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Spectral footprints of impurity scattering in graphene nanoribbons
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We report a detailed investigation of the interplay between size quantization and local scattering centers in

graphene nanoribbons, as seen in the local density of states. The spectral signatures, obtained after Fourier

transformation of the local density of states, include characteristic peaks that can be related to the transverse

modes of the nanoribbon. In armchair ribbons, the Fourier transformed density of states of one of the two

inequivalent sublattices takes a form similar to that of a quantum channel in a two-dimensional electron gas,

modified according to the differences in band structure. After addition of the second sublattice contribution,

a characteristic modulation of the pattern due to superposition is obtained, similar to what has been obtained

in spectra due to single impurity scattering in large-area graphene. We present analytic results for the electron

propagator in armchair nanoribbons in the Dirac approximation, including a single scattering center within a

T -matrix formulation. For comparison, we have extended the investigation with numerics obtained with an

atomistic recursive Green’s function approach. The spectral signatures of the atomistic approach include the

effects of trigonal warping. The impurity induced oscillations in the local density of states are not decaying at

large distance in few-mode nanoribbons.
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I. INTRODUCTION

In graphene, scattering centers such as impurities, defects,

adatoms, and substrate inhomogeneities greatly influence the

local electronic properties.1 In some samples, the material

quality is so high that a single or a few such scattering centers

can influence the whole device. This may degrade device

function, but can also be taken advantage of by making various

sensing devices.2,3 Great attention has therefore been focused

on understanding the influence of scattering on the electronic

properties of graphene.4

In this context, the scanning tunneling microscope (STM)
is becoming of increasing importance.5,6 By utilizing its
various modes of operation, the STM can be used to map
out topography, local density of states, local charge density,
and more. In this way, a variety of properties of graphene have
been revealed. A few examples include perturbations in the
local density of states around impurities7,8 or near step edges
in the substrate,9 charge puddle formation caused by molecules
trapped between graphene flakes and the SiO2 substrate,10 and
resistance caused by steps11,12 in the substrate or multilayer
regions13 in epitaxial graphene on silicon-carbide.

At the same time, encouraging progress has been

achieved with fabrication of graphene nanostructures. Top-

down approaches include nanolithography,14 scanning probe

methods,15 etching with metal nanoparticles along certain

crystal directions,16 and utilization of the transmission electron

microscope (TEM) to simultaneously image and sculpture

graphene.17 A bottom-up approach based on chemical synthe-

sis has also been demonstrated.18 Another approach involves

unzipping of carbon nanotubes.19 With that method, the

theoretically predicted zero-energy (midgap) edge states of

nanoribbons with zigzag edges20,21 were directly mapped

out by scanning tunneling spectroscopy (STS).22 Theory

also predicts that by controlling the width and edges of

nanoribbons, a band gap can be opened up at the Dirac

point through quantum confinement (see the review23). With

further progress it may soon become possible to study in much

greater detail the interplay between quantum confinement and

impurity scattering in graphene nanoribbons.

Many theoretical studies of graphene nanoribbons have

been reported in the literature, see the collection of review

articles in Ref. 24. The effect of impurity scattering and

the effects of edge disorder on electron transport have been

reported in several numerical works. In an effort to simulate

the typical experimental situation, random disorder is included

and the scaling behavior of resistivity with length of the ribbon

is studied, revealing different transport regimes depending on

ribbon width and disorder properties. Here, we go back to the

well-defined problem of a single impurity in order to study in

detail the effects on the Fourier transformed local density of

states (FT-LDOS).

In this paper we present results for the spectral signa-

tures of a local scattering center in graphene, taking into

account quantum confinement in a nanoribbon geometry. This

study generalizes the consideration of FT-LDOS of a single

impurity in bulk graphene25,26 to the case of nanoribbons.

We focus the analytic analysis on armchair ribbons in the

Dirac approximation (linearization around the K points in

the graphene band structure), for which the wave functions

and propagators for clean ribbons are known, and solve the

impurity problem in a T -matrix formulation. Thereby we

obtain the electron propagator for an armchair nanoribbon

including the effects of a local scattering center. The FT-LDOS

is then obtained and explained in terms of scattering processes

of Dirac quasiparticles confined in the ribbon. We extend

the analysis to an atomistic tight-binding model of graphene,

utilizing a numerical recursive Green’s function approach.

The main effect of going beyond the Dirac approximation

is trigonal warping, which shows up as a triangular distortion

of the FT-LDOS patterns.

For comparison we include an analysis of the FT-LDOS in

a quantum ribbon in a two-dimensional electron gas (2DEG).

Many features of the FT-LDOS patterns in graphene ribbons

can be understood from the somewhat simpler case of a 2DEG,
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and the new features special for graphene can be highlighted.

These include a more complicated band structure due to the two

inequivalent K points, trigonal warping, as well as interference

effects due to the bipartite lattice of graphene.

The outline of the paper is as follows. In Sec. II we discuss

the Fourier transform STS method and illustrate the basic

scattering processes at play in a nanoribbon. In Sec. III we

present results for the FT-LDOS in a 2DEG quantum channel.

In Sec. IV we report our results for the FT-LDOS in an

armchair graphene nanoribbon within the Dirac approximation

and compare with the 2DEG case. In Sec. V we present results

of numerical simulations of a tight-binding model, including

also zigzag nanoribbons as well as effects of edge disorder on

the FT-LDOS. In Sec. VI we summarize the paper and give

some conclusions and an outlook. Most technical results of the

analytic analysis have been collected in the appendixes.

II. FOURIER TRANSFORM SCANNING TUNNELING

SPECTROSCOPY

A scattering center induces a perturbation of the local den-

sity of states in its vicinity. For elastic scattering, the impurity

scatters electrons between states �k1 → �k2 with ǫ�k1
= ǫ�k2

, i.e. on

a contour of constant energy E. This leads to interference and a

wave pattern in the local density of states near the impurity with

wave vectors �q = �k2 − �k1. After Fourier transformation of the

local density of states ρ(�r,E) → N (�q,E), the wave vectors of

the interference pattern are highlighted. The resulting pattern

inN (�q,E) can then be used to infer the band dispersion ǫ�k . For

instance, this has been done for metal surfaces.27 This method

has also become a valuable tool for probing the properties of

high-Tc superconductors.28

It is worth mentioning that, neglecting electron-electron

interactions, the interference patterns in the local density

of states discussed above are related to the Friedel oscilla-

tions in the electron density n(�r) through integration over

energy including the Fermi-Dirac distribution function, n(�r) =
−e

∫

ρ(�r,E) f (E)dE.

By using the STM, the local density of states can be

extracted as function of energy by applying a finite voltage

between tip and sample, i.e., by employing STS. By combining

Fourier transformation with STS, the band dispersion can be

studied in the vicinity of the Fermi energy. This method has

therefore become a valuable spectroscopic tool sometimes

called Fourier transform scanning tunneling spectroscopy

(FT-STS). In graphene, the Fermi energy itself is tunable by a

back gate voltage on the substrate that graphene is resting on.

Thereby, FT-STS is potentially a valuable tool for studies of

graphene. Indeed, experiment reproduces the graphene band

structure.8

STS bears similarities with angle-resolved photoemission

spectroscopy (ARPES). STS is ideal for spatially inhomoge-

neous systems, while ARPES relies on large-area spatially

homogeneous samples. Indeed, STS measures the spatially

resolved spectral function, i.e., local density of states ρ(�r; E),

while ARPES measures the momentum-space spectral func-

tion A(�k; E). By generalizing STS to FT-STS, i.e., Fourier

transforming ρ(�r; E) → N (�q; E), a spectroscopy has been

introduced that can be used to study materials, although we

should remember that N (�q; E) is not equal to A(�q; E).

W
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FIG. 1. An electron quasiparticle initially in mode m, with

longitudinal wave vector κm may be backscattered by an impurity

at �ri into mode n. The local density of states at �r is changed due to

interference of the initial and final waves. This leads to an interference

pattern around �ri .

One advantage of FT-STS is the possibility to study

nanoscale systems with high spatial resolution. In this paper

we investigate the consequences of quantum confinement on

impurity scattering in graphene, as seen in FT-STS.

In Fig. 1 we display a cartoon of a typical scattering

process that contributes to the correction to the local density of

states in a quantum ribbon with one impurity. For simplicity

we here discuss the situation in a 2DEG quantum channel.

Quasiparticles occupying for instance mode m, propagating

in the positive y direction with wave number κm, passes

the probing position �r = (x,y), after which they can be

backscattered by the impurity at �ri into mode n with wave

number κn and propagate back to the probing position �r . In

this example we neglect evanescent modes for simplicity. The

contribution to the full propagator from this scattering event

will be proportional to the free propagators before and after

scattering and the potential strength γ ,

G̃nm(�r,�r; E) = −i
μ

h̄2

eiκn|yi−y|

κn

χn(x)χn(xi)

× γ

(

− i
μ

h̄2

)
eiκm|y−yi |

κm

χm(x)χm(xi),

where χn(x) = √
2/W sin(nπx/W ) is the transverse wave

function in mode n � 1, and μ is the electron effective mass.

Taking into account multiple scattering by the impurity, the

potential strength γ is replaced with a T matrix. When we take

the imaginary part of the propagator to get the local density of

states, we get spatially oscillating terms

∝ cos[(κn + κm)|y − yi |]
and

∝ sin[(κn + κm)|y − yi |],
since the T matrix is a complex number due to multiple

scattering. After Fourier transformation, we find peaks at qy =
±(κn + κm) and at qx equal to combinations of n and m times

π/W . Thus, in a FT-STS picture of a quantum channel, there

will be a discrete number of peaks that reflect the available
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modes. We also note that the Friedel oscillations (neglecting

electron-electron interactions) will at low temperature oscillate

without decay far from the impurity site.

To probe a 2DEG quantum channel with an STM in the

way described here will be challenging since the channel is

typically hidden deep down in a semiconducting heterostruc-

ture. Graphene, on the other hand, is 100% surface and directly

accessible.

III. FT-LDOS: RIBBON IN A 2DEG

In this section we improve the above discussion to the

general case of multiple scattering in a multimode 2DEG

quantum channel of width W with a single impurity scattering

center at �ri . The results of this section will be referenced in

the following sections on graphene in order to highlight the

distinguishing features of confined Dirac quasiparticles.

Consider the probability amplitude for an electron in the

channel to propagate from one point �r ′ to another point �r . For

free propagation in mode n, the amplitude is given by the free

propagator (unperturbed Green’s function), gn(�r,�r ′; E). In the

presence of the impurity an electron initially in mode m may

be scattered into mode n. The effect of such an extra process

will modify the propagator by adding a second term,

G̃nm(�r,�r ′; E) = gn(�r,�ri ; E)T (�ri ; E)gm(�ri,�r ′; E), (1)

so that the new Green’s function will be

Gnm(�r,�r ′; E) = gn(�r,�r ′,E)δnm + G̃nm(�r,�r ′; E). (2)

The factor T (�ri ; E) [see Eq. (A10)] includes multiple scat-

tering by the impurity. The full probability amplitude for

propagation from �r ′ to �r is given by summing over all mode

indices,

G(�r,�r ′; E) =
∑

nm

Gnm(�r,�r ′; E). (3)

We may now proceed with the local density of states

(LDOS). The correction to the LDOS by impurity scattering

can be written as

ρ̃(�r; E) = − 1

π

∑

nm

Im G̃nm(�r,�r; E)

= − 1

π

∑

nm

Knm(E)ρ̃x
nm(x; E)ρ̃y

nm(y; E), (4)

where the expressions for the factors Knm(E), ρ̃x
nm(x), and

ρ̃
y
nm(y; E) are given in Appendix A. The FT-LDOS can now

be computed as

Ñ (�q; E) = − 1

π

∑

nm

Knm(E)Ñ x
nm(qx)Ñ y

nm(qy ; E), (5)

where

Ñ x
nm(qx) =

∞
∑

l=−∞
δ

(
qx

π
− l

W

) ∫ W

−W

dx

2W
e−i π

W
lx ρ̃x

nm(x)

=
∞

∑

l=−∞
δ

(
qx

π
− l

W

)

Ñ x
nm(l) (6)

and

Ñ y
nm(qy ; E) =

∫ ∞

−∞

dy

2π
e−iqyy ρ̃y

nm(y; E). (7)

The function ρ̃x
nm(x), originally defined on the interval [0,W ],

is extended to [−W,W ] and assumed to be even with respect

to the origin. Due to the finite width, 2W , of the integration

interval, the spectral x component is fixed to be integer

multiples of π/W . This is a trick to be able to resolve

the minimum change of transverse momenta, π/W , when

scattering between two different modes.

It is important to realize that both propagating and

evanescent modes play a role in this scattering problem.

The longitudinal momentum is κn =
√

2μE/h̄2 − (nπ/W )2,

where μ is the electron mass and n � 1 is the integer mode

index. At the bottom of a subband, κn → 0, and the evanescent

mode extends far from the impurity and play an important role.

On the other hand, for energies far from any subband bottom,

the LDOS is only affected by the evanescent mode in a small

region near the impurity. In the discussion of the FT-LDOS

we can then safely neglect evanescent modes in the sums in

Eq. (5). The evanescent modes are still taken into account in

the scattering processes at the impurity through the T -matrix

equation, where intermediate modes can be evanescent, while

initial and final modes are propagating. In all of our numerical

calculations, we include ten evanescent modes. Adding even

more evanescent modes does not qualitatively change our

results. As has been shown, a δ-shaped impurity with a finite

number of evanescent modes will model an s-like scatterer.29

We can now find the different components of the FT-LDOS

to be

Ñ x
nm(l) = 1

2W
(δl,n−m + δ−l,n−m − δl,n+m − δ−l,n+m) (8)

and

Ñ y
nm(qy) = e−iyiqy

2π
[Sy(κn + κm + qy) + Sy(κn + κm − qy)],

(9)

where

Sy(a) = lim
ǫ→0+

σpǫ − a(1/γ + σe)

ǫ2 + a2
(10)

and where σp/e are positive, �q-independent constants defined

in Eq. (A11).

The factor Knm(E) is given by

Knm(E) = 1

(1/γ + σe(E))2 + σ 2
p(E)

(
μ

h̄2

)2
χn(xi)χm(xi)

κn(E)κm(E)

(11)

and depends on the scatterer strength γ and the transversal

wave functions χn(x) = √
2/W sin(nπx/W ).

Together, these components give rise to a number of

selection rules that govern the modification of the FT-LDOS by

impurity scattering. To illustrate, we select a narrow channel

W = 50a0, where a0 defines the unit of length, and consider

a low-energy E = 0.02τ , where τ = h̄2/(2μa2
0) is the unit of

energy, such that only a total of three propagating modes are

open. The scattering FT-LDOS |Ñ (�q; E)| for the case of the

impurity in the middle of the ribbon (xi = W/2,yi = 0) is
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FIG. 2. (Color online) (a) FT-LDOS of a 2DEG ribbon of width W = 50a0 at energy E = 0.02τ , with three open (propagating) modes.

(b) Energy contour of the 2DEG dispersion. The symbols indicate the allowed momentum values between which scattering can potentially

take place (circles, diamonds, and squares correspond to n = 1, n = 2, and n = 3, respectively). The two arrows in figure (b) illustrates two

possible scattering processes that gives rise to the two encircled dots in figure (a). The impurity is placed at xi = W/2 and the n = 2 subband

is not scattered by the impurity because the impurity has been located at a node of the corresponding transverse wave function.

displayed in Fig. 2(a). Since the scattering is elastic, energy

conservation requires that the transverse and longitudinal

momenta, both before and after scattering, satisfy the relation

2μE/h̄2 = k2
x + κ2

n(E), which is the circle shown in Fig. 2(b).

In the channel, the transverse momentum is quantized, kx →
kn = nπ/W , and the only allowed momentum values between

which the electrons can scatter are indicated by dots and

squares on this circle. The FT-LDOS is therefore nonzero only

at a few, finite number of �q points. All of these points lie inside

the dotted circle of radius 2
√

2μE/h̄2 shown in Fig. 2(a).

The impurity scattering strength γ can be either positive

or negative, corresponding to a repulsive or attractive impurity

potential. For the FT-LDOS, the sign of γ does not play a major

role. In Fig. 2 and below, we choose a repulsive γ = 10τ .

The factor Knm(E) will be nonzero only if the transverse

wave functions of mode n and m have a finite overlap at the

position of the impurity. Since we have positioned the impurity

at xi = W/2, Knm(E) will in this example be nonzero only if

n and m are both odd integers since all the wave functions

with even indices will have a node at x = xi . Thus, modes

with even number n are not scattered by the impurity in this

example.

To understand the exact locations of the �q points, we start

by looking at the case qx = 0 (i.e., l = 0). Since all mode

indices have to be odd, the term Ñ x(l = 0) will be nonzero

only when n = m, i.e., when (n = 1,m = 1) or when (n =
3,m = 3). This tells us that the points along qx = 0 are all

due to intraband scattering. The factor Ñ y(qy ; E) peaks when

qy = ±2|κ1| or when qy = ±2|κ3|. These are the four points

we see along the line l = 0.

When qx = π/W (l = 1), at least one of the indices n and

m will be even, and the factor Knm(E) is zero. This is why

we see no bright points along this line. This also happens for

l = 3 and l = 5.

Along the line qx = 2π/W , we have that Ñ x(l = 2) is

nonzero only when (n = 1,m = 1), (n = 1,m = 3) or when

(n = 3,m = 1). The factor Ñ y(qy ; E) peaks at qy = ±2|κ1|
or when qy = ±|κ1 + κ3|, and we see that we have spots at

these locations along l = 2 in the figure.

At l = 4 we must have (n = 3,m = 1) or (n = 1,m = 3),

which tells us that qy = ±|κ3 + κ1|. At l = 6, we must have

(n = 3,m = 3) and qy = ±2|κ3|. A similar argument can be

made for l < 0, and we can therefore say exactly which

scattering processes contribute to each dark spot in Fig. 2(a).

If the impurity is not located exactly at the middle of the

ribbon, the even subbands will also be part of the scattering

process. This is illustrated in Fig. 3, where we have numbered

the subband transitions corresponding to each bright point.

In Fig. 4, we show the result for a wider ribbon calculated

both analytically and by doing a recursive tight-binding
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FIG. 3. (Color online) The first quadrant of the FT-LDOS of the

same ribbon as in Fig. 2, but with the impurity placed at xi = 2W/7.

The numbers indicate the modes that gives rise to the different points.
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FIG. 4. (Color online) (a) Analytical FT-LDOS of a 2DEG ribbon of width W = 200a0 and energy E = 0.05τ . (b) FT-LDOS taken from a

numerical tight-binding simulation of a ribbon of width W = 200a0 and energy ET B = −3.9τ . The energies are adjusted such that each ribbon

has a total of 20 propagating modes open.

simulation. In the analytic model (which has a parabolic

dispersion), setting the energy to E = 0.05|τ | gives us a total

of 20 open propagating modes. In the tight-binding model (see

Sec. V), whose first subband is located around E = −4|τ |
(if we set the on-site energy to zero everywhere), we must

instead choose the energy to be ET B = −3.9|τ | in order to

have the same number (20) of open modes. We see that the

main features of our analytical calculation and the numerical

simulation coincide.

IV. FT-LDOS: RIBBONS OF GRAPHENE

The procedure of calculating the effect of a single impurity

(located on the A sublattice) on the LDOS in a graphene

q
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q
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FIG. 5. (Color online) Analytic FT-LDOS, M̃(�q; E), of an

AGNR having a width W = 203a (≈50 nm), E = 0.4h̄vf /a0, γ =
10h̄vf /a0 and 60 propagating channels.

armchair nanoribbon (AGNR) follows closely that used for

the 2DEG case. Due to the bipartite structure of the graphene

honeycomb lattice, the propagator G̃(�r,�r ′; E) is a 2 × 2

matrix in sublattice space, denoted by A and B. We therefore

start by finding the impurity contribution to the LDOS on

each sublattice. The resulting expressions for the A- and

B-sublattice LDOS can be written as

ρ̃A/B(�r; E) = − 1

π

∑

dc

∑

nm

Im G̃
AA/BB

dncm (�r,�r; E)

= − 1

π

∑

dc

∑

nm

K
A/B

dncm(E)ρ̃x
nm(x; E)ρ̃

(A/B)y

dncm (y; E),

(12)

where G̃
AA/BB

dncm (�r,�r; E) are the two diagonal components of

the propagator matrix G̃dncm(�r,�r; E). The summation over

the variables c and d are added to account for scattering

between different sets of nonequivalent Dirac cone pairs �K±
c

and �K±
d . A further elaboration on this is found in Appendix B,

together with derivations of the expressions for ρ̃x
nm(x; E) and

kx

ky

kx

ky-m mn-n

-K1x K1x

m
-n

m+n -m-n

-m
+n

FIG. 6. (Color online) Schematic picture of one possible scat-

tering process in AGNRs. Here, the electron (initially in mode m,

represented by the red dots), is scattered into mode n (green squares).

The FT-LDOS will be finite at the �q values illustrated by the solid

[qx = (m ± n)π/W ] and dotted [qx = −(m ± n)π/W ] arrows.
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FIG. 7. (Color online) Magnifications of the central circular feature of Fig. 5 showing (a) the combined A- and B-lattice contributions and

(b) the A lattice alone. When adding the two lattices together, the outer circle is attenuated by destructive interference between the two lattice

contributions, M̃(A/B)y(qy ; E), to the total FT-LDOS.

ρ̃
(A/B)y

dncm (y; E). As discussed in Sec. III, we only need to sum

over propagating incoming and final transverse modes, labeled

by m and n.

We compute the FT-LDOS on each sublattice as

M̃A/B(�q; E) = − 1

π

∑

nm

M̃x
nm(qx ; E)M̃(A/B)y

nm (qy ; E). (13)

The total FT-LDOS is found as a superposition of the two

sublattices

M̃(�q; E) = M̃A(�q; E) + e−ia0qyM̃B(�q; E), (14)

where the extra phase-shift is introduced since the two sublat-

tices are spatially separated by the carbon-carbon distance a0

in the y direction.

Since the transverse wave functions, χn(x) =√
1/W sin(nπ/Wx), in our AGNR differ from those

of the 2DEG only by a factor of 1/
√

2, we have that

M̃x
nm(qx ; E) = Ñ x

nm(qx ; E)/2, as defined in Eqs. (6) and (8).

The longitudinal FT-LDOS expressions for each sublattice

are given by

M̃(A/B)y
nm (qy ; E)

= e−iqyyi

2π

3
∑

c=1

KA/B
cncm(E)[S(A/B)y(�cncm(E) − qy)∗

+ S(A/B)y(�cncm(E) + qy)] + e−iqyyi

2π

2
∑

d=1

3
∑

c=d+1

K
A/B

dncm(E)

× [S(A/B)y(�cndm(E) − qy)∗ + S(A/B)y(�dncm(E) − qy)∗

+ S(A/B)y(�cndm(E) + qy) + S(A/B)y(�dncm(E) + qy)],

(15)

where �dncm(E) = sgn(E)[κdn(E) + κdm(E)] + K
y

d − K
y
c .

The two �q-independent constants are found to be

KA
dncm(E) = 1

[1/γ + σe(E)]2 + σ 2
p(E)

( |E|
(h̄vf )2

)2

× χn(xi)χm(xi)

κdn(E)κcm(E)
(16)

and KB
dncm(E) = −(h̄vf /|E|)2KA

dncm(E). The transverse and

longitudinal momenta are now cone set dependent and change

to kdn = nπ/W − Kdx and κdn(E) =
√

[E/(h̄vf )]2 − k2
dn, re-

spectively. Here, SAy(a) = Sy(a) is the same function as used

in the 2DEG case and defined in Eq. (10), and SBy(a) =
fdncm(E)Sy(a), where fdncm(E) = [−knkm + κn(E)κm(E)] +
isgn(E)[knκm(E) + kmκn(E)]. The S-terms for the AGNR A

lattice have the exact same form as the corresponding terms in

the 2DEG, while the B lattice terms are scaled by a complex

mode dependent prefactor. This is a consequence of our choice

of impurity potential: an impurity fully localized on one A

atom; see Eq. (B11).

In Fig. 5, we plot |M̃(�q; E)| for a semiconducting AGNR

of width W = 203a (≈50 nm, a =
√

3a0), where E =
0.4h̄vf /a0 such that 60 channels are propagating. Note that

the natural energy scale for Dirac electrons are h̄vf /a0. The

positions, outer shapes, and sizes of the circular features [of

radius 2E/(h̄vf )] are the same as those found when studying

a sharp impurity in bulk graphene and are due to the graphene

band structure. In addition to the bulk graphene features,

we also see an added rich inner structure due to transverse

confinement in the nanoribbon. Each peak corresponds to

scattering processes that change the transverse momentum

by integer multiples of π/W , and change the longitudinal

momentum such that the arguments of at least one of the many

Sy terms in Eq. (15) vanishes.

A schematic illustration of one such scattering process is

shown in Fig. 6. An electron, initially in cone pair c = 1 and

mode m, is described by a plain wave with momentum −κ1m
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m Kdx

Kcx kdn

n

n′

kdn′

m-Kdx

-Kcxkdn

n

n′

kdn′

q+

p+

q-

p-

FIG. 8. (Color online) Schematic picture of scattering processes

conserving mirror symmetry with respect to qx = 0 (solid arrows)

and with respect to qx = ±Kdx (solid + dotted arrows).

in the longitudinal direction and a superposition of two plain

waves with momenta ±k1m in the transverse direction (see

the lower red dots). After scattering (within the same cone

pair) to mode n, the momenta are changed to κ1n and ±k1n

in the longitudinal and transverse directions, respectively (see

the upper green squares). A Fourier transform of the LDOS is

proportional to a product of the electron wave function before

and after the scattering event, where each wave function is a

linear combination of two transverse parts. The FT-LDOS will

therefore be finite at the �q values corresponding to the four

arrows shown in the figure. Here, qy = |κ1n + κ1m|, and qx =
(m ± n)π/W (solid arrows) or qx = −(m ± n)π/W (dotted

arrows). When scattering to a different cone pair d 
= c, we

instead have qy = |�dn1m|, see Eq. (15).

When we zoom in on the circular feature in the middle

[shown in Fig. 7(a)] we see that the outer ring of nonvanishing

�q points in |M̃(�q; E)| appears to be attenuated compared with

what is seen on, e.g., the A lattice alone [|M̃A(�q; E)| shown

in Fig. 7(b)]. This is due to destructive interference when

adding the A- and B-lattice FT-LDOS contributions together,

as done in Eq. (14). The �q points on the outer circle come from

scattering processes which maximize the change in momenta

while still scattering within the same cone pair, i.e., where

d = c and kcm → −kdn and vice versa. In this case, we have

that fdncm = [E/(h̄vf )]2, which tells us that M̃
By
nm(qy ; E) =

−M̃Ay(qy ; E) so that when the phase factor e−iqya in Eq. (14)

is close to unity, the contributions from the A and B lattices

will cancel each other out. Similar cancellations may be seen

in Fig 5, e.g., in the circular features to the right and the

left of the central one. For other processes and �q values, the

interference between the two lattice contributions may not play

an important role, or we might have constructive interference

instead.

The FT-LDOS is left-right mirror symmetric around the

line qx = 0; see Fig. 5. This symmetry appears because for

every process adding a component �q+ in the FT-LDOS, there

is another process adding a component �q−, where q−
x = −q+

x ,

see the solid arrows in Fig. 8. After summation of all such

processes, the FT-LDOS acquires the left-right symmetry.

As a consequence, the feature centered around �q = 0 is

always mirror symmetric by the above argument. On the other

hand, there is not necessarily a mirror symmetry within the

other circular features (i.e., mirror symmetry with respect to the

individual cone centers). For metallic AGNRs, the transverse

modes are constructed from wave vectors symmetrically

positioned with respect to the cone center (plus the metallic

mode at the cone center). See, for instance, the two wave

vectors kdn and kdn′ = −kdn in Fig. 8. For semiconducting

AGNRs, the wave vectors are not symmetrically positioned

with respect to the cone center, i.e., kdn′ 
= −kdn for any n′.
Therefore, the inner structure of the circular features centered

at finite �q are symmetric for metallic AGNRs and asymmetric

for semiconducting AGNRs. This is illustrated in Fig. 9 for

the semiconducting and metallic cases in panels (a) and (b),

respectively. We conclude that by looking at what symmetries

there are in the FT-LDOS, one can extract information about

whether an AGNR is metallic or not.

V. NUMERICAL SIMULATIONS OF THE TIGHT-BINDING

MODEL

For our numerical simulations, we use a tight-binding

model described by the Hamiltonian

H =
N

∑

i=1

ǫic
†
i ci +

N
∑

i 
=j

tijc
†
i cj , (17)

q
x
W/π

q
y
 a

0

100 150 200

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8 (a)

q
x
W/π

q
y
 a

0

100 150 200

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8 (b)

FIG. 9. (Color online) Zoom-ins of the north-eastern circular feature in Fig. 5. In (a), the AGNR is semiconducting and the left- and

right-hand side is not mirror-symmetric. In (b), the ribbon is made metallic by removing four rows of carbon atoms, which restores the left-right

symmetry again.
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where c
†
i and ci are creation and destruction operators for site

i. The onsite energy of site i is denoted ǫi , and the hopping

amplitude between sites j and i is denoted tij . The number

of atoms in the system is denoted N . We assume that tij is

always zero except when the sites i and j are nearest neighbors

where we set tij = −τ . We introduce a δ-like impurity in the

tight-binding model by putting the on-site energy ǫi equal to

γ at the site of the impurity.

The retarded Green’s function matrix is defined as

G(E) = [(E + iη)1 − H]−1, (18)

where η is a small positive number. Even though the

Hamiltonian is sparse, when written down as a matrix in

site index space, direct inversion is not a viable alternative

when the number of atoms N grows large. Instead of direct

matrix inversion, we use our own implementation of a recent

algorithm30 in which the system atoms are added one by one,

in a recursive manner. This allows us to save both memory

and time, and once we have found all the retarded propagators

between the system leads and atom i we can calculate the

lesser Green’s function, defined as

G<
ii (E) =

∑

l

fl(E)
∑

αlβl

Giαl
(E)[�

†
l (E) − �l(E)]αlβl

G
†
βl i

(E),

(19)

where l is the lead number (l = 1,2 in the case of a simple

ribbon), and αl and βl are indices running over all atoms

belonging to the surface of lead l. Here, fl(E) and �l(E)

are the distribution function and the self-energy of lead l,

respectively.

The LDOS on atom i is found from

ρi(E) = − 1

π
ImG<

ii (E), (20)

and the FT-LDOS is given by doing a discrete Fourier

transform over all system atoms,

N (�q; E) = 1

N

N
∑

i=1

e−i�ri ·�qρi(E), (21)

where �ri is the real space coordinate vector of atom i.

In Fig. 10(a), the result of such a tight-binding simulation

is shown for a ribbon and setup matching the one used in

Fig. 5, with a δ-like impurity placed in the middle (W =
203a ≈ 50 nm, 60 propagating channels and xi = W/2). Upon

inspection, we notice that the general features are similar

compared with our analytical results. Some points, such as the

outline of the central circle, are attenuated. The tight-binding

ribbon does, however, show clear signs of trigonal warping

due to the dispersion not being perfectly linear. In Fig. 10(b),

we have moved the impurity to the edge of the ribbon and we

notice that the resulting FT-LDOS image is not very different

from the one with the impurity in the middle of the ribbon.

In Fig. 10(c), we have again put the impurity in the middle of

the ribbon, but instead made it Gaussian shaped (with a decay

length that exceeds the spacing between two adjacent carbon

atoms). This (long-range) impurity can be seen to suppress

scattering and attenuate the FT-LDOS features, although not

completely diminish them. For bulk graphene, it is well known

that a long-range impurity cannot scatter between valleys.

q
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FIG. 10. (Color online) Numerical tight-binding FT-LDOS of

three AGNRs’ (N = 810 atoms in the unit cell) with differ-

ent impurity configurations. (a) Single impurity, (b) edge im-

purity, (c) smooth (Gaussian long-range) impurity, where W =
203a (≈50 nm), γ = 10τ , ET B = 0.4τ , and 60 propagating

channels.
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FIG. 11. (Color online) Numerical tight-binding FT-LDOS of four ZGNRs (N = 468 atoms in the unit cell) with different impurity

configurations. (a) Single impurity, (b) edge impurity, (c) rough edges, (d) smooth impurity (Gaussian long-range), where W = 352a0

(≈50 nm), ET B = 0.45τ , γ = 10τ , and 35 propagating channels.

In the FT-LDOS, the features centered at �q = �Kpm

d are then

absent. This is not the case here, since the armchair nanoribbon

has only one cone in its band structure.31

In Fig. 11, we present results for the FT-LDOS of zigzag
graphene nanoribbons (ZGNRs). In this simulation the ribbon
has N = 468 atoms in its unit cell (W = 352a0 ≈ 50 nm),
γ = 10τ , and E = 0.45τ . This gives 35 propagating modes.
In Fig. 11(a), the impurity is located in the middle of the ribbon
and we see a pattern very similar to that of the same impurity
configuration in an armchair ribbon, but with all features
rotated 90◦ due to the different ribbon alignment (for ZGNRs,
ky is quantized instead). The result of a single impurity on the
edge is shown in Fig. 11(b), and in Fig. 11(c) we show the
spectra for a ribbon also having rough edges. In the last figure,
Fig. 11(d), we have again used a Gaussian-shaped (long-range)
impurity located in the center of the ribbon, and we here see
clearly that intervalley scattering is now fully supressed.32

Indeed, since the ZGNR has two cones in its band structure,
this case is similar to bulk graphene.

VI. SUMMARY

In summary, we have presented results for the FT-LDOS

of graphene nanoribbons with local scattering centers. The

interplay between size quantization and scattering leads to

characteristic peaks that can be related to the transverse

modes of the nanoribbon. The main features include ringlike

structures, analogous to the case of an infinite 2D graphene

sheet with a single scattering center. Inside the ringlike

structure, new peaks appear that are related to inter- and

intraband scattering in the ribbon. We have presented analytic

results for the electron propagator in armchair nanoribbons

in the Dirac approximation, including a single scattering

center within a T -matrix formulation. We have also extended

the investigation with numerics obtained with an atomistic

recursive Green’s function approach. The spectral signatures

of the atomistic approach include the lifting of degeneracies

of transverse modes in the Dirac approximation, as well as

effects of trigonal warping. The impurity induced oscillations
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in the LDOS are not decaying at large distance in few-mode

nanoribbons.

Future extensions of this work could involve consideration

of bilayer graphene ribbons, as in Ref. 33, or more realistic

modeling of the impurity potential, as considered, for instance,

in Refs. 34 and 35.
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APPENDIX A: NANORIBBON IN A 2DEG

1. Unperturbed Green’s function

For a 2DEG confined in the x direction, creating a ribbon

of width W , the wave functions can be written as

φn(�r) = eikyyχn(x), (A1)

where �r = (x,y) and n is the mode number associated with the

transverse eigenfunctions (assuming infinitely high confining

walls at x = 0 and x = W ) given by

χn(x) =
√

2

W
sin(knx), (A2)

with the corresponding eigenenergies

ǫn(ky) = h̄2

2μ

(

k2
n + k2

y

)

. (A3)

Here, kn = nπ/W is the transverse momentum, ky the longitu-

dinal momentum, and μ the electron mass. Using these wave

functions we may construct the free propagator, or Green’s

function, of an electron (having energy E+ = E + iη, in the

limit η → 0+) between the points �r ′ and �r as

g(�r,�r ′; E) =
∑

n

∫ ∞

−∞

dky

2π

φn(�r)φ∗
n(�r ′)

E+ − ǫn(ky)

=
∑

n

χn(x)χn(x ′)Ŵn(y,y ′; E)
︸ ︷︷ ︸

=gn(�r,�r ′;E)

, (A4)

where

Ŵn(y,y ′; E) =
∫ ∞

−∞

dky

2π

eiky (y−y ′)

E+ − h̄2

2μ

(

k2
y + k2

n

) . (A5)

This integral can be evaluated using standard contour integra-

tion techniques,36 giving us that

Ŵn(y,y ′; E) =

⎧

⎨

⎩

−i
μ

h̄2
eiκn (E)|y−y′ |

κn(E)
if E > En,

− μ

h̄2
e−κn (E)|y−y′ |

κn(E)
if E < En,

(A6)

and

κn(E) =
√

2μ

h̄2
|E − En|, (A7)

where En = (h̄2/2μ)k2
n.

2. Green’s function, one impurity

We introduce a single impurity modeled by an impurity

potential V (�r) = γ δ(�r − �ri), where �ri is the position of

the impurity and γ the impurity strength. The perturbed

propagator for an electron going from position �r ′ to �r can

then be written using the Dyson equation as37

G(�r,�r ′; E) = g(�r,�r ′; E)

+
∫

d�r ′′g(�r,�r ′′; E)V (�r ′′)G(�r ′′,�r ′; E)

= g(�r,�r ′; E) + g(�r,�ri ; E)γG(�ri,�r ′; E)

=
∑

nm

[gn(�r,�r ′; E)δnm

+
∑

l

gn(�r,�ri ; E)γGlm(�ri,�r ′; E)

︸ ︷︷ ︸

=G̃nm(�r,�r ′;E)

]

=
∑

nm

Gnm(�r,�r ′; E). (A8)

The perturbed matrix element of the Dyson equation can be

rewritten on the T matrix form

G̃nm(�r,�r ′; E) = gn(�r,�ri ; E)T (�ri ; E)gm(�ri,�r ′; E), (A9)

where

T (�ri ; E) = γ + γ

[

∑

l

gl(�ri,�ri ; E)

]

T (�ri ; E)

= γ

1 − γ
∑

l gl(�ri,�ri ; E)

= 1

1/γ + σe(E) + iσp(E)
(A10)

and

σe/p(E) = μ

h̄2

∑

l∈e/p

χ2
l (xi)

κl(E)
. (A11)

Here, e and p are the sets of all evanescent (E < El) and

propagating (E > El) modes. Inserting the above expression

for T (�ri ; E) back into Eq. (A9) allows us to solve for

G̃nm(�r,�r ′; E) and consequently for Gnm(�r,�r ′; E).

3. Fourier transformed density of states

Once the perturbed propagator is known, the change in the

LDOS due to scattering is given by

ρ̃(�r; E) = − 1

π

∑

nm

Im[G̃nm(�r,�r; E)]

= − 1

π

∑

nm

Knm(E)ρ̃x
nm(x)ρ̃y

nm(y; E), (A12)

where

Knm(E) =
(

μ

h̄2

)2
1

(1 + σe(E))2 + σ 2
p(E)

χn(xi)χm(xi)

κn(E)κm(E)
,

(A13)

ρ̃x
nm(x) = χn(x)χm(x) (A14)
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and

ρ̃y
nm(y; E) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

−fsc(κn(E),κm(E)) if n,m ∈ p,

fcs(κn(E),0)e−κm(E)|y−yi | if n ∈ p,m ∈ e,

fcs(0,κm(E))e−κn(E)|y−yi | if n ∈ e,m ∈ p,

−σp(E)e−(κn(E)+κm(E))|y−yi | if n,m ∈ e,

(A15)

where

fcs(κ1,κ2) = (1 + σe) cos[(κ1 + κ2)|y − yi |]
+ σp sin[(κ1 + κ2)|y − yi |] (A16)

and

fsc(κ1,κ2) = (1 + σe) sin[(κ1 + κ2)|y − yi |]
− σp cos[(κ1 + κ2)|y − yi |]. (A17)

When taking the Fourier transform of the scattering LDOS,

we want to be able to resolve differences in x momenta equal

to or greater than π/W (since this is the separation in kx , or kn,

between two adjacent subbands). This requires us to integrate

over the interval [−W,W ] and we extend the function ρ̃x
nm(x)

such that it is even with respect to the origin. The Fourier

transform is then defined as

Ñnm(�q; E) = Knm(E)

∞
∑

n′=−∞
δ

(
qx

π
− n′

W

)

×
∫ W

−W

dx

2W
e−iqxx ρ̃x

nm(x)

×
∫ ∞

−∞

dy

2π
e−iqyy ρ̃y

nm(y; E), (A18)

where the comb function fixes qx to multiples of π/W . The x

part of the Fourier integral is
∫ W

−W

dx

2W
e−iqxx ρ̃x

nm(x)

= 1

2W
(δl,−n−m + δl,n+m − δl,−n+m − δl,n−m), (A19)

independent of whether n and m are evanescent or propagating

modes.

The y part will depend on mode types. We have already

shown what happens when n,m ∈ p. In addition, if n,m ∈ e

we get that
∫ ∞

−∞

dy

2π
e−iqyy ρ̃y

nm(y; E)

= −e−iqyyi
σp

π

κn(E) + κm(E)

q2
y + (κn(E) + κm(E))2

. (A20)

If n ∈ p,m ∈ e then
∫ ∞

−∞

dy

2π
e−iqyy ρ̃y

nm(y; E) = e−iqyyi

2π

[

Sy
pe(κn(E) − qy,κm(E))

+ Sy
pe(κn(E) + qy,κm(E))

]

,

(A21)

where

Sy
pe(a,b) = (1/γ + σe(E))b + σp(E)a

b2 + a2
. (A22)

If n ∈ e,m ∈ p we just need to interchange the n and m in the

expression above.

APPENDIX B: ARMCHAIR GRAPHENE NANORIBBON

In this Appendix we first derive an analytic expression for

the Green’s function of an armchair nanoribbon with a single

impurity. For the geometry, see Fig. 12(a). We then derive the

Fourier transformed density of states.

1. Unperturbed Green’s function

The first Brillouin zone (1BZ) of graphene contains one

pair of inequivalent Dirac cones. It is necessary, however,

to include three pairs of cones [see Fig. 12(b)] in order to

incorporate all scattering events. The cones are located at
�K±

1 = (±Kx,0), �K±
2 = (±Kx/2,Ky), and �K±

3 = (±Kx/2, −
Ky), where Kx = 4π/3a and Ky = 2π/3a0. The distance

between two neighboring atoms is denoted a0, while the

lattice constant is denoted a =
√

3a0. This gives us three sets

(d = 1,2,3) of wave function spinors,38

��dn(�r) =
(

�A
dn(y)

�B
dn(y)

)

χdn(x), (B1)

where the longitudinal wave function components are

�A
dn(y) = λ

(ky + ikdn)
√

k2
y + k2

dn

ei(Kdy+ky )y, (B2)

�B
dn(y) = iei(Kdy+ky )y, (B3)

and the transverse wave function is

χdn(x) = 2C sin[(Kdx + kdn)x]. (B4)

The integer number n labels the quantized transverse momen-

tum kdn = nπ/W − Kdx in cone pair d. For each mode n,

we have positive and negative energy subbands ǫdnλ(ky) =
λh̄vf

√

k2
y + (kdn)2 labeled by λ = ±1. The Fermi velocity

is vf = 3a0τ/2, where τ gives the nearest-neighbor tight-

binding hopping energy in Eq. (17). The wave functions

have been normalized through a normalization constant C =√
1/4W found from the condition

∫ W

0
dx|χdn(x)|2 = 1/2.

Thus, χdn(x) = χn(x) = √
1/W sin(nπ/Wx).

K
+

1
K
-

1

K
+

2
K
-

2

K
+

3
K
-

3

(b)

W

(a)

FIG. 12. (Color online) (a) The geometry of the armchair nanorib-

bon. (b) The first Brillouin zone with three sets of Dirac cones.
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The free propagator for band n (in cone pair d) is computed

as

gdn(�r,�r ′) =
∑

λ=±1

∫ ∞

−∞

dky

2π

��dn(�r) ��†
dn(�r ′)

E+ − ǫdnλ(ky)

= χn(x)χn(x ′)

(
ŴAA

dn (y,y ′; E) ŴAB
dn (y,y ′; E)

ŴBA
dn (y,y ′; E) ŴBB

dn (y,y ′; E)

)

,

(B5)

where

Ŵ
AA/BB

dn (y,y ′; E) = 2EeiKdy (y−y ′)

×
∫ ∞

−∞

dky

2π

eiky (y−y ′)

(E+)2 − (h̄vf )2
(

k2
y + k2

dn

) ,

(B6)

and

Ŵ
AB/BA

dn (y,y ′; E) = ∓2ih̄vf eiKdy (y−y ′)

×
∫ ∞

−∞

dky

2π

(ky ± ikdn)eiky (y−y ′)

(E+)2 − (h̄vf )2
(

k2
y + k2

dn

) .

(B7)

After contour integration, we find the final form to be

Ŵ
AA/BB

dn (y,y ′; E) = −i
|E|

(h̄vf )2
eiKdy (y−y ′) e

isgn(E)κdn(E)|y−y ′|

κdn(E)
,

(B8)

and

Ŵ
AB/BA

dn (y,y ′; E) = − 1

h̄vf

eiKdy (y−y ′)

×
[
isgn(E)kdn

κdn(E)
± sgn(y − y ′)

]

× eisgn(E)κdn(E)|y−y ′|, (B9)

where

κdn =
√

∣
∣
∣
∣

E

(h̄vf )2
− k2

dn

∣
∣
∣
∣
. (B10)

In the above formulas, we have assumed that n is a propagating

mode (e.g., |E/(h̄vf )| > |kdn). If mode n is evanescent

(|E/(h̄vf )| < |kdn|), we have to modify the longitudinal

momentum so that κdn → isgn(E)κdn.

2. Green’s function, one impurity

For the graphene armchair ribbon, we select an impurity

fully localized on the A sublattice,

V(�r) = γ

(
1 0

0 0

)

δ(�r − �ri), (B11)

where γ is the impurity strength. The T -matrix equation

is written in analogy to the 2DEG case, but for graphene

it acquires a 2 × 2 matrix structure. For the potential in

Eq. (B11), we get

T(�ri ; E) = γ

(
1 0

0 0

)

+ γ

(
1 0

0 0

)

×
[

∑

d

∑

l

gdl(�ri,�ri ; E)

]

T(�ri ; E)

= 1

1/γ + σe(E) + iσp(E)

(
1 0

0 0

)

, (B12)

where

σp(E) = |E|
(h̄vf )2

∑

d

∑

l∈p

χ2
l (xi)

κdl(E)
(B13)

and

σe(E) = E

(h̄vf )2

∑

d

∑

l∈e

χ2
l (xi)

κdl(E)
. (B14)

The letters e and p denote sets of evanescent and propagat-

ing modes, respectively. The Dyson equation for the Green’s

function can now be written as

Gdncm(�r,�r ′) = gdn(�r,�r ′)δnm + G̃dncm(�r,�r ′), (B15)

where

G̃dncm(�r,�r ′; E) = gdn(�r,�ri ; E)T(�ri,�ri ; E)gcm(�ri,�r ′; E).

(B16)

The scattering part G̃dncm(�r,�r ′; E) takes the form

G̃dncm(�r,�r ′; E) = 1

1/γ + σe(E) + iσp(E)

(

gAA
dn (�r,�ri ; E)gAA

cm (�ri,�r ′; E) gAA
dn (�r,�ri ; E)gAB

cm (�ri,�r ′; E)

gBA
dn (�r,�ri ; E)gAA

cm (�ri,�r ′; E) gBA
dn (�r,�ri ; E)gAB

cm (�ri,�r ′; E)

)

= χn(x)χn(xi)χm(xi)χm(x ′)

1/γ + σe(E) + iσp(E)

(

ŴAA
dn (y,yi ; E)ŴAA

cm (yi,y
′; E) ŴAA

dn (y,yi ; E)ŴAB
cm (yi,y

′; E)

ŴBA
dn (y,yi ; E)ŴAA

cm (yi,y
′; E) ŴBA

dn (y,yi ; E)ŴAB
cm (yi,y

′; E)

)

. (B17)

For the computation of the LDOS, we need the two diagonal components. Their explicit forms (n,m ∈ p) are

G̃AA
dncm(�r,�r ′; E) = − 1

1/γ + σe(E) + iσp(E)

( |E|
(h̄vf )2

)2

χn(x)χn(xi)χm(xi)χm(x ′)

× eiKdy (y−yi )eiKcy (yi−y ′) e
isgn(E)(κdn(E)|y−yi |+κcm(E)|yi−y ′|)

κdn(E)κcm(E)
(B18)
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and

G̃BB
dncm(�r,�r ′; E) = 1

1/γ + σe(E) + iσp(E)

1

(h̄vf )2
χn(x)χn(xi)χm(xi)χm(x ′)eiKdy (y−yi )eiKcy (yi−y ′)eisgn(E)(κdn(E)|y−yi |+κcm(E)|yi−y ′|)

×
[
isgn(E)kdn

κdn(E)
− sgn(y − yi)

][
isgn(E)kcm

κcm(E)
+ sgn(yi − y ′)

]

. (B19)

3. Density of states

The scattering correction to the LDOS can be computed

separately for the two sublattices, and is given by

ρ̃A/B(�r; E) = − 1

π

∑

dc

∑

nm

Im
[

G̃
AA/BB

dncm (�r,�r; E)
]

= − 1

π

∑

dc

∑

nm

K
A/B

dncm(E)ρ̃x
nm(x)ρ̃

(A/B)y

dncm (y; E),

(B20)

where ρ̃x
nm(x) = χn(x)χm(x). The A/B sublattice corrections

are found by substituting Eq. (B18) and Eq. (B19), respec-

tively, in Eq. (B20). The results are very similar (the A

correction being almost identical) to the 2DEG case, and for

n,m ∈ p we find that

KA
dncm(E) = 1

(1/γ + σe(E))2 + σ 2
p(E)

( |E|
(h̄vf )2

)2

× χn(xi)χm(xi)

κdn(E)κcm(E)
, (B21)

KB
dncm(E) = −(h̄vf /|E|)2KA

dncm(E), (B22)

ρ̃
Ay

dncm(y; E) = σp(E)F c
dncm(y − yi ; E)

− (1/γ + σe(E))F s
dncm(y − yi ; E), (B23)

and

ρ̃
By

dncm(y; E) = {σp(E)( − knkm + κn(E)κm(E))

+ (1/γ + σe(E))sgn(E)sgn(y − yi)(knκm(E)

+ kmκn(E))}F c
dncm(y − yi ; E)

+{σp(E)sgn(E)sgn(y − yi)(knκm(E)

+ kmκn(E)) − (1/γ + σe(E))sgn(E)

× sgn(y − yi)(knκm(E) + kmκn(E))}

×F s
dncm(y − yi ; E), (B24)

where

F c
dncm(y; E) = cos[sgn(E)(κdn(E) + κcm(E))|y|

+ (Kdy − Kcy)y] (B25)

and

F s
dncm(y; E) = sin[sgn(E)(κdn(E) + κcm(E))|y|

+(Kdy − Kcy)y]. (B26)

The Fourier transform of each component is carried out exactly

as for the 2DEG, using Eq. (A18), and the results for the AGNR

are shown in Sec. IV.

1A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and

A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
2F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake,

M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652

(2007).
3V. W. Brar, R. Decker, H.-M. Solowan, Y. Wang, L. Maserati, K. T.
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