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Abstract. Let M be a compact Riemannian manifold without boundary.

Let D be a differential operator on M. Let spec (Z),M) denote the eigen-

values of D repeated according to multiplicity. Several authors have studied

the extent to which the geometry of M is reflected by spec iD,M) for certain

natural operators D. We consider operators D which are convex combina-

tions of the ordinary Laplacian and the Bochner or reduced Laplacian acting

on the space of smooth functions and the space of smooth one forms. We

prove that is is possible to determine if M is a local symmetric space from its

spectrum. If the Ricci tensor is parallel transported, the eigenvalues of the

Ricci tensor are spectral invariants of M.

Introduction. Let M be a compact connected Riemannian manifold without

boundary and let D0 = d*dhe the Laplacian acting on the space of smooth

functions. Let spec {D0,M) denote the set of eigenvalues 0 < Xx < X2 ' * • 5

each eigenvalue is repeated according to the multiplicity. The basic question

we will be considering is to what extent the geometry of the manifold M is

reflected by spec (D0,M) and by the spectra of certain other natural differen-

tial operators acting on M. Sakai [5] has proved

Theorem (Sakai). Let M and M' be Einstein manifolds of dimension 6.

Suppose that M and M' have the same Euler characteristic and that spec (D0, M )

= spec (Dq,M'). Then if M is a local symmetric space, so is M'.

If we enlarge the class of differential operators which we are willing to

consider, other geometrical properties of the manifold M are reflected by the

spectrum. Let Dp = d*d + dd* be the Laplacian acting on the space of

smooth /»-forms; let spec (Dp,M) denote the eigenvalues of Dp repeated

according to multiplicity. Patodi [4] has proved

Theorem (Patodi). Suppose that spec (Dp,M) = spec (Dp,M')forp = 0,
1, 2. Then:

(a) if M has constant scalar curvature c, so does M';

(b) if M is Einstein, so is M'\
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342 P. B. GILKEY

(c) if M has constant sectional curvature c, so does M'.

Donnely [1] has applied this result of Patodi's to generalize Sakai's theorem
as follows:

Theorem (Donnely). Let spec (Dp,M) = spec (Dp,M')forp = 0, 1, 2. If
M is an Einstein local symmetric space, so is M'.

In this paper we will remove the hypothesis that M is Einstein by

considering a still more general class of natural differential operators on M. If

M is a local symmetric space, the Ricci tensor is parallel transported.

Consequently, the eigenvalues of the Ricci tensor do not depend upon the

point of evaluation. We will show that if the Ricci tensor is parallel

transported, then the eigenvalues of the Ricci tensor are also spectral
invariants of the manifold.

1. The theorems discussed in the Introduction are all proved by computing

certain asymptotic invariants of the spectrum. We will use the following

notation: M is a compact connected Riemannian manifold of dimension m;

let G denote the Riemannian metric on M and let ds2 = gydxj o dxj in some

system of coordinates. Indices /,/,... run from 1 through m and index a

frame for the tangent bundle of M\ we sum over repeated indices. Let giJ

denote the metric on T*M and let \d vol| be the Riemannian measure.

Let V be a smooth vector bundle over M and let 77: C°°(K) -» C°°(F) be
a second order differential operator with leading symbol given by the metric

tensor. If we choose a system of local coordinates for M and a local frame for
V, we can express 77 in the form

77 = -{gVd2/dx,dxj + Mkd/dxk + N).

The Mk and N are square matrices which are not invariantly defined but
depend upon the choice of frame and local coordinates.

Let Vx denote the fibre of V over x. For t > 0, exp(-rT)) is a well-defined

infinitely smoothing operator which is of trace class in L2(V). Let K(t, 77, x,y):

Vy -* Vx be the kernel function of exp(-/77). Then

exp(-tD)u(x) = fM K(t,D,x,y)(y(y))\d vol (y)\.

K(t,D,x,y) is smooth in (t,x,y). Define

f(t,D,x) - Trace^ (F(i, 77, *,*)).

f(t,D) = Trace¿2 (exp(-r77)) = ¡Mf(t,D,x)\dvol (x)\.

It is well known [6] that as t -» 0 + that /(/, 7), x) has an asymptotic expansion

of the form

f(t,D,x) ~ (4iitYml2 2 ^„(77,*)'".
n=0
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THE SPECTRAL GEOMETRY OF SYMMETRIC SPACES 343

The coefficients An(x,D) are smooth functions of x which can be computed

functorially in terms of the derivatives of the total symbol of the differential

operator D; An(D,x) is a local invariant of D. Let

An(D) =fMAn{D,x)\d vol 0)|;

then

f(t,D)~(4iri)-m'2 i An(D)t".
n=0

If V has a smooth inner product (, ) on each fibre and if D is selfadjoint

with respect to the fibre metric, let {a„.#,,}„= ii60 be a complete spectral

decomposition of D into an orthonormal basis of eigensections 9V and

corresponding eigenvalues a„ . For such a D, we can express

f(t,D,x) - 2 exp(-iA,)(A,0,)O) ~ (47rt)-m/2 2 An(D,x)t\
v n

f(t,D) = 2 exp(-/X„) ~ (4^)-m/2 2 An(D)tn.
v n

The integrated invariants An(D) depend only on the asymptotic behavior of

the series 2». exP(~'Ai.) and are therefore spectral invariants. Although we will

only be computing the invariants A„{D,x) for selfadjoint operators, it is

technically convenient to have them defined for operators which are not

necessarily selfadjoint.

In [3] we defined the invariants Bn(D,x) and derived explicit formulas for

B0, B2, B4, B6. In the notation of this paper;

B2n(D,x) = (4irYml2An(D,x)   and   B2n+x(D,x) = 0.

We use the notation An in this paper rather than B2n since it is more classical.

We describe these formulas using the following notation: let \ be the Levi-

Civita connection on TM; extend V^ to tensors of all types. Let e = {ex,...,

em) be an orthonormal frame for TM defined in a neighborhood of some

x0 G M. We identify TM with the dual T* M using the metric G. Let

be the components of the curvature tensor of the Levi-Civita connection. Let

V be any connection on the vector bundle V. Define the reduced or Bochner
Laplacian £>v by the diagram:

Dv: CX(V) -*» C™(T*M ® V)   7*81+1®V> C°°(r*M ® T*M ® V)

=S^h, C°°(K).
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344 P. B. GILKEY

In normal coordinates, 77v = -g'-'V,Vj. We proved earlier [2]

Theorem 1.1. Given D: CX(V) -* C°°(K) which is a second order differential

operator with leading symbol given by the metric tensor, there is a unique

connection V on V such that E = 77v — 77 is a Oth order operator.

Let 77 = 77v — F where F is an invariantly defined endomorphism of V. If

D0 = d*d is the Laplacian acting on the space of smooth functions, the

connection V induced by 770 is the flat connection and the endomorphism F

is zero. Let

W-. = VV-VV-Vi    i- V -*Vrrij        \ \       yej \       v[ehej] ' v ^ r

be the curvature of the connection on V. For each (/,/), W¡¡ is a square matrix.

If 9 is a tensor field, let 9.¡ denote covariant differentiation in the direction e¡.

We denote multiple covariant differentiation by 0.¡ ...(j.

Let Pij = Rikjk and r = Ryy = pit. We are using a different sign convention
from that used by Sakai in the definition of the curvature tensor; this changes

some of the signs in our formulas. Let

P" = P/l(-2P/2lj---P,n_1,nP/„/1

be the trace of the nth power of the Ricci tensor. Let

(Vp)2 = PVikPij;k>       (VF)2 = RijkhnRijkl;n,

(Vt)2 = T...T.,., F2 = Rijk,Rijkl.

We sum over repeated indices. In [3] we derived formulas for An(D,x) in terms

of the R¡jki. _ _, Wjj. , E. tensors for n = 0, 1, 2, 3. Since only the integral

of these local formulas is a spectral invariant, we simplify the formulas of [3]

by integrating by parts.

Theorem 1.2. Let D = 77v - F; then:

(a)A0(D) = dim(K) • vol (M);

Ax(D0)=fM-r/6\dvol\,

AX(D) - dim(K) • AX(D0) + fM Tr (F) \d vol|;

M*) = mía (5t2 "2p2 + 2r2) ld vo11,

(c) ^2(Z)) = dim(K).i42(Z)o)

+ ÀôÎm Tr ̂ 30^ WV ~ 6(kE + 180£2) \d voll;
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THE SPECTRAL GEOMETRY OF SYMMETRIC SPACES 345

^3 A)) = 9^ fM (-142(Vt)2 - 26(Vp)2 - 7(V/?)2 - 35t3

+ 42rp2 -42t/?2 + 36p3 - 20pijpklRikJI

+ *Pg Rikln Rjkln "24%,, Rijuv Rknuv) \* VOl|.

(d) A3(D) = dim(K) • A3(D0)

+ mLTT I"41** w9* + 2Wn Wik* * nw*w* Wki

-6Rykn Wy Wkn + 4pjk WJn W^ - 5rWkn Wkn

+(5t2 - 2p2 + 2R2 + 30Wy Wy)E

-4PjkE.jk+10r,kE.k-30rE2

-30E.kE.k + 60E*)\dvol\.

2. Let Dp = (d*d + dd*) be the Laplacian acting on the space of smooth

p-forms. We must determine the connection Vp and the endomorphism Ep

induced by Dp to apply the formulas of Theorem 1.2. Let Dp = -g'J'V¡Vj be
the Bochner Laplacian defined by the Levi-Civita connection. The operators

Dp and Dp both have the same second order symbol; W = Dp — Dp is at

most a first order operator. The first order symbol of Ep is invariantly defined;

it can be computed functorially as a linear combination of the first derivatives

of the metric. In normal coordinates, the first derivatives of the metric vanish

at the centre. Therefore Ep = Dpv — D is a Oth order operator. By Theorem

1.1, V = V* and E" = Ep.
We compute Ep as follows: let

D = ®D.,       Dv = 0Z).V,       E = ®Ep.
p   * p   F p

Let {ex,... ,em) he an orthonormal frame for TM defined near x0 E M. We

have identified TM with T*M using the metric. If I = (/,,...,/) for

1 < i\ < • • ' < ip < m, let

e¡ = ehA -■■ A eip,       \I\ = p,

\(ei) = TUjej      (r(/y = 0if|/|^|7|),

G(i\\ - \\ - W"e'> = G^Wüe^ej) = Ruu

(Ryjj =0 if \I\*\J\).

Let Clif(T*Af) denote the Clifford bundle over M. It is defined from the

tensor algebra on T* M by the relations:
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346 p, b. GILKEY

e¡ * e¡ = -1,       e¿* e, = -e} * e¡   for i ¥= j.

There is a functorial vector bundle isomorphism between Gif(7*M) and the

exterior algebra A(T*M); this map is not an algebra morphism. This

identification defines * multiplication on A(T*M). Let a £ A(T*M) and

ß E T*M. Let e(ß) denote exterior and i(ß) denote interior multiplication.

Then ß*a = (e(ß) - i(ß))(a). We use Clifford multiplication to construct a

first order operator

d0: C»(A(T*M))-t> C°°(7*M ® A(T*M)) -±> C°°(A(r*A/)).

The leading symbols of d0 and (d + d*) agree; the difference is a functorially

defined operator of order 0 which can be expressed functorially as a linear

combination of the first derivatives of the metric. This difference must vanish

so d0 = d + d*.
We will denote differentiation in the direction e¡ by "//".

(d + d*)(fiei) = fI/¡e¡ * et+ffajei * ej,

(d + d*)2(fiej) = fjT^ej *e¡*ej + ---,

Dv(fIeI)=fITiIJ/iei*ei*eJ + --'.

We have omitted terms in the first derivatives of the metric and terms in the

derivatives of f¡. Therefore,

E(f1el) « (77 v - 77)(//e/)

- - .2 MTuj/j - FjU/i)ej * e¡ * ßj

+ terms in the first derivatives of the metric.

In normal coordinates, the first derivatives of the metric vanish and TUJ/j

- Tjjjß = -Rjßj. Since F,7/y = 0 we can let the sum range over all possible
indices.

Theorem 2.1. (a) The connection defined by D is the Levi-Civita connection,

(b) The endomorphism E defined by 77 is

E(ed - \Rijijej * et * e} = Je, * e¡ * W¡¡.

77 restricts to an operator on Czo(Ap(T*M)); E must restrict to an

endomorphism of AP(T*M). This implies many of the terms in ej * e¡ * W¡¡

must cancel; this cancellation is due to the Bianchi identities.

We apply Theorem 2.1 to compute F1:

£l(ek) = \ej*ei*Rijklel.
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THE SPECTRAL GEOMETRY OF SYMMETRIC SPACES 347

Since E1 : AX(T*M) -» AX(T*M), one of the indices in the pair (i,j) must be

/. This expression is symmetric in (/,/) so we may assume í = /.

El(ek)-Rijkiej = pjkej.

Similarly,

E2(ek A e¡) = \e¡ * e, * Wy(ek A e,)

= \e} * e¡ * (Rykne„ A e, + Rijlnek A e„).

Since E2 preserves A2(T* M ), one of the indices in the pair (/,/) must be either

n or / in the first expression, and one of the indices in the pair (i,j) must be

either k or « in the second expression.

E2(ek A e¡)-gj * (Rnjkne, - R,Jkne„ + Rkjlnen - Rnjlnek)

■ °knen A e¡ + Pinek A e„ - 2Rk„,pe„ A ep

= Pknen Ae, + pi„ek Aen- Rklnpe„ A ep.

If P(G) is an invariant in the derivatives of the metric, let

P(M)=jMP(G)\dvol\.

For example, l(M) = vol (M). If e is real, let

D¿ = eDp + (l-e)D¡.

The connection induced by Dp is the Levi-Civita connection and the corre-

sponding endomorphism is eEp. We combine the expressions for Ex and E2

with the formulas of Theorem 1.2 to compute

Theorem 2.2. Let An(D) - An(D) - dim(V)An(DQ); then

J,(Z)f) - er(M),

3 IX(D\) = i(m - 2)t(M);

J2(7)f) = ¿j{-30/?2 - 60er2 + 180e2p2)(M),

(h)I2(De2) = ^{-30(m - 2)R2 - 60(m - 2)er2

+ 180e2(T2 + (m- 6)p2 + R2))(M);
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^W) - 3gö{-2(VT)2 + 8(Vp)2 + (VF)2 + 5tF2 - 8p3

+%PijPkIRikjl + 2PijRiklnRjkln + ^RijknRijuvRknuv

+E(12(Vt)2 + 5t3 - 2tP2 + 2tF2 - 30PiJRiklttRJkln)

+e2(-30(Vp)2 - 30rp2) + 60e3p3}(M);

J3(^i) = ¿{O» - 2)(-2(Vt)2 + 8(Vp)2 + (VF)2 + 5rF2 - 8p3)

(c) +(m ~ 2) (8P{/ Pkl Rikjl + 2P(/ ̂tWn */*/* + 3 -fyitB Ä#w Ä*m«/)

+e((w - 2)(12(Vt)2 + 5t3 - 2tP2) + (2m - 34)tF2)

+e(30(6 - m)p¡jRik¡nRJkln - 30 RiJknRijmRknuv)

+£2(-30(Vt)2 - 30(m - 6)(Vp)2 - 30(VF)2)

+£2(-30r3 - 30(m - 6)rp2 - 30tF2 )

+£3(180tp2 + 60(m - 10)p3 - 360PupknRikjn)

+e3(360pijRiklnRjkm - 60 R^R^R^J^M).

We will need one more result concerning the invariants An for general n. Let

77: C°°(V) -* C°°(K) be a second order differential operator with leading

symbol given by the metric tensor. Let De = eD + (1 — e)D .

Theorem 2.3. We may decompose A„(D',x) = 2*=o ^Ank(D>x)- Further-

more, An¡n(D,x) = (l/n!)Tr (£»).

The proof is by inspection of the formulas of Theorem 1.2 for n = 0, 1, 2, 3.

For the general case, we use some results of [2]. Consider the collection of

endomorphism valued tensors:

D.       j W- .  ■ F ■

Let K(t,D,x,y) be the kernel function for exp(-/77); there is an asymptotic

series for F"(r,77,x,x) as / -> 0 + of the form

K(t,D,x,x)~(4itt)~ml2 2 En(D,x)tn.
n=0

The endomorphisms  En(D,x) are local invariants  of the operator 77;

Tr (En(D,x)) = A„(D,x).
By applying H. Weyl's theorem [7] we showed [2] that F„ could be expressed

in terms of contractions of various noncommutative polynomial expressions in

the Ryk!;    , Wy;    , and F.     tensors. For example, E2 has the form

F2(77,*) = A2(D0,x)I + Ax(D0,x)E + E2/2 + (Wy Wi} + 2E,kk)/l2.
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Let

ord(RV2hUJ.•••/.) -«-("ha•••/,)

= ord(£;,ï •••;,) = 2 + i-

£„ is homogeneous of order 2/i in these tensors. By replacing E by eE, we can
express

En(D',x) =  2 £l^(A4
Jt=0

The coefficient of e" is a multiple of (£)" by the homogeneity property.
Therefore,

An(D\x) -  2Q £^„,ií(Ají)   for An<k = Tr (£„>jt).

^ = c„Tr ((£)").

We complete the proof of Theorem 2.3 by evaluating the constant cn.

Consider the operator D - el. The corresponding endomorphism is E + el.
By the functional calculus,

exp(-t(D - el)) = exp(ef)exp(-rZ>),

K(t,D - el,x,y) = exp(te)K(t, D,x,y).

Therefore,

2 E„(D- el,x)t" ~ exp(/e) 2 En(D,x)t"
n=0 n=0

H".~ 2 { 2 ekEk(D,x)/kàt

By comparing powers of t in the two asymptotic expansions we compute

n

En(D- el,x)= 2 ekEk(D,x)/k\.
*=0

We compute E„(D - el) by replacing E by E + el. Therefore, the coefficient

of (£)" in En is E0(D,x)/n\ = l/n\ by the normalization which we have

chosen. This completes the proof of Theorem 2.3.

We apply Theorem 2.3 to the operator D\: the endomorphism Ex is the

Ricci tensor up to a possible sign; Tr ((£')") = p".

Theorem 2.4.
n

An(D\)=  2 ^An>k(Dx),
K=0

A**W = (p"/n\)(M).
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3. In this section, we will apply the combinatorial theorems which were

proved in the first two sections. We will show that certain geometrical

properties are reflected by the spectrum. Let M and M' be two Riemannian

manifolds.

Lemma 3.1. Let p> 0 be given and suppose spec (Dp,M) = spec (Dp,M')

for n+ I distinct values of e. Then Ank(Dp)(M) = AnJc(Dp)(M') for k = 0,
..., n.

Proof. Since the two spectra are the same, An(Dp)(M) = A„(Dp)(M') for

« + 1 distinct values of e. Therefore,

ÍoekA„tk{Dp){M) =  ÍoekAn<k(Dp)(M'),

Jo ek(An<k{Dp)(M) - An<k(Dp)(M)) = 0.

Since this polynomial vanishes for n + 1 distinct values of e, the coefficients

vanish identically.
We apply the formulas we have derived previously to show

Theorem 3.2. Let

spec (D0,M) = spec (D0,M')   and   spec (D\,M) = spec (D\,M')

for 3 distinct values oft. Then:

(a) l(M) = 1(M'), t(M) - t(M'), P2(M) - p2{M'), r2{M) = r2{M'),

R2(M) = R2(M');
(b) if M has constant scalar curvature c, so does AT;

(c) if M is Einstein, so is M';
(d) if M has constant sectional curvature c, so does M'.

Proof. We use Theorem 2.2 to prove (a):

1(M) = A0(D0)(M) = A0(D0)(M') = l(M'),

t(M) = -6AX(D0)(M) - -6AX(D0)(M') = r(M').

By Lemma 3.1, A2k(Dx)(M) = AU{DX){M') for k = 0, 1, 2. We apply
Theorem 2.2 to compute A2X(DX) and A22(Dx):

p2(M) = 2A2a(Dx)(M) = 2AU(DX)(M') = p2(M'),

72(M) = -6A2tX(Dx)(M) = -6A2A(DX)(M') = r2(M').

Finally, since A2(D0){M) = A2{D0){M'),

(5t2 - 2p2 + 2R2)(M) = (5t2 - 2p2 + 2R2)(M').

This implies R2(M) = R2(M') and completes the proof of (a).
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We complete the proof of Theorem 3.2 by expressing the geometrical

assumptions about M as integral conditions. M has constant scalar curvature

c iff t = —2c. This is equivalent to assuming that (t + 2c) (M ) = 0. Since

(t + 2c)2 = t2 + 4ct + 4c2, we apply (a) to show that (t + 2c)2 (M') = 0

which implies M' has constant scalar curvature c. If m = 2, M and M' are

automatically Einstein. We suppose m > 2; M is Einstein iff pjk = c8jk or

equivalently (pjk - c8Jk)2(M) — 0. Since (pjk - c8Jk)  = p2 - 2ct + mc2,

(pjk - côjk)2(M') = 0.

This implies M' is Einstein. Finally, M has constant sectional curvature iff

Rijkl = cSik8jl - c8u8jk> or equivalently,

0 = (Rijkl - c8ik8j, + c8u8jk)2(M) = (F2 - 4rc + 2c2(m2 - m))(M) = 0.

By (a) this invariant also vanishes for M' so M' has constant sectional
curvature c.

The Ricci tensor p¡j will be invariant under parallel translation iff(Vp)2(A/)

= 0; for such a Riemannian manifold, the eigenvalues of p¡j are independent

of the point of the manifold.

Theorem 3.3. Let spec (D0,M) = spec (D0,M') and spec (D\,M)

= spec (D\,M') for m + 1 distinct values of e. If (Vp)2(M) = 0, then
(Vp) (A/') = 0 and the eigenvalues of the Ricci tensors on M and on M' are the
same.

Proof. By Lemma 3.1, An>k(Dx)(M) = AnJc(Dx)(M') for 0 < k < n
< m. By Theorem 2.2,

((Vp)2 + rp2)(M) = -12AX2(DX)(M) = -l2A3t2(Dx)(M')

= ((Vp)2 + rp2)(M').

Since p = 0 on M, M has constant scalar curvature c. M' has constant scalar
curvature c by Theorem 3.2. Therefore,

rp2(M) = -2cp2(M) = -2cp2(M') = rp2(M).

This implies 0 = (Vp)2(M) = (Vp)2(M').

Since l(M) = l(M'), we may make a change of scale to assume without

loss of generality that l(M) = l(M') = 1. Let

m

P(M)(X) = det(pJk - XJk) - 2 HcfaJiM);
i'=0

c¡(pjk) are the characteristic classes of the matrix p. Let p" = Tr ((p)"); by
Theorem 2.4,

p"(M) = n\An,n(Dx)(M) = nli^faX*') = p"(^')
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for 0 < n < m. It is well known that we can express the invariants c¡(p) in

terms of the invariants p" for 0 < « < m. Since l(Af ) = 1(M') = 1,

c,.(l,p,... ,pm)(M) = Ci(l(M),p(M),p2(M),.. .,pm(M))

= C¡(l(M'),p(M'),p2(M'),...,Pm(M')) - ci(l,...,pm)(M').

This implies that P(M)(X) = P(M')(X). X is an eigenvalue of the Ricci tensor

iff P(M)(X) = 0 so the two sets of eigenvalues are the same.

We generalize Donnely's theorem [1] as follows:

Theorem 3.4. Let

spec (DQ,M) = spec (D0,M'),   spec (D2,M) — spec (D2,M'),

and

spec (D\,M) = spec (D\,M')

for 4 distinct values ofe. If M is a local symmetric space, so is M'.

We use Patodi's theorem [4] and Theorem 3.4 to derive Donnely's result: let

M be Einstein symmetric and let spec (Dp,M) = spec (Dp,M') forp = 0, 1,
2. If m = 2, M is symmetric implies t is constant on M. This shows t is

constant on M' so Af" is symmetric. We may therefore suppose that m > 2.

M is Einstein implies Af is Einstein. EX(M) = EX(M') = c/, D\(M)
= DX(M) = (1 - e)cl, Z)f(M') = DX(M') + (1 - i)cl. Since spec (DX,M)
= spec (Dx,M'), spec (D\,M) — spec (D\,M') for all e. We apply Theorem

3.4 to show M' must be symmetric as well.
We prove Theorem 3.4 as follows: M is symmetric implies t is constant on

M. By Theorem 3.2, t is constant on Af. Therefore by Theorem 3.2,

(Vt)2(M) = (Vr)2(Af ) = 0,       r3(Af) = t3(M'),

rp2(M) = cp2(M) = cp2(M') = rp2(M'),

tR2(M) = cR2(M) = cR2(M') = tR2(M').

By Lemma 3.1, ̂ ¿(D,, Af ) = A3k(Dx,M') for k = 0, I, 2, 3. This shows
A3(DX,M) = A3(DX,M'). We use the identities derived above together with

the identities A3k(Dx,M) = A3k(Dx,M') for k = 1, 2, 3 to show

PjkRjnmpRknmpiM)-(A/'),     (Vp)2(A/) = (Vp)2(A/') = 0,

p\M) = p3(A/').

We use the notation " • • • " to indicate that the same invariant is to be applied

to both Af and Af ' in the equation.
We use the 7 identities derived above together with the identities A3(Dp, M)

= A3(Dp,M') forp = 0, 1, 2 to show
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-7(VF)2 - 20pjkpklRykl - 24RyknRyuuRknuv(M)-(A/'),

(VF)2 + SpjkpklRyk¡ + 3RyknRywRkmv(M)-(M')t

(m - 32)(VF)2 + (8m - 376)pjkPklRijkl

+(3m - 96)RyknRijuvRknuv(M) = • • • (A/').

The matrix of coefficients in these 3 equations is nonsingular. We can solve

this system of equations to show

(VF)2(A/) = (VF)2(A/').

Since M is symmetric, (VF)2(A/) = 0. This shows (VF)2(A7') = 0 so M' is
symmetric.
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