
2

(that is, s = 1
2 and Itr =

(
0 −1
1 0

)
) which is of the form

H =

(
h g

g∗ h

)
, (41)

in the grading of the spin degree of freedom C
2. This operator is of the form

(39) with B = 0. The TRS (Itr)
∗HItr = H is guaranteed by gt = −g. In the

case of the Kane–Mele model, the operator g is essentially the Rashba coupling.
If g vanishes, the system decouples into a direct sum (one component of the
spin is conserved) and in this situation the Z2 index will now be calculated.
By homotopy invariance of the Z2 index, it then remains constant as g is
homotopically added, as long as the gap remains open. For g = 0, the Fermi
projection P = χ(H ≤ μ) is given by P =

(
p 0
0 p

)
. Therefore,

PFP =

(
p F p 0

0 p F p

)
.

Now Ind(pFp) is odd by hypothesis. Therefore, if dim(Ker(pFp)) is odd (resp.
even), then dim(Ker(pF ∗p)) = dim(Ker(p F p)) = dim(Ker(p F p)) is even
(resp. odd). It follows that dim(Ker(PFP )) is indeed odd so that Ind2(PFP ) =
1. If Ind(pFp) is even, then Ind2(PFP ) = 0 by the same argument. Let us
point out that in the context of periodic operators this conclusion agrees
with Corollary 4.12 of [12] which relates the value of the Z2 index of P
with the parity of the Chern number Ind(pFp) associated with the reduced
projection p.
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6.4. Hamiltonians With Chiral Symmetry

Now the Hamiltonian satisfies (30) and the Fermi level μ = 0 lies in a gap.
This implies K∗

slPKsl = 1 − P for the Fermi projection so that Ind(PFP ) =
Ind((1 − P )F (1 − P )) as long as [Ksl, F ] = 0 (which is supposed from now
on). On the other hand, the identity

F =

(
PFP PF (1 − P )

(1 − P )FP (1 − P )F (1 − P )

)
,

combined with the fact that PF (1 − P ) = P [F, P ] is compact implies
Ind(PFP )+Ind((1−P )F (1−P )) = 0. Thus one concludes Ind(PFP ) = 0. By
Theorem 1 (more precisely the matrix-valued version of it) there is no spectral
flow associated to a family α ∈ [0, 1] �→ Hα from H0 = H to H1 = FHF ∗

such that Hα − H is compact. Such a family is again realized by inserting a
flux tube. This agrees with the vanishing entry in the line AIII of Table 1.

In the CAZ classification of Table 1 there are four other classes which
have a chiral symmetry combined with other symmetries, namely classes DIII,
CII, CI, BDI. In Classes CI and BDI, the even TRS does not lead to secondary
invariants, as explained in Sect. 6.3. However, the odd TRS in Classes DIII
and BDI allows in principle for non-trivial secondary Z2 invariants. Actually,
in DIII such a non-trivial model can be constructed as shown next.

Example. The basic idea to construct a non-trivial model in Class DIII is
similar to the Kane–Mele model which is a perturbation of two copies of the
Haldane model. Hence let h be a p+ ip wave BdG model on ℓ2(Z2)⊗C

2
ph with

vanishing constant magnetic field. Its Fermi projection p = χ(h ≤ 0) satisfies
Ind(pFp) = 1 for adequate values of the parameters, see Sect. 6.2. Then h is a
p − ip BdG model with Ind(p F p) = −1. Now H acting on ℓ2(Z2) ⊗ C

2
ph ⊗ C

2
tr

is given by (41). To insure odd TRS, it will again be supposed that gt = −g.
Furthermore, even PHS is given if K∗

phgKph = −g which is also supposed from
now on. Now by the same argument as in Sect. 6.3 one concludes Ind2(PFP ) =
1 for P = χ(H ≤ 0). This non-trivial value is conserved for small g.

In principle, this construction can be carried out in exactly the same
way for Class CII, but as the building blocks h are necessarily in Class C,
their indices are always even by Theorem 5 so that no models with non-trivial
Z2 indices can be obtained. This gives the corresponding entry in Table 1.
Combining the arguments of Sects. 6.2 and 6.3, one now obtains the following
result.

Theorem 7. Let H = H0 be a two-dimensional BdG Hamiltonian with even

PHS and odd TRS, namely H is in Class DIII. Suppose that 0 lies in a gap

of H and let P = χ(H ≤ 0) be the Fermi projection. Let H 1

2

the Hamil-

tonian obtained by setting α = 1
2 in a family of the form (35) and (36). If

Ind2(PFP ) = 1, then H 1

2

has a Kramers degenerate zero mode that is stable

under perturbations of H.
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Appendix A. Spectral Flow of Unitary Dilations

This appendix presents the main results of Phillips [25] and the companion
paper [11] in a form adapted to the applications in the main text. An intuitive
definition of spectral flow is given in Sect. 3. For a more detailed (and general)
definition, the reader is referred to [11,25].

Theorem 8. [25] Let T ∈ B(K) with ‖T‖ ≤ 1 be a bounded Fredholm operator

on a Hilbert space K and let UT ∈ B(H) be an arbitrary unitary dilation,

namely there is injective partial isometry Π : K →֒ H into another Hilbert

space H such that T = Π∗UT Π. Associated is a projection P = ΠΠ∗ on H. Let

α ∈ [0, 1] �→ Pα be any continuous path of self-adjoint operators from P0 = P
to P1 = U∗

T PUT such that Pα − P is a compact operator. Then the spectral

flow associated to this path through any spectral point μ ∈ (0, 1) is linked to

the index via

Ind(T ) = − Sf
(
α ∈ [0, 1] �→ Pα by μ

)
. (42)

Two different proofs of Theorem 8 are also contained in [11]. Next let us
recall some definitions and facts from [34]. Let I be a real unitary on a Hilbert
space K satisfying I2 = −1. A bounded operator T ∈ B(K) is called odd
symmetric if and only if I∗T tI = T . The set of odd symmetric Fredholm oper-
ators contains two connected components labeled by the homotopy invariant
Ind2(T ) = dim(Ker(T )) mod 2 ∈ Z2. Moreover, for an odd symmetric com-
pact operator K, one has Ind2(T + K) = Ind2(T ). The following result, based
on a spectral flow argument, follows by combining Theorem 7 of [11].

Theorem 9. [11] Let T ∈ B(K) with ‖T‖ ≤ 1 be a bounded odd symmetric

Fredholm operator on a Hilbert space K. Let UT ∈ B(H) be an arbitrary odd

symmetric unitary dilation, namely a unitary dilation as above for which I
extends to H and UT is odd symmetric. Set again P = ΠΠ∗. Let α ∈ [0, 1] �→
Pα be any continuous path of self-adjoint operators from P0 = P to P1 =
U∗

T PUT such that Pα − P is a compact operator and

P1−α = (IUT )∗(Pα)t(IUT ).

Then the Z2-valued spectral flow by any μ ∈ (0, 1), defined as in Sect. 6.3 and

[11], satisfies

Sf2(α ∈ [0, 1] �→ Pα by μ) = Ind2(T ).
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Appendix B. Toeplitz Extension of the Rotation Algebra

Let AB = C∗(SB
1 , SB

2 ) be the C∗-algebra generated by the (Zak) magnetic
translations with constant magnetic field B ∈ R as defined in Sect. 2.3. Hence
AB is a subalgebra of the bounded operators on ℓ2(Z2). We will refer to AB

simply as the rotation algebra because it is known to be a faithful representa-
tion of the more abstract version of it. An important property of AB is that
it has a trivial intersection with the ideal K of compact operators on ℓ2(Z2),
namely AB ∩ K = {0}. This can be proved observing that AB is invariant
under a (projective) Z

2 action implemented by a pair of independent dual
magnetic translations. This implies that the eigenspaces of elements in AB

are necessarily infinitely degenerate and so compact operators cannot be in
AB . Furthermore, let T (AB) = C∗(SB

1 , SB
2 , P0) be the C∗-algebra generated

by the magnetic translations and the one-dimensional projection P0 = |0〉〈0|.
Evidently AB ⊂ T (AB). However, also K ⊂ T (AB). Indeed all the rank 1
operators |n〉〈m| can be generated in T (AB) with the application of the shifts
SB

1 and SB
2 to P0 and the rank 1 operators are norm-dense in K. Thus there

are canonical (injective) inclusions by

ı : K →֒ T (AB), j : AB →֒ T (AB).

Proposition 9. Each A ∈ T (AB) decomposes uniquely as A = A∞ + A0 with

A∞ ∈ AB and A0 ∈ K.

Proof. The existence of the decomposition follows from the fact that T (AB)
is generated by the closed sub-algebras AB and K and K is a two-sided ideal.
For the unicity, let us assume that A = A∞ +A0 = A′

∞ +A′
0. then A∞ −A′

∞ =
A′

0 − A0. Since AB has no non-trivial compacts it follows that A∞ − A′
∞ = 0,

so that also A′
0 − A0 = 0. �

This decomposition property for elements in T (AB) allows us to define
the surjective C∗-homomorphism

A ∈ T (AB)
ev−→ A∞ ∈ AB .

Theorem 10. The sequence

0 −→ K ı→֒ T (AB)
ev→
←֓
j

AB −→ 0 (43)

is exact and right split.

Proof. The exactness is a consequence of the injectivity of ı and the surjectivity
of ev. The splitting property follows observing that ev ◦ j = IdAB

. �

According to the standard terminology, T (AB) is said to be a trivial

extension of AB by the compacts and the map j is called the lifting map. Since
K is a closed two-sided ideal in T (AB), the quotient T (AB)/K is a C∗-algebra
and one has a C∗-algebra isomorphism AB ≃ T (AB)/K. This isomorphism
implies

‖A∞‖ = inf
K∈K

‖A∞ + K‖, ∀A∞ ∈ AB , (44)
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namely compact perturbations cannot decrease the norm of any element of the
algebra AB .

Recall that the Toeplitz algebra of Toeplitz operators acting on Hardy
space is generated by a shift and a one-dimensional projection (all on ℓ2(Z)).
By analogy, we call T (AB) a Toeplitz extension of AB. Let us point out that
a different type of Toeplitz extension of the rotation algebra was studied in
[24].

Remark. Equation (44) implies ‖ev(A)‖ � ‖A‖ for all A ∈ T (AB), i.e., the
continuity of the C∗-morphism ev. This is the best that one can do since for a
compact K �= 0, one has ‖K‖ > 0 and ‖ev(K)‖ = 0. This fact differs from the
usual Toeplitz extension where the norm of a Toeplitz operator is equal to the
norm of its symbol, hence ev is an isometry in this case. Also the extension of
AB considered in [24] preserves the norm (by Proposition 1 in [24]).

The following result implies that the Hamiltonians Hα(0) defined in (15),
but with λ = 0, lie in the Toeplitz extension.

Theorem 11. Let C∗(SB,α
1 , SB,α

2 ) be the C∗-algebra generated by SB,α
1 and

SB,α
2 , namely the two magnetic translations twisted by the insertion of the

Aharonov–Bohm flux α ∈ R. Then:

(i) For all n ∈ Z, the C∗-algebra C∗(SB,n
1 , SB,n

2 ) is unitarily equivalent to

AB. In particular, C∗(SB,n
1 , SB,n

2 ) ∩ K = {0}.
(ii) T (AB) = C∗(SB,α

1 , SB,α
2 ) for all α ∈ R\Z.

Proof. (i) follows observing that SB,0
j = SB

j and SB,α+1
j = FSB,α

j F ∗ where

F is the unitary defined in Proposition 2. (ii) Let us start by proving that

SB
1 , SB

2 , P0 ∈ C∗(SB,α
1 , SB,α

2 ). First of all, a direct computation shows that

e−ıB SB,α
1 SB,α

2 (SB,α
1 )∗(SB,α

2 )∗ − 1 ∝ P0. Second of all, Proposition 2 assures

SB
j = SB,α

j − KB,α
j with KB,α

j ∈ K and thus SB
1 and SB

2 are also in

C∗(SB,α
1 , SB,α

2 ). Hence T (AB) ⊂ C∗(SB,α
1 , SB,α

2 ). The opposite inclusion fol-

lows from K ⊂ T (AB), so that also SB,α
j = SB

j + KB,α
j ∈ T (AB). �

Finally let us calculate the K-theory of the Toeplitz extension. The exact
sequence (43) produces the usual cyclic six term exact sequence

Z =K0(K)
ı∗−→ K0(T (AB))

ev∗−→ K0(AB)

Ind ↑ ↓ exp

K1(AB)
ev∗←− K1(T (AB))

ı∗←− K1(K) = 0

The fact that the connecting map exp is identically zero also follows from
splitting property of (43) which implies that any projection P ∈ AB (or matrix
algebras over AB) lifts to a projection j(P ) ∈ T (AB) (or a matrix algebra over
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T (AB). For the same reason also the index map Ind is identically zero. Hence
the six term sequence splits into two parts

0 −→ Kj(K)
ı∗−→ Kj(T (AB))

ev∗−→ Kj(AB) −→ 0, j = 0, 1. (45)

In particular, one has Kj(T (AB)) ≃ Kj(K) ⊕ Kj(AB). As Kj(AB) is known
[26], this allows to compute the K-theory of T (AB).

Theorem 12. Independently of B ∈ R, the K-theory of T (AB) is given by

K0(T (AB)) ≃ Z[P0] ⊕ Z[1] ⊕ Z[PB ] ≃ Z
3

K1(T (AB)) ≃ Z[SB
1 ] ⊕ Z[SB

2 ] ≃ Z
2

where PB ∈ AB is any Powers-Rieffel projection. In particular, all the gener-

ators of the K-theory of T (AB) can be chosen inside the C∗-algebra.

Proof. Since K1(K) = 0, it follows that K1(T (AB)) agrees with K1(AB) which
is generated by [SB

1 ] and [SB
2 ] as proved in [26, Corollary 2.5]. On the other

hand, K0(T (AB)) ≃ K0(K) ⊕ K0(AB). The first summand K0(K) has gener-
ator [P0], while the two generators of K0(AB) can be chosen as [1] and [PB ],
see [26, Appendix]. �
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