
Open Journal of Statistics, 2015, 5, 543-551 
Published Online October 2015 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2015.56057   

How to cite this paper: Gao, C., Yu, Z.S. and Wang, F.R. (2015) Spectral Gradient Algorithm Based on the Generalized Fis-
er-Burmeister Function for Sparse Solutions of LCPS. Open Journal of Statistics, 5, 543-551. 
http://dx.doi.org/10.4236/ojs.2015.56057  

 
 

Spectral Gradient Algorithm Based on the 
Generalized Fiser-Burmeister Function for 
Sparse Solutions of LCPS 
Chang Gao, Zhensheng Yu, Feiran Wang 
College of Science, University of Shanghai for Science and Technology, Shanghai, China 
Email: gaochang45622@163.com  
 
Received 27 August 2015; accepted 20 October 2015; published 23 October 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper considers the computation of sparse solutions of the linear complementarity problems 
LCP(q, M). Mathematically, the underlying model is NP-hard in general. Thus an lp(0 < p < 1) regu-
larized minimization model is proposed for relaxation. We establish the equivalent unconstrained 
minimization reformation of the NCP-function. Based on the generalized Fiser-Burmeister func-
tion, a sequential smoothing spectral gradient method is proposed to solve the equivalent prob-
lem. Numerical results are given to show the efficiency of the proposed method. 
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1. Introduction 
Given a matrix n nM R ×∈  and an n-dimensional vector q, the linear complementarity problem, denoted by LCP(q, 
M), is to find a vector nx R∈  such that 

( )T0, 0, 0x Mx q x Mx q≥ + ≥ + = . 

The set of solutions to this problem is denoted by ( ),SOL M q . Throughout the paper, we always suppose 
( ),SOL M q φ≠ . The LCP has many wide applications in physics, engineering, mechanics, and economics de-

sign [1] [2]. Numerical methods for solving LCPs, such as the Newton method, the interior point method and the 
non-smooth equation methods, have been extensively investigated in the literature. However, it seems that there 
are few methods to solve the sparse solutions for LCPs. In fact, it is very necessary to research the sparse solu-
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tion of the LCPs such as portfolio selection [3] [4] and bimatrix games [5] in real applications.  
In this paper, we consider the sparse solutions of the LCP. We call ( ),x SOL q M∈  a sparse solution of LCP 

(q, M) if x  is a solution of the following optimization problem 

( )
0

T

min

. 0, 0, 0

x

s t x Mx q x Mx q≥ + ≥ + =
                           (1) 

To be more precise, we seek a vector nx R∈  by solving the l0 norm minimization problem, where 
0x  

stands for the number of nonzero components of x. A solution of (1) is called the sparsest solution of the LCP. 
Recently, Meijuan Shang, Chao Zhang and Naihua Xiu design a sequential smoothing gradient method to 

solve the sparse solution of LCP [6]. We inspire by the model and use the spectral method based on the genera-
lized Fischer-Burmeister function to solve our new model (3). The spectral method is proposed by Barzilai and 
Borwein [7] and further analyzed by Raydan [8] [9]. The advantage of this method is that it requires little com-
putational work and greatly speeds up the convergence of gradient methods. Therefore, this technique has re-
ceived successful applications in unconstrained and constrained optimizations [10]-[13]. 

In fact, the above minimization problem (1) is a sparse optimization with equilibrium constraints. From the 
problem of constraint conditions, as well as the non-smooth objective function, it is difficult to get solutions due 
to the equilibrium constraints to overcome the difficultly, and we use the NCP-functions to construct the penalty 
of violating the equilibrium constraints. 

A function φ: R2 → R1 is called a NCP-function, if for any pair ( )T 2,a b R∈ ( ), 0 0, 0, 0a b a b abϕ = ⇔ ≥ ≥ = . 
A popular NCP-functions is the Fischer-Burmeister (FB), which is defined as  

( ) ( ) 2 2,FB a b a b a bϕ = + − +  

The Fischer-Burmeister function has many interesting properties. However, it has limitations in dealing with 
monotone complementarity problems since it is too flat in the positive orthant, the region of main interest for a 
complementarity problem. In terms of the above disadvantage of the Fischer-Burmeister function, we consider 
the following generalized Fischer-Burmeister function [10]. 

( ) ( ) ( ), ,P P
a b a b a bϕ = − +                                 (2) 

where p is any fixed real number from ( )1,P∈ +∞  and ( ),
P

a b  denotes the p-norm, i.e. 

( ), P PP
P

a b a b= +  

In other words, in the function Pϕ , we replace the 2-norm of ( ),a b  in the FB function FBϕ  by a more 
general p-norm of ( ),a b . The function Pϕ  is still an NCP-function.  

Define ( ) : n n
P x R RΦ →  by 

( )
( )( )

( )( )

1 1,

,

P

P

P n n

x F x

x
x F x

ϕ

ϕ

 
 

Φ =  
  
 

  

where ( )F x Mx q= +  with nq R∈  and n nM R ×∈ . Obviously, ( ),x SOL M q∈  if and only if ( ) 0P xΦ = . 
By further employing the lp regularization term for seeking sparsity, we obtain the following unconstrained mi-
nimization problem to approximate 

( ) ( ) 21min
2n

p
P px R

f x x xλ
∈

= Φ +                              (3) 

where ( )0,λ ∈ ∞  is a given regularization parameter, and 
1

n pp
ip

i
x x

=

= ∑  for any 0 < p < 1. We call (3) as lp  

regularized minimization problem. 
Let us denote the first term of (3) by the function ( ) : nx R Rλ +Ψ → . That is 
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( ) ( ) 21
2P Px xΨ = Φ                                    (4) 

For any given 1P > , the function ( )P xΨ  is shown to possess all favorable properties of the FB function; 
we can see [8]. It plays an important part in our study throughout the paper. We observe in [14] [15] that P has a 
great influence on the numerical performance of certain descent-type methods; a larger P yields a better conver-
gence rate, whereas a small P often gives a better global convergence. 

The paper is organized as follows: In Section 2, we present absolute lower bounds for nonzero entries in local 
solution of (3). In section 3, we approximate the minimal zero norm solutions of the LCP. In section 4, we give a 
sequential smoothing spectral gradient method to solve the model. In Section 5, numerical results are given to 
demonstrate the effectiveness of the sequential smoothing spectral gradient method.  

2. The lp Regularized Approximation 
In this section, we consider the minimizers of (3). We study the relation between the original model (1) and the 
lp regularized model (3), which indicates the regularized model is a good approximation. We use a threshold 
lower bound L [6] for nonzero entries in local minimizers and the choice of the lp minimization problem (3). 

2.1. Relation between (3) and (1) 
The following result is given in [6], which is essentially based on some results given by Chen Xiaojun [14]. 

Lemma 2.1. [6] for any fixed 0λ >  the solution set of (3) is nonempty and bounded. Let xλ  be a solution  
of (3), and { }kλ  be any positive sequence converging to 0. If ( ),SOL M q φ≠ , then { }k

xλ  has at least one ac-

cumulation point, and any accumulation point x  of { }k
xλ  is a solution of (3). That is, for any ( ),x SOL q M∈  

satisfied 

( ),x SOL q M∈  and p p
p px x≤  . 

2.2. Lower Bounds for Nonzero Entries in Solutions 
In this section, we extend the above result to the lp norm regularization model (2) for approximating minimal l0 

norm solutions of the LCP. We provide a threshold lower bound L > 0 for any local minimizer, and show  
that any nonzero entries of local minimizers must exceed L. Since ( ) p

pf x xλ≥ , the objective function ( )f x   

is bound below and ( )f x → +∞  if x →∞ . Moreover, the set pχ
∗  of local minimizers of (3) is nonempty 

and bounded. 
Lemma 2.2. [6] let x∗  be any local minimizer of (3) satisfying ( ) ( )0f x f x∗ ≤  for an arbitrarily given 

point 0x . Set 

( ) ( )

1
1

02 2 1

p
pL

M f x

λ
− 

 =   + 

                              (5) 

Then we have: for any { } [ ]1,2, , , , 0i ii n x L L x∗∈ ∈ − ⇒ = . 
Moreover, the number of nonzero entries in x∗  is bounded. 

( )0

0 p

f x
x

Lλ
∗ ≤  

Let us denote the first term of (3) by the function ( ) : n
P x R R+Ψ → . That is 

( ) ( ) 21
2P Px xΨ = Φ                                   (6) 

First we present some properties of Pϕ  and ( )P xΦ . 
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Lemma 2.3. [12] let 2 1:P R Rϕ →  be given by (3). Then, the following properties hold:  
1) Pϕ  is a positive homogeneous and sub-additive NCP-function. 
2) Pϕ  is strongly semismooth. 
3) If ( ){ },k ka b R R⊆ ×  with ka → −∞ , or kb → −∞ , or ka →∞ , kb →∞ , then ( ),k k

P a bϕ →∞   

when k →∞ . 
4) Given a point ( ),a b R R∈ × , very element in the generalized gradient ( ),P a bϕ∂  has the representation 

( )1, 1ξ ζ− − , where 

( )
( )

1

1

sgn

,

P

P

P

a a

a b
ξ

−

−

⋅
=  and 

( )
( )

1

1

sgn

,

P

P

P

b b

a b
ζ

−

−

⋅
=  for ( ) ( ), 0,0a b ≠  

sgn(.) represents the sign function; ξ  and ζ  are real numbers that satisfy 1 1 1
P P

P Pξ ζ− −+ ≤ . 
Theorem 2.1. The function ( )P xΨ  is continuously differentiable everywhere and the gradient of ( )P xΨ  

can be obtained by 

( ) ( ) ( ) ( )T
P a b Px D x M D x x ∇Ψ = + Φ                             (7) 

where ( ) ( ){ }diaga iD x a x=  and ( ) ( ){ }diagb iD x b x=  are diagonal matrices whose diagonal element is giv-  

en by 

( )
( )
( )( )

( )( )
1

1

sgn
1 if , 0

,

1 otherwise

P
i i

iP i
i i i P

i

x x
x Mx q

a x x Mx q

ξ

−

−

 ⋅
 − + ≠= +


−

 

( )
( ) ( )

( )( )
( )( )

1

1

sgn
1 if , 0

,

1 otherwise

P
i i

iP i
i i i P

i

x Mx q
x Mx q

b x x Mx q

ζ

−

−

 ⋅ + − + ≠=  +

 −

 

where ( ),ξ ζ  is any vector satisfying 1 1 1
P P

P Pξ ζ− −+ ≤ . 

3. Smoothing Method for lp Regularization 
Most optimization algorithms are efficient only for convex and smooth problems. However, some algorithms for  
Non-smooth and non-convex optimization problems have been developed recently. Note that the term p

px  (0 <  

p < 1) in (3) is neither convex nor Lipschitz continuous in nR . Solving the non-convex, non-Lipschitz conti-
nuous minimization problem is not easy. We use some approximation methods to surmount the non-Lipschitz 
continuity problem in solving (3). 

Smoothing Counterpart for (3)  
For [ )0,µ ∈ +∞ , let 

( )
, ,

ln exp exp , .

t t
s t t t tµ

µ

µ µ
µ µ

 >


=     
+ − ≤    

    

                      (8) 

It is clear to see that, for any t R∈ , 

( ) ( )0 ln 2p pps t tµ µ≤ − ≤  
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and ( )ps tµ  is continuously differentiable with 

( )( )

( )1

1

,

exp exp
ln exp exp

exp exp

p

pp

p t sign t t

t t
s t t tp t

t t
µ

µ

µ µ
µ µ

µ µ
µ µ

−

−

 >


    − −′    =           + − ≤                 + −       

 

We can construct a smoothing approximation of (2) as 

( ) ( ) ( )2

1

1min
2n

n
p

P i
x R i

f x x s xµ µλ
∈ =

= Φ + ∑                              (9) 

by noting that ( )f xµ  is continuously differentiable, and ( ) ( )
0

lim f x f xµµ→
=  since 

( ) ( ) ( )0 ln 2 pf x f x nµ λ µ≤ − ≤                                (10) 

for any nx R∈ . 
Let ,p uχ∗  denote the set of local minimizers of (10). We have the similar results as in Lemmma 2.1 and 2.2, 

corresponding to the smoothing counterpart (10). 
Theorem 3.1. Let { }k

xµ  be a sequence of vectors being global minimizers of (10) with 0kµ →  as k →∞ .  

Then, any accumulation point of { }k
xµ  is a global minimizer of (3). 

Proof. Let x∗  be a global minimizer of (3) and x  be an accumulation point of { }kxµ . 
We can deduce from (11) that  

( ) ( ) ( ) ( ) ( )ln 2 p
k k k k kf x f x f x f x nµ µ µ µ λ µ∗ ∗≤ ≤ ≤ +  

On the other hand, we have ( ) ( )kf x f xµ
∗ ≤ , and consequently  

( ) ( ) ( ) ( )ln 2 p
k kf x f x f x nµ λ µ∗ ∗≤ ≤ +  

Which indicates x  is a global minimizer of (3). 
Lemma 3.2. [6] for any 0µ > , let ,p uxµ χ∗ ∗∈  be any local minimizer of (14) satisfying ( ) ( )0f x f xµ

∗ ≤  
for an arbitrarily given initial points 0x . Let L be defined in Lemma 2.2. Then, we have for any  

{ } ( ) [ ] ( )1,2, , , ,
i

i n x L L xµ µ µ∗ ∗∈ ∈ − ⇒ ≤  

4. SS-SG Algorithm 
We suggest a sequential Smoothing Spectral Gradient (SS-SG) Method to solve (3). With the SS-SG method, 
we need the Spectral Gradient method as the main step for decreasing the objective value. The smoothing me-
thod is very easy to implement and efficient to deal with optimization; see [15]. 

We first introduce the spectral projected gradient method in [8] as follow. 
Algorithm 1. Smoothing Spectral Gradient Method 
Step 0: Choose an initial point 0

nx R∈ , and parameters [ ]0,0.5σ ∈ , [ ]0, , 0,1β ρ µ ∈ , 3010η = . Let 
1 1α = , ( )1 1k

C f xµ= , 0k = . 

Step1: Let ( )k k kg f xµ= ∇ , ( )k k k kd gα α= − , 
T

1 1
T

1 1

,k k
k

k k

s s
s y

α − −

− −

=  where 1 1k k ks x x− −= − , 1 1k k ky g g− −= − . If  

0kg = , then stop. 
Step 2: Compute the step size kv  by the Armijo line search, where { }0 1max , ,kv ρ ρ=   satisfies 

( ) ( )T 1k k k k k k k k kf x v d C v g g vσ α µ+ ≤ + −  

Set 1k k k kx x v d+ = + . 
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Step 3: If ( )1k k kf x nµ µ+∇ ≥ , then set 1k kµ µ+ = ; otherwise, choose 1k kµ βµ+ = . 
Algorithm 2. Sequential Smoothing Spectral Gradient Method 
Step 1: Find x  by using the algorithm 1 to solve 

( ) ( ) 21min
2n

p
P px R

f x x xλ
∈

= Φ +  

Step 2: Compute  

( ) ( )

1
1

02 2 1

p
pL

M f x
λ

λ
− 

 =   + 

 

Use the lower bound Lλ  to set the entries of x  with small values to zeros and obtain the computed solution 
xλ  with  

( )
0 otherwise

i i
i

x x L
x λ
λ

 ≥
= 


 

Step 3: Decrease the parameter λ  and set 0 :x xλ= . 

5. Numerical Experiments 
In this section, we test some numerical experiments to demonstrate the effectiveness of our SG algorithm. In 
order to illustrating the effectiveness of the SS-SG algorithm we proposed, we introduce another algorithm of 
talking the LCPs. In [6], the authors designed a sequential smoothing (SSG) method to solve the lp regularized 
model and get a sparse solution of LCP(q, M). Numerical experiments show that our algorithm is more effective 
than (SSG) algorithm. 

The program code was written in and run in MATLAB R2013 an environment. The parameters are chooses as 
0.5σ = , 0.25β =  and 0 0.01µ = . The maximum number of iterations in step 1 is set to be 2000. We end the 

SS-SG algorithm in Step 1, if ( ) 510k kf xµ
−∇ <  and 410kµ

−< , or it reaches the maximum number of itera-
tions. 

5.1. Test for LCPs with Positive Semidefinite Matrices 
Example 1. We consider the LCP(q, M) with 

0.4 0.3 0.1 0.4
0.3 0.3 0.3 0.3

0.1 0.3 0.7 0.1
M q

− −   
   = − − =   
   − −   

，  

The solution set is ( ) ( ) ( ){ }T T, 1,0,0 2,3,1 : 0SOL q M a a= + ≥ . 

When 0a = , the vector ( )T1,0,0x∗ =  is the sparse solution of LCP(q, M). We choose P = 10, p = 0.1 in (3) 
for this small example, and use our SS-SG algorithm with the regularization parameter 0.01λ = . We use the 
initial point ( )T0 3,3,1x = , we get a minimal pl  norm solution ( )1.000,0,0x =  and the distance  

42.452 10x x∗ −− = × . 

Example 2. We consider the LCP(q, M) with 

5 1 1 4
1 1 1 , 0

1 1 2 2
M q

− −   
   = − =   
   −   

 

The solution set is  

( ) ( ) ( ) ( )T
1 2 3 1 2 3

2 2, , , : 1 , , 1 ,0 1
3 3

SOL q M x x x x a a x a x a a = = + − = = − ≤ ≤ 
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When 0a = , the vector 
T

1
2 2,0,
3 3

x∗  =  
 

 is the sparse solution of LCP(q, M). When 1a = , the vector  

( )2 1,1,0x∗ =  is the sparse solution of LCP(q, M). We choose the same parameters as Example 1. We use the in-
itial point ( )T0 2,1,2x = , we get a minimal pl  norm solution ( )0.667,0,0.667x =  and the distance  

4
1 1.341 10x x∗ −− = × . We use the initial point ( )T0 2,2,1x = , we get a minimal pl  norm solution  

( )1.000,1.000,0x =  and the distance 4
2 1.079 10x x∗ −− = × . 

These examples show that, given the proper initial point, our algorithm can effectively find an approximate 
sparse solution. 

5.2. Test for LCPs with Z-Matrix [6] 
Let us consider LCP(q, M) where 

T

1 1 11

1 1 111

1 1 11

n

n n n

M I ee n n n
n

n n n

 − − − 
 
 − − − = − =
 
 
 
− − − 

 





   



 and 

1 1

1

1

n

q n

n

 − 
 
 
 =
 
 
 
 
 



 

Here nI  is the identity matrix of order n and ( )T1,1, ,1 ne R= ∈ . Such a matrix M is widely used in statis-
tics. It is clear that Mis a positive semidefinite Z-matrix. For any scalar 0a ≥ , we know that the vector 

1x ae e= +  is a solution to LCP(q, M), since it satisfies that 

( )T
10, 0, 0x Mx q Me q x Mx q≥ + = + = + =  

Among all the solutions, the vector ( )T
1 1,0, ,0x e∗ = =   is the unique sparsest solution. We test the SS-SG 

algorithm for different dimensions with n = 100, 300, 500, 1000, 1300, respectively. In this set of experiments, 
we set 10, 0.01, =0.01P p λ= = .The results are displayed in Table 1. 

In Table 1, “ ˆx x− ” denotes the Euclidean distance between x  and the true sparsest x̂ , and “time” de-
notes the computational time in seconds. Form Table 1, we can see that the SS-SG algorithm is effective to find 
the sparse solution of LCPs.  

In order to test the effectiveness of the SS-SG algorithm, we compare with the SSG algorithm of talking the 
LCPs. In [10], the authors use the Fiser-Burmeister function established a lp (0 < p < 1) regularized minimization 
model and designed a SSG method to solve the LCPs. The results are displayed in Table 2, where “_” denotes 
the method is invalid. Although the sparsity 

0x  is same and the recovered errors ˆx x−  are pretty small, the 
average cpu time less than the SSG algorithm.  

 
Table 1. SS-SG’s computation results on LCPs with Z-matrices.                                                          

n  Iter  ˆx x−  0
x  

0
x̂  ( )Time s  

100 789 2.71E−3 1 1 2.25 

200 452 5.22E−3 1 1 2.27 

500 14 3.91E−4 1 1 4.02 

800 11 4.21E−4 1 1 4.73 

1000 3 1.64E−5 1 1 4.73 

1300 29 2.16E−5 1 1 25.41 
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Table 2. SSG’s computation results on LCPs with Z-matrices.                                                            

n  Iter  ˆx x−  0
x  

0
x̂  ( )Time s  

100 2184 3.41E−3 1 1 9.66 

200 549 4.20E−3 1 1 17.44 

500 18 5.11E−3 1 1 28.77 

800 9 2.23E−3 1 1 63.01 

1000 3 1.24E−4 1 1 4.13 

1300 _ _ _ _ _ 

6. Conclusion 
In this paper, we have studied a lp (0 < p < 1) model based on the generalized FB function defined as in (2) to 
find the sparsest solution of LCPs. Then, an lp normregularized and unconstrained minimization model is pro-
posed for relaxation, and we use a sequential smoothing spectral gradient method to solve the model. Numerical 
results demonstrate that the method can efficiently solve this regularized model and gets a sparsest solution of 
LCP with high quality. 
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