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Abstract

The relationship between the brain's structural wiring and the functional patterns of

neural activity is of fundamental interest in computational neuroscience. We examine

a hierarchical, linear graph spectral model of brain activity at mesoscopic and macro-

scopic scales. The model formulation yields an elegant closed-form solution for the

structure–function problem, specified by the graph spectrum of the structural con-

nectome's Laplacian, with simple, universal rules of dynamics specified by a minimal

set of global parameters. The resulting parsimonious and analytical solution stands in

contrast to complex numerical simulations of high dimensional coupled nonlinear

neural field models. This spectral graph model accurately predicts spatial and spectral

features of neural oscillatory activity across the brain and was successful in simulta-

neously reproducing empirically observed spatial and spectral patterns of alpha-band

(8–12 Hz) and beta-band (15–30 Hz) activity estimated from source localized

magnetoencephalography (MEG). This spectral graph model demonstrates that cer-

tain brain oscillations are emergent properties of the graph structure of the structural

connectome and provides important insights towards understanding the fundamental

relationship between network topology and macroscopic whole-brain dynamics. .

K E YWORD S

alpha rhythm, brain activity, connectomes, magnetoencephalography, spectral graph theory

1 | INTRODUCTION

1.1 | The structure–function problem in

neuroscience

It is considered paradigmatic in neuroscience that the brain's structure

at various spatial scales is critical for determining its function. In partic-

ular, the relationship between the brain's structural wiring and the func-

tional patterns of neural activity is of fundamental interest in

computational neuroscience. Brain structure and function at the scale

of macroscopic networks, that is, among identifiable gray matter

(GM) regions and their long-range connections through white matter

(WM) fiber bundles, can be adequately measured using current nonin-

vasive measurement techniques. Fiber architecture can be measured

from diffusion tensor imaging (DTI) followed by tractography algo-

rithms (Hagmann et al., 2008; Iturria-Medina, 2013). Similarly, brain

function manifested in neural oscillations can be measured noninva-

sively using magnetoencephalography (MEG) and reconstructed across

whole-brain networks. Does the brain's white matter wiring structure

constrain functional activity patterns that arise on the macroscopicChang Cai and Xihe Xie contributed equally to this work.
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network or graph, whose nodes represent gray matter regions, and

whose edges have weights given by the structural connectivity (SC) of

white matter fibers between them? We address this critical open prob-

lem here, as the structural and functional networks estimated at various

scales are not trivially predictable from each other (Honey et al., 2009).

Although numerical models of single neurons and local microscopic

neuronal assemblies, ranging from simple integrate-and-fire neurons to

detailed multi-compartment and multi-channel models (Freeman & Zhai,

2008; Liley, Alexander, Wright, & Aldous, 1999; Markounikau, Igel,

Grinvald, & Jancke, 2010; Roland, Hilgetag, & Deco, 2014; Schaffer,

Ostojic, & Abbott, 2013) have been proposed, it is unclear if these models

can explain structure–function coupling at meso- or macroscopic scales.

At one extreme, the Blue Brain Project (Markram, n.d.; Markram et al.,

2015) seeks to model in detail all 1011 neurons and all their connections in

the brain. Indeed spiking models linked up via specified synaptic connec-

tivity and spike timing dependent plasticity rules were found to produce

regionally and spectrally organized self-sustaining dynamics, as well as

wave-like propagation similar to real fMRI data (Izhikevich & Edelman,

2008). However, it is unclear whether such efforts will succeed in provid-

ing interpretable models at whole-brain scale (Potjans & Diesmann, 2014).

Therefore, the traditional computational neuroscience paradigm at

the microscopic scale does not easily extend to whole-brain macroscopic

phenomena, as large neuronal ensembles exhibit emergent properties

that can be unrelated to individual neuronal behavior (Abdelnour, Voss, &

Raj, 2014; Destexhe & Sejnowski, 2009; Miši�c et al., 2015; Miši�c,

Sporns, & McIntosh, 2014; Robinson, Rennie, Rowe, O'Connor, & Gor-

don, 2005; Shimizu & Haken, 1983), and are instead largely governed by

long-range connectivity (Abdelnour, Raj, Dayan, & Devinsky, 2015a;

Deco, Senden, & Jirsa, 2012; Jirsa, Jantzen, Fuchs, & Kelso, 2002;

Nakagawa et al., 2014). At this scale, graph theory involving network sta-

tistics can phenomenologically capture structure–function relationships

(Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; Bullmore,

Bullmore, Sporns, & Sporns, 2009; Strogatz, 2001), but do not explicitly

embody any details about neural physiology (Miši�c et al., 2014; Miši�c

et al., 2015). Strong correlations between functional and structural con-

nections have also been observed at this scale (Abdelnour, Dayan,

Devinsky, Thesen, & Raj, 2018; Abdelnour, Voss, & Raj, 2014; Ghosh,

Rho, McIntosh, Kötter, & Jirsa, 2008; Hermundstad et al., 2013; Honey

et al., 2009; Park & Friston, 2013; Rubinov, Sporns, van Leeuwen, &

Breakspear, 2009; van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009),

and important graph properties are shared by both SC and functional

connectivity (FC) networks, such as small worldness, power-law degree

distribution, hierarchy, modularity, and highly connected hubs (Bullmore

et al., 2009; He, Zempel, Snyder, & Raichle, 2010).

A more detailed accounting of the structure–function relationship

requires that we move beyond statistical descriptions to mathematical

ones, informed by computational models of neural activity. Numerical

simulations are available of mean field (Destexhe & Sejnowski, 2009; El

Boustani & Destexhe, 2009; Wilson & Cowan, 1973) and neural mass

(David & Friston, 2003; Deco et al., 2012) approximations of the

dynamics of neuronal assemblies. By coupling many such neural field or

mass models (NMMs) using anatomic connectivity information, it is pos-

sible to generate via large-scale stochastic simulations a rough picture

of how the network modulates local activity at the global scale to allow

the emergence of coherent functional networks (Deco et al., 2012).

However, simulations are unable to give an analytical (i.e., closed form)

encapsulation of brain dynamics and present an interpretational chal-

lenge in that behavior is only deducible indirectly from thousands of

trial runs of time-consuming simulations. Consequently, the essential

minimal rules of organization and dynamics of the brain remain

unknown. Furthermore, due to their nonlinear and stochastic nature,

model parameter inference is ill posed, computationally demanding and

manifest with inherent identifiability issues (Xie et al., 2018).

How then do stereotyped spatiotemporal patterns emerge from

the structural substrate of the brain? How will disease processes per-

turb brain structure, thereby impacting its function? While stochastic

simulations are powerful and useful tools, they provide limited neuro-

scientific insight, interpretability and predictive power, especially for

the practical task of inferring macroscopic functional connectivity from

long-range anatomic connectivity. Therefore, there is a need for more

direct models of structural network-induced neural activity patterns—a

task for which existing numerical modeling approaches, whether for

single neurons, local assemblies, coupled neural masses or graph theory,

are not ideally suited. Here we use a spectral graph model (SGM) to

demonstrate that the spatial distribution of certain brain oscillations are

emergent properties of the spectral graph structure of the structural

connectome. Therefore, we also explore how the chosen connectome

alters the functional activity patterns they sustain.

1.2 | A hierarchical, analytic, low-dimensional and

linear spectral graph theoretic model of brain

oscillations

We present a linear graph model capable of reproducing empirical

macroscopic spatial and spectral properties of neural activity. We are

interested specifically in the transfer function (defined as the

frequency-domain input–output relationship) induced by the macro-

scopic structural connectome, rather than in the behavior of local neu-

ral masses. Therefore, we seek an explicit formulation of the

frequency spectra induced by the graph, using the eigen-

decomposition of the structural graph Laplacian, borrowing heavily

from spectral graph theory used in diverse contexts including cluster-

ing, classification, and machine learning (Auffarth, 2007; Kondor,

2002; Larsen, Nielsen, Sporring, Zhang, & Hancock, 2006; Ng &

M. Jordan YW., 2002). This theory conceptualizes brain oscillations as

a linear superposition of eigenmodes. These eigen-relationships arise

naturally from a biophysical abstraction of fine-scaled and complex

brain activity into a simple linear model of how mutual dynamic influ-

ences or perturbations can spread within the underlying structural

brain network, a notion that was advocated previously (Abdelnour

et al., 2014; Galán, 2008; Goni et al., 2014). We had previously

reported that the brain network Laplacian can be decomposed into its

constituent “eigenmodes,” which play an important role in both

healthy brain function (Abdelnour et al., 2014; Abdelnour et al., 2018;

Abdelnour, Dayan, Devinsky, Thesen, & Raj, 2015b; Atasoy,
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Donnelly, & Pearson, 2016; Wang, Owen, Mukherjee, & Raj, 2017)

and pathophysiology of disease (Abdelnour, Mueller, & Raj, 2015c;

Abdelnour, Raj, Devinsky, & Thesen, 2016; Raj, Kuceyeski, & Weiner,

2012; Wang et al., 2017).

We show here that a graph-spectral decomposition is possible at

all frequencies, ignoring nonlinearities that are operating at the local

(node) level. Like previous NMMs, we lump neural populations at each

brain region into neural masses, but unlike them we use a linearized

(but frequency-rich) local model—see Figure 1a. The macroscopic

connectome imposes a linear and deterministic modulation of these

local signals, which can be captured by a network transfer function. The

sequestration of local oscillatory dynamics from the macroscopic

F IGURE 1 The linearized spectral graph model. (a) Conventional neural mass models typically instantiate a large assembly of excitatory and

inhibitory neurons, which are modeled as fully connected internally. External inputs and outputs are gated through the excitatory neurons only,

and inhibitory neurons are considered strictly local. The proposed linear model condenses these local assemblies into lumped linear systems fe(t)

and fi(t), Gamma-shaped functions having time constants τe and τi—see panel (b). The recurrent architecture of the two pools within a local area is

captured by the gain terms gee, gii, gei, indicating the loops created by recurrents within excitatory, inhibitory and cross-populations. (c) The

absolute value of eigenvalues of the complex Laplacian L ωð Þ are plotted against the eigenvector index. Each dot represents one eigenvalue λ(ω); its

color represents the frequency ω—low (blue) to high (yellow). Clearly, these eigenvalues change somewhat by frequency; small eigenvalues change

more compared to large ones. (d) Frequency response of each eigenmode plotted on the complex plane with default choices of model parameters

and a template structural connectome from the human connectome project (HCP). Each curve represents the transit in the complex plane of a single

eigenmode's frequency response, starting at low frequencies in the bottom right quadrant, and moving characteristically to the upper left quadrant

at high frequencies. The magnitude of the response, given by the distance from the origin, suggests that most eigenmodes have two prominent

lobes, roughly corresponding to lower frequency alpha rhythms and higher frequency gamma rhythms, respectively. In contrast, the lowest few

eigenmodes start off far from the origin, indicative of a low-pass response. (e) Magnitude of the frequency response of each eigenmode reinforces

these impressions more clearly, with clear alpha peak, as well as slower rhythms of the lowest eigenmodes. The spectral profile of the eigenmodes,

especially the peak frequencies, are sensitive to the choice of model parameters. (f) The spatial patterns of the top 5 eigenmodes of L ωð Þ, evaluated

at the alpha frequency, 10Hz. The first 4 eigenmodes u1−u4, produce posterior and temporal spatial patterns, including many elements of the

default mode network; u4 resembles the sensorimotor network; and u5 the structural core of the human connectome. However, these patterns are

not exclusive and greatly depend on the frequency at which they are evaluated, as well as the model parameters and the connectome
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network in this way enables the characterization of whole brain

dynamics deterministically in closed form in Fourier domain, via the

eigen-basis expansion of the network Laplacian. As far as we know,

this is the first closed-form analytical model of frequency-rich brain

activity constrained by the structural connectome.

We applied this model to and validated its construct against mea-

sured source-reconstructed MEG recordings in healthy subjects under

rest and eyes-closed. The model closely matches empirical spatial and

spectral MEG patterns. In particular, the model displays prominent

alpha and beta peaks, and, intriguingly, the eigenmodes corresponding

to the alpha oscillations have the same posterior-dominant spatial dis-

tribution that is repeatedly seen in eyes-closed alpha power distribu-

tions. In contrast to existing less parsimonious models in the literature

that invoke spatially-varying parameters or local rhythm generators,

to our knowledge, this is the first account of how the spectral graph

structure of the structural connectome can parsimoniously explain the

spatial power distribution of alpha and beta frequencies over the

entire brain measurable on MEG.

2 | METHODS

2.1 | Spectral graph model development

2.1.1 | Notation

In our notation, vectors and matrices are represented by boldface, and

scalars by normal font. We denote frequency of a signal, in Hertz, by

symbol f, and the corresponding angular frequency as ω = 2πf. The

connectivity matrix is denoted by C = {cjk}, consisting of connectivity

strength cij between any two pair of regions j, k.

2.1.2 | Model summary

Details of the spectral graph model (SGM) is described in detail below.

There are very few model parameters, seven in total: τe, τi, τG, v, gii, gei,

α, which are all global and apply at every node. See Table 1 for their

meaning, initial value and range. Note that the entire model is based

on a single equation of graph dynamics, Equation (1), which is repeat-

edly applied to each level of the hierarchy. Here we used two levels: a

mesoscopic level where connectivity is all-to-all, and a macroscopic

level, where connectivity is measured from fiber architecture. In the-

ory, this template could be refined into finer levels, where neural

responses become increasingly nonlinear, and connectivity becomes

sparser and structured.

2.1.3 | Canonical rate model over a graph

We use a canonical rate model to describe neural activity across two

hierarchical levels—local cortical mesoscopic levels and long-range

macroscopic levels. At each level of the hierarchy of brain circuits, we

hypothesize a simple linear rate model of recurrent reverberatory

activity given by

dxe=i tð Þ

dt
= −

1

τe=i
fe=i tð Þ*xe=i tð Þ+

1

τe=i
fe=i tð Þ*

X

j,k

cjkxe=i t−τvjk

� �

+ pe=i tð Þ

ð1Þ

where xe/i(t) is the mean signal of the excitatory/inhibitory

populations and pe/i(t) is internal noise source reflecting local cortical

column computations or input. The transit of signals, from presynaptic

membranes, through dendritic arbors and axonal projections, is sought

to be captured into ensemble average neural impulse response func-

tions fe tð Þ= t
τe
exp −

t
τe

� �

and f i tð Þ=
t
τi
exp −

t
τi

� �

respectively. We disre-

gard the nonlinearity of the neural response, hence the output at the

terminal to a presynaptic input u(t) is the simple convolution

xe(t) = fe(t) * u(t). The neural responses fe/i(t) are Gamma-shaped

responses (Figure 1b) parameterized by time constants τe/i that here

represent the end result of both synaptic membrane capacitance and

the distribution of dendritic/axonal delays introduced by the arboriza-

tion. NMMs typically use a single classical exponential decay term for

membrane capacitance only, since NMMs model highly local cell

assemblies where multisynaptic connections are infrequent and axo-

nal and dendritic transport delays are usually incorporated explicitly

via connectivity weights and delays. Since our lumped model was

designed for relatively large cortical regions, we employ the Gamma-

shaped fe/i to capture not just classical membrane capacitance but

also the expected diversity of dendritic transport delays. The

dynamics of the entire assembly modeled via a self-decaying term

τe=i
dx
dt
/ − fe=i tð Þ*x tð Þ, typically used in most rate or NMM models, but

the difference here is that we chose to apply convolution with neural

response fe/i(t) within the decay process. We believe this is necessary

to ensure that the dynamics of the population cannot participate in

the internal recurrent dynamics of the region until the signal has pas-

sed through one instance of the neuronal response. Since this neural

response is meant to capture a distribution of local circuit delays, its

TABLE 1 SGM parameters values and limits

Name Symbol

Initial/

default

value

Lower/upper

bound for

optimization

Excitatory time

constant

τe 12 ms [5 ms, 20 ms]

Inhibitory time

constant

τi 3 ms [5 ms, 20 ms]

Graph time constant τG 6 ms [5 ms, 20 ms]

Excitatory gain gee 1 n/a

Inhibitory gain gii 1 [0.5, 5]

Excitatory gain gei 4 [0.5, 5]

Transmission

velocity

v 5 m/s [5 m/s, 20 m/s]

Long-range

connectivity

coupling constant

α 1 [0.1, 1]
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time constants τe/i are purposefully far longer (up to 20ms) than

expected from membrane capacitance alone. Studies of cortical lag

times using paired electrode recordings between primary and higher

cortices demonstrate this. A short visual stimulus causes a neural

response in the ferret V1 within 20ms post-stimulus, in the primary

barrel field within 16–36ms, and the entire visual cortex becomes

engaged 48–70ms after stimulus (Roland et al., 2014). Brief deflection

of a single barrel whisker in the mouse evokes a somatotopically

mapped cortical depolarization that remains localized to its C2 barrel

column only for a few milliseconds, thence rapidly spreading to a large

part of sensorimotor cortex within tens of milliseconds, a mechanism

considered essential for the integration of sensory information

(Ferezou et al., 2007; Polack & Contreras, 2012). Interestingly, the

evoked response curve in S1 from the (Ferezou et al., 2007) study had

a prominent Gamma shape. Of note, the duration of S1 response

(~50ms) was considerably longer than the time to first sensory

response in C2 (7.2 ms) (Ferezou et al., 2007). Interestingly, feedback

projections from higher to lower areas take ~50ms, hence have a

much slower apparent propagation velocity (0.15–0.25m/s) than

what would be predicted by axonal conduction alone (1–3m/s)

(Roland et al., 2014).

Individual neural elements are connected to each other via con-

nection strengths cjk. Let the cortico-cortical fiber conduction speed

be v, which here is assumed to be a global constant independent of

the pathway under question. For a given pathway connecting

regions j and k of length djk, the conduction delay of a signal propa-

gating from region j to region k will be given by τ
v
jk =

djk
v
. Hence, sig-

nals from neighboring elements also participate in the same recurrent

dynamics, giving the second term of Equation (1). Equation (1) will

serve as our canonical rate model, and will be reproduced at all levels

of the hierarchy, and only the connectivity strengths will vary

depending on the level of hierarchy we are modeling, as explained

below.

2.1.4 | Local neural assemblies

The local connectivities clocaljk are assumed to be all-to-all, giving a com-

plete graph. Further, the axonal delays τvjk associated with purely local

connections were already incorporated in the lumped impulse

responses fe/i(t). Hence, we assert:

clocaljk = ce=i, τ
v
jk = 0,8j,k

From spectral graph theory, a complete graph has all equal eigen-

values, which allows the local network to be lumped into gain con-

stants, and the summation removed. Indeed, rewriting xe/i(t) as the

mean signal of all the excitatory/inhibitory cells and setting the gains

gee = 1 − ceNe and gii = 1 − ciNi we get

dxe=i tð Þ

dt
= −

gee=ii

τe=i
fe=i tð Þ*xe=i tð Þ+ pe=i tð Þ: ð2Þ

Given the Fourier transform pairs d
dt
$ jω , fe=i tð Þ$

Fe=i ωð Þ=
1=τ2

e=i

jω+1=τe=ið Þ
2 , we take the Fourier transform of Equation (1) and

obtain the local assembly's frequency spectrum:

Xe=i ωð Þ= jω+
gee=ii

τe=i
Fe=i ωð Þ

� �

−1

Pe=i ωð Þ ð3Þ

Writing this in terms of transfer functions Xe(ω) = He(ω)Pe(ω),

Xi(ω) = Hi(ω)Pi(ω) we get the lumped local system illustrated in

Figure 1a. Finally, we must also account for signals that alternate

between the two populations, which is given by the transfer function

Hei ωð Þ=He ωð ÞHi ωð Þ= 1+ geiHe ωð ÞHi ωð Þð Þ

We fix gee = 1 without loss of generality, and let the other terms

gii, gei be model parameters to be fitted. Finally, the total cortical trans-

fer function is the sum

Hlocal ωð Þ=He ωð Þ+Hi ωð Þ+Hei ωð Þ ð4Þ

and Xlocal(ω) = Hlocal(ω)P(ω) represents all neural activity in this region,

whether from excitatory or inhibitory cells. The canonical local activity

is therefore defined by the Fourier transform pair: xlocal(t) $ Xlocal(ω).

2.2 | Macroscopic scale: Signal evolution on the

entire graph

For the macroscopic level, we use the same canonical network

dynamics as Equation (1), but now the inter-regional connectivity

cjk is nonzero and given by the structural connectome. Similarly,

axonal conductance delays are determined by fiber length and con-

ductance speed τ
v
jk = djk=v. Further, the external driving signals at each

node is the local neural activity xlocal(t) defined above rather than a

noise process p(t). In the interest of parsimony we set each node of

the macroscopic graph to have the same internal power spectrum

Xlocal(ω), that is, all regions are experiencing the same transfer func-

tion, driven by identically distributed (but of course not identical)

noise. At this scale, activity measured at graph nodes is no longer

excitatory or inhibitory, but mixed, and the corticocortical connections

are all between long, pyramidal excitatory-only cells. Thus, for the k-

th node

dxk tð Þ

dt
= −

1

τG
fe tð Þ*xk tð Þ+

α

τG
fe tð Þ*

X

j

cjkxj t−τvjk

� �

+ xlocal,k tð Þ

Here we have introduced a global coupling constant α, similar to

most connectivity-coupled neural mass models, that seeks to control

the relative weight given to long-range afferents compared to local

signals. We have also introduced a new time constant, τG, which is an

excitatory time constant and it may be the same as the previously

used constant τe. However, we allow the possibility that the long-

range projection neurons might display a different capacitance and
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morphology compared to local circuits, hence we have introduced τG

(subscript G is for “graph” or “global”).

Stacking all equations from all nodes and using vector valued sig-

nals x(t) = {xk(t)}, we can write

dx tð Þ

dt
= −

1

τG
fe tð Þ*x tð Þ+

α

τG
fe tð Þ*C x t−τvjk

� �n o

+ xlocal tð Þ ð5Þ

where the braces {�} represent all elements of a matrix indexed by j, k.

We wish to evaluate the frequency spectrum of the above. In

Fourier space, delays become phases; hence we use the transform

pairs dx
dt
$ jωX ωð Þ and x(t− τ)$ e−jτωX(ω). Therefore, define a “complex

connectivity matrix” at any given angular frequency ω as

C*(ω) = {cjkexp(−jω τ
v
jk)}. We then define a normalized complex con-

nectivity matrix at frequency ω as

C ωð Þ= diag
1

deg

� �

C*
ωð Þ ð6Þ

where the degree vector deg is defined as degk =
P

jcjk. Taking the

Fourier transform of Equation (5), we get

jωX ωð Þ+
1

τG
Fe ωð Þ I−αC ωð Þð ÞX ωð Þ

� �

=Hlocal ωð ÞP ωð Þ ð7Þ

where we assumed identically distributed noise signals driving both

the excitatory and inhibitory local populations at each node, such that

Pe, k(ω) = Pi, k(ω) = Pk(ω) at the k-th node. We then collected all nodes'

driving inputs in the vector P(ω) = {Pk(ω), 8k}. Here, we define the

complex Laplacian matrix

L ωð Þ= I−αC ωð Þ

where I is the identity matrix of size N × N. This complex Laplacian

will be evaluated via the eigen-decomposition

L ωð Þ=U ωð ÞΛ ωð ÞU ωð ÞH ð8Þ

where Λ(ω) = diag([λ1(ω), …, λN(ω)]) is a diagonal matrix consisting of

the eigenvalues of the complex Laplacian matrix of the connectivity

graph C ωð Þ, at the angular frequency ω.

Hence

X ωð Þ= jωI+
1

τG
Fe ωð ÞL ωð Þ

� �

−1

Hlocal ωð ÞP ωð Þ ð9Þ

where we invoke the eigen-decomposition of L ωð Þ , and that U(ω)U

(ω)H = I. It can then be shown easily that

X ωð Þ=
X

i

ui ωð ÞuHi ωð Þ

jω+ 1
τG
λi ωð ÞFe ωð Þ

Hlocal ωð ÞP ωð Þ ð10Þ

This is the steady state frequency response of the whole brain

dynamics. In steady state, we assume that each cortical region is

driven by internal noise that spans all frequencies, that is, white

noise. Hence, we assume that the driving function p(t) is an

uncorrelared Gaussian noise process, such that P ωð Þ= , where  is a

vector of ones. This asserts identical cortical responses at each brain

region.

2.3 | Experimental procedures

2.3.1 | Study cohort

We acquired MEG, anatomical MRI, and diffusion MRI for 36 healthy

adult subjects (23 males, 13 females; 26 left-handed, 10 right-

handed; mean age 21.75 years (range: 7–51 years). All study proce-

dures were approved by the institutional review board at the Uni-

versity of California at San Francisco (UCSF) and are in accordance

with the ethics standards of the Helsinki Declaration of 1975 as

revised in 2008.

2.3.2 | MRI

A 3 Tesla TIM Trio MR scanner (Siemens, Erlangen, Germany) was

used to perform MRI using a 32-channel phased-array radiofrequency

head coil. High-resolution MRI of each subject's brain was collected

using an axial 3D magnetization prepared rapid-acquisition gradient-

echo (MPRAGE) T1-weighted sequence (echo time [TE] = 1.64 ms,

repetition time [TR] = 2,530 ms, TI = 1,200 ms, flip angle of 7�) with a

256-mm field of view (FOV), and 160 1.0-mm contiguous partitions at

a 256 × 256 matrix. Whole-brain diffusion weighted images were col-

lected at b = 1000s/mm2 with 30 directions using 2-mm voxel resolu-

tion in-plane and through-plane.

2.3.3 | Magnetoencephalography data

MEG recordings were acquired at UCSF using a 275-channel CTF

Omega 2000 whole-head MEG system from VSM MedTech

(Coquitlam, BC, Canada). All subjects were instructed to keep their

eyes closed for 5 min while their MEGs were recorded at a sampling

frequency of 1,200 Hz.

2.4 | Data processing

2.4.1 | Region Parcellations

The T1-weighted images were parcellated into 68 cortical regions and

18 subcortical regions using the using the Desikan–Killiany atlas avail-

able in the FreeSurfer software (Fischl et al., 2002). To do this, the

subject specific T1-weighted images were back-projected to the atlas

using affine registration, as described in our previous studies

(Abdelnour et al., 2014; Owen et al., 2013).
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2.4.2 | Structural connectivity networks

We constructed different structural connectivity networks with the

same Desikan–Killiany parcellations to access the capabilities of our

proposed model. Firstly, we obtained openly available diffusion MRI

data from the MGH-USC Human Connectome Project to create an

average template connectome. As in our previous studies (Abdelnour

et al., 2014; Owen et al., 2013), subject specific structural connectiv-

ity was computed on diffusion MRI data: Bedpostx was used to

determine the orientation of brain fibers in conjunction with FLIRT,

as implemented in the FSL software (Jenkinson, Beckmann, Behrens,

Woolrich, & Smith, 2012). In order to determine the elements of the

adjacency matrix, we performed tractography using probtrackx2. We

initiated 4,000 streamlines from each seed voxel corresponding to a

cortical or subcortical gray matter structure and tracked how many

of these streamlines reached a target gray matter structure. The

weighted connection between the two structures ci, j, was defined as

the number of streamlines initiated by voxels in region i that reach

any voxel within region j, normalized by the sum of the source and

target region volumes (ci,j =
streamlines

vi + vj
). This normalization prevents

large brain regions from having high connectivity simply due to having

initiated or received many streamlines. Afterwards, connection

strengths are averaged between both directions (ci, j and cj, i) to form

undirected edges. It is common in neuroimaging literature to threshold

connectivity to remove weakly connected edges, as this can greatly

influence the implied topology of the graph. In our work, we chose

not to apply further thresholding, as unlike conventional graph theo-

retic metrics, linear models of spread and consequently network

eigenmodes are relatively insensitive to implied topology induced by

presence (or lack) of weak nonzero connections. However, to deter-

mine the geographic location of an edge, the top 95% of nonzero

voxels by streamline count were computed for both edge directions.

The consensus edge was defined as the union between both post-

threshold sets.

2.4.3 | MEG processing and source reconstruction

MEG recordings were down-sampled from 1,200 Hz to 600 Hz, then

digitally filtered to remove DC offset and any other noisy artifact out-

side of the 1 to 160 Hz bandpass range. Since MEG data are in sensor

space, meaning they represent the signal observable from sensors

placed outside the head, this data needs to be “inverted” in order to

infer the neuronal activity that has generated the observed signal by

solving the so-called inverse problem. Several effective methods exist

for performing source localization (Jerbi et al., 2004; Wipf, Owen,

Attias, Sekihara, & Nagarajan, 2010; Zumer, Attias, Sekihara, &

Nagarajan, 2008). Here we eschew the common technique of solving

for a small number of discrete dipole sources which is not fully appro-

priate in the context of inferring resting state activity, since the latter

is neither spatially sparse not localized. Instead, we used adaptive spa-

tial filtering algorithms from the NUTMEG software tool written in

house (Dalal et al., 2004) in MATLAB (The MathWorks, Inc., Natick,

Massachusetts, United States). To prepare for source localization, all

MEG sensor locations were co-registered to each subject's anatomical

MRI scans. The lead field (forward model) for each subject was calcu-

lated in NUTMEG using a multiple local-spheres head model (three-

orientation lead field) and an 8 mm voxel grid which generated more

than 5,000 dipole sources, all sources were normalized to have a norm

of 1. Finally, the MEG recordings were projected into source space

using a beamformer spatial filter. Source estimates tend to have a bias

towards superficial currents and the estimates are more error-prone

when we approach subcortical regions, therefore, only the sources

belonging to the 68 cortical regions were selected to be averaged

around the centroid. Specifically, all dipole sources were labeled based

on the Desikan–Killiany parcellations, then sources within a 20 mm

radial distance to the centroid of each brain region were extracted,

the average time course of each region's extracted sources served as

empirical resting-state data for our proposed model.

2.4.4 | Alternative benchmark model for

comparison

In order to put the proposed model in context, we also implemented

for comparison a Wilson–Cowan neural mass model (Destexhe &

Sejnowski, 2009; Muldoon, Pasqualetti, Gu, et al., 2016; Wilson &

Cowan, 1973; Xie et al., 2018) with similar dimensionality. Although

NMMs like this can and have been implemented with regionally vary-

ing local parameters, here we enforced uniform, regionally nonvarying

local parameters, meaning all parcellated brain regions shared the

same local and global parameters. This is a fair comparison since the

proposed model is also regionally nonvarying. The purpose of this

exercise is to ascertain whether a nonregional NMM can also predict

spatial power variations purely as a consequence of network transmis-

sion, like the proposed model, using the same model optimization pro-

cedure (see below). This NMM incorporates a transmission velocity

parameter that introduces a delay based on fiber tract lengths

extracted from diffusion MRI, but, unlike our model, does not seek to

explicitly evaluate a frequency response based on these delays.

2.5 | Model optimization

We computed maximum a posteriori estimates for parameters under a

flat noninformative prior. A simulated annealing optimization algo-

rithm was used for estimation and provided a set of optimized param-

eters {τe, τi, τc, gei, gii, α, υ}. We defined a data likelihood or

goodness of fit (GOF) as the Pearson correlation between empirical

source localized MEG power spectra and simulated model power

spectra, averaged over all 68 regions of a subject's brain. The pro-

posed model has only seven global parameters as compared to neural

mass models with hundreds of parameters, and is available in closed-

form. To improve the odds that we capture the global minimum, we

chose to implement a probabilistic approach of simulated annealing

(Kirkpatrick, Gelatt, & Vecchi, 1983). The algorithm samples a set of
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parameters within a set of boundaries by generating an initial trial

solution and choosing the next solution from the current point by a

probability distribution with a scale depending on the current “tem-

perature” parameter. While the algorithm always accepts new trial

points that map to cost-function values lower than the previous cost-

function evaluations, it will also accept solutions that have cost-

function evaluations greater than the previous one to move out of

local minima. The acceptance probability function is 1= 1+ Δ

emax Tð Þ

� �

,

where T is the current temperature and Δ is the difference of the new

minus old cost-function evaluations. The initial parameter values and

boundary constraints for each parameter are given in Table S1. All

simulated annealing runs were allowed to iterate over the parameter

space for a maximum of Np×3000 iterations, where Np is the number

of parameters in the model. As a comparison, we performed the same

optimization procedure to a regionally nonvarying Wilson–Cowan

neural mass model (Muldoon et al., 2016; Wilson & Cowan, 1973).

We have recently reported a similar simulated annealing optimization

procedure on this model (Xie et al., 2018).

3 | RESULTS

3.1 | Graph Laplacian eigenmodes mediate a

diversity of frequency responses

First, we demonstrate the spectra produced by graph eigenmodes as

per our theory using default choices of model parameters. Figure 1c

shows the eigen-spectrum of the complex Laplacian, with eigenvalue

magnitude ranging from 0 to 1. The absolute value of eigenvalues of

the complex Laplacian L ωð Þ are plotted against the eigenvector index.

Each dot represents one eigenvalue λ(ω); its color represents the fre-

quency ω—low (blue) to high (yellow). Clearly, these eigenvalues

change somewhat by frequency. Small eigenvalues undergo a larger

shift due to frequency, while the large ones stay more stable and

tightly clustered around the nominal eigenvalue (i.e., at ω = 0). Each

eigenmode produces a frequency response based on its frequency-

dependent eigenvalue (Figure 1d,e). Figure 1d shows the transit in the

complex plane of a single eigenmode's frequency response, starting at

low frequencies in the bottom right quadrant, and moving to the

upper left quadrant at high frequencies. The magnitude, given by dis-

tance from origin, suggests that most eigenmodes have two promi-

nent lobes, one roughly corresponding to lower frequency alpha

rhythm and another corresponding to higher frequency beta or

gamma rhythms, respectively. In contrast, the lowest few eigenmodes

start off far from the origin, indicative of a low-pass response. The

magnitude of these complex-valued curves shown in Figure 1e rein-

forces these impressions, with clear alpha peak, as well as slower

rhythms of the lowest eigenmodes. The spectral profile of the eigen-

modes, especially the peak frequencies, are sensitive to the choice of

model parameters as demonstrated below.

The spatial patterns of the first 5 eigenmodes of L ωð Þ, evaluated

at the alpha peak of 10Hz, are shown in Figure 1f. Eigenmodes u1−4 pro-

duce posterior and temporal spatial patterns, including many elements of

the default mode network; u4 resembles the sensorimotor network; and u5

the structural core of the human connectome. However, these patterns

are not exclusive and greatly depend on the frequency at which they are

evaluated, as well as the model parameters. Higher eigenmodes are espe-

cially sensitive to axonal velocity and frequency (not shown here).

Since the spectral graph model (SGM) relies on connectome topol-

ogy, we demonstrate in Figure 2 that different connectivity matrices pro-

duce different frequency responses: (a) the individual's structural

connectivity matrix, (b) HCP average template connectivity matrix,

(c) uniform connectivity matrix of ones, (d) a randomly generated matrix,

(e) and (f) are randomly generated matrices with 75% and 95% sparsity

respectively. For Figure 2a, optimized parameters for the individual sub-

ject's connectome were used. For Figures 2b–f, parameters optimized

for the HCP template were used. We can observe the spectral profile of

the eigenmodes, especially the peak frequencies, are sensitive to the

choice of the connectome and the model parameters. All modeled power

spectra show a broad alpha peak at around 10 Hz and a narrower beta

peak at around 20 Hz. This is expected, since these general spectral

properties are governed by the local linearized neural mass model. It is

important to note that different eigenmodes accommodate a diversity of

frequency responses; for instance, the lowest eigenmodes show a low-

frequency response with no alpha peak whatsoever. In the frequency

responses from biologically realistic individual and HCP template con-

nectomes, there is a diversity of spectral responses among eigenmodes

that is lacking in the response produced by the unrealistic uniform and

randomized matrices. As we will see below, graph topology is critical to

the power spectrum it induces, hence we explored whether and how

sparsity of random graphs mediates spectral power (Figure 2d–f). At

incrementally increasing sparsity levels, the diversity of spectral

responses of different eigenmodes increases and approaches that of

realistic connectomes. Therefore, graph eigenmodes induce unique and

diverse frequency responses that depend on the topology of the graph.

3.2 | Spectral distribution of MEG power depends

on model parameters but not connectivity

Network eigenmodes exhibit strong spatial patterning in their fre-

quency responses, even with identical model parameters (Figure 3).

We evaluated the model spectral response using the subject-specific

Cind matrices of four representative subjects (Figure 3a). The model

power spectra strikingly resemble empirical MEG spectra, displaying

both the alpha and beta peaks on average, and similar regional vari-

ability as in real data.

Regional averages of empirical and modeled power spectra of the

entire group after full parameter optimization over individual subjects

are shown in Figure 3b. The model closely replicates the observed

power spectrum (red circles) equally well with both Cind (black trian-

gles) and CHCP (purple triangles). Thus, in most cases we can safely

replace the subject-specific connectome with the template

connectome. In contrast, when nonoptimized average parameters

were used (golden green triangles), it resulted in a worse fit, especially

at high frequencies, suggesting that individualized parameter
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optimization is essential to produce realistic spectra. We also exam-

ined the model behavior for a random connectomes with 80% sparsity

(bright green triangles), or a distance-based connectome (blue trian-

gles) was chosen with identical sparsity (80%) to the actual

connectome, and found that even with optimized parameters the

average spectra could be accounted for by these connectomes.

As another benchmark for comparison, a nonlinear neural mass

model (Muldoon et al., 2016; Wilson & Cowan, 1973) using our in-

house MATLAB implementation (Xie et al., 2018), was generally able

to produce characteristic alpha and beta frequency peaks, but this

model does not resemble empirical wideband spectra. Note that no

regionally varying NMM parameters were used in order to achieve a

proper comparison with our model, but both models were optimized

with the same algorithm.

Figure 4a shows violin plots of the optimized values, indicating

that there is a large range of individually optimal model parameters

F IGURE 2 Spectral graph model

predictions of MEG spectra for one

representative subject. Top—Observed

MEG power spectrum for each of the

68 parcellated brain regions. Average

spectra for each brain region are shown in

blue, and the average spectrum across all

brain regions is shown in thick black

curve. The subsequent rows show each

eigenmode's spectral magnitude response

with model parameters optimized to

match the observed spectrum

(τe = 0.0073, τi = 0.0085, τG = 0.0061,

gei = 2.9469 gii = 4.4865, ν = 18.3071 and

α = 0.4639). Left column shows each

eigenmode's frequency response in a

differently-colored curve, while the right

column shows the same information as a

heatmap. (a) Model using subject's

individual structural connectivity matrix.

(b) Model using a template structural

connectivity matrix obtained by averaging

structural connectivity from 80 HCP

subjects. (c) Model using uniform

connectivity matrix of ones. (d) Model

using randomized connectivity matrix

with no sparsity. (e) Model using

randomized connectivity matrix with 75%

sparsity. (f) Model using randomized

connectivity matrix with 95% sparsity. In

all cases the connectome modulates the

spectral response in delta–beta range,

leaving the higher gamma frequencies

unchanged. In general, the low

eigenmodes (u1 − u20) appear to

modulate the lower frequency range, up

to beta, and may be considered

responsible for the diversity of spectra

observed in the model
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across subjects. The time constants τe, τi showed tight clustering but

the rest of the parameters showed high variability across subjects.

The optimal parameters are in a biologically plausible range, similar to

values reported in numerous neural mass models. The optimization

algorithm aimed to maximize a cost function proportional to the pos-

terior likelihood of the model, and was quantified by the Pearson's

correlation between MEG and modeled spectra (“Spectral correla-

tion”). The convergence plots shown in Figure 4b, one curve for each

subject, indicates substantial improvement in cost function from

default choice as optimization proceeds. The distribution of optimized

spectral correlations is shown in 4C. Other model choices were

evaluated for comparison: SGM on random connectomes with 80 and

95% sparsity, with and without a distance effect described in

Methods, and SGM applied with average optimal model parameters

instead of individually optimized ones. In order to test for significance,

Fisher's R to z transform was applied, followed by a paired t-test

across all subjects between the optimal SGM and other models. The

spectral fits for an SGM model with individual connectomes were sig-

nificantly better than SGM models with average parameters, no mat-

ter what connectomes were chosen (p < 0.001). Interestingly, spectral

fits for SGM model were comparable across all connectomes

(p > 0.05). Furthermore, spectral fits for the SGM model were

F IGURE 3 Spectral graph model

depicts MEG spectra across subjects.

(a) The observed spectra and spectral

graph model's simulated spectra for

four representative subjects. Red and

cyan curves illustrate source localized

empirical average spectra and region-

wise spectra respectively, while black

and blue curves illustrate modeled

average spectra and region-wise

spectra respectively. (b) Averaged

observed spectrum across subjects is

shown in red. The average simulated

model spectra summing the first two-

third eigenmodes with optimized

parameters for individual subject's

connectome is shown in black. Model

spectrum with optimized parameters

and the HCP template connectome is

shown in purple. Model spectrum with

average parameter values and

individual subject's connectome is

shown in golden green. Model

spectrum with optimized parameters

and a distance connectome with 80%

sparsity is shown in blue. Model

spectrum with optimized parameters

and symmetric random connectomes

with 80% sparsity is shown in green.

Finally, model power spectrum

estimated by a neural mass model

(NMM) with each subject's optimized

global parameters and a HCP template

connectome is shown in pink

RAJ ET AL. 2989



significantly better than that for NMM models with optimized param-

eters and individual connectome (p < 1e-20). Therefore, we conclude

that with the graph spectral model, the overall regional spectra appear

to be dependent on global model parameters rather than on the actual

structural connectome.

3.3 | Spectral graph model recapitulates the spatial

distribution of MEG power

Next, we establish that the model is able to reproduce region-specific

spectra, even though it uses identical local oscillations. We integrated

the spectral area in the range 8–12 Hz for alpha and 13–25 Hz for

beta, of each brain region separately. We define “spatial correlation”

(as compared to spectral correlation above) as Pearson's R between

the regional distribution of empirical MEG and model-predicted power

within a given frequency band.

3.4 | A small number of eigenmodes capture

spatial distributions of alpha and beta band activity

We noticed during our experimentation that only a few eigenmodes

appear to contribute substantially to observed MEG alpha and beta

patterns. Hence, we hypothesized that spatial correlations could be

improved by selecting a small subset of eigenmodes. Therefore, we

F IGURE 4 Spectral graph model parameter optimization improves spectral fits. (a) Distribution of optimized model parameter values across

all 36 subjects for the set of parameters {τe, τi, τc, gei, gii, α, υ} are shown in violin plots with each dot representing one subject.

(b) Performance of optimization algorithm. Spectral Pearson correlation between model and source localized MEG spectra at each iteration. Each

curve shows the spectral correlation achieved by the model optimized for a single subject, averaged over all regions, with increasing mean

correlation values until the algorithm convergence to a set of optimized parameters. (c) Distribution of spectral correlations between optimized

model and observed spectra across subjects. Correlations with optimized parameters are shown in the left three columns with individual

connectomes (black), symmetric random connectomes with 80% and 95% sparsity (green) and geodesic distance-based connectomes (blue).

Correlation with average parameter values and individual connectomes are shown in golden green. Spectral correlations are highest for the SGM

model with optimized parameters and the individual subject specific connectome when compared to SGM model with average parameters,

regardless of the connectome and with an optimized NMMmodel, as denoted by asterisk (p < .001)
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developed a sorting strategy whereby we first rank the eigenmodes in

descending order of spatial correlation for a given subject and given

frequency band. Then we perform summation over only these eigen-

modes according to Equation (10), each time incrementally adding a

new eigenmode to the sum. The spatial correlation of these “sorted-

summed” eigenmodes against empirical alpha power are plotted in

Figure 5c as a function of increasing number of eigenmodes; one

curve for each subject. The thick black curve represents the average

over all subjects. The spatial correlation initially increases as we add

more well-fitting eigenmodes, but peaks around, and begins declining

thereafter. Addition of the remaining eigenmodes only serves to

reduce the spatial correlation. This behavior is observed in almost all

subjects we studied.

Examples of predicted alpha patterns: Figure 5 shows brain sur-

face renderings of the spatially distributed patterns of alpha band

power for two representative subjects. Regions are color coded as a

heatmap of regional power scaled by mean power over all regions.

The observed MEG spatial distribution pattern of alpha band shows

higher power in posterior regions of the brain, as expected, with

strong effect size in temporal, occipital and medial posterior areas.

This pattern is matched by one of the eigenmodes (#10, shown in

middle panel, giving R = 0.65), and slightly better by a weighted com-

bination of two eigenmodes (R = 0.69). However, the model did not

reproduce parietal and parieto-occipital components seen in real data.

The other subject produced similar results, but with six eigenmodes.

F IGURE 5 Alpha power spatial distribution depicted by specific spectral graph model eigenmodes. (a, b) The spatially distributed patterns of

alpha band power for two representative subjects are displayed in brain surface renderings. For each four brain panels shown, the medial surface

is rendered on the left column while the lateral surface is rendered on the right, the left hemisphere rendering is shown on top while the right

hemisphere rendering is shown in the bottom row. Left column: The observed MEG spatial distribution pattern for alpha band power showing

higher power in posterior regions of the brain. Middle column: Spatial distribution of the best matching eigenmode from the spectral graph model.

The spatial correlation values are shown on top. Right column: Spatial distribution of the best cumulative combination of eigenmodes from the

spectral graph model. Spatial correlation values and the number of eigenmodes are shown on top. (c) Across subject distribution of the alpha band

spatial correlation values from spectral graph model simulations for the best fit eigenmodes and the cumulative combination of an increasing

number of eigenmodes. Individual subject specific alpha band spatial correlation curves are shown in cyan (n = 36). Panels A and B correspond to

the subjects indicated by red and blue curves respectively. Black curve is the average performance across all subjects
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In this instance, the parietal component seen in real data were reason-

ably reproduced by the model.

Examples of predicted beta patterns: Empirical beta power (Figure 6,

left) is spread throughout the cortex, especially frontal and premotor

cortex. A combination of four and six best matching eigenmodes pro-

duced the best model match to the source localized pattern of two repre-

sentative subjects, respectively, with R = 0.55 and 0.48. Figure 6c shows

how the spatial correlation changes as more eigenmodes are used in the

“sorted summed” algorithm, analogous to that of alpha pattern. Here too,

a peak is achieved for a small number of eigenmodes, typically under 10.

3.5 | Spatial correlation achieved by the spectral

graph model is significantly higher than alternative

models

The distribution of peak spatial correlations in the alpha band, using

optimized parameters and individual connectomes of all subjects, is

plotted in Figure 7a. For comparison we show results for four models:

(a) spectral graph model (SGM) on subject specific individual con-

nectomes (CInd, black); (b) SGM with the HCP template connectome

(CHCP, purple); (c) SGM on random connectomes with 80% sparsity

comparable to individual connectomes or with 95% sparsity where the

model shows spectral diversity (CRdm, green); (d) SGM on geodesic dis-

tance based connectomes (CDist, blue); and (e) a Wilson–Cowan neural

mass model (NMM) with subject specific individual connectome (CInd,

pink). Analogous results for beta band spatial correlations are contained

in Figure 7b. For each connectome model, a selection of the cumulative

best set of eigenvectors were separately obtained for spatial correlation

calculations. Across all subjects the proposed model, SGM on CInd, gives

excellent spatial correlations in alpha band (R distribution centered at

0.6) as well as in the beta band (R distribution centered at 0.5). For both

alpha and beta spatial distribution patterns, paired t-tests between

SGM with CInd and all other models show that, the SGM with CInd sig-

nificantly outperforms all other models, as determined by a paired

t-test; p < .012 in each case, denoted by asterisk.

3.5.1 | Alternate nonlinear model

The Wilson–Cowan neural mass model also did not succeed in

predicting the spatial patterns of alpha or beta power, with poor

F IGURE 6 Beta power spatial distributions depicted by specific spectral graph model eigenmodes. Legend is identical to Figure 5 but shown

for beta power spatial distributions
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correlations (r centered at 0). This could be because in our implemen-

tation we enforced uniform local parameters with no regional variabil-

ity. However, this is the appropriate comparison, since our proposed

model also does not require regionally varying parameters. Interest-

ingly, the random connectomes and geodesic distance based

connectome also appear to have some ability to capture these spatial

patterns (r centered at 0.4 and 0.2 respectively), perhaps due to the

implicit search for best performing eigenmodes, which on average will

give at least a few eigenmodes that look like MEG power purely by

chance.

Collectively, we conclude that the graph model is able to fit both

the spectral and spatial features of empirical source localized MEG

data, and that the optimal fits performed on individual subjects occurs

at widely varying subject-specific parameter choices.

4 | DISCUSSION

The proposed hierarchical graph spectral model of neural oscillatory

activity is a step towards understanding the fundamental relationship

between network topology and the macroscopic whole-brain dynam-

ics. The objective is not just to model brain activity phenomenologi-

cally, but to analytically derive the mesoscopic laws that drive

macroscopic dynamics. This model of the structure–function relation-

ship has the following key distinguishing features. (a) Hierarchical: the

model's complexity depends on the level of hierarchy being modeled:

complex, nonlinear and chaotic dynamics can be accommodated at

the local level, but linear graph model is sufficient at the macro-scale.

(b) Graph-based: Macroscopic dynamics is mainly governed by the

connectome, hence linear approximations allow the steady-state

frequency response to be specified by the graph Laplacian eigen-

decomposition, borrowing heavily from spectral graph theory

(Auffarth, 2007; Kondor, 2002; Larsen et al., 2006; Ng & M. Jordan

YW., 2002). (c) Analytic: The model is available in closed form, without

the need for numerical simulations. (d) Low-dimensional and parsimoni-

ous: Simple, global and universal rules specified with a few parame-

ters, all global and apply at every node, are able to achieve sufficiently

complex dynamics. The model is incredibly easy to evaluate, taking no

more than a few seconds per brain and to infer model parameters

directly from a subject's MEG data. The optimized model matches

observed spectral and spatial patterns in MEG data quite well. No

time-consuming simulations of coupled neural masses or chaotic oscil-

lators were needed; indeed, the latter greatly underperformed our

model. We report several novel findings with potentially important

implications, discussed below.

4.1 | Recapitulating regional power spectra at all

frequencies

Our main result is the robust demonstration of the model on

36 subjects' MEG data. The representative examples shown in Fig-

ures 3–6 indicate that the graph model recapitulates the observed

source localized MEG power spectra for the 68 parcellated brain

regions, reproducing the prominent alpha and beta peaks. For each

region, the model is also able to predict some characteristics of the

full bandwidth power spectra, including what appears to be an

inverse power law fall-off over the entire frequency range of inter-

est. However, this aspect will be quantitatively characterized in

future work.

F IGURE 7 Spatial correlation performance analysis of the spectral graph model. Distribution of the best fit spatial correlations of the spectral

graph model across all subjects. (a) Alpha band spatial correlations. (b) Beta band spatial correlations. For both panels, spatial correlations are shown

for spectral graph model (SGM) with subject specific individual connectomes (CInd, black), random connectomes with 80% sparsity comparable to

individual connectomes and 95% sparsity where the SGM model eigenmodes show spectral diversity (CRdm, blue), geodesic distance based

connectomes (CDist,green) and for a neural mass model (NMM) with subject specific individual connectome (CInd, pink). For each model, a selection

of the cumulative best set of eigenvectors were separately obtained for spatial correlation calculations. For both alpha and beta spatial distribution

patterns, paired t-tests between SGM with CInd and all other models show that, the SGM with CInd significantly outperforms all other models, as

determined by a paired t-test; p < .001 for all alpha spatial correlations and p < .012 for all beta spatial correlations, denoted by asterisk
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We designed a comprehensive parameter optimization algorithm

on individual subjects' MEG data of a suitably defined cost function

based on Pearson R statistic as a way to capture all relevant spectral

features. Using this fitting procedure, we were able to obtain the

range of optimally fitted parameters across the entire study cohort. As

shown in Figure 4a, the range is broad in most cases, implying that

there is significant inter-subject variability of model parameters, even

if a template connectome is used for all. We tested the possibility that

a group-averaged parameter set might also succeed in matching real

spectral data on individuals. But as shown in Figures 3b and 4c, this

was found to be a poor choice, supporting the key role of individual

variability of model parameters (but not variability in the connectome).

However, no model is capable of reproducing higher frequencies in

the higher beta and gamma range seen in MEG, since by design and

by biophysical intuition, these frequencies arise from local neural

assemblies rather than from modulation by macroscopic networks.

4.2 | Revealing sources of heterogeneity in spatial

patterns of brain activity

The spatial match between model and data is strongest when the

model uses empirical macroscopic connectomes obtained from

healthy subjects' diffusion weighted MRI scans, followed by

tractography. The use of “null” connectomes—randomized connectiv-

ity matrices of varying levels of sparsity and distance-based connec-

tivity matrices, respectively, did far worse than actual human

connectomes (Figure 7), supporting the fact that the latter is the key

mediator of spatial patterns of real brain activity. The match was also

significantly different when using a template HCP connectome versus

the individual subject's own connectomes (Figure 7), and when com-

pared to spatial patterns predicted by an NMM. In conclusion, for the

purpose of predicting the spatial topography of brain activity, it is

important to use individual connectomes and optimized model

parameters.

4.3 | Macroscopic brain rhythms are governed by

the connectome

A predominant view assumes that different brain rhythms are pro-

duced by groups of neurons with similar characteristic frequencies,

which might synchronize and act as “pacemakers.” How could this

view explain why alpha and beta power are spatially stereotyped

across subjects, and why the alpha signal is especially prominent in

posterior areas? Although practically any computer model of cortical

activity can be tuned, with suitable parameter choice, to oscillate at

alpha frequency, for example, (David & Friston, 2003; Deco et al.,

2012; Liley et al., 1999; Nakagawa et al., 2014; Nunez & Srinivasan,

2006; Robinson et al., 2005; Vijayan, Ching, Purdon, Brown, & Kopell,

2013), none of them were able to parsimoniously recapitulate the

posterior origin of alpha. Thus, the prominence of posterior alpha

might be explained by the hypothesized existence of alpha generators

in posterior areas. Indeed, most oscillator models of local dynamics

are capable of producing these rhythms at any desired frequency

(David & Friston, 2003; Liley et al., 1999; Liley, Cadusch, & Dafilis,

2002; Spiegler & Jirsa, 2013; van Rotterdam, Lopes da Silva, van den

Ende, Viergever, & Hermans, 1982), and therefore it is common to

tweak their parameters to reproduce alpha rhythm. Local networks of

simulated multicompartmental neurons can produce oscillations in the

range 8–20 Hz 5, and, in a nonlinear continuum theory, peaks at vari-

ous frequencies in the range 2–16 Hz were obtained depending on

the parameters (Liley et al., 2002). Specifically, the role of thalamus as

pacemaker has motivated thalamocortical models (Izhikevich &

Edelman, 2008; Robinson et al., 2005) that are capable of resonances

in various ranges. Neural field models of the thalamocortical loop

(Robinson et al., 2005) can also predict slow-wave and spindle oscilla-

tions in sleep, and alpha, beta, and higher-frequency oscillations in the

waking state. In these thalamocortical models, the posterior alpha can

arise by postulating a differential effect in weights of the posterior

versus anterior thalamic projections, for example, (Vijayan et al.,

2013). Ultimately, hypotheses requiring local rhythm generators suffer

from lack of parsimony and specificity: a separate pacemaker must be

postulated for each spectral peak at just the right location

(Nunez, 1981).

An alternative view emerges from our results that macroscopic

brain rhythms are governed by the structural connectome. Even with

global model parameters, using the exact same local cortical dynamics

captured by the local transfer function Hlocal(ω), driven by identically

distributed random noise P(ω), our model is capable of predicting

prominent spectral (Figures 3 and 4) and spatial (Figures 5 and 6) pat-

terning that is quite realistic. This is especially true in the lower fre-

quency range: indeed, the model is able to predict not just the

frequency spectra in alpha and beta ranges, but also their spatial

patterns—that is, posterior alpha and distributed but roughly frontal

beta. Although this is not definitive proof, it raises the intriguing possi-

bility that the macroscopic spatial distribution of the spectra of brain

signals does not require spatial heterogeneity of local signal sources, nor

regionally variable parameters. Rather, it implies that the most promi-

nent patterning of brain activity (especially alpha) may be governed by

the topology of the macroscopic network rather than by local, regionally

varying drivers. Nevertheless, a deeper exploration is required of the

topography of the dominant eigenmodes of our linear model, in order

to understand the spatial gradients postulated previously (Robinson

et al., 2005; Vijayan et al., 2013).

4.4 | Emergence of linearity from chaotic brain

dynamics

The nonlinear and chaotic dynamics of brain signals may at first appear

to preclude deterministic or analytic modeling of any kind. Yet, vast

swathes of neuroscientific terrain are surprisingly deterministic, repro-

ducible and conserved across individuals and even species. Brain

rhythms generally fall within identical frequency bands and spatial maps

(Freeman & Zhai, 2008; He et al., 2010; Robinson et al., 2005). Based
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on the hypothesis that the emergent behavior of long-range interactions

can be independent of detailed local dynamics of individual neurons

(Abdelnour et al., 2014; Destexhe & Sejnowski, 2009; Miši�c et al., 2014;

Miši�c et al., 2015; Robinson et al., 2005; Shimizu & Haken, 1983), and

may be largely governed by long-range connectivity (Abdelnour, Raj,

et al., 2015a; Deco et al., 2012; Jirsa et al., 2002; Nakagawa et al.,

2014), we have reported here a minimal linear model of how the brain

connectome serves as a spatial-spectral filter that modulates the under-

lying nonlinear signals emanating from local circuits. Nevertheless, we

recognize the limitations of a linear model and its inability to capture

inherent nonlinearities across all levels in the system.

4.5 | Relationship to other work

One can view the proposed generative model as a biophysical realiza-

tion of a dynamic causal model (DCM) (Daunizeau, David, & Stephan,

2011; Friston, Preller, Mathys, et al., 2019; Pinotsis et al., 2017;

Pinotsis, Hansen, Friston, & Jirsa, 2013; Razi, Kahan, Rees, & Friston,

2015) for whole brain electrophysiological activity but with very dif-

ferent goals, model dimensionality and inference procedures.

First, the goal of many prior efforts using DCMs is to examine

effective connectivity in EEG, LFP and fMRI functional connectivity

data, typically for smaller networks(Daunizeau, Kiebel, & Friston, 2009;

Pinotsis et al., 2017), or dynamic effective connectivity(Park, Friston,

Pae, Park, & Razi, 2018; Preti, Bolton, & Van De Ville, 2017; Van de

Steen, Almgren, Razi, Friston, & Marinazzo, 2019). Hence, they address

the second order covariance structures of brain activity. In particular,

recent spectral DCM and regression DCM models (Frässle et al., 2017;

Frässle et al., 2018; Razi et al., 2017) with local neural masses are for-

mulated in the steady-state frequency-domain, and the resulting

whole-brain cross-spectra are evaluated. The goals of these models are

to derive model cross-spectra that define the effective connectivity in

the frequency domain and are compared with empirical cross-spectra.

Based on second-order sufficient statistics, these models attempt to

derive effective connectivity from functional connectivity data. These

DCMs have so far only been applied to small networks or to BOLD

fMRI regime. In contrast, our goal is to examine the role of the eigen-

modes of the structural connectome and their influence on power

spectral distributions in the full MEG frequency range, and over the

entire whole brain. In subsequent work, we intend to extend our efforts

to examining effective connectivity but such an effort currently remains

outside the scope of the work in this paper. Here, we focus on models

that directly estimate the first order effects of observed power spectra

and its spatial distributions and compare them with empirical MEG

source reconstructions. Our primary motivation is to examine whether

spatial distribution of observed power spectra can arise from graph

structure of the connectome, hence our focus on the effects of model

behavior as a function of the underlying structural connectome—

whether it is individualized, template-based, uniform, random or dis-

tance based. DCM methods have not reported first order regional

power spectra as we do here, nor have they explored how the struc-

tural connectome influences model spectral distributions.

Second, our model is more parsimonious compared to most of

these above-mentioned models, which have many more degrees of

freedom because they often allow for regions and their interactions to

have different parameters. Our model parameterization, with only a

few global parameters, lends itself to efficient computations over

fine-scale whole-brain parcellations, whereas most DCMs (with the

exception of recent spectral and regression DCMs (Frässle et al.,

2017; Frässle et al., 2018; Razi et al., 2017)) are suited for examining

smaller networks but involve large effective connectivity matrices and

region-specific parameters. Furthermore, parameters of our model

remain grounded and interpretable in terms of the underlying bio-

physics, that is, time constants and conductivities. In contrast, spectral

and regression DCM models of cross-spectra have parameters that

are abstract and do not have immediate biophysical interpretation.

The third major difference is in the emphasis placed on Varia-

tional Bayesian inference in DCM. Since our focus was on exploring

model behavior over a small number of global parameters and a set of

structural connectomes (whether anatomic or random) of identical

sparsity and complexity, it was sufficient to use a maximum a

posteriori (MAP) estimation procedure for Bayesian inference of our

global model parameters with flat noninformative priors with pre-

determined ranges based on biophysics. Like most DCM efforts our

model can be easily be extended to Variational Empirical Bayesian

inference for parameter estimation, for instance to compute a full pos-

terior of the structural connectivity matrix. In such a formulation, we

can assume that the observed structural connectome will serve as the

prior mean of the connectivity matrix. We reserve such extensions to

our future work with this spectral graph model.

4.6 | Other limitations and extensions

The model currently examines resting-state activity, but future exten-

sions will include prediction of functional connectivity, task-induced

modulations of neural oscillations and causal modeling of external

stimuli, for example, transcranial magnetic and direct current stimula-

tion. The current implementation does not incorporate complex local

dynamics, but future work will explore using nonwhite internal noise

and chaotic dynamics for local assemblies. This may allow us to exam-

ine higher gamma frequencies. Although our model incorporates

latency information derived from path distances, we plan to explore

path-specific propagation velocities derived from white matter micro-

structural metrics such as axon diameter distributions and myelin

thickness. Future work will also examine the specific topographic fea-

tures of the structural connectome that may best describe canonical

neural activity spectra. Finally, we plan to examine the ability of the

model to predict time-varying structure–function relationships.

4.7 | Potential applications

Mathematical encapsulation of the structure–function relationship

can potentiate novel approaches for mapping and monitoring brain
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diseases such as autism, schizophrenia, epilepsy and dementia, since

early functional changes are more readily and sensitively measured

using fMRI and MEG, compared to structural changes. Because of the

complementary sensitivity, temporal and spatial resolutions of diffu-

sion MRI, MEG, EEG and fMRI, combining these modalities may be

able to reveal fine spatiotemporal structures of neuronal activity that

would otherwise remain undetected if using only one modality. Cur-

rent efforts at fusing multimodalities are interpretive, phenomenologi-

cal or statistical, with limited cognizance of underlying neuronal

processes. Thus, the ability of the presented model to quantitatively

and parsimoniously capture the structure–function relationship may

be key to achieving true multimodality integration.
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