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Abstract We developed and applied a novel numer-

ical scheme for a gravimetric forward modelling of

the Earth’s crustal density structures based entirely

on methods for a spherical analysis and synthe-

sis of the gravitational field. This numerical scheme

utilises expressions for the gravitational potentials

and their radial derivatives generated by the ho-

mogeneous or laterally varying mass density layers

with a variable height/depth and thickness given in

terms of spherical harmonics. We used these ex-

pressions to compute globally the complete crust-

corrected Earth’s gravity field and its contribution

generated by the Earth’s crust. The gravimetric for-

ward modelling of large known mass density struc-

tures within the Earth’s crust is realised by using

global models of the Earth’s gravity field (EGM2008),

topography/bathymetry (DTM2006.0), continental ice-

thickness (ICE-5G), and crustal density structures

(CRUST2.0). The crust-corrected gravity field is
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obtained after modelling and subtracting the gravi-

tational contribution of the Earth’s crust from the

EGM2008 gravity data. These refined gravity data

mainly comprise information on the Moho interface

and mantle lithosphere. Numerical results also reveal

that the gravitational contribution of the Earth’s crust

varies globally from 1,843 to 12,010 mGal. This grav-

itational signal is strongly correlated with the crustal

thickness with its maxima in mountainous regions

(Himalayas, Tibetan Plateau and Andes) with the pres-

ence of large isostatic compensation. The correspond-

ing minima over the open oceans are due to the thin

and heavier oceanic crust.

Keywords Crust · Forward modelling · Gravity field ·

Spectral representation · Synthetic model of the Earth

1 Introduction

Various methods have been developed and applied

to compute topographic gravity corrections. Study-

ing the global long-wavelength Earth’s gravity field,

the spectral representation of Newton’s integral is

typically utilised in deriving expressions for the for-

ward modelling of the topography-generated gravita-

tional field. Sünkel [50] derived spectral expressions for

computing the topographic and topographic–isostatic

potentials by means of spherical height functions.

Grafarend and Engels [14] and Grafarend et al. [15]

formulated expressions for an evaluation of the grav-

itational potential generated by topographic–isostatic

masses. Alternative expressions for the topographic

potential and its radial derivative were formulated in

Vaníček et al. [70]. Sjöberg and Nahavandchi [42],
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Tsoulis [63], Sjöberg [43], Novák [29], Novák et al.

[30], Tsoulis [64], Sjöberg [45], Heck [16], Tenzer [51],

Sjöberg [47] and Novák [33] derived various expres-

sions for computing parameters of the topography-

generated gravitational field by using methods for

a spherical harmonic analysis and synthesis. Wild

and Heck [71] introduced expressions for topographic

effects on satellite gradiometry. Makhloof [25] derived

expressions for computing topographic–isostatic effects

on airborne and spaceborne gravimetry, and gradiome-

try data. Alternative expressions for computing topo-

graphic effects in spaceborne gravimetry and gra-

diometry applications were formulated by Novák and

Grafarend [32] and Eshagh and Sjöberg [7, 8]. Novák

and Grafarend [31] derived the topographic potential

and its radial derivative using the ellipsoidal represen-

tation of Newton’s integral.

Sjöberg [39, 40] and Sjöberg and Nahavandchi [42]

defined atmospheric effects on the gravity and the

geoid using the spherical harmonic analysis. This con-

cept was further developed in Sjöberg [41, 45] and

Sjöberg and Nahavandchi [44]. In these studies, geom-

etry of the lower atmospheric bound is described

by spectral coefficients of a global elevation model.

Ramillien [37] applied a similar concept to compute

the atmosphere-generated gravitational attraction.

Nahavandchi [28] computed the direct atmospheric

gravity effect on a regular grid at the Earth’s surface

over the territory of Iran including offshore areas. He

combined the local and global topographic information

using detailed digital terrain models and global eleva-

tion model coefficients. Sjöberg [46] derived expres-

sions in the spectral representation for the atmospheric

potential and its radial derivative considering the ellip-

soidal layering of the Earth’s atmosphere. Atmospheric

effects in satellite geodesy applications were discussed

by Novák and Grafarend [32] and Eshagh and Sjöberg

[8]. Novák and Grafarend [32] proposed a method

for computing the gravitational effect of atmospheric

masses on spaceborne data based on the spherical

harmonic approach with a numerical study in North

America. Eshagh and Sjöberg [8] applied an alternative

spherical approach to compute the atmospheric effect

on satellite gravity gradiometry data over Fennoscan-

dia. Tenzer el al. [55] applied the analytical continu-

ation approach in deriving expressions for modelling

the atmospheric gravity corrections in a form of the

spherical height functions.

Tenzer et al. [52–54, 57] computed globally bathy-

metric stripping corrections to gravity field parame-

ters using a spherical harmonic approach. In all these

studies, a constant value of the seawater density was

adopted. Novák [32] computed globally the gravita-

tional potential generated by the ocean saltwater den-

sity with a high-degree spectral resolution. Tenzer

et al. [59, 60] facilitated a depth-dependent seawater

density model in deriving expressions for computing

the bathymetric stripping gravity corrections in order to

reduce large errors otherwise presented in results when

using only a constant seawater density. These expres-

sions utilise the spherical bathymetric functions for the

spectral definition of the bathymetry-generated gravity

field. The expressions for computing the ice density

contrast stripping corrections to gravity data given in

terms of spherical harmonics were derived in Tenzer et

al. [58]. The convergence and optimal truncation of the

binomial series associated with spherical harmonic rep-

resentation of the gravity field were studied in detail,

for instance, by Rummel et al. [38], Sun and Sjöberg

[49], and Novák [34].

In geophysical studies investigating the lithosphere

structure, the gravitational effect of the known sub-

surface mass density distribution is modelled and sub-

sequently removed from observed gravity in order to

reveal the remaining gravitational signal of the un-

known (and sought) anomalous subsurface density dis-

tribution or the density interface (cf., e.g., [20–23]).

Studies of the global crustal model CRUST2.0 can

be found in Tsoulis [65, 66], Tsoulis and Venesis [67]

and Tsoulis et al. [68]. The gravimetric methods for

recovery of the Moho density interface were devel-

oped and applied, for instance, by Arabelos et al.

[1], Sjöberg [48], and Eshagh et al. [9]. Tenzer et al.

[52–54] combined various methods for the gravimetric

forward modelling of known anomalous density struc-

tures within the Earth’s crust based on the spectral

harmonic representation (of topographic and bathy-

metric stripping gravity corrections) and using the an-

alytical integration approach, which utilise the spatial

representation of Newton’s integral (for computing the

ice, sediments, and crust components stripping gravity

corrections).

In this study, we describe all the Earth’s crust den-

sity structures uniformly by means of spherical func-

tions which define the lower and upper bounds of

homogeneous or laterally varying crustal components

mass density layers with a variable height/depth and

thickness. The corresponding gravitational field quan-

tities describing the Earth’s inner structure down to

the Moho density interface are then defined based

entirely on methods for a spherical harmonic analysis

and synthesis of gravity field (Section 2). The currently

available data of the mass density structure within

the Earth’s crust are then used to compute globally

the gravity field parameters generated by the Earth’s

crust. These results are presented and discussed in
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numerical examples (Section 3). Expectations for a

further improvement of synthetic models which de-

scribe the Earth’s gravity field are finally indicated

(Section 4). We note that a discussion on isostatic

models is out of the scope of this study.

2 Spherical harmonic representation

of the crust-corrected gravity field

A determination of the refined gravity field generated

by the regularised Earth without its crust can numer-

ically be realised by the gravitational forward mod-

elling of the inhomogeneous crust density structures.

Alternatively, it can be done in a two-step numerical

scheme consisting of the gravimetric forward modelling

of inhomogeneous crust density contrast structures and

of the consequent gravimetric forward modelling of a

homogeneous crust. The refined gravity field obtained

after applying the gravimetric crust density contrast

stripping corrections to observed gravity represents the

consolidated crust-stripped gravity field generated by

the regularised Earth with the homogeneous crust of

adopted reference (constant) density (cf. [54]). The

refined gravity field of the regularised Earth without

its crust (i.e., the crust-corrected Earth’s gravity field)

is then obtained after subtracting the gravitational field

generated by a homogeneous crust. In our numerical

studies, the gravimetric forward modelling of the ho-

mogeneous crust is done individually for topography

(i.e., application of the topographic correction) and for

remaining homogeneous crust beneath the geoid, both

having a constant reference crust density. This numer-

ical scheme is followed in deriving spectral expressions

for computing the crust-corrected gravity field.

In the following, parameters describing the dis-

turbing and anomalous Earth’s gravity field are used.

Among them the most important one is the disturbing

gravity potential T defined as a difference of the ac-

tual and reference (or normal) gravity potentials (e.g.

Heiskanen and Moritz, [17], Sections 2–13). Outside

the Earth’s masses (satisfying Laplace’s differential

equation), this potential is represented at the position

(r,�) through the spherical harmonic series (e.g. [17],

pp. 85–86)

T (r, �)

=
GM

R

n̄
∑

n=0

(

R

r

)n+1 n
∑

m=−n

Tn,mYn,m (�), ∀ r ≥ R,

(1)

GM = 3,986,005 × 10
8 m3/s2 is the geocentric gravita-

tional constant and the mean Earth’s radius R=6,371×

10
3 m approximates geocentric radii of the geoid.

Yn,m are the surface spherical harmonic functions of

degree n and order m, Tn,m are respective spherical

harmonic coefficients and n is their maximum avail-

able degree (the series is generally infinite). The 3-D

position is defined in geocentric spherical coordinates

(r, �); where r is the geocentric radius and the pair

� = (φ, λ) denotes the geocentric direction with spher-

ical latitude φ and longitude λ. The coefficients Tn,m

are derived from the coefficients of global geopotential

model (GGM) by subtracting the spherical harmonic

coefficients of the normal gravity field ([17], p. 88).

Finally, the general condition of r ≥ R applies through-

out the article without being explicitly repeated in each

relevant equation. The gravity disturbance δg reads in

the spherical approximation as ([62], p. 271)

δg (r, �) = −
∂T (r, �)

∂r

=
GM

R2

n̄
∑

n=0

(

R

r

)n+2

(n + 1)

n
∑

m=−n

Tn,mYn,m (�).

(2)

The gravity anomaly �g is defined through the funda-

mental gravimetric formula ([62], p. 271)

�g (r, �) = δg (r, �) −
2

r
T (r, �)

=
GM

R2

n̄
∑

n=0

(

R

r

)n+2

(n − 1)

n
∑

m=−n

Tn,mYn,m (�).

(3)

The term 2r−1T in Eq. 3 is the so-called secondary indi-

rect ef fect. The parameters T, �g and δg will be reduced

for gravitational effects of selected known Earth’s mass

components.

The consolidated crust-stripped disturbing gravity po-

tential Tc is computed from the disturbing gravity po-

tential T by using the following expression

Tc (r, �) = T (r, �) − Vt (r, �) + Vb (r, �)

+Vi (r, �) + Vs (r, �) + Vc (r, �) , (4)

where Vt, Vb , Vi, Vs and Vc are, respectively, gravi-

tational potentials generated by topography and den-

sity contrasts due to ocean water, ice, sediments and

remaining anomalous density structures within the

Earth’s crust. These potentials are discussed in this

section as well as their vertical gradients (correspond-

ing gravitational attractions) denoted hereto as gt, gb ,
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Table 1 Statistics of
the topographic and
crust-stripping corrections
to gravity disturbances

Corrections to Min [mGal] Max [mGal] Mean [mGal] STD [mGal]

gravity disturbances

Topographic −659 −19 −70 98

Bathymetric 127 650 330 159

Ice 3 314 21 56

Sediment 14 125 35 20

Upper crust −122 9 −38 35

Middle crust −250 −68 −117 44

Lower crust −529 −118 −185 66

gi, gs and gc, respectively. By analogy with Eq. 4, the

consolidated crust-stripped gravity disturbance δgc is de-

fined as

δgc (r, �) = δg (r, �) − gt (r, �) + gb (r, �)

+ gi (r, �) + gs (r, �) + gc (r, �) . (5)

In Eqs. 4 and 5, the consolidated crust-stripped gravity

field parameters Tcand δgc are obtained from the cor-

responding disturbing gravity field parameters T and

δg after subtracting the gravitational contribution of

topographic masses and after a subsequent application

of stripping corrections due to anomalous density struc-

tures within the Earth’s crust. The computation of the

consolidated crust-stripped gravity anomaly �gc from

the consolidated crust-stripped gravity disturbance δgc

is done by applying the secondary indirect topographic

and crust density contrast effects, see Eq. 3,

�gc (r, �) = δgc (r, �)

−
2

r

[

T (r, �) − Vt (r, �) + Vb (r, �)

+ Vi (r, �) + Vs (r, �) + Vc (r, �)
]

.

(6)

[There is also the atmospheric effect to be considered.

However, Tenzer et al. [55] demonstrated that the

atmospheric correction to gravity disturbances varies

between −0.18 and 0.03 mGal, and the complete

atmospheric correction to gravity anomalies varies

from 1.13 to 1.76 mGal. These values are very small

compared to the topographic and crust-stripping grav-

ity corrections (see Tables 1 and 2 in Section 3), thus,

the atmospheric effects are not considered in the con-

text of this study.]

In this paragraph, reduction and stripping correc-

tions applied in Eqs. 4–6 are defined in a general way.

The approach originates in spatial (integral) formula-

tion of the Newtonian potential that is generated by

masses bounded by two closed 2-D surfaces, e.g., the

internal or lower surface rl(�) and the external or upper

surface ru(�). The mass density distribution within the

layer is then either constant or laterally varying. For

laterally varying density ρ, the general potential can be

written as

V (r, �) = G

∫∫

	

ρ
(

�′
)

ru(�′)
∫

rl(�′)

L−1
(

r, �, r′, �′
)

dr′ d�′.

(7)

	 is the full solid angle, and L is the Euclidean distance.

The two bounding surfaces can be represented by the

following series expansion (rl is defined relatively to

the reference sphere of radius R through Hl and ru

through Hu)

r (�) = R + H (�) = R +

n̄
∑

n=0

n
∑

m=−n

Hn,mYn,m(�), (8)

where the height function H defines the bounding sur-

faces external to the reference sphere. In case of the

Table 2 Statistics of
the topographic and
crust-stripping corrections
to gravity anomalies

Corrections to Min [mGal] Max [mGal] Mean [mGal] STD [mGal]

gravity anomalies

Topographic −414 138 42 72

Bathymetric −595 −132 −374 99

Ice −53 210 −1 36

Sediment −65 41 −34 15

Upper crust −37 80 30 24

Middle crust 10 165 110 28

Lower crust −50 262 182 41
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internal surface, the depth function D will be used. De-

veloping the inverse distance function L−1 into a series

of spherical harmonics ([17], Sections 1–15) and solving

the innermost integral in Eq. 7 yield the potential in

the form

V (r, �) = 4πGR2

n̄
∑

n=0

(

R

r

)n+1
1

2n + 1

n
∑

m=−n

Vn,mYn,m (�).

(9)

Coefficients Vn,m are defined as follows [31]

Vn,m =

∞
∑

k=0

(

n + 2

k

)

(−1)k

k + 1

Fn,m
u (k+1)

− Fn,m
l (k+1)

Rk+1
. (10)

Coefficients Fu
n,m and their powers can be computed

by the spherical analysis (Fl
n,m are defined respectively

for Hl)

Fu(k+1)
n,m =

∫∫

	

ρ
(

�′
) [

Hu
(

�′
)]k+1

Yn,m
∗
(

�′
)

d�′, (11)

with the complex conjugates of spherical harmonic

functions Yn,m
∗. Using the geocentric gravitational con-

stant of the homogeneous spherical Earth with density

ρ
earth = 5, 500 kg/m3, i.e.,

GM =
4π

3
ρ

earth G R3, (12)

the potential in Eq. 9 is rewritten in a manner consistent

with Eq. 1

V (r, �) =
GM

R

n̄
∑

n=0

(

R

r

)n+1 n
∑

m=−n

Vn,mYn,m (�), (13)

with coefficients Vn,m defined as

Vn,m =
3

2n+1

×
1

ρearth

∞
∑

k=0

(

n+2

k

)

(−1)k

k+1

Fu
n,m

(k+1)
−Fl

n,m

(k+1)

Rk+1
.

(14)

The method is described in all details in [31]. The

density function can also vary radially (only bathym-

etry in this study) which results in more complicated

expressions than given in Eq. 14. On the other hand,

if a constant density is considered (e.g. topography)

then Eq. 11 concerns only height or depth functions.

Corrections to gravity disturbances can be then derived

by applying Eq. 2, corrections to gravity anomalies by

applying Eq. 3.

The reduction and stripping corrections due to par-

ticular masses can be computed if geometry of their

bounding surfaces is known as well as their mass den-

sity distribution. Starting with topography, we consider

solid masses outside the geoid. In spherical approxi-

mation, the lower bounding surface is the geocentric

reference sphere, the upper bounding surface is the sur-

face of the Earth represented relatively to the reference

sphere by topographical height function Htu (positive

over continents, zero over oceans). The average density

of the upper continental crust 2,670 kg/m3 (cf. [18]) is

adopted as the mean topographical mass is adopted as

the mean topographical mass density ρ
t. Coefficients of

the read, see [33],

Vn,m
t
=

3

2n + 1

ρ
t

ρearth

∞
∑

k=0

(

n + 2

k

)

(−1)k

k + 1

F
tu (k+1)
n,m

Rk+1
, (15)

Coefficients F tu
n,m are derived by the spherical analy-

sis of the height function Htu (and its powers) ob-

tained from the global elevation model (GEM), see

Eq. 11. Topography represents the external boundary;

coefficients F tl
n,m for the internal boundary are equal

to zero since the spherical approximation of the geoid

is used.

Tenzer et al. [59, 60] derived spectral expressions for

computing the bathymetry-generated gravitational po-

tential Vb and attraction gb . Geometrically, sea water

masses are bounded by the reference sphere of radius

R and the ocean bottom described relatively to the

reference sphere by the depth function Dbl. In this

case a depth-dependent density model must be con-

sidered [12]

ρ
w

(

Dbl
)

= ρ
w
0

+ β

2
∑

i=1

aiρ
w

(

Dbl
)

. (16)

Respective coefficients are given as follows [59]

Vb
n,m =

3

2n + 1

�ρ
w
0

ρearth

∞
∑

k=0

(

n + 2

k

)

(−1)k

Rk+1

×

[

F
bl (k+1)
n,m

k + 1
−

a1β

�ρ
w
0

F
bl (k+2)
n,m

k + 2

−
a2β

�ρ
w
0

F
bl (k+3)
n,m

k + 3

]

. (17)

Coefficients Fbl
n,m are derived by applying a spherical

analysis of the depth function Dbl (and its powers) from

the global bathymetric model (GBM) which describes

geometry of the ocean bottom relief (lower bounding

surface), see Eq. 11. There are no coefficients for the

upper bounding surface since the spherical approxi-
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mation of the sea level is used. The nominal value

of the ocean density contrast �ρ
w
0

is defined as a

difference between reference values of the crust density

ρ
crust and the mean surface seawater density ρ

w
0 in

Eq. 16, i.e., �ρ
w
0 = ρ

crust − ρ
w
0 . The value of the surface

seawater density ρ
w
0

= 1, 027.91 kg/m3 is used as the

reference seawater density. For the adopted value of

the reference crust density ρ
crust of 2,670 kg/m3, the

reference ocean density contrast (at zero depth) equals

�ρ
w
0

= 1, 642.09 kg/m3. The parameters of the depth-

dependent density term in Eq. 16 are given by the

following values (Tenzer et al. [60]: β = 0.00637 kg/m3,

a1 = 0.7595 m−1 and a2 = −4.3984 × 10−6 m−2. These

values were estimated from the oceanographic data of

the World Ocean Atlas 2009 (provided by NOAA’s Na-

tional Oceanographic Data Center; [2, 10, 11, 19, 24])

and the World Ocean Circulation Experiment 2004

(provided by the German Federal Maritime and Hy-

drographic Agency; Gouretski and Koltermann [13]).

With reference to Tenzer et al. [58], we consider

spectral expressions for computing the gravitational

potential Vi and attraction gi generated by the ice

density contrast. In this study, we consider continen-

tal ice masses distributed over topography. Required

coefficients Vi
n,m read

Vi
n,m =

3

2n + 1

�ρ
ice

ρearth

(

F tu
n,m − F il

n,m

)

. (18)

The ice density contrast �ρ
ice is defined as the

difference between the reference density values of the

crust ρ
crust and glacial ice ρ

ice, i.e., �ρ
ice
0 = ρ

crust − ρ
ice.

For the adopted values of the reference crust density

2,670 kg/m3 and the density of glacial ice 917 kg/m3

(cf. [5]) the ice density contrast equals 1,753 kg/m3.

The density volume of the polar ice sheet is enclosed

between the upper and lower ice bounds. The upper ice

bound is identical with the upper topographic bound

over areas of the polar ice sheet. Coefficients F tu
n,m =

F iu
n,m in Eq. 18 associated with topography are defined

in Eq. 15. Numerical coefficients F il
n,m describing the

lower ice bound read

F il
n,m =

∞
∑

k=0

(

n + 2

k

)

(−1)k

k + 1

�H
(k+1)
n,m

Rk+1
, (19)

where �H(k+1)
n,m are global ice model (GIM) coefficients

of degree n and order m generated from global eleva-

tion and ice-thickness data (cf. [58])

�H(k+1)
n,m =

∫∫

	

[

Ht
(

�′
)

− Hi
(

�′
)]k+1

Y∗
n,m

(

�′
)

d�′.

(20)

We further consider the gravitational potential Vs and

attraction gs generated by the sediment density contrast.

Required coefficients Vs
n,m are computed using the fol-

lowing expressions

Vs
n,m =

3

2n+1

×
1

ρearth

n+2
∑

k=0

(

n+2

k

)

(−1)k

k+1

Fsl
n,m

(k+1)−Fn,m
su(k+1)

Rk+1
,

(21)

with Fsl
n,m and Fsu

n,m defined as

Fsl(k+1)
n,m =

∫∫

	

�ρ
s
(

�′
) [

Hsl
(

�′
)]k+1

Y∗
n,m

(

�′
)

d�′,

Fsu(k+1)
n,m =

∫∫

	

�ρ
s
(

�′
) [

Hsu
(

�′
)]k+1

Y∗
n,m

(

�′
)

d�′.

(22)

The laterally varying sediment density contrast �ρ
s in

Eq. 22 is defined as the difference between the refer-

ence density of the Earth’s crust ρ
crust and the laterally

varying sediment density ρ
s, i.e.

�ρ
s
(

�′
)

= ρ
crust

−ρ
s
(

�′
)

,
[

R − Dsu
(

�′
)

≥ r′
≥ R

−Dsl
(

�′
)

: �′
∈ 	

]

, (23)

where Dsu and Dsl are the depths (reckoned relative

to the sphere of radius R) of the upper and lower

bounds of the sediment layer, respectively. The expres-

sions for the laterally varying sediment density contrast

layer utilise the functions Fsl and Fsu which combine

the information on geometry of the volumetric sedi-

ment layer and its lateral density distribution. Their

coefficients are evaluated by using a global sediment

model (GSM) according to Eq. 22.

By analogy with Eqs. 21–23, we define the gravi-

tational potential Vc and attraction gc generated by

the consolidated (crystalline) crust density. Coefficients

Vc
n,m are given by

Vc
n,m =

3

2n+1

×
1

ρearth

n+2
∑

k=0

(

n+2

k

)

(−1)k

k+1

Fcl (k+1)
n,m − Fcu (k+1)

n,m

Rk+1
,

(24)
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where Fcl
n,m and Fcu

n,m are given by

Fcl(k+1)
n,m =

∫∫

	

�ρ
c
(

�′
) [

Hcl
(

�′
)]k+1

Y∗
n,m

(

�′
)

d�′,

Fcu(k+1)
n,m =

∫∫

	

�ρ
c
(

�′
) [

Hcu
(

�′
)]k+1

Y∗
n,m

(

�′
)

d�′.

(25)

The laterally varying crust density contrast �ρ
c in

Eq. 25 is defined as the difference between the refer-

ence density of the Earth’s crust ρ
crust and the laterally

varying crust density ρ
c, i.e.

�ρ
c
(

�′
)

= ρ
crust

−ρ
c
(

�′
)

,
[

R − Dcu
(

�′
)

≥ r′
≥ R

−Dcl
(

�′
)

: �′
∈ 	

]

, (26)

where Dcu and Dcl are the depths (reckoned relative to

the sphere of radius R) of the upper and lower bounds

of the crust layer, respectively. The expressions for

the laterally varying crust density contrast layer utilise

the functions Fcl and Fcu which combine the geometry

of the volumetric crust layer and its lateral density

distribution. Their coefficients are computed from the

global crust model (GCM) coefficients. Known vertical

crustal density changes can be modelled using more

volumetric crust layers, each having a specific lateral

density distribution with varying depth and thickness.

This is discussed in Section 3.

The expressions for computing the gravity field pa-

rameters, see Eqs. 1–3, and the gravitational field pa-

rameters generated by the topography, bathymetry,

and ice, sediments, and consolidated crust compo-

nents density contrasts, see Eqs. 15–26, are derived

in terms of spherical harmonics utilising GGM, GEM,

GBM, GIM, GSM, and GCM coefficients. Substitut-

ing these expressions to Eq. 4, we obtain the consoli-

dated crust-stripped disturbing potential Tc in the fol-

lowing form

Tc (r, �) =
GM

R

n
∑

n=0

n
∑

m=−n

(

R

r

)n+1

Tc
n,mYn,m (�), (27)

where

Tc
n,m = Tn,m − Vt

n,m + Vb
n,m + Vi

n,m + Vs
n,m + Vc

n,m,

(28)

Similarly, this substitution to Eqs. 5 and 6 yields

δgc (r, �)=
GM

R2

n
∑

n=0

(

R

r

)n+2

(n+1)

n
∑

m=−n

Tc
n,mYn,m (�),

�gc (r, �)=
GM

R2

n
∑

n=0

(

R

r

)n+2

(n−1)

n
∑

m=−n

Tc
n,mYn,m (�).

(29)

Finally, the gravitational contribution generated by the

homogeneous crust (inside the geoid) of the constant

reference density ρ
crust is subtracted from gravity field.

This final step is again defined in the spectral repre-

sentation. The upper bound of the homogeneous crust

density layer is then given by the geoid surface while

the lower bound is identical with the (model) Moho

density interface. The gravitational potential Vcrust and

attraction gcrust generated by the homogeneous crust of

the reference crust density ρ
crust (inside the geoid) are

Vcrust (r, �) =
GM

R

n̄
∑

n=0

(

R

r

)n+1 n
∑

m=−n

Vcrust
n,m Yn,m (�),

(30)

and

gcrust (r, �)=
GM

R2

n̄
∑

n=0

(

R

r

)n+2

(n+1)

n
∑

m=−n

Vcrust
n,m Yn,m (�).

(31)

The numerical coefficients Vcrust
n,m in Eqs. 30 and 31 are

given by

Vcrust
n,m =

3

2n+1

ρ
crust

ρearth

n+2
∑

k=0

(

n+2

k

)

(−1)k

k+1

F
M (k+1)
n,m −F

g (k+1)
n,m

Rk+1
,

(32)

Coefficients F
g
n,m are generated from the numerical

coefficients Tn,m of the disturbing gravity potential us-

ing the following formula (e.g. [59])

Fg
n,m =

Tn,m

γ0

, (33)

where γ 0 is normal gravity at the surface of the refer-

ence ellipsoidal GRS-80 [27]. Coefficients of the spher-

ical Moho-depth function F M
n,m can be derived by the

spherical analysis, see Eq. 11, of the depth of the

Moho density interface with respect to the geoid that
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is derived from the global Moho model (GMM). In

spherical approximation, the geocentric radius of the

geoid is approximated by R. Hence, F
g
n,m

∼= 0 and Vcrust
n,m

become

Vcrust
n,m

∼=
3

2n + 1

ρ
crust

ρearth
F M

n,m. (34)

The crust-corrected disturbing gravity potential T M is

calculated by the expression

T M (r, �) = Tc (r, �) − Vcrust

=
GM

R

n̄
∑

n=0

(

R

r

)n+1 n
∑

m=−n

(

Tc
n,m−Vcrust

n,m

)

Yn,m (�) .

(35)

The crust-corrected gravity disturbance δgM is then

given by

δgM (r, �) = δgc (r, �) − gcrust

=
GM

R

n̄
∑

n=0

(

R

r

)n+2

(n + 1)

n
∑

m=−n

×
(

Tc
n,m − Vcrust

n,m

)

Yn,m (�), (36)

and the crust-corrected gravity anomaly �gM reads

�gM (r, �) = δgM (r, �) −
2

r
T M (r, �)

=
GM

R

n̄
∑

n=0

(

R

r

)n+2

(n − 1)

n
∑

m=−n

×
(

Tc
n,m − Vcrust

n,m

)

Yn,m (�). (37)

3 Numerical examples

The expressions defined in Section 2 were utilised

to compute the consolidated crust-stripped gravity

field. We computed and subsequently applied the

topographic and crust-stripping corrections to gravity

data (gravity disturbances and gravity anomalies). The

applied gravimetric stripping corrections account for

the gravitational contributions of density contrasts due

to the ocean (bathymetry), ice, (soft and hard) sed-

iments, and (upper, middle, and lower) crustal com-

ponents. The computation of refined gravity data was

done using the geopotential coefficients taken from

EGM2008, the global topography/bathymetry model

DTM2006.0, the global continental ice-thickness data

ICE-5G and the global crustal model CRUST2.0. All

computations were conducted globally on an equiangu-

lar 1 arc-deg geographical grid at the Earth’s surface.

The statistics of the topographic and crust-stripping

corrections are summarized in Tables 1 and 2. Com-

plete corrections to gravity anomalies comprise the

combined contribution of the direct and secondary

indirect effects [52, 53, 69]. Statistics of the step-

wise consolidated crust-stripped gravity data are sum-

marized in Tables 3 and 4. The global corrections

and the global gravity data were computed from

the GGM, GEM, GBM and GIM coefficients with

the spectral resolution complete to degree and or-

der 180 of spherical harmonics. The GSM and GCM

coefficients up to spherical harmonic degree and or-

der 90 were used for a computation of the sedi-

ment and consolidate crust-stripping gravity correc-

tions due to a 2 arc-deg spatial resolution of the

CRUST2.0 global crustal model. CRUST2.0 [4], which

is an upgrade of CRUST5.1 [26], contains informa-

tion on the crustal thickness and the subsurface spatial

distribution and density of the following global com-

ponents: ice; ocean; soft and hard sediments; upper,

middle, and lower (consolidated) crust. The use of the

ICE-5G ice-thickness and DTM2006.0 bathymetry data

instead of using the equiangular 2 arc-deg CRUST2.0

ice-thickness and bathymetry data improved signi-

ficantly the accuracy of computed bathymetric and

ice stripping gravity corrections. Further improve-

ment in terms of the accuracy and resolution can

be achieved once a more accurate global crustal (or

lithospheric) model of a higher resolution becomes

available.

Table 3 Statistics of the
step-wise consolidated
crust-stripped gravity
disturbances

Gravity Min [mGal] Max [mGal] Mean [mGal] STD [mGal]

disturbances

EGM2008 −303 293 −1 29

Topographic −655 276 −70 106

Bathymetric −516 727 261 230

Ice −516 732 283 200

Sediment −498 760 320 196

Upper crust −546 767 283 228

Middle crust −795 663 167 269

Lower crust −1, 315 506 20 330
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Table 4 Statistics of the
step-wise consolidated
crust-stripped gravity
anomalies

Gravity Min [mGal] Max [mGal] Mean [mGal] STD [mGal]

anomalies

EGM2008 −282 287 −0.5 24

Topographic −382 341 41 73

Bathymetric −805 −2 −331 146

Ice −813 −10 −332 125

Sediment −867 −46 −365 126

Upper crust −825 5 −336 147

Middle crust −802 154 −228 171

Lower crust −851 391 −43 209

The GGM coefficients taken from the EGM2008

[35] complete to the spherical harmonic degree 180

were used to compute the gravity field quantities ac-

cording to Eqs. 2 and 3. The coefficients En,m of the

global topographic/bathymetric model DTM2006.0 and

the coefficients Nn,m of the global geoid model were

used to generate the GEM coefficients Htu
n,m

Htu
n,m = En,m − Nn,m. (38)

The DTM2006.0 coefficients En,m describe the global

geometry of the topographic heights above mean sea

level (MSL) which are reckoned positive, and the

bathymetric depths below MSL which are reckoned

negative. The global topographic/bathymetric model

DTM2006.0 was released together with EGM2008

by the U.S. National Geospatial-Intelligence Agency

EGM development team. The geoid coefficients Nn,m

were generated from the numerical coefficients Tn,m

of the disturbing potential (derived from EGM2008)

according to Eq. 33. The GEM coefficients complete

to degree and order 180 were then used to com-

pute the topographic corrections to gravity data. The

coefficients En,m and Nn,m were further used to gener-

ate the GBM coefficients Dbl
n,m according to the follow-

ing expression

Dbl
n,m = Nn,m − En,m. (39)

The GBM coefficients complete to degree and order

180 were used to compute the bathymetric stripping

gravity corrections according to Eq. 17 formulated

for a depth-dependent seawater density distribution

model defined by the parameters �ρ
w
0 , β, a1, and a2 in

Eq. 16. The equiangular 10 arc-min mean topographic

heights computed by spatial averaging of the equian-

gular 30 arc-sec global elevation data from GTOPO30

(provided by the US Geological Survey’s EROS Data

Center) and the equiangular 10 arc-min continental ice-

thickness data from ICE-5G made available by Peltier

[36] were used to generate the GIM coefficients. The

GEM and GIM coefficients complete to a spherical

harmonic degree and order 180 were then used to

compute the ice density contrast stripping corrections

to gravity data. The equiangular 2 arc-deg global data of

the soft and hard sediment thickness and density from

CRUST2.0 were used to compute globally the sedi-

ments density contrast stripping corrections to gravity

data. This was done according to Eq. 21 formulated sep-

arately for the soft and hard sediments. The CRUST2.0

model consists of soft and hard sediment model compo-

nents with the lateral density structure. The CRUST2.0

soft sediments vary in density from 1,700 to 2,300 kg/m3

and reach a maximum thickness of about 2 km, while

the CRUST2.0 hard sediments vary between 2,300 and

2,600 kg/m3 and become up to 18 km thick at places.

The sediment density contrast was taken relative to the

reference crustal density of 2,670 kg/m3. The soft and

hard sediment components and their density variability

reflect to a certain degree the increasing density of

sediments with depth due to compaction. In regional

studies, a more accurate dependence of sediment den-

sity on depth may be adopted for sedimentary basins

(cf. e.g., [3]). The equiangular 2 arc-deg global density

and thickness data of the consolidated (upper, middle,

and lower) crust components from CRUST2.0 were

used to compute the crust density contrast stripping

gravity corrections relative to the reference crustal

density of 2,670 kg/m3. The consolidated crust-stripped

gravity data are shown in Fig. 1. The consolidated crust-

stripped gravity disturbances vary globally from −1,315

to 506 mGal. The range of the corresponding gravity

anomalies is between -851 and 391 mGal. Tenzer et

al. [61] used these refined gravity and (CRUST2.0)

crust-thickness data to estimate the global average

value of the crust–mantle density contrast and the cor-

responding global average density of the upper-most

mantle. They have shown that the average values of

the global upper-most mantle and of the crust–mantle

density contrast are about 3,155 kg/m3 and 485 kg/m3,

respectively. Tenzer et al. [56] demonstrated that the
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Fig. 1 The consolidated crust-stripped a gravity disturbances and b gravity anomalies computed globally on the equiangular 1 arc-deg
grid at the Earth’s surface
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a

b

Fig. 2 The complete crust-corrected a gravity disturbances and b gravity anomalies computed globally on equiangular 1 arc-deg grid
at the Earth’s surface
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consolidated crust-stripped gravity data have the high-

est correlation with the Moho density interface among

all refined gravity data obtained after applying the

topographic and crust density contrast stripping cor-

rections (summarized in Tables 3 and 4). The absolute

correlation between the crust-thickness and refined

gravity data reached 0.96 for the consolidated crust-

stripping gravity disturbances. Therefore, these refined

gravity data should be the most suitable gravity data

type for the recovery of the Moho density interface.

However, such a gravimetric refinement of the Moho

interface would translate also the signal of the topo-

graphic and crustal model uncertainties and the signal

coming from the mantle lithosphere and deeper mantle

into false information on the Moho density interface.

The presence of the gravity signal due to the anomalous

density structures within the Earth’s mantle is typically

suppressed by removing a long-wavelength part of the

gravity signal. Nonetheless, the complete separation of

these gravity sources is questionable due to the fact

that there is hardly any unique distinction between the

long-wavelength gravity signal from the mantle and the

expected higher-frequency signal from the Moho geom-

etry. The Moho refinement based purely on gravimetric

methods without incorporating additional geophysical

or geoscientific constraints is thus restricted due to the

gravimetric signal superposition.

The equiangular 2 arc-deg global data of CRUST2.0

Moho depths we used to generate the GMM

coefficients according to Eq. 24. The GMM coefficients

were then used to compute the gravitational field gen-

erated by the homogeneous crust (beneath the geoid

surface) of the reference density ρ
crust = 2,670 kg/m3

with a spectral resolution complete to a spherical har-

monic degree 90. The subtraction of this gravitational

field from the consolidated crust-stripped gravity data

yields the final complete crust-corrected gravity field.

The results are shown in Fig. 2. The crust-corrected

gravity disturbances are everywhere negative and vary

globally from −12,010 to −1,902 mGal with the mean of

−4,265 mGal, and the standard deviation is 1,089 mGal.

The corresponding crust-corrected gravity anomalies

are within −1,339 and 6,372 mGal with the mean of

3,960 mGal, and the standard deviation is 1,391 mGal.

The global maps of the complete crust-corrected

gravity field in Fig. 2 revealed the geometry of the

Fig. 3 The gravitational contribution of the whole Earth’s crust computed globally on an equiangular 1 arc-deg grid at the Earth’s
surface
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Moho density interface and major features of the

anomalous density structures within the Earth’s mantle.

Whereas the signature of the mantle density structure

is more likely prevailing at long frequencies, the high-

frequency gravity signal is dominated by the Moho

geometry. However, the signal due to the deviations of

the CRUST2.0 model from the real crust is also pre-

sented. We expect that the strongest long-wavelength

part of the complete crust-corrected gravity signal is

due to the thickness and density of the lithosphere, over

which a weaker signal from the sub-lithospheric mantle

is superposed. As seen in Fig. 2, the absolute maxima

of the crust-corrected gravity disturbances are situated

over continental regions and the corresponding min-

ima over oceanic regions. The convergent ocean-to-

continent tectonic plate boundaries and the collision

zones of continental tectonic plates represent the re-

gions with the largest gravity signal spatial variations.

The features of mid-ocean ridges and other tectonic

plate boundaries clearly visible in Fig. 1 are much less

pronounced in Fig. 2. This is due to the fact that the

complete crust-corrected gravity data shown in Fig. 2

have a much large range of values than the correspond-

ing consolidated crust-stripped gravity data shown

in Fig. 1.

The gravitational contribution of the whole Earth’s

crust is shown in Fig. 3. It varies globally between

1,843 and 12,010 mGal with the mean of 4,267 mGal,

and the standard deviation is 2,089 mGal. This grav-

ity field was obtained as the difference between the

observed (EGM2008) and crust-corrected gravity data.

Since the EGM2008 gravity data computed with a

spectral resolution complete to the spherical harmonic

degree 180 are mostly within a relatively small inter-

val of ±300 mGal (cf. Table 3), the global as well as

regional features of the gravitational field generated

by the whole crust are very similar to the features of

the complete crust-corrected gravity field. The max-

ima of these gravity differences thus correspond with

the largest crustal thickness in mountainous regions

with the presence of isostatic compensation. The cor-

responding minima are over the oceanic regions with a

typically thin and heavier oceanic crust (compared to

continental crust).

4 Summary and concluding remarks

We have formulated the spectral representation of

gravity field generated by the Earth’s crust density

structures. This spectral representation utilise various

types of spherical functions which describe individ-

ually the observed gravity field (GGM coefficients)

and the gravitational field due to topography (GEM

coefficients), bathymetry (GBM coefficients), ice den-

sity contrast (GIM and GEM coefficients), sediments

density contrast (GSM coefficients), and crustal com-

ponents density contrast (GCM coefficients). In addi-

tion, the gravitational field of the whole homogeneous

crust was defined in terms of the GMM coefficients

which describe the Moho geometry.

Methods for a spherical harmonic analysis and syn-

thesis of gravity field based on the expressions given

in Section 2 were applied in Section 3 to compute

the complete crust-corrected gravity data and to esti-

mate the gravitational contribution of the Earth’s crust.

The separation of the Earth’s crust gravitational field

from the sub-Moho gravity sources was done by sub-

tracting the complete crust-corrected gravity field from

the EGM2008 gravity data. The results revealed that

the gravitational contribution generated by the Earth’s

crust (shown in Fig. 3) varies from 1,843 to 12,010 mGal.

The complete crust-corrected gravity disturbances

(shown in Fig. 2 a) are everywhere negative and vary

within −12,010 and −1,902 mGal. The similar range of

these two gravity field quantities (as well as their similar

spatial distribution) was explained by the fact that the

EGM2008 gravity disturbances are distributed mainly

within a relatively small interval of ±300 mGal. The

comparison of the crust-stripped and crust-corrected

gravity data types (shown in Figs. 1 and 2) exhib-

ited different patterns. Whereas the complete crust-

corrected gravity data have a much more enhanced

long-wavelength gravity signal of the lithosphere man-

tle, the high-frequency gravity signal of more shallow

crustal structures and of the Moho geometry is more

pronounced in the consolidated crust-stripped grav-

ity data.

The description of the Earth’s crust based on the

stratigraphic layering with a variable height/depth,

thickness, and lateral density distribution provides

a more realistic and detailed representation of the

Earth’s crustal structure than, for instance, by the

spherical homogenous layers used in the Preliminary

Reference Earth Model (PREM; cf. [6]). We thus ex-

pect that a more realistic model of the Earth’s in-

ner structure can be compiled (and used in various

geoscience applications) once lithospheric and deep-

mantle models become available.
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