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Spectral imaging with deep learning
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Abstract
The goal of spectral imaging is to capture the spectral signature of a target. Traditional scanning method for spectral
imaging suffers from large system volume and low image acquisition speed for large scenes. In contrast,
computational spectral imaging methods have resorted to computation power for reduced system volume, but still
endure long computation time for iterative spectral reconstructions. Recently, deep learning techniques are
introduced into computational spectral imaging, witnessing fast reconstruction speed, great reconstruction quality,
and the potential to drastically reduce the system volume. In this article, we review state-of-the-art deep-learning-
empowered computational spectral imaging methods. They are further divided into amplitude-coded, phase-coded,
and wavelength-coded methods, based on different light properties used for encoding. To boost future researches,
we’ve also organized publicly available spectral datasets.

Introduction
With the ability of getting distinctive information in

spatial and spectral domain, spectral imaging technology
has vast applications in remote sensing1, medical diag-
nosis2, biomedical engineering3, archeology and art con-
servation4, and food inspection5. Traditional methods of
spectral imaging include whiskbroom scanning, pushb-
room scanning, and wavelength scanning. Whiskbroom
spectroscopy performs scanning pixel by pixel. A widely
acknowledged example is Airborne Visible/Infrared Ima-
ging Spectrometer6,7, which implemented whiskbroom
approach on aircraft for Earth remote sensing. Pushbroom
scan system uses the entrance slit and builds image line by
line. The Hyperspectral Digital Imagery Collection
Experiment instrument8,9 implemented pushbroom ima-
ging optics with a prism spectrometer, offering a good
capability for remote sensing. Wavelength scanning meth-
ods capture spectral image cubes through swapping narrow
bandpass filters in front of the camera lens or using elec-
tronically tunable filters10,11. These typical scanning spec-
tral imaging approaches are illustrated in Fig. 1.

However, traditional scanning methods suffer from the
low speed of the spectral image acquisition process
because of the time-consuming scanning mechanism. As
a consequence, they are not applicable for large scenes or
dynamic recording. To solve this problem, researchers
started to explore snapshot spectral imaging methods12.
Early endeavors include integral field spectrometry, mul-
tispectral beam splitting, and image-replicating imaging
spectrometer, as mentioned in ref. 12. These methods
cannot obtain massive spectral channels and have bulky
optical systems, though achieving multispectral imaging
through splitting light.
With the development of compressed-sensing (CS) the-

ory13,14, compressive spectral imaging has received growing
attention from researchers because of its elegant combi-
nation of optics, mathematics and optimization theory. It
has the ability to perform spectral imaging through fewer
measurements, which is essential in resource-constrained
environments. Compressive spectral imaging techniques
often use a coded aperture to block or filter the input light
field, namely the encoding process in the compressive
sensing pipeline. As the name indicates, this process plays a
role in information compression, which is flexible in design
and provides the prior knowledge for later reconstruction.
Different from the hardware-based encoding, its decoding
process requires the computation via designed algorithms.
Traditional reconstruction approach is iterative, using
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designed measurement of the encoding process and other
prior knowledge for reconstruction. As a consequence, the
decoding procedure is computationally expensive and can
take minutes or even hours for spectral reconstruction.
Furthermore, degradation problem when using fewer
measurements also limits its application in resource-
constrained environments.
While using coded aperture for amplitude encoding has

shown the capability of spectral imaging from fewer
measurements, the reduced light throughput and large
system volume make it unsuitable for practical applica-
tions. To overcome this drawback, phase-coded spectral
imaging15,16 is developed to improve light throughput and
reduce system volume. Its main idea is using a carefully-
designed thin diffraction optical element to manipulate
the input light phase, which will affect the spectra in the
diffraction process. Then, to recover spectra modeled in
the complex diffraction process, powerful deep-learning
techniques are required.
Researchers in computer graphics are also seeking to

optimize spectra reconstruction, because using spectra is
better than RGB triplets when rendering a scene illu-
mination or display a virtual object on a monitor device.
Early works17–19 obtain spectrum from RGB triplet, but

this can be an ill-posed problem that has non-unique
solutions and negative spectrum values. Later works
involved more effective methods such as basis function
fitting20 and dictionary learning21. The latter is based on
the hyperspectral dataset, yet still have the problem of
long-time weight fitting procedure. As demonstrated in a
statistical research on hyperspectral images22, spectra
within an image patch are correlated. Nevertheless, these
pixel-wise methods fail to exploit the correlation infor-
mation in a spectral data cube, hence effective patch
feature extraction algorithms are expected. The pursuit
of accurate and fast RGB-to-spectra approach has
pushed the development of wavelength-coded methods.
Researchers extended the RGB filters to multiple self-
designed broadband filters for delicate wavelength
encoding, and a reliable decoding algorithm is in
demand. Completing such complex computing tasks is
the mission of deep learning.
To alleviate the high computation costs in the afore-

mentioned methods, deep-learning algorithm has been
proposed as an alternative for learning spatial–spectral
prior and spectral reconstruction. Deep-learning tech-
niques can perform faster and more accurate recon-
struction than iterative approaches, thus is suitable to
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apply on spectral recovery tasks. In recent years, many
works have employed deep-learning models (such as
convolutional neural networks, CNNs) in their spectral
imaging framework and showed improved reconstruc-
tion speed and quality15,16,23–25.
In this review, we will look back at the development in

spectral imaging with deep-learning tools and look for-
ward to the future directions for computational spectral
imaging systems with deep-learning technology. In the
following sections, we will first discuss the deep-learning-
empowered compressive spectral imaging methods that
perform amplitude encoding using coded apertures in
“Amplitude-coded Spectral Imaging”. We will then
introduce phase-coded methods that use diffractive opti-
cal element (DOE, or diffuser) in “Phase-coded Spectral
Imaging”. In “Wavelength-coded Spectral Imaging”, we
will introduce wavelength-coded methods that use RGB
or broadband optical filters for wavelength encoding, and
adopt deep neural networks for spectral reconstruction.
To boost future researches on learned spectral imaging,
we have organized existing spectral datasets and the
evaluation metrics (in “Spectral Imaging Datasets”).
Finally, we will summarize the deep-learning-empowered
spectral imaging methods in “Conclusions and Future
Directions” and share our thoughts on the future.

Amplitude-coded spectral imaging
Amplitude-coded methods use coded aperture and

dispersive elements for compressive spectral imaging. The
classical system is coded aperture snapshot spectral ima-
ger (CASSI). To date, there are four CASSI architectures
based on different spatial–spectral modulation styles, as
shown in Fig. 2. The first proposed architecture is dual-
disperser CASSI (DD-CASSI)26, which consists of two
dispersive elements for spectral shearing with a coded
aperture in between. Single-dispersive CASSI (SD-
CASSI)27 is a later work, using one dispersive element
placed behind the coded aperture. Snapshot colored
compressive spectral imager (SCCSI)28 uses also a coded
aperture and a dispersive element, but places the coded
aperture behind the dispersive element. In comparison to
SCCSI that attaches colored coded aperture (or, color
filter array) to the camera sensor, spatial–spectral CASSI
(SS-CASSI) architecture29 adds the flexibility of coded
aperture position between spectral plane and sensor
plane. This increases the complexity of the coded-
aperture model, which may play a role in improving the
system performance. Some deep-learning-based com-
pressive spectral imaging methods have found better
results with SS-CASSI30,31.

Coded-aperture model
Since most works were based on SD-CASSI system,

we will give a detailed derivation of the image

construction process of SD-CASSI. The image forma-
tion procedure is different for other CASSI archi-
tectures in Fig. 2, but the key processes (vectorization,
discretization, etc.) are the same. We refer readers to
refs. 26,28,29 for a detailed modeling of the DD-CASSI,
SCCSI, and SS-CASSI, respectively.
At the time when SD-CASSI was proposed, coded

aperture had block–unblock pattern, which was exten-
ded to colored pattern in ref. 32. We will use a colored
coded aperture in derivation for generality. Consider a
target scene with spectral density f(x, y, λ) and track its
route in an SD-CASSI system: it first encounters a coded
aperture with transmittance T(x, y, λ) and then is
sheared by a dispersive element (assume at x-axis),
finally punches on the detector array. Figure 3 illustrates
the whole process.
The spectral density before the detector is formulated as

gðx; y; λÞ ¼ RR
δ x0 � ½x þ αðλ � λcÞ�ð Þδðy0 � yÞ � f ðx0; y0; λÞTðx0; y0; λÞ dx0d y0

¼ f ðx þ αðλ � λcÞ; y; λÞTðx þ αðλ � λcÞ; y; λÞ

ð1Þ

where delta function represents the spectral dispersion
introduced by the dispersive element, such as a prism or
gratings. α is a calibration factor, and λc is the center
wavelength of dispersion. Since we can only measure the
intensity on the detector, the measurement should be the
integral along the wavelength:

gðx; yÞ ¼ R
Λ gðx; y; λÞ d λ

¼ R
Λ f ðx þ αðλ � λcÞ; y; λÞTðx þ αðλ� λcÞ; y; λÞ d λ

ð2Þ
where Λ is the spectrum range.
Next, we discretize Eq. (2). Denote Δ as the pixel size (in

x and y dimension) of the detector, and assume the coded
aperture has square pixel size Δcode= qΔ, q ≥ 1. The code
pattern is then represented as a spatial array of its pixels:

Tðx; y; λÞ ¼
X
m;n

Tðm; n; λÞrect x
qΔ

� m;
y
qΔ

� n

� �

ð3Þ
Finally, signals within the region of a pixel will be

accumulated in the sampling process:

gðm; nÞ ¼ RR
gðx; yÞrect x

Δ � m; yΔ � n
� �

dxdy

¼ RR
dxdy rect x

Δ � m; yΔ � n
� � R

Λ dλ f x þ αðλ � λCÞ; y; λð Þ

´
P
m0;n0

Tðm0; n0; λÞrect xþ αðλ� λCÞ
qΔ � m0; y

qΔ � n0
� �" #

ð4Þ

To further simplify Eq. (4), we discrete f and T using
their central pixel intensity. Take spectral resolution Δλ as
the spectral interval. We use the intensity f(m, n, l)
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(m; n; l 2 N) to represent a pixel of the spectral density f
(x, y, λ), where x2 [mΔ−Δ/2,mΔ+Δ/2], y2 [nΔ−Δ/2,
nΔ+Δ/2], λ2 [λC+ lΔλ−Δλ/2, λC+ lΔλ+Δλ/2]. Adjust
the calibration factor α so that the dispersion distance
satisfies αΔλ ¼ kΔ; k 2 N. Then Eq. (4) becomes

gðm; nÞ ¼
X
l

f ðm þ lk; n; lÞT bm þ lk
q

þ 1
2
c; bn

q
þ 1

2
c

� �

ð5Þ

To adopt reconstruction algorithms, we need to
rewrite Eq. (5) in a matrix form. This procedure is illu-
strated in Fig. 4.
First, we vectorize the measurement and spectral cube

as Fig. 4a:

y ¼ vect gðm; nÞ½ �;
x ¼ vect f ðm; n; lÞ½ � ð6Þ
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where the measurement term g 2 RM ´ N and spectral
cube f 2 RM ´ N ´ L, with spatial dimension M ×N and
spectral dimension L. After vectorization, we have the
vectorized terms y 2 RMN ; x 2 RMNL.
Next, the coded aperture and dispersion shift are mod-

eled into a sensing matrix Φ 2 RMV ´ MNL; where V=N
+ k(L− 1) contains the dispersion shift (the shift distance
is αΔλ ¼ kΔ; k 2 N). A sensing matrix (for k= 1) pro-
duced from a colored coded aperture is shown in Fig. 4b.
Finally, the reconstruction problem is formulated as

min
x

k y � Φx k þ ηRðxÞ ð7Þ

where Φ is the sensing matrix, and y is measurement.
Term R stands for priority, which is a regularizer
determined by the prior knowledge of the input scene
x (e.g., sparsity), and term η is a weight for the prior
knowledge.

Deep compressive reconstruction
Traditional methods for spectral image reconstruction

usually utilize iterative optimization algorithms, such as
GAP-TV33, ADMM34, etc. These methods suffers a long
reconstruction time for iterations. Besides, the spatial and
spectral reconstruction accuracy is not solid by using
hand-crafted priors. For example, total variance (TV)
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Fig. 4 Vectorization and coded-aperture-related sensing matrix generation procedure. a Illustration of the vectorization process. For a matrix
A, vectorization means stacking the columns of A on top of one another; For a spectral cube of the input scene f(m, n, l), vectorization means stacking
the vectorized 2D slice on top of one another. b Illustration of generating sensing matrix from colored coded aperture in SD-CASSI architecture. It
consists of a set of diagonal patterns that repeat in the horizontal direction, each time with a unit downward shift M that accounts for dispersion.
Each diagonal pattern is generated from the vectorized coded aperture pattern of a band. The block–unblock coded aperture is similar, just turning
the color bands into black and white
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prior is always used in reconstruction algorithms, but it
sometimes brings over-smoothness to the result.
Deep-learning techniques can be applied to each step in

amplitude-coded spectral imaging methods, from the
design of amplitude encoding strategy (coded aperture
optimization) to finding a representative regularizer (term
R in Eq. (7)), and the whole reconstruction process can be
substituted with a neural network. Adopting deep-
learning methods can improve the reconstruction speed
by hundred of times. Moreover, learning priors from large
amount of spectral data by neural networks can promote
the reconstruction accuracy in both spatial and spectral
domains. We have summarized recent years’ works of
deep-learning-based coded aperture spectral imaging in
Table 1 for comparison.
Based on different places deep learning is used, we

divide the deep-learning-based compressive reconstruc-
tion methods into four categories: (i) end-to-end recon-
struction that uses deep neural networks for direct
reconstruction; (ii) joint mask learning that simulta-
neously learns the coded aperture pattern and the sub-
sequent reconstruction network; (iii) unrolled network
that unfolds the iterative optimization procedure into a
deep network with many stage blocks; (iv) untrained
network that uses the broad range of the neural network
as a prior and performs iterative reconstruction. The main
ideas of these four categories are illustrated in Fig. 5.

E2E reconstruction
End-to-end (E2E) reconstruction sends measurement

into a deep neural network which directly outputs the
reconstruction result. Among E2E methods, deep
external–internal learning35 proposed a novel learning
strategy. First, external learning from large dataset was
performed to improve the general capability of the net-
work. Then for a specific application, internal learning
from single spectral image was used for further
improvement. In addition, fusion with panchromatic
image showed benefits in improving spatial resolution. λ-
Net36 is an alternative architecture based on conditional
generative adversarial network (cGAN). It also adopted
self-attention technique and hierarchical reconstruction
strategy to promote the performance.
Dataset, network design and loss function are three key

factors of the E2E methods. For future improvement,
various techniques from RGB patch-wise spectral recon-
struction can be employed (see section “RGB Pixel-wise
Spectral Reconstruction”). For example, residual blocks,
dense structure, and attention module are expected to be
adopted. For the choice of loss functions, back-projection
pixel loss is suggested to employ, which is beneficial to
data fidelity. It simulates the measurement using the
known coded aperture pattern and reconstructed spectral
image, and compares the simulated back-projectedTa

b
le

1
C
om

p
ar
is
on

of
d
if
fe
re
n
t
am

p
lit
ud

e-
co

d
ed

co
m
p
re
ss
iv
e
sp

ec
tr
al

im
ag

in
g
m
et
h
od

s

A
rt
ic
le

C
SI

ar
ch

it
ec
tu
re

Pe
rf
or
m
an

ce
(P
SN

R)
Re

co
ns
tr
uc

ti
on

m
od

el
D
ee

p
-le

ar
ni
ng

te
ch

ni
q
ue

s

A
ut
oE
nc
od

er
30

SD
/D
D
/S
S
C
A
SS
I

32
.4
6
on

C
A
VE

(S
S-
C
A
SS
I)

A
ut
oe

nc
od

er
Eq
ua
tio

n
(E
q.
(1
1)

in
re
f.
30
)

A
ut
oe

nc
od

er
pr
io
r

H
yp
er
Re
co
nN

et
39

SD
C
A
SS
I

33
.6
3
on

IC
VL
,3
1.
36

on
H
ar
va
rd

C
N
N

H
ar
dw

ar
e
re
pr
es
en

ta
tio

n
la
ye
r
(jo
in
t
tr
ai
ni
ng

)

Sp
at
ia
l–
sp
ec
tr
al
pr
io
r2
4

SD
C
A
SS
I

34
.1
3
on

IC
VL
,3
2.
84

on
H
ar
va
rd
,3
0.
03

on
KA

IS
T

U
nr
ol
le
d
ne

tw
or
k

Le
ar
ne

d
ne

tw
or
k
pr
io
r

Ex
te
rn
al
–i
nt
er
na
l

le
ar
ni
ng

35

SD
C
A
SS
I

35
.8
84

on
IC
VL
,3
3.
58
5
on

H
ar
va
rd
,2
9.
05
5

on
C
A
VE

C
N
N

D
en

se
st
ru
ct
ur
e,
ba
ck
-p
ro
je
ct
io
n
pi
xe
ll
os
s

λ-
N
et

36
SD

C
A
SS
I

32
.2
9
on

IC
VL

(a
ve
ra
ge

of
16

sc
en

es
)

co
nd

iti
on

al
G
A
N

Se
lf-
at
te
nt
io
n,

hi
er
ar
ch
ic
al
st
ru
ct
ur
e

D
N
U
42

SD
C
A
SS
I

34
.2
4
on

IC
VL
,3
2.
71

on
H
ar
va
rd

U
nr
ol
le
d
ne

tw
or
k

Le
ar
ne

d
ne

tw
or
k
pr
io
r

H
C
S2
-N
et

31
SD

/S
S
C
A
SS
I

34
.5
2
on

IC
VL

(1
0
sc
en

es
),
39
.2
2
on

C
A
VE

(S
S-

C
A
SS
I),
29
.3
3
on

C
A
VE

(S
D
-C
A
SS
I)

C
N
N
(u
nt
ra
in
ed

)
Re
si
du

al
bl
oc
k,
at
te
nt
io
n
m
od

ul
e,
un

su
pe

rv
is
ed

le
ar
ni
ng

,

ha
rd
w
ar
e
co
de

co
nc
at
en

at
ed

to
th
e
in
pu

t
m
ea
su
re
m
en

t,

de
ep

im
ag
e
pr
io
r

D
ee
p-
Te
ns
or

45
SD

C
A
SS
I

30
.9
2
on

IC
VL
,H

ar
va
rd

an
d
KA

IS
T
(b
es
t
m
ea
n)

C
N
N
(u
nt
ra
in
ed

)
Le
ar
ne

d
te
ns
or

de
co
m
po

si
tio

n

Ev
al
ua

tio
n
re
su
lts

ar
e
co
lle
ct
ed

fr
om

ea
ch

or
ig
in
al

w
or
ks

Huang et al. Light: Science & Applications           (2022) 11:61 Page 6 of 19



measurement with the ground truth. Novel losses such as
feature and style loss can also be attempted.

Joint mask learning
Coded aperture relates to sensing matrix Φ involved in

spectral image acquisition process. Conventional meth-
ods based on CASSI often adopt random coded aper-
tures since the random code can preserve the properties
needed for reconstruction (e.g., restricted isometry
property, RIP37) in high probability. As demonstrated in
ref. 38, there are approaches for optimizing coded aper-
tures by considering RIP as the criteria. However, such
optimization does not present a significant improvement
compared to the random coded masks.
In deep compressive reconstruction architecture, coded

aperture is seen as an encoder to embed the spectral sig-
natures. Therefore, it should be optimized together with the
decoder, i.e., the reconstruction network. HyperReconNet39

jointly learns the coded aperture and the corresponding

CNN for reconstruction. Coded aperture was appended
into the network as a layer, and BinaryConnect method40

was adopted to map float digits to binary coded aperture
entities. However, most works that used deep learning did
not carefully optimize the coded aperture, hence this
direction remains to be researched deeper.

Unrolled network
Unrolled network unfolds the iterative optimization-

based reconstruction procedure into a neural network. In
detail, a block of the unrolled network learns the solution
of one iteration in the optimization algorithm.
Wang et al.24 proposed a hyperspectral image prior

network that is adapted from the iterative reconstruction
problem. Based on half quadratic splitting (HQS)41, they
obtained an iterative optimization formula. By using net-
work layers to learn the solution, they unfolded the
K-iteration reconstruction procedure into a K-stage neural
network. As a later work, Deep Non-local Unrolling
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(DNU)42 further simplified the formula derived in ref. 24

and rearranged the sequential structure in ref. 24 into a
parallel one. Sogabe et al. proposed an ADMM-inspired
network for compressive spectral imaging43. They unrolled
the adaptive ADMM process into a multi-staged neural
network and showed a performance improvement com-
pared to HQS-inspired method24.
Unrolled network can boost the reconstruction speed by

freezing the parameters of iteration into neural network
layers. Each stage has the mission to solve an iteration
equation, which makes the neural network explainable.

Untrained network
Deep image prior, as proposed in ref. 44, states that the

structure of a generative network is sufficient to capture
image priors for reconstruction. To be more specific,
the range of deep neural networks can be large enough to
include all common spectral image that we are going to
recover. Therefore, carefully-designed untrained network
is capable of performing spectral image reconstruction.
Though it takes time for the iterative gradient descent
procedure, such approach is free from pre-training and
has high generalization ability.
Those labeled untrained in Table 1 adopted untrained

network for compressive spectral reconstruction. The
HCS2-Net31 took random code of the coded aperture
and snapshot measurement as the network input, and
used unsupervised network learning for spectral
reconstruction. They adopted many deep-learning
techniques such as residual block and attention mod-
ule to enhance the network capability. In ref. 45, spectral
data cube was considered as a 3D tensor and tensor
Tucker decomposition46 was performed in a learned
way. They designed network layers based on Tucker
decomposition and used low rank prior of the core
tensor, which may be beneficial to better capture the
spectral data structure.

Phase-coded spectral imaging
Phase-coded spectral imaging formulates the image

generation as a convolution process between wavelength
specified point spread function (PSF) and monochrome
object image at each wavelength. The phase encoding
manipulates the phase term of the PSF which will dis-
tinguish spectral signature as light propagates. Compared
with amplitude-coded spectral imaging, phase-coded
approach can greatly increase the light throughput
(hence the signal-to-noise ratio). Since the phase encod-
ing is mainly operated on a thin DOE, which is easy to
attach onto a camera, the phase-coded spectral imaging
system can be very compact.
One can recover the spectral signature by designing

algorithms with the corresponding DOE (also called dif-
fuser in some works16,47–49). With the aid of deep

learning, these methods displayed comparable perfor-
mance. Furthermore, benefitting from the depth depen-
dence of diffraction model, they can also obtain depth
information apart from spectral signature of a scene50.
Phase-coded approach for spectral imaging consists of

two parts: (i) phase encoding strategy, often related to
the design of DOE; (ii) reconstruction algorithm estab-
lishment. In this section, we first describe the phase
encoding diffraction model, then introduce deep-
learning-empowered works using different phase encod-
ing strategies and systems.

Diffraction model
The phase-coded spectral imaging system is based on

previous works of diffractive imaging51,52. The system
often consists of a DOE (transmissive or reflective) and a
bare camera sensor, separated by a distance z. As illu-
strated in Fig. 6, there are two kinds of phase-coded
spectral imaging systems, namely DOE-Fresnel diffraction
(left) and DOE-Lens system (right), different from whe-
ther there is a lens.

PSF construction
We use the transmissive DOE for model derivation. PSF

pλ(x, y) is the system response to a point source at the
image plane. Suppose the incident wave field at position
ðx0; y0Þ of the DOE coordinate at wavelength λ is

u0λðx0; y0Þ ¼ Aλðx0; y0Þeiϕ0λðx0;y0Þ ð8Þ

The wave field first experiences a phase shift ϕh deter-
mined by the height profile of the DOE:

u1λðx0; y0Þ ¼ Aλðx0; y0Þei ϕ0λðx0;y0Þ þϕhðx0;y0Þ½ �;
ϕhðx0; y0Þ ¼ kΔnλhðx0; y0Þ

ð9Þ

where Δn is the refractive index difference between DOE
(n(λ)) and air, k= 2π/λ is the wave number.
For the DOE-lens system, the PSF is16:

pλðx; yÞ ¼ F�1 u1λðx0; y0Þ½ ��� �� ð10Þ

where F�1 is the inverse 2D Fourier transform due to the
Fourier characteristics of the lens.
For DOE-Fresnel diffraction system, the wave field

propagates a distance z that can be modeled by the
Fresnel diffraction law such that λ≪ z:

u2λðx; yÞ ¼ eikz
iλz

RR
u1λðx0; y0Þeik

2z ðx� x0Þ2 þðy� y0Þ2½ � dx0d y0

¼ eikz
iλz

RR
Aλðx0; y0Þei ϕ0λðx0;y0Þ þϕhðx0;y0Þ½ �e

ik
2z ðx� x0Þ2 þðy� y0Þ2½ � dx0d y0

ð11Þ
Finally, for computation convenience, we expand the

Eq. (11) and represent it with a Fourier transform F . The
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final PSF is formulated as

pλðx; yÞ / F Aλðx0; y0Þei ϕ0λðx0;y0Þ þϕhðx0;y0Þ½ �ei
π
λzðx02 þ y02Þ

h i���
���2

ð12Þ

Image formation
Considering an incident object distribution oλðx0; y0Þ at

DOE, we can decompose it into integral of object points:

oλðx0; y0Þ ¼
Z Z

oλðξ; ηÞ � δðx0 � ξ; y0 � ηÞ dξd η
ð13Þ

Before hitting the sensor, the spectral distribution is

Iλðx; yÞ ¼
RR
oλðξ; ηÞ � PSFfδðx0 � ξ; y0 � ηÞg dξd η

¼ RR
oλðξ; ηÞ � pλðx � ξ; y� ηÞ dξd η

¼ oλðx; yÞ � pλðx; yÞ
ð14Þ

where PSF denotes system response to a point source and
pλ is shifted by ξ and η in x and y axis because of the same
shift at the point source.
Finally, on the sensor plane (with sensor spectral

response D), the intensity is

Iðx; yÞ ¼
Z
Λ
DðλÞ � oλðx; yÞ � pλðx; yÞ d λ½ � ð15Þ

Similar to Fig. 4, vectorize oλ to x and matrixize the
convolution with PSF function to Φ, we can discretize Eq.
(15) and form the reconstruction problem as Eq. (7).
Researchers can use similar optimization algorithms or
deep-learning tools for DOE design and spectral image
recovery.

Phase encoding strategies
A good PSF design contributes to the effective phase

encoding, which can bring more precise spectral recon-
struction results. Based on the slight difference of the imaging
system, we categorize the phase encoding strategies below.

DOE with Fresnel diffraction
Many phase-coded spectral imaging methods are

developed from diffractive computational color imaging.
Peng et al.53 proposed an optimization-based DOE design
approach to obtain a shape invariant PSF towards wave-
length. Together with the deconvolution method, they
reconstructed high-fidelity color image.
Although the shape invariant PSF53 is beneficial for high-

quality achromatic imaging, the overlap of PSF at each
wavelength causes difficulty on spectral reconstruction,
which hinders its application on spectral imaging. Jeon
et al.15 designed a spectrally varying PSF that regularly
rotates with wavelength, which encoded the spectral
information. Their rotational PSF design makes it distinct
at different wavelength, which is quite suitable for spectral
imaging. By putting the resultant intensity image into an
optimization-based unrolled network, they achieved high
peak signal-to-noise ratio (PSNR) and spectral accuracy in
visible wavelength range, within a very compact system.

DOE/diffuser with lens
A similar architecture is using DOE (or, diffuser) with

an imaging lens closely behind, which is shown in Fig. 6
(right). In 2016, Golub et al.49 proposed a simple
diffuser-lens optical system and used compressed-
sensing-based algorithm for spectral reconstruction.
Hauser et al.16 extended the work to 2D binary diffuser
(for binary phase encoding) and employed a deep neural
network (named DD-Net) for spectral reconstruction.
They reported high-quality reconstruction in both
simulation and lab experiments.

DOE

z

n

nair ≈ 1 nair ≈ 1
h(x ′, y ′)

(x ′, y ′) (x ′, y ′)(x , y ) (x , y )

Sensor PSF

Incident wave

DOE lens Sensor PSF

Incident wave

DOE-Fresnel diffraction system DOE-lens system

h(x ′, y ′)

n

Fig. 6 Schematic diagram of diffractive spectral imaging via a diffractive optical element (DOE). The left is the system using a transmissive
DOE and a sensor, where the incident wave passes a DOE and then propagates a distance z before hitting the sensor. The propagation can be
modeled by Fresnel diffraction. The right system uses an imaging lens just behind the DOE. After passing the DOE, the incident wave converged on
the sensor through the lens. DOE has a height profile that introduces the phase shift
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Combination with other encoding approach
Combining phase encoding with other encoding

architectures is also a feasible approach, and deep
learning can handle such complicated combined-
architecture model. For example, compressive diffrac-
tion spectral imaging method combined DOE for phase
encoding with coded apertures for further amplitude
encoding54. However, the reconstruction progress is very
tough, and the light efficiency is not high. Another
example is the combination with optical filter array.
Based on previous works of lensless imaging47,55, Mon-
akhova et al. proposed a spectral DiffuserCam48, using a
diffuser to spread the point source and a tiled filter array
for further wavelength encoding. As the method has a
similar mathematical spectral formation model, it is
promising to apply deep learning to spectral Diffu-
serCam’s complex reconstruction task.

Wavelength-coded spectral imaging
Wavelength-coded spectral imaging uses optical filters

to encode spectral signature along wavelength axis.
Among wavelength-coded methods, RGB image, which is
encoded by RGB narrowband filters, is mostly used. It is
necessary to reconstruct the spectral image from the RGB
one, because RGB image is commonly used by people, and
the corresponding spectral image is fundamental to ren-
dering scenes on monitors. Over the years, researchers
have been pursuing fast and accurate approaches of
wavelength-coded spectral imaging. They found RGB fil-
ters may be suboptimal, thus different narrowband filters
as well as self-designed broadband filters are explored.

Image formation model
We first introduce the image formation model in

wavelength encoding context. Consider an intensity Ik
(x, y) from a pixel at (x, y), k is the channel index indi-
cating different wavelength modulation. For RGB image,
k∈ {1, 2, 3}, representing red, green, and blue. The enco-
ded intensity is generated by the scene reflectance spectra
S under illumination E:

Ikðx; yÞ ¼
Z
Λ
EðλÞSðx; y; λÞQkðλÞDðλÞ d λ ð16Þ

where Qk is the kth filter transmittance curve, D is the
camera sensitivity, and Λ is the wavelength range.
Illumination distribution E and scene spectral reflectance
S can be combined as the scene spectral radiance R:

Ikðx; yÞ ¼
Z
Λ
Rðx; y; λÞQkðλÞDðλÞ d λ ð17Þ

The imaging process is illustrated in Fig. 7. In prac-
tice, we have the encoded object intensities I and filter

curves Q, but the camera sensitivity is sometimes
inconvenient to measure, thus many methods assume it
be ideally flat. Under experimental conditions, we also
know illumination E. Then Eq. (17) (or Eq. (16))
becomes an (underdetermined) matrix inversion pro-
blem after discretization.

RGB pixel-wise spectral reconstruction
Early works of wavelength-coded spectral recon-

struction is pixel-wise on RGB images. They consider
the reduced problem of how to reconstruct a spectrum
vector that has more channels from a 3-channel
RGB vector, without knowing the camera’s RGB-
filter response. In general, these pixel-wise approaches
seek a representation of the single spectrum
(either manifold embedding or basis functions) and
develops methods to reconstruct spectrum from that
representation.
There are two modalities of methods on spectrum

representation: (i) spectrum manifold learning that seeks
the hidden manifold embedding space to express the
spectrum effectively; (ii) basis function fitting that expands
the spectrum as a set of basis functions, and fit a small
number of coefficients.

Spectrum manifold learning
This approach assumes that a spectrum y is controlled

by a vector x in the low-dimensional manifold M and
tries to find the mapping f that relates y with x:

y ¼ f ðxÞ; y 2 D; f 2 F ; x 2 M ð18Þ

where D is the high-dimensional data space (commonly,
M ¼ Rm;D ¼ Rn:m; n 2 N is the space dimension).
F is a functional space that contains functions mapping
data from M to D.
Manifold learning assumes a low-dimensional manifold

M embedded in the high-dimensional data space D, and
attempts to recover M from the data drawn in D.
Reference56 proposed a three-step method: (i) Find an
appropriate dimension of the manifold space through
Isometric Feature Mapping (Isomap57); (ii) Train a radial
basis function (RBF) network to embed the RGB vector in
M, which determines the inverse of f in Eq. (18); (iii) Use
dictionary learning to map the manifold representation in
M back to the spectra space, which determines the
function f in Eq. (18). The RBF network and dictionary
learning method can be substituted by deep neural net-
works (such as AutoEncoder) to improve the perfor-
mance, hence the manifold-based reconstruction can be
further promoted.
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Basis function fitting
This approach assumes that a spectrum y= y(λ) is

expanded by a set of basis functions {ϕ1(λ),… , ϕN(λ)}:

yðλÞ ¼
XN
i¼ 1

αiϕiðλÞ ð19Þ

where α are the coefficients to fit.
In a short note by Glassner17, a simple matrix inversion

method was developed for RGB-to-spectrum conversion,
but the resultant spectrum only has three nonzero com-
ponents, which is rare in real world. At the end of the
note, the author reported a weighted basis function fitting
approach to construct spectrum from RGB triplet, with
constant, sine, and cosine three functions. To render light
interference, Sun et al.18 compared different basis func-
tions for deriving spectra from colors and proposed an
adaptive method that uses Gaussian functions. Nguyen
et al.20 further developed the basis function approach,
proposing a data-driven method that learns RBF to map
illumination normalized RGB image to spectral image.
In ref. 21, an over-complete hyperspectral dictionary

was constructed using K-SVD algorithm from the pro-
posed dataset, which contained a set of nearly orthogonal
vectors that can be seen as learned basis functions.
Similar to the dictionary learning approach, deep-
learning tools can be used for learning basis functions.
In ref. 58, basis functions are generated during training,
and coefficients are predicted through a U-Net at test
time. It is very computationally efficient since it only
needs to fit a small number of coefficients during the test
time. Although the spectral reconstruction accuracy is
not as high as other CNN-based methods (which suffi-
ciently extract spectral patch correlation), it is the fastest
method in NTIRE 2020 with reconstruction time only 34
ms per image.

RGB Patch-wise spectral reconstruction
As reported in ref. 22, spectra within an image patch has

certain correlation. However, pixel-wise approaches can-
not exploit such correlation, which may lead to poor
reconstruction accuracy in comparison with patch-wise
approaches. In ref. 59, a handmade patch feature through
convolution operation was proposed, which extracts
neighborhood feature of a RGB pixel from the training
spectral dataset. This work gave a practical idea of how to
utilize such patch feature in a spectral image, which is just
suitable for convolutional neural networks (CNNs).
CNNs can perform more complex feature extraction

through multiple convolution operators. In 2017, Xiong
et al. proposed HSCNN23 to apply a CNN on up-sampled
RGB and amplitude-coded measurements for spectral
reconstruction. At the same year, Galliani et al. proposed
learned spectral super-resolution60, using a CNN for end-
to-end RGB to spectral image reconstruction. Their works
obtained good spectral reconstruction accuracy on many
open spectral datasets, encouraging later works on CNN-
based spectral reconstruction. The number of similar
works grew rapidly as New Trends in Image Restoration
and Enhancement (NTIRE) challenge was hosted in
201861 and 202025, where many deep-learning groups
joined in and contributed to the exploitation of various
network structures for spectral reconstruction.
Neural network-based methods takes the advantage of

deep learning and can better grasp the patch spectra
correlation. Diverse network structures as well as
advanced deep-learning techniques are exploited by dif-
ferent works, which are arranged in Table 2.

Leveraging advanced deep-learning techniques
We can gain some inspirations from Table 2. First,

most works are CNN-based, this perhaps because CNN
can better extract patch spectral information than gen-
erative adversarial networks (GANs). There was a work
based on conditional GAN (cGAN)62, which takes RGB
image as conditional input. They also used L1 distance
loss (mean absolute error loss) as ref. 63 to encourage
less blur, but the reconstruction accuracy was not better
than HSCNN23 (ref. 62 has relative root-mean-square
error (RMSE) 0.0401 on ICVL dataset, while HSCNN
has 0.0388).
Moreover, many advanced deep-learning techniques are

introduced and shown to be effective. For instance, resi-
dual blocks64 and dense structure65 become increasingly
common. This is because residual connection can
broaden the network’s receptive field and dense structure
can enhance the feature passing process, resulting in
better extraction of spectral patch correlation. Attention
mechanism66 is a popular deep-learning technique and is
also introduced in spectral imaging works. For spectral
reconstruction, there are two kinds of attention: spatial

Scene S

Illumination

E
Qk

Filter
Imaging

lens Sensor

D

Fig. 7 Illustration of wavelength encoding spectral imaging
process. The scene S is illuminated by the light source E, and is
wavelength-coded through filters Q. Then the encoded scene spectral
radiance is captured by the imaging lens on a sensor with spectral
response D
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attention (e.g., the self-attention layer67,68) and spectral
attention (channel attention69). Attention module learns a
spatial or spectral weight, helping the network focus on
the informative parts of the spectral image. Feature fusion
is the concatenation of multiple parallel layers, which was
researched in ref. 70. It was adopted in refs. 71–73 and
showed positive influence on spectral reconstruction.
Finally, ensemble technique is encouraged to further
promote the network performance. Model ensemble and
self ensemble are two kinds of ensemble strategies. Model
ensemble averages networks that are retrained with dif-
ferent parameters, while self ensemble averages the results
of transformed input to the same network. Single network
may fall into local minimum, which leads to poor gen-
eralization performance. By applying the ensemble tech-
nique, one can fuse the knowledge of multiple networks
or different viewpoint to the same input. HRNet73 adop-
ted model ensemble, and it showed improvement on
reconstruction result.
Since the spectral reconstruction is a kind of image-to-

image task, many works borrow effective deep-learning
techniques from other image-to-image tasks, such as
U-Net architecture from74 segmentation task, sub-pixel
convolution layer75, channel attention69 from image
super resolution task, and feature loss and style loss from
image style transfer task76,77. This is also a way to
introduce advanced deep-learning techniques into
spectral reconstruction.

Towards illumination invariance
Object reflectance spectrum without illumination is a

desired objection for spectral reconstruction, since it
honestly reflects the scene components and properties. To
recover object reflectance, one need to strip out envir-
onment illumination E from scene spectral radiance R,
but it is inconvenient to measure the illumination spectra.
Researchers often use illumination invariant property of
the object spectrum to remove attached illumination from
the scene radiance.
Reference20 proposed an approach to employ illumi-

nation invariance. They proposed RGB white-balancing to
normalize the scene illumination. As an additional pro-
duct, they can estimate the environment illumination by
comparing reconstructed scene with the original scene. In
ref. 78, Denoising AutoEncoder (DAE) was used to obtain
robust spectrum from noised input, which contains ori-
ginal spectrum under different illumination conditions.
Through this many-to-one mapping, reconstruction to
spectrum became invariant to illumination.

Utilizing RGB-filter response
RGB-filter response is the wavelength encoding func-

tion Q in Eq. (16). In many works79,80, the RGB-filter
response is termed camera spectral sensitivity (CSS) prior.

To avoid semantic ambiguity of CSS and camera response
D in Eq. (16), we substitute it with RGB-filter response.
RGB-filter response is not always accessible for practical

applications, which is a notable problem. A common way
to tackle it is using CIE color mapping function for
simulation81. Reference79 proposed another solution to
address this problem. They adopted a classification neural
network to estimate a suitable RGB-filter response from
the given camera sensitivity set. Then they can use the
estimated filter response function and another network to
recover the spectral signature. These two nets were
trained together via a united loss function.
When RGB-filter response is known, RGB image can be

reconstructed from spectral image, thus back-projection
(or perceptual) loss can be used. Experiments have shown
benefits to add the filter response prior in reconstruction.
For example, AWAN80, who ranked 1st in NTIRE 2020
Clean track, adopted filter response curves in loss func-
tion and got a slight improvement on MRAE metric.
In ref. 82, the RGB-filter response Q is carefully

exploited. They demonstrated that the reconstructed
spectrum should follow the color fidelity property QTψ
(I)= I, where ψ is the RGB-to-spectrum mapping and I is
the RGB pixel intensity.
They defined the set of spectra that satisfy color fidelity

as plausible set:

PðI;QÞ ¼ rjQTr ¼ I
	 


where r is spectrum. The concept of physically plausible
was illustrated in Fig. 8.
They suggest that the reconstructed spectrum should

contain two parts: one from the space spanned by three
column filter response vectors in Q, and the other from
the orthogonal complement space of the former. For-
mally, there exists an orthogonal basis B 2 Rn�3 such that
BTQ= 0. Therefore, the spectrum to be reconstructed can
be expanded as

r ¼ PQr þ PBr ð20Þ

where PQ and PB are projection operators. Note that PQ

can be precisely calculated in advance, which reduces the
reconstruction calculation by 3 dimensions. The remain-
ing task is estimating the spectrum vector in an
orthogonal space of filter response vectors, which can
be done by training a deep neural network.

Beyond RGB filters
Since the RGB image has limited information,

researchers tend to manually add more information
before reconstruction. There are two ways to realize this:
(i) using self-designed broadband wavelength encoding
to expand the modulation range; (ii) increasing the

Huang et al. Light: Science & Applications           (2022) 11:61 Page 13 of 19



number of encoding filters. Works in this area mainly
use deep-learning tools to design filter response curves
and perform spectral reconstruction83–85, since the
modulation design and the reconstruction process are
complicated in computation.

Using broadband filters
Based on the idea that traditional RGB camera’s spectral

response function is suboptimal for spectrum recon-
struction, Nie et al.83 employed CNNs to design filter
response functions and jointly reconstruct spectral image.
They observed the similarity between camera filter array
and convolutional layer kernel (the Bayer filter mosaic is
similar to a 2 × 2 convolution kernel) and used camera
filters as a hardware-implementation layer of the network.
Their result showed improvement than traditional RGB-
filter-based methods. However, limited by the filter
manufacture technology, they only considered filters that
were commercially available.
With the maturity of the modern filter manufacture

technology, flexible designed filters with specific response

spectrum becomes realizable. Song et al. presented a joint
learning framework for broadband filter design, named
parameter constrained spectral encoder and decoder
(PCSED)84, as illustrated in Fig. 9.
They jointly trained filter response curves (as spectral

encoder) and decoder network for spectral reconstruc-
tion. Benefited from the development of thin-film filter
manufacture industry, they can design various filter
response functions that are favored by the decoder.
They extended the work in ref. 85 and got impressive
results. The developed hardware, broadband encoding
stochastic (BEST) camera, demonstrated great
improvements on noise tolerance, reconstruction speed
and spectral resolution (301 channels). For the future
direction, anti-noise optical filters produced from meta-
surface is promising with the development of meta-
surface theory and industry86.

Increasing filter number
Increasing filter number is a straightforward approach

to enhance reconstruction accuracy by providing more
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encoding information. However, this will inevitably lead
to bulky system volume. An alternative way to perform
wavelength modulation is using liquid crystal (LC). In this
way, changing the voltage will switch LC to a different
modulation, thus it is convenient to use multiple mod-
ulations by applying different voltages. By fast changing
the voltage on LC, multiple wavelength encoding opera-
tors can be obtained, which is equivalent to increasing
filter numbers.
Based on different responses of the LC phase retarder to

different wavelengths, the Compressive Sensing Miniature
Ultra-Spectral Imager (CS-MUSI) architecture can mod-
ulate the spectra like multiple optical filters. Oiknine et al.
reviewed spectral reconstruction with CS-MUSI instru-
ment in ref. 87. They also proposed DeepCubeNet88 that
adopted CS-MUSI system to perform 32 different wave-
length modulations and used CNN for spectral image
reconstruction.

Spectral imaging datasets
Spectral dataset that contains realistic spectral-RGB

image pairs are important for data-driven spectral ima-
ging methods, especially for those using deep learning.
CAVE89, NUS20, ICVL21 and KAIST30 are the most often
used datasets for training and evaluation in spectral
reconstruction researches. Other datasets like Harvard22,
Hyperspectral & Color Imaging90, Scyllarus hyperspec-
tral dataset91, C2H92 are also available. To promote the
research of spectral reconstruction from RGB images,
competitions were held on 2018 and 2020, where ICVL-
expanded dataset (NTIRE 201861) and larger-than-ever
database NTIRE 202025 were provided. We summarize
the public available spectral image datasets in the fol-
lowing tables. Table 3 gives an overview of the spectral
datasets and Table 4 provides a detailed description of
the data.

Two problems still exist for these datasets: (i) insuffi-
cient capacity for extracting high-complexity
spatial–spectral feature; (ii) unfixed train-test split.
Some datasets don’t provide a fixed train-test split,
causing unfair comparison among methods that use dif-
ferent train-test split strategy. Therefore, it is important
to have a large but standard database. We hope the
database has unparalleled scale, accuracy and diversity to
boost future researches.
At present phase when such a giant standard dataset is

not available, we think the popular datasets ICVL21,
CAVE89, NUS20 and KAIST30 are sufficient for the
reconstruction accuracy analysis on both spatial and
spectral domain.

Spectral image quality metrics
There are numerous metrics used for performance

evaluation in spectral reconstruction, and we refer to
ref. 93 for their definition and comparison.
In general, PSNR, structural similarity (SSIM) index and

spectral angle map (SAM) are mostly used for amplitude-
coded methods, while different metrics like root-mean
square error (RMSE) and mean relative absolute error
(MRAE) are applied on wavelength-coded methods. As a
consequence, it is inconvenient to compare the perfor-
mance between wavelength-coded and amplitude-coded
methods. Therefore, for the convenience of the commu-
nity to compare different methods, it is necessary to set
unified metrics. We think some common metrics are
needed for the comparison between the two methods. For
example, SSIM, RMSE and RMAE can be employed by
both methods at evaluation.
Furthermore, we also need metrics to compare the

reconstruction speed. Different works perform spectral
reconstruction for different resolution images on various
computing devices. We think pixel reconstruction speed is

Table 3 Spectral dataset parameters

Dataset Name Year Spectral range/nm Channel step/nm Resolution Capacity/images

CAVE89 2008 400–700 10 512 × 512 32

Harvard22 2011 420–720 10 1040 × 1392 75

NUS20 2014 400–700 10 1312 × >950 66

ICVL21 2016 400–1000, 400–700 about 1.25, 10 1392 × 1300 201

KAIST30 2017 420–720 10 2704 × 3376 30

NTIRE 201861 2018 400–700 10 1392 × 1300 256

NTIRE 202025 2020 400–700 10 482 × 512 460

Hyperspectral and color imaging90 / / / / 191

Scyllarus91 / 400–700 10 1040 × 1392 73

C2H-Data92 2020 374.1–988.1, 450–740 about 4.6, 10 1392 × 1650 697
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a reliable metric to compare reconstruction speed. It is the
average speed on test dataset divided by the the 3D
resolution of the data (i.e., total pixels of the spectral data
used for testing).

Conclusions and future directions
We have summarized different computational spectral

reconstruction methods that adopted deep neural net-
works, detailing their working principles and deep-
learning techniques, under three encoding-decoding
modalities: (i) Amplitude-coded. It uses coded aperture
for amplitude encoding and is a compressive spectral
imaging approach, which exploits compressive sensing
theory and iterative optimization process for spectral
reconstruction. Based on this feature, some learned
reconstruction algorithms are designed to reduce the time
consumption for optimization (e.g., unrolled networks), or
use deep neural networks to improve the optimization
accuracy (e.g., untrained networks). (ii) Phase-coded. It
uses DOE to modulate the phase of the input light for each
wavelength, and is physically based on Fresnel propagation
to expand such phase modulation onto the resultant
image. By leveraging creative design of DOE, it enjoys the
compactness of the system and improved light throughput.
(iii) Wavelength-coded. A common case of wavelength
encoding is the RGB image. RGB-to-spectrum is essential
in computational graphics, for the benefit of easy-tuning in
rendering scenes with spectra on monitors. To extract
spectra feature from the RGB data, deep-learning algo-
rithms either map them to a manifold space, or explore the
inherent spatial–spectral correlation. As an extension of
the RGB-based approaches, multiple self-designed broad-
band filters for wavelength encoding is developed in recent
years. It is more advantageous in the reconstruction

precision of the spectra, but the results are also sensitive to
the filter fabrication error and imaging noise.
For future directions, extra scene information is expec-

ted to promote the reconstruction performance on specific
application. In C2H-Net92, object category and position
was used as a prior, similar to the famous object detection
framework YOLO94. Based on the observation that pixel
patches with object information was often more important
than background environment, they introduced object
category and position into the reconstruction process.
Using additional information can also benefit functional
applications of spectral imaging. As a later work of C2H-
Net, ref. 95 contributes to objection detection using spec-
tral imaging with additional object information.
Additionally, joint encoder-decoder training is also an

important direction. Encoder is the hardware layer before
the reconstruction algorithm, such as coded aperture,
DOE, or optical filter. Simultaneously training the enco-
der and decoder can provide the decoder with the coding
information, thereby improving the performance39,84.
However, two problems are waiting to be addressed. (i)
Finding more efficient encoding hardware and modeling it
into a network layer, such as using DOE to improve the
light throughput. CS-MUSI architecture that can replace
multiple filters88 is also encouraged to explore. (ii)
Overcoming gradient vanishment. Since the hardware
layer is the first layer of the whole deep neural network,
when gradient propagates back, it is always very small,
which in turn confines the possible change of the hard-
ware layer. If the above two problems are elegantly solved,
we believe the deep-learning-empowered computational
spectral imaging can step further.
The past decade has witnessed a rapid expansion of

deep neural networks in spectral imaging. Despite the

Table 4 Description of spectral datasets

Dataset name Description

CAVE89 Contains diverse objects and materials; taken under CIE Standard Illuminant D65 illumination.

Harvard22 Contains indoor and outdoor scenes; 50 were taken under daylight illumination, 25 under artificial and mixed

illumination.

NUS20 Contains outdoor images of natural objects, man-made objects, buildings; taken under artificial wideband lights

of different color temperatures, illumination spectra is provided.

ICVL21 Contains urban, suburban, rural, indoor and plant-life scenes; taken under natural light.

KAIST30 Contains color checkerboards with objects for network evaluation; use Xenon Illumination (Thorlab HPLS-30-4) as

the light source.

Hyperspectral and color imaging90 Contains 88 outdoor scenes, 57 fruits, 46 color charts and patches; taken under different lighting conditions,

illumination data was provided.

Scyllarus91 Contains portraits, office scenes, close-ups, fruits and flowers, landscapes, each has around 15 images; office

scenes were taken under fluorescent lighting, others under natural lighting.

C2H-Data92 Contains various real and artificial fruits and vegetables; taken under Tungsten-bromine lamps.
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success of deep learning, it still has a lot of room for
further optimization. Reinforcement learning (RL) is a
promising technique to improve the performance. To
date, it proves useful to employ RL in finding optimal
reconstruction network architectures (i.e., neural archi-
tecture search, NAS96). With the improvement of com-
puting power, such techniques are promising to increase
the performance of learned spectral imaging methods.
Finally, we think transformer-based large-scale deep-

learning models have great potential in spectral recon-
struction task. Transformer, first applied to the field of
natural language processing, is a type of deep neural
network mainly based on the self-attention mechanism66.
It presents strong representation capabilities and has been
widely applied in vision tasks97. However, such large-scale
deep neural networks require huge data for training,
hence large-than-ever spectral datasets are demanded, as
suggested in section “Spectral Imaging Datasets”.
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