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1 Introduction

The SYK model [1–5] has proved to be a very useful tool for studies of quantum gravity

in 2d [6–19] and general properties of chaotic quantum systems [10, 15, 17, 20–38]. The

SYK model played a big part in inspiring the recent developments such as deep connections

between the Jackiw-Teitelboim gravity and double-scaled matrix models [16, 39–42] and

steps towards resolution of the black hole information paradox [43–47].

One of the reasons why SYK-like models are special is that they can be described as

a collective field path integral where the large N limit is explicitly semiclassical. On the

other hand, SYK is not a true quantum system, but is an ensemble of quantum systems.
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The interplay between the ensemble averaging and semiclassical nature of the large N

expansion raises questions about its structure, in particular about the replica trick and the

difference between quenched and annealed averaging [48–51]. The disorder averaging was

shown to be of great benefit for studies of fine-grained quantum chaos in SYK [10, 13, 21,

23, 24, 29, 34], because it provides a mechanism to emphasize the universal RMT behavior

which is built into the theory. The work [13] also showed that some of this universality can

be described neatly in terms of the semiclassical formulation as a nontrivial large N saddle

point. Meanwhile, in the work [49, 52] we have demonstrated that there are other nontrivial

large N saddle points in the Euclidean partition function, and it is not clear what is their

physical meaning. Some of these saddle points are the replica-nondiagonal solutions, which

exist for integer number of SYK copies (replicas), even if they do not interact. They break

the factorization, similarly to the replica wormholes in gravity [46, 47].

Motivated by this question, in the present work we study the spectral form factor in the

SYK model. Spectral form factor for a quantum mechanical system at finite temperature

β−1 is defined as

Z(β + iT )Z(β − iT )

Z(β)2
=

1

Z(β)2
Tr e−βH−iHT Tr e−βH+iHT

=
1

Z(β)2

∑

n,m

e−β(Em+En)eiT (Em−En) .
(1.1)

It was studied numerically in the SYK model in [10, 23, 24, 29, 48] by exact diagonalization

of the Hamiltonian for some finite N and averaging over the disorder afterwards. We are

interested in the role of large N saddle points, so we study this quantity in terms of the col-

lective field path integral, following [13], where the saddle point solutions were constructed

numerically. Our task is to find all large N saddle points that contribute to the spectral form

factor in the slope and ramp regimes. To make the problem analytically tractable, we study

the SYK model in the large q, or double-scaled limit [4, 10]. This limit has been utilized ex-

tensively to simplify the computations in SYK and related models [11, 18, 28–30, 37, 53–63].

In this paper we construct analytic solutions of the saddle point equations in the

double-scaled SYK which describe the slope and ramp regimes of the spectral form factor

at β = 0, and evaluate the one-loop corrections to these saddle points in the late time limit.

We pay special attention to applicability of the 1/q-expansion at late times. Considering

the consistency conditions for solutions allow us to estimate the time of the onset of the

ramp behavior, and the time of the transition from the ramp to the slope.

The paper is organized as follows. In the section 2 we discuss the collective field path

integral for the spectral form factor in the SYK model and discuss the ways of taking

the large q limit that would be appropriate for our purposes. In section 3, we focus on

the disconnected part of the spectral form factor. We construct the analytic saddle point

solutions in the large q limit, verify their validity at late times, compute their contribution

to the spectral form factor and take into account the 1-loop correction. In section 4 we

give the same treatment to the connected spectral form factor, obtaining the analytic

replica-nondiagonal solution and verifying that it describes the ramp region. In section 5

we discuss the different notable time scales where the dynamics of the spectral form factor

changes. Finally, in the section 6 we discuss the results and open questions.
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2 Setup

2.1 Spectral form factor in the SYK model

We study the SYK model as defined by the Hamiltonian [1–3]:

H = iq/2
N∑

i1<i2<···<iq=1

ji1i2...iqψi1ψi2 . . . ψiq . (2.1)

Here ψi are the Majorana fermions, and ji1...iq are totally antisymmetric couplings ran-

domized via the Gaussian distribution:

P (ji1...iq ) =

√
qN q−1

2q(q − 1)!πJ 2
e

−
qNq−1j2

i1...iq

2q(q−1)!J 2 . (2.2)

The distribution (2.2) enforces the following rules for disorder averaging:

〈ji1...iq 〉 = 0 , 〈ji1...iqji1...iq 〉 =
2q−1(q − 1)!J 2

qN q−1
(no sum) . (2.3)

Note that in studies beyond the large q limit instead of J one typically uses

J2 =
2q−1

q
J 2 . (2.4)

Since the SYK model has a random ensemble of couplings, we are going to study the

averaged variant of the spectral form factor (1.1):1

S(β, T ) =
1

〈Z(β)2〉〈Z(β + iT )Z(β − iT )〉 . (2.5)

In the present work we focus on the case β = 0, so more specifically we study the quantity

S(T ) =
〈Z(iT )Z(−iT )〉

〈Z(0)2〉 , (2.6)

where Z(0) = 2
N
2 is the SYK partition function at infinite temperature. One can decompose

the full spectral form factor S(T ) into connected and disconnected parts as follows:

S(T ) =
|〈Z(iT )〉|2

〈Z(0)2〉 +K(T ) , (2.7)

where K(T ) is the connected spectral form factor:

K(T ) =
〈Z(iT )Z(−iT )〉

〈Z(0)2〉 − 〈Z(iT )〉〈Z(−iT )〉
〈Z(0)2〉 . (2.8)

1Note that we take separate average for nominator and denominator. This is the annealed average,

which, generally speaking, gives different result compared to the quenched average, for which the entire

fraction is averaged, necessitating the replica trick [49]. However, it is known that at least under the

applicability of large N expansion, there are no replica-nondiagonal phases in quenched quantities in the

full SYK model [48–50], so we expect that the annealed average coincides with the quenched average for

the leading order in 1/N .
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slope ramp plateau

Figure 1. A sketch of the spectral form factor time dependence.

The sketch of the time dependence of the spectral form factor in SYK is shown on figure 1,

as demonstrated by the numerical results in [10, 13, 29]. In the chaotic systems the discon-

nected part of the spectral form factor dominates at early times, governing what is known

as slope region. The connected part of the spectral form factor dominates at late times,

governing the so-called ramp and plateau regions [10, 13, 21, 29]. Let us review the basic

properties of these regimes.

The slope regime. is defined by the disconnected part of the spectral form factor as

a square of the Fourier transform of the spectral density. It is also self-averaging in the

disorder ensemble.

The ramp regime. is the linear growth of the connected spectral form factor. It starts

from what is known as ergodic, or Thouless time [13, 21, 24, 26, 29, 36, 64] TTh, starts dom-

inating over the ramp at so-called dip time Tdip [10, 29] and continues until the Heisenberg

time TH proportional to the inverse mean level spacing. The ramp is not self-averaging,

but the disorder average shows the behavior which agrees with the RMT universality [10].

The plateau regime. is the approximately constant behavior after TH . It is also not

self-averaging. As discussed in recent work [13, 16, 17, 36], it is determined by the very

small nonperturbative effects which in SYK terms scale like e−eN
, corresponding to nonper-

turbative effects in RMT. The plateau regime is inaccessible to our analysis and is beyond

the scope of the present work.

Now let us discuss the expression for S(T ) in the SYK variables. We have:

Z(iT ) = Tre−iT H =

∫
Dψ exp


i
∫ T

0
dt


 i

2
ψi∂tψi − iq/2

N∑

i1<···<iq=1

ji1i2...iqψi1 . . .ψiq




 ; (2.9)

Z(−iT ) =

∫
Dψ exp


i
∫ T

0
dt


 i

2
ψi∂tψi +(−i)q/2

N∑

i1<···<iq=1

ji1i2...iqψi1 . . .ψiq




 . (2.10)
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The trace implies the anti-periodic boundary conditions for the fermions in the path inte-

gral:

ψi(T ) = −ψi(0) . (2.11)

After averaging over the disorder, one can rewrite S(T ) as a path integral over collective

bilocal fields G and Σ [13], analogously to the replica partition function for the Euclidean

SYK at finite temperature [2–5, 49]. We sketch this derivation in appendix A. The resulting

expression has the form

S(T ) =
1

〈Z(0)2〉

∫
DGαβDΣαβe−NI[G,Σ] , (2.12)

where the action has the form [13]:

I[G,Σ] = − log Pf[δαβ∂t − Σ̂αβ ] (2.13)

+
1

2

∫ T

0

∫ T

0
dt1dt2

(
Σαβ(t1, t2)Gαβ(t1, t2) − 2q−1J 2

q2
sαβGαβ(t1, t2)q

)
.

Here the α, β = L,R are the indices which enumerate the two copies (replicas) of the SYK

system, Pf denotes the Pfaffian in both time and replica indices, and the hat denotes the

integral operator defined by the corresponding bilocal field as its kernel. The sαβ is a

constant matrix with the following elements:

sLL = sRR = −1 ; sLR = sRL = iq . (2.14)

The bilocal collective fields G and Σ satisfy the antisymmetry constraint:

Gαβ(t1, t2) = −Gβα(t2, t1) . (2.15)

The saddle point equations for the action (2.13) read:

∂t1Gαβ(t1, t2) −
∫
dtΣαγ(t1, t)Gγβ(t, t2) = δ(t1 − t2)δαβ ,

Σαβ(t1, t2) = sαβ
2q−1J 2

q
Gαβ(t1, t2)q−1.

(2.16)

The goal of the present work is to find and study the main solutions of these saddle point

equations which determine the dynamics of the spectral form factor, particularly at late

times.

2.2 The large q limits

To solve these equations analytically, we will make use of the key simplifying assumption,

the limit of large q. In order for the full path integral (2.12) to remain well-defined in this

limit, it is natural to also set N → ∞ and introduce the new fixed parameter λ:

N → ∞ , q → ∞ , λ =
q2

N
fixed (2.17)

This is known as double-scaled limit of SYK [4, 10, 29]. Our study of the spectral form

factor is based on finding the saddle points of the path integral (2.12). The constant λ plays

– 5 –
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the role of the new Planck constant. Besides the saddle point contribution, we are also

going to be interested in the one-loop corrections, which are the leading-order correction

in the expansion in λ, assuming it is small.

To find the analytic solutions of the saddle point equations in the large q limit, we will

use a generalized version of the approach used previously in the SYK literature [4, 11, 28,

30, 30, 37, 57–61, 63].

The basic idea is to expand the bilocal fields Gαβ and Σαβ in series in 1/q → 0:

Gαβ = G
(0)
αβ +

1

q
G

(1)
αβ +

1

q2
G

(2)
αβ + . . . ,

Σαβ = Σ
(0)
αβ +

1

q
Σ

(1)
αβ +

1

q2
Σ

(2)
αβ + . . . .

(2.18)

First thing to note is that this expansion does not converge for all times. Since we are

interested in the behavior of the spectral form factor on arbitrarily late time scales, we

would have to extrapolate the results given by the above 1/q-expansion for late times. So

we will proceed as follows:

1. Find the solutions of saddle point equations (2.16) for times small enough where the

1/q-expansion is applicable

2. Find an approximate solutions in the late time regime

3. Glue the two regimes together, use the smoothness conditions to establish global

existence of solutions.

To this end, let us start assuming that the times are small:

J T ∼ 1 ≪ q , (2.19)

so that the expansion (2.18) is applicable. We will expand and solve the equations (2.16)

up to the first order in 1/q. In 0th order of 1/q, we have the system of equations

∂t1G
(0)
LL = ∂t1G

(0)
RR = δ(t1 − t2) ;

∂t1G
(0)
LR = ∂t1G

(0)
RL = 0 ;

Σ
(0)
αβ = 0 .

(2.20)

The first equation for the diagonal components of Gαβ can be solved by the free fermion

propagator:

G
(0)
LL = G

(0)
RR = Gf (t1 − t2) =

1

2
sgn(t1 − t2) . (2.21)

The second equation for the off-diagonal components can be solved by a constant, taking

into account the constraint Gαβ(t1, t2) = −Gβα(t2, t1). This constant determines the par-

ticular large q limit, which we will have to use to describe different regimes of the spectral

form factor. Specifically, we expect the disconnected part of the spectral form factor to

be described by a solution that is diagonal in replica indices in all orders of 1/q, and we

expect the connected part of the spectral form factor to be described by a non-diagonal

– 6 –
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solution. One can show that in order to obtain a non-trivial nondiagonal solution in all

orders of 1/q, the zeroth order of G must be nondiagonal, otherwise the expansion (2.18)

will be inconsistent with the equations of motion (2.16).

Considering now the first order in 1/q of the expansion for G, we get the equations:

∂t1G
(1)
αβ(t1, t2) −

∫
dtΣ(1)

αγ (t1, t)G
(0)
γβ (t, t2) = 0 ; (2.22)

Σαβ(t1, t2) = sαβJ 2 2q−1

q

(
G

(0)
αβ +

1

q
G

(1)
αβ + . . .

)q−1

. (2.23)

Applying the derivative ∂t2 to the left of the first equation, one gets:

∂t1∂t2G
(1)
αβ(t1, t2) = −Σ

(1)
αβ(t1, t2) . (2.24)

Together with the equation (2.23), this equation completely determines the general solu-

tion (2.18) in the order (1/q)1.

With this in mind, we will make use of the two solutions for G
(0)
LR = −G(0)

RL, which corre-

spond to the disconnected and connected parts of S(T ). For both regimes the solutions for

G(0) determine it on the circle [0, T ], and we continue G(0) beyond that in the antiperiodic

manner as piecewise-constant functions. Let us discuss the corresponding large q limits in

detail.

Disconnected part of S(T ). To describe this quantity, we choose the replica-diagonal

solution for G(0):

G
(0)
LR = −G(0)

RL = 0 . (2.25)

Using this and (2.21) in (2.23) yields

Σ(1)
αα = −J 2 (2Gf )q−1 exp

G
(1)
αα

Gf
;

Σ
(1)
LR = Σ

(1)
RL = 0 .

(2.26)

We introduce a new variable gαβ(t1, t2):

gαα(t1, t2) :=
G

(1)
αα(t1, t2)

G
(0)
αα(t1, t2)

; (2.27)

gαβ(t1, t2) := G
(1)
αβ(t1, t2) , α 6= β . (2.28)

In this case the system of equations (2.24)–(2.23) can be written as

∂t1∂t2 (sgn(t1 − t2)gαα(t1, t2)) = 2J 2sgn(t1 − t2)egαα(t1,t2) ; (2.29)

∂t1∂t2gαβ(t1, t2) = 0, α 6= β . (2.30)

This is the final form of saddle point equations for the disconnected spectral form factor.

– 7 –
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Connected part of S(T ). In this case for G(0) we choose the replica-nondiagonal solu-

tion:2

G
(0)
LR = −G(0)

RL =
i

2
. (2.31)

It will be shown that this solution, being supports nondiagonal solutions for the subleading

order in 1/q, which describes the ramp regime. We can write (2.23) as follows:

Σ
(1)
αβ = sαβJ 2

(
2G

(0)
αβ

)q−1
exp

G
(1)
αβ

G
(0)
αβ

. (2.32)

We use a slightly different definition of gαβ(t1, t2):

gαβ(t1, t2) :=
G

(1)
αβ(t1, t2)

G
(0)
αβ(t1, t2)

. (2.33)

Using this notation and combining (2.24) with (2.23), we arrive at the final form of the

saddle point equation for the connected spectral form factor:

∂t1∂t2

[
G

(0)
αβ(t1, t2)gαβ(t1, t2)

]
= −sαβJ 2

(
2G

(0)
αβ

)q−1
egαβ(t1,t2) . (2.34)

This equation has the form of the generalized Liouville equation, which is common for SYK

computations at large q [4, 11, 30, 58–61]. Substituting the explicit expressions for G(0),

one get the system

∂t1∂t2 (sgn(t1 − t2)gαα(t1, t2)) = 2J 2sgn(t1 − t2)egαα(t1,t2); (2.35)

∂t1∂t2gαβ(t1, t2) = 2J 2egαβ(t1,t2), α 6= β. (2.36)

3 The slope region

3.1 Large q ansatz

Let us first focus on the disconnected part of the spectral form factor. The corresponding

field configurations, which contribute to the path integral (2.12), have uncorrelated L and

R copies of the SYK chain, and therefore we want to look for a replica-diagonal solution

for Gαβ . In the order zero of the 1/q-expansion we have the solution (2.25), and the saddle

point equations have the form (2.29)–(2.30). Let us now derive the effective action for the

field gαβ . The expansion (2.18) for the disconnected spectral form factor can be rewritten

as the following ansatz:

Gαα(t1, t2) =
1

2
sgn(t1 − t2)

(
1 +

gαα(t1, t2)

q
+ o

(
1

q

))
,

GLR(t1, t2) =
gLR(t1, t2)

q
+ o

(
1

q

)
,

GRL(t1, t2) =
gRL(t1, t2)

q
+ o

(
1

q

)
;

Σαβ(t1, t2) =
Σ

(1)
αβ(t1, t2)

q
+ o

(
1

q

)
.

(3.1)

2The exact value of the right hand side constant in (2.31) is chosen from convenience. Note that in [11]

the same G
(0)
LR arose as the true two-point function of the two interacting free fermion chains.
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We substitute these expansions into (2.13) and extract the leading nontrivial action for the

fields gαβ(t1, t2) and Σ
(1)
αβ(t1, t2). The Pfaffian term reads

T1 := −1

2
Tr log[δαβ∂t − Σ̂αβ ] = − Tr log(∂t) +

1

2
Tr

1

q
(Ĝf · Σ̂

(1)
αβ)+

+
1

2
Tr

1

2q2
(Ĝf · Σ̂(1)

αγ · Ĝf · Σ̂
(1)
γβ ) +O

(
1

q3

)
.

(3.2)

The polynomial part of the action reads

T2 :=
1

2

∫ T

0

∫ T

0
dt1dt2

(
Σαβ(t1, t2)Gαβ(t1, t2) − 2q−1J 2

q2
sαβGαβ(t1, t2)q

)
=

=
1

2

∫ T

0

∫ T

0
dt1dt2

1

q
Σ(1)

αα(t1, t2)Gf (t1, t2)

+
1

2

∫ T

0

∫ T

0
dt1dt2

1

q2
Σ(1)

αα(t1, t2)Gf (t1, t2)gαα(t1, t2)+

+
1

2

∑

α 6=β

∫ T

0

∫ T

0
dt1dt2

1

q2
Σ

(1)
αβ(t1, t2)gαβ(t1, t2)

+
1

2

∫ T

0

∫ T

0
dt1dt2

2q−1J 2

q2

1

2q

(
1 +

gαα(t1, t2)

q

)q

+ o

(
1

q2

)
.

(3.3)

The 1/q terms in T1 and T2 cancel out, and we can carry out the Gaussian integral over Σ(1)

similarly to the analogous derivations in [10, 11, 61]. the resulting non-vanishing action in

the double-scaling limit (2.17) reads

IDS[g] =
1

4λ

∫ T

0

∫ T

0
dt1dt2

∑

α

(
1

4
∂t1 (sgn(t1 − t2)gαα(t1, t2)) ∂t2 (sgn(t1 − t2)gαα(t1, t2)) +

+
∑

α 6=β

∂t1gαβ(t1, t2)∂t2gαβ(t1, t2) + J 2egαα(t1,t2)
)
. (3.4)

The equations of motion for this action are given by (2.29), (2.30). Note the absence of

the exponential potential term for the offdiagonal components of g.

3.2 Early-time solution

Let us look for solutions with translational symmetry,3 such that gαβ depends only on

t = t1 − t2. Therefore, the saddle point equations (2.29)–(2.30) read

∂2
t (sgn(t)gαα(t)) = −2J 2sgn(t)egαα(t),

∂2
t gαβ(t) = 0, α 6= β.

(3.5)

The general solution for the diagonal component reads:4

egαα(t) =
a2

α

J 2 cosh2(aα|t| + bα)
, (3.6)

3Generally speaking, with β 6= 0 one would expect solutions that are not translationally invariant.
4It is the Lorentzian analogue of the general solution for the original large q SYK in Euclidean signature

presented in [4].
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where aα and bα are integration constants. If aL = aR, we have a replica-symmetric

solution with gLL = gRR, otherwise the solution breaks replica symmetry. For the off-

diagonal component, the general solution is simply the linear function:

gLR(t) = −gRL(t) = d+ ct . (3.7)

We see that the general solution is not periodic in T , if we assume the same parameters on

the entire time circle. This is the key distinction of the large q limit in real time compared to

the Euclidean case. Because of this, it is more convenient for us to solve instead on the seg-

ment t ∈ [0, T/2] and then continue the solution to the segment [T/2, T ] using the condition

Gαβ(t) = Gβα(T − t) , (3.8)

which follows from antiperiodicity and antisymmetry of Gαβ . Now let us restrict ourselves

to the segment t ∈ [0, T/2] and impose the boundary conditions on its endpoints for g. The

first boundary condition is determined by the free fermions being the UV limit of SYK:

gαα(0) = 0 . (3.9)

The second boundary conditions follows from (3.8) as well as from smoothness at t = T/2:

g′
αα

(
T

2

)
= 0 ; gLR

(
T

2

)
= 0 . (3.10)

Taking into account the boundary conditions (3.9), (3.10), we arrive at the short time

solution for t ∈
[
0, T

2

]
in the following form:

egαα(t) =





cosh ãα

2

cosh
[
ãα

(
1
2 − t

T

)]





2

; (3.11)

gLR(t) = −gRL(t) = c

(
t− T

2

)
. (3.12)

Here the parameter ãα := aαT has to solve an algebraic constraint

ã2
α = (J T )2 cosh2 ãα

2
. (3.13)

Before proceeding further, let us note that the solution (3.11) has a Z2-symmetry in each

SYK copy: it is invariant under replacement ãα → −ãα. The initial condition as written

in the form of (3.13) preserves this symmetry. All further saddle point solutions which we

will discuss also will have a similar symmetry. Thus here and henceforth we can essentially

mod it out from the spectral form factor by considering a square root with the plus sign

of the equation (3.13) as the constraint for the parameter ã instead:

ãα = J T cosh
ãα

2
; Re ãα > 0 . (3.14)

Let us analyze this constraint in more detail. Unlike the Euclidean case [4], it does not

have a real solution for all values of J T . Instead, there is a critical time Tcr ≃ 1.33/J
which separates two regimes:
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Figure 2. Transition from real to complex leading solutions at Tcr. Shown are the contour plots

of the real part of the constraint (3.14) together with the contour line given by Im(constraint)= 0,

shown by the blue curves. (a) J T = 1.3; (b) J T = 1.325; (c) J T = 1.360.

• For T < Tcr, there are two real positive solutions ã1 and ã2, with ã1 < ã2, as

shown on figure 2(a). At T = Tcr they coalesce into a unique solution, as shown on

figure 2(b). Besides these two, there is an infinite family of complex solutions, for

which Re ã > ã2.

• For T > Tcr, there are now two new complex-valued solutions, ã1 and ã2 = ã∗
1, as

shown on figure 2(c). Other complex solutions have Re ã > Re ã1.

As we will see in section 3.4, the solutions with the lowest Re ã, the ones experiencing

the transition from real to complex, actually correspond to the leading saddle points of the

spectral form factor path integral at all times, and other complex solutions correspond to

subleading saddle points. Correspondingly, we will refer to solutions with the lowest Re ã

as leading solutions, and to other solutions with higher Re ã as subleading ones.

We demonstrate the behavior of egαα as determined by the solution (3.11) for values of

ã which satisfy the constraint on figure 3 for different values of J T . The plots (a)-(d) show

leading solutions, and the plots (e),(f) show subleading solutions. For T > Tcr the solution

acquires non-zero imaginary part (shown by the orange curve), as can be seen on the plots

(b)-(d). The subleading solutions with higher Re ã acquire extra extrema compared to the

leading solutions, as shown on the plots (e) and (f). This is similar to subleading saddle

points in the Euclidean SYK partition function at finite q [10, 49, 52].

Since we are primarily interested in the late time behavior, let us solve the con-

straint (3.14) for late times analytically (assuming the validity of the 1/q-expansion). De-

note x = Re(ã) and y = Im(ã), then we have the system of equations:





cos
(y

2

)
cosh

(
x
2

)
= x

J T ;

sin
(y

2

)
sinh

(
x
2

)
= y

J T .
(3.15)
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Figure 3. The solution (3.11) for different times and different solutions of the constraint (3.14).

(a) J T = 1, ã ≃ 1.18; (b) J T = 1.33, ã ≃ 2.4+0.17i; (c) J T = 10, ã ≃ 0.60+3.03i; (d) J T = 100,

ã ≃ 0.06 + 3.14i; (e) J T = 10, ã ≃ 1.65 + 9.18i; (f) J T = 10, ã ≃ 2.45 + 15.44i.

Let us look for a solution as expansion in (J T )−1. In the first order we can set the right

hand parts of the above equations to zero and get:



y = ±(2n+ 1)π, n ∈ Z+ ;
x
2 = |y|

J T = (2n+1)π
J T .

(3.16)

Now let us find the correction to y. Putting y = ±[(2n + 1)π − ǫ] into the first equation

in (3.15), we get:
ǫ

2
=

x

J T = 2
(2n+ 1)π

(J T )2
. (3.17)

So we can write down the solution as

ã = 2
(2n+ 1)π

J T ±
(

(2n+ 1)π − 4
(2n+ 1)π

(J T )2

)
i+ o

(
1

(J T )2

)
, n ∈ Z+ . (3.18)

The case n = 0 corresponds to the leading solution, whereas n > 0 correspond to subleading

solutions. It is worth noting that at late times Re ã → 0, whereas Im ã → ±iπ(2n+1). We

show the dependence of solutions of the constraint (3.14) on general J T on the figure 4.

The leading solutions are shown by the blue curve, and the orange curves represent some

of the subleading solutions.

The question we need to answer next is what kind of contributions do these solutions

introduce to S(T ). Before we do that, let us remember that the entire above discussion

is based upon the 1/q-expansions (2.18), which might break down at late times. So let us

address the region of late times.

3.3 Late-time solution

To study the solutions of saddle point equations (2.16) at late times beyond the expan-

sion (2.18), we will use the approach similar to one used in the studies of the SYK dual to
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Figure 4. Locations of solutions of the constraint (3.14) on the complex right half-plane

parametrized by J T ∈ [0, 100]. The trajectories of subleading solutions (shown by orange curves)

are not shown completely, but only their late-time tail ends are shown.

the traversable wormhole [11] and similar models [61]. The key observation is the following.

From the second equation in (2.16) we see that Σαβ varies q times faster than Gαβ , but in

this case ΣLR = ΣRL = 0 and Σαα are odd functions. Therefore, at very long times, we can

approximate Σαα as a derivative of a delta function: ΣLL = κLδ
′(t) and ΣRR = κRδ

′(t).

So the equations (2.16) can be approximated as

(1 − κL,R)∂tGαβ = 0 . (3.19)

The solutions are constants:

Gαα(t) = Aα ; GLR(t) = −GRL(t) = C . (3.20)

Now we have to glue this smoothly to the early-time result which has the form (3.1) with

gαβ given by solutions (3.11), (3.12). The diagonal components have the form:5

Gαα(t) =
1

2

(
1 +

gαα(t)

q

)
. (3.21)

One can check that for all values of ã allowed by the constraint (3.14) the function gαα

stays finite at late times, so to the leading order in 1/q the expansion is consistent with

the constant late-time solution (3.20) with AL = AR = 1
2 . This essentially means that all

of the dynamics is captured by the early times, and the corresponding solution (3.11) is

valid for arbitrarily large times.

Meanwhile, the off-diagonal component is determined by the expansion

GLR(t) = −GRL(t) =
gLR(t)

q
= 0 , (3.22)

with the solution (3.12) for g. We see that the early-time linear solution can only be

consistent with the late-time constant behavior only with c = 0, and, thus gLR = 0. This

is expected as non-diagonal components of G must trivialize for the disconnected part of

the spectral form factor. Thus, from the late-time analysis we come to two points:

5This is for large positive times, so sgn(t) = 1.
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• The 1/q-expansion for the disconnected part of the spectral form factor is valid at all

times.

• The ansatz (3.1) on the saddle point equations yields GLR = GRL = 0.

3.4 On-shell action

Since we’ve shown that the 1/q-expansion describes the disconnected part of the spectral

form factor at all times, we can use the action (3.4) for all times. Using the saddle point

equations (2.29), (2.30) and the symmetry properties of the solutions, we can rewrite the

action as follows:

IDS[g] =
TJ 2

λ

T/2∫

0

dt egαα(t)
(

1 − 1

2
gαα(t)

)
. (3.23)

Substituting the solution (3.11) and computing the integral, we get the result

λIon-shell =
∑

α=L,R

(
2ãα tanh

(
ãα

2

)
− ã2

α

2

)
. (3.24)

where ãα solve the constraint (3.14) independently. This action is complex-valued on

complex saddle points.

We can analyze the action for J T → ∞ using the solutions for ãα from (3.18). Sub-

stituting them to (3.24), we get:

ReλIon-shell =
π2

2

(
(2n+ 1)2 + (2m+ 1)2

)
+O

(
1

(J T )2

)
, n,m ∈ Z+ ; (3.25)

ImλIon-shell = ±J T ± J T +O

(
1

J T

)
, (3.26)

where one can choose any combination of signs. We see that the leading contribution

to the spectral form factor comes from the solution with n = m = 0, which is what we

referred to as the leading solution, for both L and R copies. The solutions with non-

zero n and/or m have larger action and are thus indeed subleading. An important point

here is the arrangement of leading solutions between the copies (replicas). Taking the

replica-symmetric solution, meaning ãL = ãR = ã1, results in the action that has non-zero

imaginary part, because the imaginary parts from individual replicas add up instead of

canceling each other. Conversely, a replica symmetry breaking solution with ãL = ã1 and

ãR = ã∗
1 will give total action that is real-valued. Because of this interpretation, we will

sometimes refer to Tcr as replica symmetry breaking time.

Another point is that in the region of complex solutions there is a Z2 × Z2-symmetry

that acts like Im ãα → −Im ãα. The individual solutions (3.11) and the replica-symmetric

saddle points spontaneously completely break this symmetry, while the leading replica sym-

metry breaking saddles preserve a Z2 subgroup. Hence we can divide the entire contribution

from complex solutions by 4 to mod out this symmetry.

With these points in mind, we can write down the contribution to the path integral

from at the saddle point level for T > Tcr. Let us denote as I[ãL, ãR] the on-shell action

– 14 –
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Figure 5. Real part of the action on a slope saddle point as a function of time.

for a generic solution. Then we see that

X[ã1] := Re I[ã1, ã
∗
1] = Re I[ã∗

1, ã1] = Re I[ã1, ã1] = Re I[ã∗
1, ã

∗
1] ; (3.27)

Im I[ã1, ã
∗
1] = Im I[ã∗

1, ã1] = 0 ; (3.28)

Y [ã1] := Im I[ã1, ã1] = −Im I[ã∗
1, ã

∗
1] . (3.29)

Thus we see that the pair of leading complex-conjugated solutions parametrized by ã1 will

give the contribution to the spectral form factor equal to

S(T ) → 1

4

[
e−I[ã1,ã∗

1] + e−I[ã1,ã∗
1] + e−I[ã1,ã1] + e−I[ã∗

1,ã∗
1]
]

= e−X[ã1] 1 + cosY [ã1]

2

= e−X[ã1] cos2 Y [ã1]

2
. (3.30)

At late times with X and Y given by (3.25) and (3.26) correspondingly with n = m = 0,

we get the semiclassical result:

|〈Z(iT )〉|2
2N

≃ e− π2

λ cos2 J T
λ

. (3.31)

The squared cosine prefactor is similar to the behavior appearing in RMT (specifically,

GUE) in the same time region [29]. Here we have obtained it from the saddle point

structure of the SYK model in the large q limit, rather than from the spectral density.

The time dependence of the real part of the action on a leading solution is presented

on the figure 5. We see that the action increases up to a constant, with the full agreement

with expectations from the slope region. However, the actual decay rate is dominated by

the quantum corrections [10, 21], so as a next step we turn the computation of the one-loop

quantum correction to the slope saddles we’ve discussed.
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3.5 One-loop correction

Let us finally calculate spectral form factor on the slope taking into account quantum

corrections. We have shown that the disconnected part of the spectral form factor is

described by the 1/q-expansion at all times at the semiclassical level. Hence we can consider

the quantum dynamics using the path integral over gαβ with the action (3.4). We restrict

ourselves to the one-loop correction in terms of the expansion in λ. We split the field gαβ

into classical and quantum parts:

gαβ = gcl
αβ + gαβ , (3.32)

where gcl
αβ solve the saddle point equations (2.29)-(2.30). We will temporarily use the

dimensionless time variables u = J (t1 − t2) and v = J t1+t2
2 . Expanding the path integral

around a single saddle point, we get:

S(T ) → e−Ion-shell

∫
Dgαβ exp





1

4λ

J T∫

−J T

du

J T∫

0

dv
∑

α6=β

gαβ(u,v)
(

1

4
∂2

v −∂2
u

)
gαβ(u,v)



× (3.33)

×exp





1

8λ

J T∫

−J T

du

J T∫

0

dvgαα(u,v)
(

−
1

2
sgn(u)∂2

usgn(u)+
1

8
sgn(u)∂2

vsgn(u)−J
2egcl

αα(u)
)
gαα(u,v)



=

= const ·e−Ion-shell
1

det
(
∂2

u − 1
4
∂2

v

)
∏

α=L,R

[
det
(

1

2
sgn(u)∂2

usgn(u)−
1

8
sgn(u)∂2

vsgn(v)+J
2egcl

αα(u)
)]− 1

2

,

where Ion-shell is given by (3.24), and the constant depends on λ exclusively. There are

separate determinants for diagonal modes gLL, gRR and for the offdiagonal modes gLR

and gRL. The offdiagonal modes are free, so the corresponding determinant is a constant

independent of J T , as we show in appendix B.

To this end, we focus on the determinant of the operator which governs the replica-

diagonal modes:

L = −1

8
sgn(u)∂2

vsgn(u) + 2sgn(u)a2∂2
xsgn(u) +

{
a

cosh
(

x
2

)
}2

. (3.34)

where we denote x
2 = ã

(
1
2 − u

J T

)
, and ã is a solution of the constraint (3.14). The

eigenproblem for the operator (3.34) is similar in a lot of ways to the case of Euclidean

large-q SYK at finite temperature [4, 60]. In particular, we assume that the eigenfunctions

Ψn,m(u, v) obey the symmetry conditions:

Ψn,m(0, v) = 0,

Ψn,m

(
J T − u, v ± J T

2

)
= Ψn,m(u, v) .

(3.35)
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Separation of variables together with these conditions gives the following eigenfunctions6

LΨn,m(u, v) =

(
2πn
J T

)2
+ 4m2

J 2

8
Ψn,m(u, v),

Ψn,m(u, v) =





ei2πn v
J T ψe

m(t)sgn(t), n ∈ 2Z, m ∈ Me ;

ei2πn v
J T ψo

m(t)sgn(t), n ∈ 2Z + 1, m ∈ Mo ,

(3.36)

where ψe
m(t) and ψo

m(t) are eigenfunctions of

[
2a2∂2

x + a2

cosh2( x
2 )

]
with eigenvalue m2

2 that

under t → T − t are even and odd respectively.7 Note that, generally speaking, this

eigenvalue is complex-valued, unlike the Euclidean case [4, 60, 65]. The explicit form of

the eigenfunctions is the following:

ψe
m(t) =

m

a
cosh

[
m

(
T

2
− t

)]
− sinh

[
m

(
T

2
− t

)]
tanh

[
a

(
T

2
− t

)]
;

ψo
m(t) =

m

a
sinh

[
m

(
T

2
− t

)]
− cosh

[
m

(
T

2
− t

)]
tanh

[
a

(
T

2
− t

)]
.

(3.37)

The variable m is fixed by the Dirichlet boundary condition ψe,o
m (0) = 0. Note that we

have to avoid double counting since ψe
−m(t) = ψe

m(t), ψo
−m(t) = −ψo

m(t) [60]. The index

sets Me,o are explicitly defined as follows:

Me : ψe
m(0) = 0 ⇔ m coth

(
mT

2

)
− a tanh

(
aT

2

)
= 0 ; (3.38)

Mo : ψo
m(0) = 0 ⇔ m tanh

(
mT

2

)
− a tanh

(
aT

2

)
= 0 . (3.39)

Hence we can write down the determinant as the specific product over eigenvalues:

1

det(L)
=

∏

n∈2Z
m∈Me

∏

n∈2Z+1
m∈Mo

2
(

πn
J T

)2
+ m2

J 2

. (3.40)

Let us find this determinant in the limit of late times J T → ∞. We can use the for-

mula (3.18) to determine a = ã/T . In this case ã = i(2l + 1)π +O((J T )−1), where l ∈ Z.

Substituting it into (3.38)–(3.39), we readily find the allowed values of m:

Me : m ≃ iπ2k

T
, k ∈ Z+

Mo : m ≃ iπ(2k − 1)

T
, k ∈ Z+,

(3.41)

where we require k > 0 to avoid double counting, as mentioned above. Thus the eigenvalues
m2

2 are purely negative at late times. Substituting this into the determinant (3.40) and

performing the zeta-function regularization of the products, we finally arrive at the result

for the one-loop correction to the disconnected spectral form factor:

1

det(L)
=

∏

n∈2Z
k∈2Z+

∏

n∈2Z+1
k∈(2Z+1)+

(J T
π

)2 2

n2 − k2
= const · (J T )

6
+∞∑
n=1

1

=
const

(J T )3
. (3.42)

6We follow notations analogous to [60].
7For the eigenfunctions ψ, it is convenient for us to go back to the dimensional time t = u/J .
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This result precisely matches the prediction from the Schwarzian mode, or the triple-scaled

limit of SYK [10, 21, 29]. We now can improve our semiclassical late-time result (3.31)

with the one-loop correction:

S(T )slope =
|〈Z(iT )〉|2

2N
∼ 1

(J T )3
cos2 J T

λ
e− π2

λ . (3.43)

This formula captures the main properties of the slope region of the spectral form factor in

SYK at late times. The decay with the power of −3 is caused by the one-loop quantum cor-

rection, and the mild oscillations during the decay are caused by the interplay between the

complex saddle points and spontaneous breaking of the replica symmetry. As a side remark,

our computation shows that for all subleading saddle points on the slope the time decay of

the one-loop correction will be the same, so those saddles will remain subleading at all times.

4 The ramp region

4.1 Large q ansatz

Now let us proceed to study of the connected spectral form factor. The corresponding

field configurations contributing to the path integral (2.12) are replica-nondiagonal. So,

as we discussed in section 2.2, we want to look for replica-nondiagonal solutions of the

saddle point equations (2.16). Again, to begin let us assume that we are in the regime

where the 1/q-expansion (2.18) is applicable. This time we look for a replica-nondiagonal

solution using the ansatz (2.31) and solve the equations of motion (2.35)–(2.36). The

expansion (2.18) can be written as the following ansatz for the fields:

Gαα(t1, t2) =
1

2
sgn(t1 − t2)

(
1 +

gαα(t1, t2)

q
+ o

(
1

q

))
, (4.1)

GLR(t1, t2) =
i

2

(
1 +

gLR(t1, t2)

q
+ o

(
1

q

))
, (4.2)

GRL(t1, t2) = − i

2

(
1 +

gRL(t1, t2)

q
+ o

(
1

q

))
; (4.3)

Σαβ(t1, t2) =
Σ

(1)
αβ(t1, t2)

q
+ o

(
1

q

)
. (4.4)

The antiperiodicity conditions for G imply periodicity conditions for g as follows:

Gαβ(t1, t2) = −Gβα(t2, t1) ⇒ gαβ(t1, t2) = gβα(t2, t1);

Gαβ(t1, t2 +T ) = −Gαβ(t1, t2) ⇒ gαβ(t1, t2 +T ) = gαβ(t1, t2);

Gαβ(t1 +T,t2) = −Gαβ(t1, t2) ⇒ gαβ(t1 +T,t2) = gαβ(t1, t2),

(4.5)

keeping in mind the antiperiodic continuation of the piece-wise constant functions G(0).

Let us derive the effective action for g on the ramp by substituting these expansion

into the action (2.13) and extracting the leading nontrivial q-dependence. The Pfaffian

term reads

T1 := −1

2
Tr log[δαβ∂t − Σ̂αβ ] = − Tr log(∂t) +

1

2
Tr

1

q
(Ĝf · Σ̂

(1)
αβ)+

+
1

2
Tr

1

2q2
(Ĝf · Σ̂(1)

αγ · Ĝf · Σ̂
(1)
γβ ) +O

(
1

q3

)
.

(4.6)
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The polynomial part of the action reads

T2 :=
1

2

∫ T

0

∫ T

0

dt1dt2

(
Σαβ(t1, t2)Gαβ(t1, t2)−

2q−1J 2

q2
sαβGαβ(t1, t2)q

)
=

=
1

2

∫ T

0

∫ T

0

dt1dt2
1

q
Σ(1)

αα(t1, t2)Gf (t1, t2)+
1

2

∫ T

0

∫ T

0

dt1dt2
1

q2
Σ(1)

αα(t1, t2)Gf (t1, t2)gαα(t1, t2)+

+
1

2

∫ T

0

∫ T

0

dt1dt2
2q−1J 2

q2

1

2q

(
1+

gαα(t1, t2)

q

)q

+
i

4

∫ T

0

∫ T

0

dt1dt2
1

q

[
Σ

(1)
LR(t1, t2)−Σ

(1)
RL(t1, t2)

]
+

+
i

4

∫ T

0

∫ T

0

dt1dt2
1

q2

[
Σ

(1)
LR(t1, t2)gLR(t1, t2)−Σ

(1)
RL(t1, t2)gRL(t1, t2)

]
−

−
1

2

∑

α6=β

∫ T

0

∫ T

0

dt1dt2
2q−1J 2

q2

1

2q

(
1+

gαβ(t1, t2)

q

)q

+o

(
1

q2

)
. (4.7)

Consider the 1/q term. Unlike the slope case, it does not cancel out immediately. We have

to integrate out the Σ(1) first. After that, the 1/q-term becomes:

i

4

∫ T

0

∫ T

0
dt1dt2

1

q

[
Σ

(1)
LR(t1, t2) − Σ

(1)
RL(t1, t2)

]
→ 1

8q

∫ T

0

∫ T

0
dt1dt2 [∂t1∂t2gLR + ∂t1∂t2gRL]

=
1

4q
[gLR(T, T ) − gLR(T, 0) − gLR(0, T ) + gLR(0, 0)] = 0 . (4.8)

We see that this term vanishes due to the periodicity conditions (4.5).

The resulting action in the double-scaling limit reads

IDS[g] =
1

4λ

∑

α=L,R

∫
dt1dt2

(
1

4
∂t1

(sgn(t1 − t2)gαα(t1, t2))∂t2
(sgn(t1 − t2)gαα(t1, t2))+J 2egαα(t1,t2)

)

− 1

4λ

∑

α6=β

∫
dt1dt2

(
1

4
∂t1
gαβ(t1, t2)∂t2

gαβ(t1, t2)+J 2egαβ(t1,t2)

)
. (4.9)

The saddle point equations for this action are given by (2.35)–(2.36). The key distinction

from the slope case is that now the offdiagonal components of g have nontrivial potential.

4.2 General solution at early times

Like in the slope case, we look for translation-invariant solutions which depend on t = t1−t2.

Then the saddle point equations (2.35)–(2.36) read

∂2
t (sgn(t)gαα(t)) = −2J 2sgn(t)egαα(t),

∂2
t gαβ(t) = −2J 2egαβ(t), α 6= β.

(4.10)

The general solution for the diagonal components of g is the same as (3.6):

egLL(t) =
a2

LL

J 2 cosh2(aLL|t| + bLL)
; egRR(t) =

a2
RR

J 2 cosh2(aRR|t| + bRR)
. (4.11)

For the offdiagonal components the general solution reads:

egLR(t) =
a2

LR

J 2 cosh2(aLRt+ bLR)
; egRL(t) =

a2
RL

J 2 cosh2(aRLt+ bRL)
. (4.12)
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Here aαβ and bαβ are complex-valued parameters, generally speaking. Just like in the slope

case, we look for a solution on the segment t ∈ [0, T/2] with specific boundary conditions,

then use the property (3.8) to continue it to t ∈ [0, T ]. We again will impose the Dirichlet

condition on the diagonal components

gαα(0) = 0 , (4.13)

which is motivated by the UV behavior. This condition implies the relation

aαα = J cosh bαα. (4.14)

This is the analogue of the constraint (3.13) for the slope saddle. Note that we are absorbing

the sign ambiguity of a into the sign ambiguity of b, which we can do because these

parameters in (4.11), (4.12) are together under cosh.

As far as the offdiagonal components are concerned, let us recall the condition (3.8).

Assuming that J T ≪ q, there is no nontrivial solution of the form (4.12) that would

satisfy (3.8) (or, equivalently, (4.5)) and be smooth at t = T/2. The technical reason

for this is that the constant term G(0) cannot be smoothly continued according to (3.8).

Therefore that the smooth replica-nondiagonal solution that would satisfy (4.5) does not

exist for small times J T ≪ q in the framework of perturbative 1/q-expansion.

This has a qualitative explanation: from the conditions (4.5) it follows that the replica-

offdiagonal components GLR must reach zero at some t∗ ∈ (0, T ). This means that in terms

of the large-q ansatz (4.1), the value of the function gLR must be comparable to q at this

finite (compared to T ) point t∗, and hence the 1/q-expansion (2.18) must break down at

this time scale. Thus in order to get a valid replica-nondiagonal saddle point, we have to

go beyond the early time regime and 1/q-expansion into the late times.

4.3 Late-time solution

We again will extrapolate the large q approximation to late times using similar method

to the one employed in [11, 61]. Here it has more substance to it than in the slope case

discussed in section 3.3. From the second equation in (2.16) it follows that Σαβ varies q

times faster than Gαβ . Therefore at long times we can approximate ΣLR as a delta function:

ΣLR(t) = −ΣRL(−t) ≃ −iνδ(t), ν≡ i

∫ ∞

−∞
dtΣLR =

∫ ∞

−∞
dt

J 2

q
egLR =

2aLR

q
sgn(Re aLR).

(4.15)

The constant ν is determined from the short-time solution for ΣLR (4.12).

ΣLL and ΣRR are odd functions of t, leading to a δ′(t) with some coefficient that is

proportional to 1/q. In the first equation in (2.16) there is already ∂tG which is of order

zero in q, so we can neglect the terms containing ΣLL and ΣRR. Thus at very long times

the equations (2.16) reduce to

∂tGLL + iνGRL = 0 ;

∂tGLR + iνGRR = 0 ;

∂tGRR − iνGLR = 0 ;

∂tGRL − iνGLL = 0 .

(4.16)
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Taking into account the fact that Gαα should be symmetric around T/2, we can write the

solution as
GLL = A cosh[ν(T/2 − t)], GRL = −iA sinh[ν(T/2 − t)],

GRR = B cosh[ν(T/2 − t)], GLR = iB sinh[ν(T/2 − t)].
(4.17)

But GLR(T/2 − t) = GRL(T/2 + t), so A = B and finally we get:

GLL = GRR = A cosh[ν(T/2 − t)], GRL = −GLR = −iA sinh[ν(T/2 − t)]. (4.18)

We are left with a free parameter A to be determined by gluing to the short-time region.

The exact mapping from the short-time parameter a or b to A will depend on the specific

way T scales with q. We proceed to analyze these specific regimes.

Expanding (4.11), (4.12) at late times and (4.18) at early times gives

GLL ∼ 1

2

(
1+

gLL

q

)
∼ 1

2
− 1

q

(
1

2
log

( J
2aLL

)2

+bLL +aLLt

)
=Acosh

νT

2
−νtAsinh

νT

2
,

iGRL ∼ 1

2

(
1+

gRL

q

)
∼ 1

2
− 1

q

(
1

2
log

( J
2aRL

)2

+bRL +aRLt

)
=Asinh

νT

2
−νtAcosh

νT

2
,

(4.19)

and similar conditions for GRR and GLR. These equations are consistent only in the limit

Re νT → ∞. Taking this limit, the above equations imply

1

2
Ae

νT
2 =

1

2
⇒ A = e− νT

2 ,

1

2
νAe

νT
2 =

aLL

q
=
aRL

q
=
aLR

q
=
aRR

q
⇒ aLL = aRR = aRL = aLR, Re aLR > 0.

(4.20)

In particular, this means that we can now take off replica indices from the parameter a.

Next, we have the relation

A cosh
νT

2
+
bLL

q
= A sinh

νT

2
+
bRL

q
. (4.21)

Taking into account the above expression for A, we notice that it only makes sense in the

late time limit as

bRL = bLL + σ ; (4.22)

bLL = bRR, bLR = bRL , (4.23)

where σ is defined as
σ

q
= e−νT . (4.24)

Times of order J T ∼ q log q. In the time regime we scale the time so that σ is a

finite constant independent of q or T . This defines the scaling regime for the time J T
with q for which the constructed solutions exists globally. However, since ν is generally

complex-valued, we would like to isolate the real scaling variable. The relation (4.24) can

be rewritten as

|σ| = qe−Re νT ; (4.25)

arg σ = −Im νT . (4.26)
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The |σ| fixes the scaling of the time with large a:

T =
1

Re ν
log

q

|σ| . (4.27)

Substituting it into (4.26), we get that

arg σ = tan(arg ν) log
q

|σ| . (4.28)

Since Im ν
Re ν = Im a

Re a is independent of q, we see that σ as defined by (4.24) has a phase that

grows as log q if Im a 6= 0. Because of the relation (4.22), this would mean that in this

case the solution also does not have a well-defined large q limit. Thus we conclude that ν

and, consecutively, a must be real-valued. Taking into account the relation a = J cosh b

and the gluing conditions (4.19), we see that the free parameter bLL has to be real as well.

The σ remains another free real-valued parameter.

Thus in the present regime the above asymptotic analysis reduces the parameter space

of the solutions to two independent parameters bLL and σ. In what follows we omit

index LL in bLL. Substituting the relations (4.20), (4.22), (4.23) back into the general

solutions (4.11), (4.12), the resulting small time solution reads

egRR(t) = egLL(t) =
cosh2 b

cosh2(J (cosh b)|t| + b)
; (4.29)

egLR(t) = egRL(t) =
cosh2 b

cosh2(J (cosh b)t+ b+ σ)
. (4.30)

The resulting late-time solution is

GRR = GLL = e− νT
2 cosh[ν(T/2−t)], GRL = −GLR = −ie− νT

2 sinh[ν(T/2−t)], ν =
2a

q
.

(4.31)

The composite solution (4.29), (4.30)+(4.31) is smooth on the interval [0, T ], as we glued

their asymptotics up to the term ∼ t. The composite solution is schematically plotted on

the figure 6.

Times of order J T ∼ qα, 0 < α ≤ 1. This is the limiting case of the above regime,

where σ ∼ q → ∞, so bRL ∼ q → ∞. This immediately implies |2iGαβ(t1, t2)| < 1, and

from the second saddle point equations (2.16) ΣRL = iJ 2

q (2iGRL(t1, t2))q−1 → 0. Thus,

the 1/q expansion for non-diagonal Green functions breaks and we come to the large t

equations:

∂tGαβ(t) = 0 . (4.32)

These are the exact same equations as in the slope case, see (3.19), up to a constant.

Thus, repeating the previous argument, we conclude that in this region there is no replica-

nondiagonal solution.
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Figure 6. Solution for the ramp saddle point glued together from the early-time part (4.29)–(4.30)

and the late-time part (4.31).

4.4 On-shell action and symmetries

Now let us compute the on-shell action. Since the replica-nondiagonal solution exists be-

yond the 1/q-expansion, we need to use the full action (2.13). For translationally invariant

solutions it reads

I[G,Σ]

N
= − log Pf[δαβ∂t−Σ̂αβ ]+

T

2

∫ T

−T
dt

(
Σαβ(t)Gαβ(t) − 2q−1J 2

q2
sαβGαβ(t)q

)
. (4.33)

We assume that J T is very large. Strictly speaking, we should separate the time integration

into early time segment [0, τ ] and late time segment [τ, T ]. The solution on the former is

given by (4.29)–(4.30), and the solution on the latter is given by (4.31), with Σ given by the

delta-function as in (4.15). The gluing time scale τ should be of order q log q. However, the

solution (4.29) exponentially decays with time. So the integrals of the type
∫ τ

0 dtΣG behave

as 1
q e−κτ . Therefore, the early-time solution makes an exponentially small contribution to

the action at late times. Hence we can neglect it and use the long-time solution (4.31) for

all t ∈ [0, T ], with ΣLR given by delta-function as (4.15) and ΣLL = ΣRR = 0.

Let us start with the Pfaffian term. Expanding the Pfaffian into series, we separate

the free term, replacing Tr log ∂t → log 2 so that Z(0) = 2
N
2 holds. We evaluate the rest of

the series directly (summation over replica indices is implicit):

− 1

2
Trlog[δαβ∂t − Σ̂αβ ] = −Trlog(∂t)+

1

2
Tr(Ĝf · Σ̂αβ)+

1

4
Tr(Ĝf · Σ̂αγ ·Ĝf · Σ̂γβ)+ . . .

= − log2− (νT )2

8
+

(νT )4

192
− (νT )6

2880
+ · · · = − log2− logcosh

νT

2
= −νT

2
+O(e−νT ). (4.34)

Evaluating the polynomial term in the action, we get:

T

2

(
1 − 1

q

)∫ T

−T
dtΣαβ(t)Gαβ(t) =

νT

2

(
1 − 1

q

)
=
νT

2

(
1 − 1

σ
e−νT

)
. (4.35)
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We see that the linear in T terms cancel out from the total action, so the resulting classical

action on the ramp is

Iramp = 0 +O(νT e−νT ). (4.36)

This matches the result obtained in [13] for numerical finite-q solutions on the ramp, and

is the main reason for the linear growth on the ramp.

One particular corollary is that all ramp solutions have the same action, so to compute

the spectral form factor on the ramp, we need to integrate over the parameter space. To

establish it, let us recollect the symmetries that are spontaneously broken by the solu-

tions (4.29)–(4.30).

• b → −b. We take care of this symmetry by integrating over b ∈ (−∞,+∞).

• Parity symmetry GLR(t1, t2) → −GLR(t1, t2). In terms of the early-time solution, it

reduces to the replacement G
(0)
LR = i

2 → − i
2 . To account for this symmetry, we add

a factor of 2 into the spectral form factor.

• Spontaneously broken time translations. The replica-diagonal solutions (4.29)–(4.30)

break time translations in both replicas as U(1) × U(1) → U(1), as is commonplace

for such solutions [13, 49, 52]. In the obtained solutions, the parameter σ plays the

role of the time translation zero mode. To see this, let us introduce new parameter

∆ =
σ

J cosh b
. (4.37)

Then the solution for the offdiagonal component (4.30) reads:

egLR(t) = egRL(t) =
cosh2 b

cosh2(J (cosh b)(t+ ∆) + b)
, (4.38)

So keeping in mind the antiperiodicity, we have to integrate over ∆ ∈ [0, T ] to sum

over the orbit of the broken symmetry.

Now we almost have all of the ingredients to compute the ramp spectral form factor at late

times. The only missing piece is the one-loop correction, which we deal with in the next

section.

4.5 One-loop correction

To study the one-loop correction, we use the same approach as in section 3.5 for the slope.

In the appendix C we derive the quantum correction from the full action (2.13) and show

that all of the nontrivial quantum dynamics come from the early times. So we can work

directly in terms of the g quantum variable. We split gαβ into classical and quantum parts:

gαβ = gcl
αβ + gαβ , (4.39)

where gcl
αβ for t ∈

[
0, T

2

]
are given by in (4.29), (4.30) and periodically continued to

[
T
2 , T

]
.

Keeping in mind the exponential decay of the classical solution egcl

, we can approximate

the potential term from the full quantum action (C.13) as follows:

J 2
[
2Gcl

αβ(u)
]q (

Gcl
αβ(u)

)−2
sαβG

2
αβ(u, v) ≃ J 2

q2

(
egcl

αβ
(u) + egcl

αβ
(J T −u)

)
g2

αβ(u, v) . (4.40)
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Alternatively, one can get this potential by extracting the quadratic part of the early-time

effective action (4.9).

Using the early time solutions (4.29)–(4.30) for fixed b and ∆ = σ
J cosh b , the 1-loop

correction to the spectral form factor is given by:

S(T ) →
[
det

(
1

2
∂2

u − 1

8
∂2

v + J 2egcl
LR

(u) + J 2egcl
LR

(J T −u)
)

×

× det

(
1

2
sgn(u)∂2

usgn(u) − 1

8
sgn(u)∂2

vsgn(u) + J 2egcl
LL

(u) + J 2egcl
LL

(J T −u)
)]−1

.

(4.41)

Because gcl decays exponentially at late times, we can approximate the differential operator

as a sum of two operators acting for t < T/2 and t > T/2. Let us consider first the

determinant for the diagonal modes, where the potential is determined by gcl
LL.

Ldiag =
1

2
sgn(u)∂2

usgn(u)− 1

8
sgn(u)∂2

vsgn(u)+

{
a

cosh(at+b)

}2

+

{
a

cosh(a(T − t)+b)

}2

≃

−1

8
sgn(u)∂2

vsgn(u)+2sgn(u)a2∂2
xsgn(u)+

{
a

cosh
(

x
2

)
}2

θ

(
T

2
− t

)
+

+


−1

8
sgn(u)∂2

vsgn(u)+2sgn(u)a2∂2
x̃sgn(u)+





a

cosh
(

x̃
2

)





2

θ

(
t− T

2

)
, (4.42)

where a = J cosh b and we denoted x
2 = at + b and x̃

2 = aT − at + b. Let us find its

spectrum.

The eigenfunctions Ψn,m(u, v) observe the symmetry conditions (3.35):

Ψn,m(0, v) = 0,

Ψn,m

(
J T − u, v ± J T

2

)
= Ψn,m(u, v).

(4.43)

Proceeding analogously to the slope case with separation of variables, we write

LdiagΨn,m(t, T ′) =

(
2πn
J T

)2
+ 4m2

J 2

8
Ψn,m(t, T ′),

Ψn,m(t, T ′) =





ei2πn T ′

T ψe±
m (t)sgn(t), n ∈ 2Z, m ∈ Me ;

ei2πn T ′

T ψo±
m (t)sgn(t), n ∈ 2Z + 1, m ∈ Mo ,

(4.44)

where ψe
m(t) and ψo

m(t) are eigenfunctions of

[
2a2∂2

x + a2

cosh2( x
2 )

]
θ
(

T
2 − t

)
+

[
2a2∂2

x̃ + a2

cosh2( x̃
2 )

]
θ
(
t− T

2

)
with eigenvalue m2

2 that under t → T − t are even and

odd respectively. To write down the explicit form of eigenfunctions, let us introduce

auxiliary notation:

Pm(t) =
m

a
cosh

(
mt+

b

a

)
− sinh

(
mt+

b

a

)
tanh (at+ b) ; (4.45)

Qm(t) =
m

a
sinh

(
mt+

b

a

)
− cosh

(
mt+

b

a

)
tanh (at+ b) . (4.46)
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Then we can write down ψm as follows:

ψe+
m (t) = Pm(t)θ

(
T

2
− t

)
+ Pm(T − t)θ

(
t− T

2

)
;

ψe−
m (t) = Qm(t)θ

(
T

2
− t

)
+Qm(T − t)θ

(
t− T

2

)
,

ψo+
m (t) = Pm(t)θ

(
T

2
− t

)
− Pm(T − t)θ

(
t− T

2

)
,

ψo−
m (t) = Qm(t)θ

(
T

2
− t

)
−Qm(T − t)θ

(
t− T

2

)
.

(4.47)

The sets Me = Mo ≡ M ended up being identical. They are defined by the conditions:

ψe,o+
m (0) = 0 ⇔ m coth

(
mb

a

)
− a tanh (b) = 0,

ψe,o−
m (0) = 0 ⇔ m tanh

(
mb

a

)
− a tanh (b) = 0.

(4.48)

The key point is that these equations have no time dependence, unlike the slope case (3.38)–

(3.39). The solutions have a general form:8

m = J f±,k(b) , (4.49)

with f±,k being a complex-valued function. Then the inverse determinant of L reads

1

det(L)
=

∏

n∈2Z
m∈M

∏

n∈2Z+1
sm∈M

2
(

πn
J T

)2
+ m2

J 2

=
∏

l=+,−

∏

k

n0∏

n∈Z

2
(

πn
J T

)2
+ f2

l,k(b)
. (4.50)

Note that rather than using the zeta-function regularization throughout, we instead intro-

duce a cutoff n0 in the product over n. Let us recall that the ramp saddle only exists for

J T ∼ q log q. For consistency of the computation with the large q limit, we assume that

n0 ≪ q. This means that we can neglect the first term in the denominator of (4.50):

1

det(L)
≃
∏

k

n0∏

n∈Z

2

f2
+,k(b)f2

−,k(b)
∼
∏

k

(f+,k(b)f−,k(b))−4
∑n0

n=1
1 =

∏

k

f2
+,k(b)f2

−,k(b) =:µ1/2(b).

(4.51)

Here we returned to the zeta-function regularization using the relations between the hard

cut-off n0 and the zeta-function cut-offs Λ1 and Λ2:

ζ(0) =
n0∑

n=1

1 = n0 = −1

2
+ Λ1, and ζ ′(0) = −

n0∑

n=1

logn = − log(n0!) = −1

2
log(2π) + Λ2 ,

(4.52)

and dropped the divergences.

We see that the one-loop determinant only depends on b, in agreement with the results

from [13]. Let us know study the asymptotic behavior of µ1/2(b) as defined by (4.51).

8The ± labels one equation in (4.48), and k labels an individual solution.

– 26 –



J
H
E
P
0
3
(
2
0
2
1
)
0
3
1

• b → 0. The equations (4.48) have the solution

f+,k =
iπ

2b
k , k ∈ Z+; f− = 1 . (4.53)

We assume that k > 0 to avoid double counting in eigenfunctions ψm. Then

µ
1
2 (b) =

∏

k

(
− π2

4b2
k2

)
≃ 4b . (4.54)

We have eliminated the factor of −1 in the product, because it will cancel out in the

spectral form factor with the second copy of the determinant.

• b → ∞. The equations (4.48) in this limit have unique solutions

f± = cosh b . (4.55)

Then there is no product in µ1/2, and it yields

µ1/2(b) = cosh4 b . (4.56)

The function µ1/2 is the result for the contribution of diagonal modes to the total one-loop

correction. What about the off-diagonal modes? Because of the spontaneously broken time

translation symmetry, from the solutions (4.29)–(4.38) we see that it is true that

gcl
LL(t) = gcl

LR(t− ∆) . (4.57)

This means that the corresponding differential operator Loffdiag is the same as the operator

Ldiag up to a simple time shift in the potential. Therefore the eigenvalues and the deter-

minant will be the same. Thus the total one-loop correction to the spectral form factor is

given by µ1/2(b)µ1/2(b) = µ(b).

Now we are finally ready to write down the result for the spectral form factor on the

ramp solution with the one-loop correction. Recall that the on-shell action is zero, and

thus we are only left with the one-loop correction integrated over the parameters and orbits

of broken symmetries, as discussed in section 4.4.

S(T )ramp = 2 × 2−N J
∫ T

0
d∆

∫ +∞

−∞
µ(b)db = 2 × 2−N J T

∫ +∞

−∞
µ(b)db . (4.58)

Recall that the factor of 2 comes from the parity symmetry. The factor of 2−N comes from

the normalization by Z(0)2 in the definition of S(T ) (2.6). We have obtained the linear

growth on the ramp from analytic solutions. The measure µ(b) is determined on the one-

loop level via the equation (4.51) and equations (4.48), and has the following asymptotic

properties:

b → 0 : µ(b) ∼ b2 ; (4.59)

b → ±∞ : µ(b) ∼ cosh8 b . (4.60)

Comparing the result with foundings of [13], we see that the parameter b has the meaning

of the effective temperature in terms of the SYK saddles, or size of the double trumpet

geometry in the holographic JT gravity description.
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5 Time scales of chaos

In this section we recollect the notable time scales that occurred, assuming the double

scaling limit, and discuss the transition from the slope to the ramp. We proceed from the

early time scales to late times.

Replica symmetry breaking time Tcr . This time is determined by the moment

when all solutions of the constraint (3.14) become complex-valued, and pairs of complex-

conjugate saddles starts dominating instead of a single saddle for each replica. This leads

to the oscillations of the spectral form factor for T > Tcr, expressed by the cos J T
λ prefactor

in the expression (3.43). In the large q limit, Tcr ∼ O(1) is finite. As explained in [10, 29],

these oscillations are generic for SYK but special to the β = 0 case. They originate from

contributions of the two edges of the spectrum, which are not smoothed out at β = 0.

Thouless time TTh. This time scale is usually defined as the time of the onset of univer-

sal RMT behavior, and in case of the spectral form factor the mentioned universal behavior

is the ramp [13, 21, 24, 26, 29, 36, 64], so sometimes TTh is also referred to as ramp time.

In our case, the Thouless time is defined by the moment when the replica-diagonal saddle

point appears. As we discussed in section 4, this time scale is of order q log q, or more

specifically from (4.24)

TTh ∼ q

2J cosh b
log

q

J ∆ cosh b
. (5.1)

We can compare this result with finite-q investigations [26, 29, 64] if we express q through

N via λ = q2

N :

TTh ∼
√
λ

4J cosh b

√
N logN . (5.2)

Interestingly, this matches the result of [26] obtained from an effective replica field theory

for finite q SYK, but is at odds with the numerical result of [29]. In our case we have

obtained this scale by analyzing the consistency conditions of extrapolation of the leading

order of the 1/q-expansion to the late times. It is plausible that higher orders in 1/q can

decrease this time scale.

Dip time Tdip. The dip time is defined as the time when the spectral form factor transi-

tions from the slope to the ramp regime, or, in other words, when the replica-nondiagonal

ramp saddle point becomes dominant over the replica-diagonal slope saddle point. Equat-

ing the slope (3.43) to the ramp (4.58), we get (up to constants independent of N or q)

2−N J Tdip ∼ e− π2

λ cos2 J Tdip

λ

1

(J Tdip)3
⇒ Tdip ∼ eαN , α > 0. (5.3)

This is in full agreement the numerics for finite-q SYK and generalizations [10, 23–

25, 27, 29, 48, 61]. Since this is a time scale when the dominant saddle point changes,

another effect that is associated with it in the double-scaled SYK is the breakdown of the

1/q-expansion (2.18) in the spectral form factor, since the replica-diagonal solution Gαβ(t)

only exists as its extrapolation in the late-time regime. Thus the slope-ramp transition

shows that the 1/q-expansion breaks down at the time scales of order eγq2
.
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6 Discussion and outlook

The main result of the present work is the analytic description of the slope and ramp

regimes of the spectral form factor in the double scaled SYK model. Specifically,

• We have constructed analytic solutions in the large q SYK which correspond to sad-

dle points contributing to the slope and the ramp regions of the spectral form factor.

In terms of the collective field path integral formulation, the slope is described by

a discrete set of replica-diagonal solutions parametrized by solutions of the equa-

tion (3.14), and the ramp is described by a continuous set of the replica-nondiagonal

solutions parametrized by b ∈ R and ∆ ∈ [0, T ].

• We have found that slope solutions exist at all times and are always valid within the

perturbative 1/q-expansion.

• We have shown that ramp solutions only exist for times of order q log q or later, and

we need to go beyond the perturbative 1/q-expansion to construct them.

• We see that the slope region has a discrete set of subleading saddle points

parametrized by integer numbers, analogous to the subleading saddles in finite q

SYK [10, 49, 52].

• We see that in the ramp regime, all existing replica-nondiagonal saddles, that are

invariant with respect to synchronous time translations in both replicas, are dominant

and have zero action.

• There is a phase transition on the slope accompanied by the replica symmetry break-

ing, which generates the oscillations at times of order 1.

• We identify the time scale at which the self-consistent replica-nondiagonal solution

exists as the Thouless time, and we have also evaluated the dip time.

As our study is limited to the double-scaled limit of SYK, there are open questions.

1. The plateau regime is inaccessible to the path integral (2.12). As pointed out in [10,

13] and confirmed in [16, 17, 32, 36], the plateau in regular SYK is described by the

doubly-nonperturbative effects, which are of order e−eN
. However it can be treated

analytically by certain effective field theories, e.g. [26, 36]. It would be interesting to

see if there is a replacement for the double-scaled limit (2.17) that could access such

small effects.

2. Another finite-N effect that is missing from the collective field description is the N

mod 8 dependence of the exact spectral form factor, which is related to the particle-

hole symmetry [10, 20, 21].

3. The Thouless time that we have obtained scales like
√
N logN with N , which agrees

with the analytic results of [26] but not the numerical results of [29]. We speculate

that in our case the Thouless time result can be made more precise by considering

higher orders of the 1/q-expansion and its appropriate extrapolation.
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4. To obtain the ramp solution, we have used the approach of [11], used to construct

the solution in the system of two coupled SYK chains that is dual to a Euclidean

wormhole. The similarities on the SYK side are in agreement with the similarities

between the eternal wormhole and the Lorentzian double cone geometry of [13] on

the gravity side. However, we have also found that on the slope regime there are

subleading saddles. There are no such saddles on the ramp, but there are replica-

nondiagonal analogues at finite q for the Euclidean replica partition function [49, 52].

This provides a new constraint on the question of importance of the subleading SYK

saddles in the gravity description.
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A Spectral form factor in SYK as a collective field path integral

In this section we review the derivation of the disorder-averaged replica path integral (2.12).

We start from the product of the two fermionic path integrals (2.9) and (2.10):

Z(iT )Z(−iT ) =

∫
DψLDψR exp

[∫ T

0
dt

(
−1

2
ψL

i ∂tψ
L
i − 1

2
ψR

i ∂tψ
R
i (A.1)

−

iq/2

N∑

i1<···<iq=1

ji1i2...iqψi1 . . . ψiq − (−i)q/2
N∑

i1<···<iq=1

ji1i2...iqψi1 . . . ψiq






 ,

where we assume a fixed realization of the randomized couplings j = {ji1···q }. As a first

step, we integrate out the disorder j with the measure (2.2). As a result, we arrive at the

disorder-averaged fermionic path integral:

S(T ) =

∫
Dψα exp

[
− 1

2

∑

α=L,R

∫
dt(ψα

i ∂tψ
α
i )− 2q−2J 2

q2Nq−1
iq (A.2)

×
∫
dt
(
ψL

i1
(t) . . .ψL

iq
(t)−(−1)

q

2ψR
i1

(t) . . .ψR
iq

(t)
)∫

dt′
(
ψL

i1
(t′) . . .ψL

iq
(t′)−(−1)

q

2ψR
i1

(t′) . . .ψR
iq

(t′)
)]

.

Here and henceforth the unordered sum over all repeating color indices is implicit. Let

us now introduce the notations for the constant matrix sαβ and a bilinear combination

Ξαβ(t, t′) (following alongside the partition function derivation in [5]):

sLL = sRR = −1 ; sLR = sRL = (−1)
q

2 = iq ; (A.3)

Ξαβ(τ, τ ′) = − 1

N
ψα

k (τ)ψβ
k (τ ′) . (A.4)
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Anticommuting the fermions in (A.2) into bilinears, we can use these notations to

rewrite (A.2) as follows:

S(T ) =

∫
Dψα exp

[
−1

2

∫
dt (ψα

i ∂tψ
α
i ) +

2q−2NJ 2

q2

∫
dt

∫
dt′sαβΞαβ(t, t′)q

]
. (A.5)

One can formally express any functional F [Ξ] by using a delta function:

F [Ξ] =

∫
DGαβ(τ, τ ′) F [−G] δ(Gαβ(τ, τ ′) + Ξαβ(τ, τ ′)) (A.6)

=

∫
DGαβ(τ, τ ′) F [−G]

∫
DΣαβ(τ, τ ′) e− N

2

∫
dτ1dτ2Σαβ(τ1,τ2)[Gαβ(τ1,τ2)+Ξαβ(τ1,τ2)] .

In the last step the generalized Laplace transform was applied to the delta-function. Using

this representation, we write

F [Ξ] = exp

(
2q−2NJ 2

q2

∫ ∫
dτdτ ′sαβΞαβ(τ,τ ′)q

)
(A.7)

=

∫
DGDΣ exp

[
N

2

∫ ∫
dτdτ ′

(
2q−1J 2

q2
sαβGαβ(τ,τ ′)q

−Σαβ(τ,τ ′)(Gαβ(τ,τ ′)+Ξαβ(τ,τ ′))

)]
.

Substituting into (A.5) and integrating out the fermions, one arrives at the resulting ex-

pression (2.12):

S(T ) =

∫
DGαβDΣαβe−NI[G,Σ] , (A.8)

where the action has the form [13]:

I[G,Σ] = − log Pf[δαβ∂t − Σ̂αβ ] (A.9)

+
1

2

∫ T

0

∫ T

0
dt1dt2

(
Σαβ(t1, t2)Gαβ(t1, t2) − 2q−1J 2

q2
sαβGαβ(t1, t2)q

)
.

The path integral over the bilocal fields G and Σ is assumed to be taken over an appropriate

complex contour which ensures convergence.

B One-loop determinant for off-diagonal modes on the slope

In this appendix we compute the inverse determinant of a free differential operator on the

space of anti-periodic bilocal fields which appears in (3.33):

∆free = det

(
∂2

u − 1

4
∂2

v

)−1

. (B.1)

The eigenfunctions of the operator
(
∂2

u − 1
4∂

2
v

)
are

F(u, v) = eiωueiρv. (B.2)

These functions must be antiperiodic by t1 and t2 with the period T , so

F
(
u+ J T, v ± J T

2

)
= −F(u, v), (B.3)
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and therefore

F(u, v) =





eiπk u
J T e2iπn v

J T , n ∈ 2Z, k ∈ 2Z + 1,

eiπk u
J T e2iπn v

J T , n ∈ 2Z + 1, k ∈ 2Z .
(B.4)

So the eigenvalues are
(
∂2

u − 1

4
∂2

v

)
F(u, v) =

π2

(J T )2
(n2 − k2)F(u, v). (B.5)

Thus the inverse determinant reads

1

det 1
J 2

(
∂2

t − 1
4∂

2
T ′

) =
∏

n∈2Z
k∈2Z+1

∏

n∈2Z+1
k∈2Z

(J T
π

)2 1

n2 −k2
=

∏

k∈2Z+1

∏

n∈2Z+1

(J T
π

)2 1

nk
=

=
∏

n∈(2Z+1)+

(J T
πn

)4

=

(J T
π

)4
∑

n∈(2Z+1)+

1

e
−4

+∞∑
n=1

log(2n−1)

=
1

4
, (B.6)

as we dropped out singular terms Λ1 and Λ2 using zeta-function regularization:

(1 − 2−s)ζ(s)
∣∣∣
s=0

=
∑

n∈(2Z+1)+

1 = Λ1, and −
+∞∑

n=1

log(2n− 1) = ζ(0) log 2 = − log 2

2
+ Λ2 .

(B.7)

C One-loop effective action on the ramp

Here we derive the 1-loop quantum action for the spectral form factor on the background of

the replica-nondiagonal solution. We start from the action (2.13) and split bilocal replica

fields into classical and quantum parts:

Gαβ = Gcl
αβ + Gαβ , Σαβ = Σcl

αβ + sαβ . (C.1)

The quantum part of the action is:

Iq = − 1

4J2(q − 1)

∫
dt1dt2dt3dt4 sαβ(t1, t2)Kαβγδ(t1, t2; t3, t4)sγδ(t3, t4)+

+
1

2

∫
dt1dt2

[
Gαβ(t1, t2)sαβ(t1, t2) − 1

2
J2(q − 1)Gcl

αβ(t1, t2)q−2G2
αβ(t1, t2)

]
.

(C.2)

Here we introduce the ladder kernel K in analogy to Euclidean SYK partition function [4]:

Kαβγδ(t1, t2; t3, t4) = −J2(q − 1)Gcl
αγ(t1 − t3)Gcl

βδ(t2 − t4). (C.3)

Integrating out sαβ

s = J2(q − 1)K−1 ∗ G, (C.4)

we get:

Iq =
J2(q − 1)

4

[∫
dt1dt2dt3dt4 Gαβ(t1, t2)K−1

αβγδ(t1, t2; t3, t4)Gγδ(t3, t4)

−
∫
dt1dt2G

cl
αβ(t1 − t2)q−2sαβG

2
αβ(t1, t2)

]
. (C.5)
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The spectral form factor path integral gives

S(T ) →
∫

DGαβ exp

{
N

4

[
1

4

∫
dt1dt2dt3dt4 Gαβ(t1, t2)K̃−1

αβγδ(t1, t2; t3, t4)Gγδ(t3, t4)+

+
J 2

2

∫
dudv

[
2Gcl

αβ(u)
]q (

Gcl
αβ(u)

)−2
sαβG

2
αβ(u, v)

]}
, (C.6)

where

K̃αβγδ(t1, t2; t3, t4) = Gcl
αγ(t1 − t3)Gcl

βδ(t2 − t4). (C.7)

So we need to find (Gcl
αβ(t1 − t2))−1, which is defined by

∫
dt(Gcl

αγ(t1 − t))−1Gcl
γβ(t− t2) = δ(t1 − t2)δαβ . (C.8)

Let us check that (Gcl
αγ(t1 − t3))−1(Gcl

βδ(t2 − t4))−1 = K̃−1
αβγδ(t1, t2; t3, t4):

∫
dtdt′(Gcl

αγ′(t1 − t))−1(Gcl
βδ′(t2 − t′))−1Gcl

γ′γ(t− t3)Gcl
δ′δ(t′ − t4) = δ(t1 − t3)δαγδ(t2 − t4)δβδ.

(C.9)

For small times we can omit 1/q terms in Green functions in K̃αβγδ and get that

(Gcl
αβ(t1 − t2))−1 = δ′(t1 − t2)δαβ . (C.10)

For big times we can use the equation of motion for the Green function (2.16):
∫
dt
[
δ(t− t1)δαγ∂t − Σcl

αγ(t1, t)
]
Gcl

γβ(t, t2) = δ(t1 − t2)δαβ , (C.11)

from which it follows that:

(Gcl
αβ(t1 − t2))−1 = δ′(t1 − t2)δαβ − Σcl

αβ(t1, t2). (C.12)

Here for large times we can drop out Σcl
αβ , as it is zero or proportional to delta-function.

acting outside the integration interval.

Thus, for all time ranges we get the following expression for the 1-loop correction to

the spectral form factor in the large q limit:

S(T ) =

∫
DGαβ exp

{
N

8

[
1

2

∫
dudvGαβ(u, v)

(
1

4
∂2

v − ∂2
u

)
Gαβ(u, v)+

+ J 2
∫
dudv

[
2Gcl

αβ(u)
]q (

Gcl
αβ(u)

)−2
sαβG

2
αβ(u, v)

]}
.

(C.13)

This expression coincides with (4.41) for small times if we identify

Gαβ =
1

q
gαβ , (C.14)

and is smoothly extended to the late time region, as we glued the Green functions. Also

note that for large times the potential term vanishes, as it is proportional to Σcl
αβ which

is zero or delta-function acting outside the integration interval. Also, the potential term

in (4.41) exponentially decays for large times. Therefore, we can use small time solutions

on the entire integration interval.
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