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respect to epilepsy classification
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Abstract

Background: The spectral information of the EEG signal with respect to epilepsy is examined in this study.

Method: In order to assess the impact of the alternative definitions of the frequency sub-bands that are analysed, a

number of spectral thresholds are defined and the respective frequency sub-band combinations are generated. For

each of these frequency sub-band combination, the EEG signal is analysed and a vector of spectral characteristics is

defined. Based on this feature vector, a classification schema is used to measure the appropriateness of the specific

frequency sub-band combination, in terms of epileptic EEG classification accuracy.

Results: The obtained results indicate that additional frequency band analysis is beneficial towards epilepsy detection.

Conclusions: This work includes the first systematic assessment of the impact of the frequency sub-bands to the

epileptic EEG classification accuracy, and the obtained results revealed several frequency sub-band combinations that

achieve high classification accuracy and have never been reported in the literature before.
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1 Introduction

Signal processing of electroencephalogram (EEG) is a

field that has drawn significant attention in the last

years. As a result, numerous EEG processing methodolo-

gies have been presented in the literature. One of the

most popular field in EEG signal processing is the epi-

lepsy detection and classification. Being one of the most

common neurological disorders [1], epilepsy has been

the focus of hundreds of EEG analysis studies. Epilepsy

is a chronic brain disorder, characterized by recurrent

seizures, which cannot be predicted. The severity of the

condition can vary greatly, while seizures may fall into a

large variety of types [2].

Most of the studies for epileptic activity detection/classi-

fication using EEG signal processing, formulate method-

ologies that analyse the EEG signal by extracting

informative features from it [3–20]. To this end, spectral

analysis of the EEG signal is essential, since epileptic activ-

ity interrupts normal brain functionality. Analysing the

EEG signal frequency patterns in order to extract spectral

characteristics is one of the most common types of EEG

analysis, either by itself (i.e. by focusing on the frequency

domain) or combined with other types of analysis (such as

non-linear analysis), thus resulting to a vector of features.

Then, these features are used as input into a classifier,

resulting to classification of epileptic signals.

The EEG spectral analysis is based on a set of fre-

quency sub-bands. Researchers have mainly used wavelet

transform (WT) [3–16] and time-frequency distributions

(TFD) [17–20] to analyse the EEG spectral patterns.

However, although spectral analysis is a well-known ap-

proach, with numerus studies including spectral charac-

teristics in the features extracted from the EEG, the

importance of the frequency sub-bands that are used to

analyse the signal has never been thoroughly investi-

gated in the literature. It is medically established that

brainwaves are divided based on their frequency into

several sub-bands, being delta (1–4 Hz), theta (4–8 Hz),

alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–80

Hz) [21]. Thus, several researchers roughly focus on

these sub-bands [3–14, 17, 18], with the technical limita-

tions that the analysis technique imposes (i.e. WT).

Thus, the importance of the frequency sub-bands and

their limits have not been analysed in the literature,
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since in WT-based approaches the frequency sub-bands

are automatically set [3–16], while in TFD-based meth-

odologies, an attempt to compare the impact of different

sub-bands has been presented [17], however not being a

systematic approach since only four different sub-band

combinations were analysed.

The main focus of this study is to study the impact of

frequency sub-band selection regarding the EEG epi-

lepsy classification. To this end, a methodology has

been developed, which initially defines the number of

spectral thresholds (which determines the number of

frequency sub-bands that are created) from 0 to 12,

with 0 meaning that the overall frequency spectrum of

the EEG is considered as a single frequency sub-band

and all other values (1–12) defining the number of fre-

quency sub-bands (i.e. for five spectral thresholds, six

frequency sub-bands are created). Then, all possible

combinations of these sub-bands are created, subject to

simple limitations (i.e. the range of each sub-band is

forced to be ≥ 2 Hz). From each combination, a set of

features is extracted, which are used in a classifier. The

Bonn EEG database has been employed and results are

obtained in terms of classification accuracy, indicating

the importance of this study. To the best of the author’s

knowledge, this is the first systematic analysis of the

impact of different frequency sub-band number and

range, presented in the literature. Furthermore, the re-

sults reveal frequency sub-bands that presented high

classification accuracy and have never been studied in

the literature before.

2 Related work

2.1 Dataset

The Bonn EEG database [22] has been employed in this

study, which is a well-known benchmark dataset for

this problem. The database includes recordings for both

healthy and epileptic subjects, divided in five subsets

(denoted as A-E and named as Z, O, N, F and S, re-

spectively) each of them containing 100 single-channel

EEG recordings. Sets A and B (Z and O files) are re-

cordings from five healthy volunteers with eyes open

and eyes closed, respectively. The recordings are made

extracranially, using the standard 10–20-electrode posi-

tioning system. Sets C and D (N and F files) are

seizure-free recordings from five epileptic patients,

from the epileptogenic zone (set D) and the hippocam-

pal formation of the opposite brain hemisphere (set C),

while set E (S files) contains seizure activity, selected

from several recording sites exhibiting ictal activity.

Sets C, D and E are recorded intracranially, using depth

electrodes implanted symmetrically into the hippocam-

pal formation and strip electrodes are implanted onto

the lateral and basal regions (middle and bottom) of

the neocortex. An example recording of each set is il-

lustrated in Fig. 1. The sampling rate of the EEG data is

173.61 Hz, and each of them has duration of 23.6 s

(4096 samples), recorded using 12-bit resolution, while

the spectral bandwidth is 0.5 to 85 Hz.

2.2 Methods using wavelet transform

The WT-based methods presented in the literature for

the analysis of epilepsy in EEG mainly apply discrete

wavelet transform (DWT) or wavelet packet decompos-

ition (WPD). WT is a time-frequency technique, which

provides both time and frequency views of a signal [23].

Thus, it can accurately capture and localize transient

features in the data like the epileptic spikes. In wavelet

analysis, a linear combination of specific functions repre-

sents the initial signal. These functions are obtained by

dilation and translation of the mother wavelet. The sig-

nal is decomposed into segments of half its size and

spectrum with the use of the mother wavelet. Particu-

larly, in DWT the scaling and translating parameters are

presented in powers of two. A series of quadrature mir-

ror filters (QMF) are used, serving as high-pass and

low-pass filters. In the first level, the conjugate filters

(high-pass and low-pass) are applied to the input signal

resulting to a set of coefficients, named wavelet coeffi-

cients. The “approximation” is the output of the

low-pass filter and is sub-decomposed, extending this

procedure in the next level. However, the output of the

high-pass filter (“detail”) is not further decomposed. In

the next level, the procedure is repeated only for the ap-

proximation until the signal is decomposed to reveal the

band of interest.

WPD is a wavelet transform and it can also be inter-

preted as an expansion of the DWT, wherein the signal

is analysed with a set of QMFs that divide the fre-

quency axis in separate intervals of various sizes [24].

However, in the WPD, the signal is passed through

more filters than the DWT and both the detail and ap-

proximation coefficients are decomposed. In the first

level of decomposition, the obtained wavelet packet co-

efficients are referred as first-level approximation and

detail respectively. In the second level, the approxima-

tion of the approximation (AA), the detail of the ap-

proximation (DA), the approximation of the detail (AD)

and the detail of the detail (DD) coefficients are com-

puted and this recursive algorithm renders each newly

computed wavelet packet coefficient the root of its own

analysis tree. This recurrent splitting is represented in a

binary tree. The steps of the methodological approaches

presented in the literature are common in both cases.

The EEG signal is decomposed into several frequency

sub-bands and features are extracted, creating a feature

vector, most commonly used as input to a classifier.
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2.2.1 DWT-based studies

The sampling frequency of the EEG recordings in the

Bonn database is 173.61 Hz, and thus the frequency

range is 0–86.8 Hz. In the majority of methods, the en-

tire spectrum of the EEG recordings was analysed.

However, frequencies higher than 60 Hz are often char-

acterized as noise and are subsequently discarded. For

that reason, some researchers have initially applied a

band-pass filter, which removes the redundant frequency

and focuses only on the spectrum that corresponds to

the five medically established EEG rhythms, i.e. delta

(0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30

Hz) and gamma (30–60 Hz or 30–80 Hz).

Subasi [3] used DWT to decompose the EEG signals

into six frequency sub-bands. However, only the wave-

let coefficients that correspond to the frequency range

of interest 0–21.7 Hz, meaning the details D3-D5 and

the approximation A5, were used to calculate the fea-

tures and train a mixture of experts (ME)-based classi-

fier. Guo et al. [4] also used the DWT to analyse the

EEG signals, applying a four-level decomposition,

dividing the selected EEG recordings into five fre-

quency sub-bands. The line length feature was ex-

tracted from each of the five sub-signals (D1-D4 and

A4) forming the feature vector that trained a multilayer

perceptron neural network (MLP). Ocak [5] applied a

decomposition of three levels in the entire spectrum

(0–86.8 Hz). Approximate entropy (ApEn) values, cal-

culated for all the frequency bands, were used to define

a threshold which classified the EEG segments. Kumar

et al. [6] applied a five-level decomposition and calcu-

lated the ApEn in each decomposition level. The gener-

ated feature vector was fed to an MLP classifier. In a

subsequent study, the same group applied a decompos-

ition of five levels (as they previously suggested in [6]),

using the fuzzy approximate entropy (fApEn) and sup-

port vector machines (SVM) for classification.

A comparison of three feature extraction techniques,

principal component analysis (PCA), independent com-

ponent analysis (ICA) and linear discriminant analysis

(LDA) was presented in [8]. The EEG recordings were

subjected to a five-level decomposition, and statistical

features were extracted only by the sub-signals D3, D4,

D5 and A5, which correspond to the frequency range of

0–21.7 Hz. The dimension of the resulting feature set

was reduced by using PCA, ICA and LDA, and the fea-

ture vector was used as input to an SVM classifier. In

another DWT-based study [9], the authors’ main target

was the implementation of a feature extraction system

based on genetic programming. Therefore, they applied

Fig. 1 Recordings from the five sets of the Bonn EEG database
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a four-level decomposition to analyse the signal in

sub-signals and then genetic programming, aiming to re-

duce the dimension of the extracted feature vector. The

extracted set of features and the reduced were used re-

spectively to train a k-nearest neighbour (KNN) classi-

fier. Results indicated that the reduced feature vector

improved the classifier’s performance. A comprehensive

methodology based on optimized extreme learning ma-

chine (OELM) was proposed in [10]. In this method-

ology, wavelet-based statistical features were extracted

from a four-level decomposition and the OELM classi-

fier was trained by the features that were extracted

from the entire spectrum (0–86.8 Hz). Five classifica-

tion problems were conducted (among them the

five-class problem Z-O-N-F-S), and the performance

was measured with accuracy, which reached above 94%

for all of the problems.

Another approach is to isolate the frequency band of

interest from the five EEG rhythms, from the redundant

frequency of the signal, by applying a band-pass filter. A

wavelet-chaos methodology was presented by Adeli et al.

[11], where a low-pass finite impulse response (FIR) was

used to filter the EEG signal to the 0–60 Hz band. The

EEG recordings were then subjected to a four-level de-

composition, and the average values and standard devia-

tions of a couple of parameters (namely correlation

dimension and largest Lyapunov exponent) were calcu-

lated in each wavelet sub-signal (D1-D4 and A4), repre-

senting the system’s chaocity. In a subsequent study

[12], the aforementioned authors applied wavelet ana-

lysis and decomposed the signals into the same fre-

quency sub-bands, evaluating different methods of

classification. A similar approach is described in study

[13], wherein the authors applied a band-pass filter and

cut off all the signal activity outside the 0–60-Hz range

to prepare the EEG signals for further processing. In the

next stage, a four-level decomposition was applied and

the calculated autoregressive (AR) parameters of each

sub-band were fed to an MLP classifier. Wang et al. [14]

presented a novel classification algorithm based on a

voting strategy and a hardware implementation. The

authors used a band-pass filter to focus only to the

0–32-Hz range and then applied a three-level decom-

position and extracted the sample entropy (SampEn)

only by the detail coefficients (D1, D2, D3).

2.2.2 WPD-based studies

Ocak [15] divided the EEG segments through a

four-level wavelet packet decomposition. ApEn values

of the wavelet coefficients of all the 31 nodes of the de-

composition tree were used as a feature vector, while a

genetic algorithm was employed to reduce the number

of features and find the optimal feature subset that

maximizes the classification performance of a learning

vector quantization (LVQ) scheme. Swami et al. [16]

used wavelet packet decomposition to extract valuable

information from the EEG signal. A six-level wavelet

packet decomposition yielding 64 nodes was performed,

and several statistical features were extracted from each

node. The authors tested seven different combinations

of the feature vector and resulted in the best pair,

reaching high levels of accuracy. Table 1 summarizes

WT-based methods (DWT and WPD) presented in

the literature.

2.3 Methods using time-frequency analysis

The smoothed pseudo Wigner-Ville distribution

(SPWVD) was applied in study [17]. Various lengths of

time-frequency resolutions (64, 128, 256 and 512), time

windows (3 and 5) and frequency sub-bands (4, 5, 7 and

13) were analysed, aiming to extract several features

from the spectrum of the signal reflecting the energy

distribution over the time-frequency plane. PCA was ap-

plied to the obtained features, and then an artificial

neural network (ANN) was employed for classification.

In [18], the same group presented a comprehensive

study wherein the short-time Fourier transform (STFT)

and 12 other TFDs were evaluated. The power spectrum

density (PSD) of each segment was also extracted and

used as input to an ANN classifier.

A methodology based on fast Fourier transform (FFT)

and ApEn was proposed in [19]. The average power

spectrum was extracted in each sub-band of 4 Hz along

with the ApEn. In total, 16 features were extracted, and

the ability of genetic programming and PCA to reduce

the dimension of feature vector was examined. The

SVM classifier with linear and radial basis functions

(kernel functions) was also employed.

In study [20], EEG analysis using TFDs and particu-

larly the spectrogram (SP), the Choi-Williams distribu-

tion (CWD) and the SPWVD are performed. The

purpose of the study was both the identification of the

seizure peaks and the classification of the EEG signals.

For the identification of the peak seizures, the TFDs

were calculated and the maximum values were found.

The normalized Renyi marginal entropy (RME) was ex-

tracted for various lengths of a window (11, 17, 27, 41,

49, 93, 151, 205, 255) for SP and SPWVD and the best

value of CWD obtained by the best values of window

length of SP and SPWVD. The SPWVD with the RME

provided the best results in terms of time-frequency

resolution for the peak identification problem. Each sig-

nal of the entire datasets was segmented in six

sub-bands, and the energy from the sub-bands B1, B2

and B3 corresponding to the frequency range of interest

of 0.5 to 12 Hz was extracted. A vector of 200 values of
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Table 1 WT-based methods for EEG analysis

Author Frequency
range (Hz)

Levels Frequency
sub-bands (Hz)

Author Frequency
range (Hz)

Levels Frequency
sub-bands (Hz)

Subasi [3] 0–86.8 5 D1 43.4–86.8 Guo et al. [9] 0–86.8 4 D1 43.4–86.8

D2 21.7–43.4 D2 21.7–43.4

D3 10.8–21.7 D3 10.85–21.7

D4 5.4–10.8 D4 5.42–10.85

D5 2.7–5.4 A4 0–5.42

A5 0–2.7 Murugavel and
Ramakrish nan [10]

0–86.8 4 D1 43.4–86.8

Guo et al. [4] 0–86.8 4 D1 43.4–86.8 D2 21.7–43.4

D2 21.7–43.4 D3 10.8–21.7

D3 10.8–21.7 D4 5.4–10.8

D4 5.4–10.8 A4 0–5.4

A4 0–5.4 Adeli et al. [11] 0–60 4 D1 30–60

Ocak [5] 0–86.8 3 D1 43.4–86.8 D2 15–30

D2 21.7–43.4 D3 8–15

D3 10.85–21.7 D4 4–8

A1 0–43.4 A4 0–4

A2 0–21.7 Ghosh-Dastidar
et al. [12]

0–60 4 D1 30–60

A3 0–10.85 D2 15–30

Kumar et al. [6] 0–86.8 5 D1 43.4–86.8 D3 8–15

D2 21.7–43.4 D4 4–8

D3 10.85–21.7 A4 0–4

D4 5.4–10.85 Mousavi et al. [13] 0–60 4 D1 30–60

D5 2.7–5.4 D2 15–30

A1 0–43.4 D3 8–15

A2 0–21.7 D4 4–8

A3 0–10.85 A4 0–4

A4 0–5.43 Wang et al. [14] 0–32 3 D1 16–32

A5 0–2.70 D2 8–16

Kumar et al. [7] 0–86.8 5 D1 43.4–86.8 D3 4–8

D2 21.7–43.4 A3 0–4

D3 10.8–21.7 Ocak [15] 0–86.8 4 A 0–43.4

D4 5.4–10.8 D 43.4–86.8

D5 2.7–5.4 AA 0–21.7

A5 0–2.7 DA 21.7–43.4

Subasi [8] 0–86.8 5 D1 43.4–86.8 AD 43.4–65.1

D2 21.7–43.4 DD 65.1–86.8

D3 10.8–21.7 Swami et al. [16] 0–86.8 6 A 0–43.4

D4 5.4–10.8 D 43.4–86.8

D5 2.7–5.4 AA 0–21.7

A5 0–2.7 DA 21.7–43.4

AD 43.4–65.06

DD 65.06–86.8
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energy for the three sub-bands of interest was obtained,

and the moving averages were extracted. The classifica-

tion of the signals was performed by a threshold which

was defined by the mean of the moving average of en-

ergy for each band. The obtained results were used as

input to a score function to classify each signal.

Methods based on TFD analysis are summarized in

Table 2.

3 Method

The flowchart of the methodology followed for this

study in order to access the spectral characteristics of

the EEG signals is presented in Fig. 2.

3.1 Select number of thresholds

Initially, the number of spectral thresholds is selected,

which determines the number of frequency sub-bands

that are created; for N spectral thresholds, N + 1 fre-

quency sub-bands are analysed. The number of spec-

tral thresholds that are examined in this study varied

from N = 0 (thus considering all EEG spectrum to be

a single sub-band) to N = 12 (thus creating 13 spectral

sub-bands).

3.2 Create combinations

For each number of thresholds, all possible threshold

combinations are generated, subject to a single con-

strain, being that no two consecutive thresholds can be

closer than 2 Hz. The limits for the spectral analysis are

set to [0, 42] Hz. For N spectral thresholds, the thresh-

old set TN is defined as:

TN ¼ tif g; i ¼ 1 : N ð1Þ

with t0 = 0 Hz and tN + 1 = 42 Hz, thus:

tiþ1−ti≥2 Hz;∀i ¼ 0 : N ; ð2Þ

while each frequency sub-band is defined as:

f i ¼ ti; tiþ1½ �; i ¼ 0 : N ð3Þ

and the frequency sub-bands set FN is defined as:

FN ¼ f if g; i ¼ 0 : N ð4Þ

with |FN| =N + 1. For example, for N = 5, F5 = {[0, t1],

[t1, t2], [t2, t3], [t3, t4], [t4, t5], [t5, 42]} Hz.

In order to create all different threshold combinations

CN that satisfy the above limitation, only integer values of

thresholds are considered. Thus, ti ∈ [2, 40] Hz, i = 1:N,

since all frequency sub-bands must be ≥ 2 Hz, and:

CN ¼ all different combinations of FN
� �

ð5Þ

The number of combinations varies greatly as N in-

creases; N vs |CN| is presented in Fig. 3.

3.3 Spectral feature extraction

3.3.1 Sub-band energy

All EEG signals are initially filtered using a low-pass fil-

ter with cut-off frequency of 42 Hz. Then, each threshold

set combination CN is used in order to define a set of

filters for the EEG signal, one low pass for the [0, t1] Hz

sub-band, one high pass for the [tN, 42] Hz sub-band

and N − 1 band-pass filters for the [ t i, t i + 1] Hz,

Table 2 TFD-based methods for EEG analysis

Authors Freq. range (Hz) Num. of frequency sub-bands Frequency ranges

Tzallas et al. [17] 0–40 4 {[0–4], [4–8], [8–12], [12–40]}

5 {[0–2.5], [2.5–5.5], [5.5–10.5], [10.5–21.5], [21.5–43.5]}

7 {[0–2], [2–4], [4–6.5], [6.5–9], [9–12], [12–25], [25–40]}

13 {[0–2], [2–4], [4–6], [6–8], [8–10], [10–12], [12–16]},
{[16–20], [20–24], [24–28], [28–32], [32–36], [36–40]}

Tzallas et al. [18] 0–43.5 5 {[0–2.5], [2.5–5.5], [5.5–10.5], [10.5–21.5], [21.5–43.5]}

Liang et al. [19] 0–60 15 {[0–4], [4–8], [8–12], [12–16], [16–20]},
{[20–24], [24–28], [28–32], [32–36], [36–40]},
{[40–44], [44–48], [48–52], [52–56], [56–60]}

Ridouh et al. [20] 0–86.8 6 {[0–2.71], [2.71–5.42], [5.42–10.85], [10.85–21.70], [21.70–43.40], [43.40–86.80]}

Fig. 2 Flowchart of the methodology followed in this study

Tsipouras EURASIP Journal on Advances in Signal Processing         (2019) 2019:10 Page 6 of 17



i = 1:N − 1 sub-bands. All EEG filters are designed as

Elliptic IIR filters, with ti ± 0.5 Hz values as fstop and

fpass thresholds, respectively. The overall procedure is

illustrated in Fig. 4.

The energy of each of the N + 1 filtered signals is the

calculated (ei), and the vector of energies (EN) is used for

the classification.

3.3.2 Total EEG energy

The total EEG energy (TE) is also calculated as sum of

all sub-band energies:

TE ¼ Σei ð6Þ

3.3.3 Sub-band fractional energy

Besides the energy of each sub-band, the fractional en-

ergy (fei) is also calculated:

fei ¼ ei=TE ð7Þ

The vector of fractional energies (FEN) is also used as

input for the classification step.

Fig. 3 Number of spectral threshold combinations (x-axis) for all values of N (y-axis)

Fig. 4 Spectral feature extraction step. After initial filtering (0–42 Hz), the signal is filtered with N + 1 elliptic filters (middle column), resulting to

N + 1 filtered signals (right column)
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3.3.4 Spectral entropy

The spectral entropy (SEn) is the Shannon entropy of

the power spectrum density of each EEG signal, calcu-

lated as:

SEn ¼ −Σ Pk log Pkð Þ= log Mð Þ ð8Þ

with Pk being the spectral power of normalized frequen-

cies (and ΣPk = 1), and M is the number of frequency bins.

3.4 Classification

The spectral feature vector created in the previous step

is FV = {EN, TE, FEN, SEn}. Thus, the size of FV is 2N

+ 4, except in the case of N = 0 (i.e. when all EEG

spectrum is considered as a single sub-band) where

|FV| = 1 (i.e. a single feature is included). The number

of spectral sub-bands (FN), spectral threshold combina-

tions (CN) and the size of the feature vector (FVN) with

respect to the number of spectral thresholds (N) are

presented in Table 3. Classification is based on a ran-

dom forest classifier [25], which is an ensemble learn-

ing method based on the construction of a multitude

of decision trees. In this study, random forests were

constructed with standard parameters, i.e. each forest

containing 100 decision trees, which are grown to the

full depth.

The overall methodology is presented in Algorithm 1.

4 Results

The study focused on two different classification prob-

lems, the five-class problem (i.e. classifying all Z, O, N, F

and S categories) with the main objective being to iden-

tify the spectral sub-bands that carry the maximum in-

formation, and the three-class problem (i.e. ZO-NF-S

categories), which is a well-known medically established

Table 3 Number of spectral thresholds and size of spectral

threshold set (N/TN) and respective number of spectral sub-bands

(FN), spectral threshold combinations (CN) and size of feature

vector (FEN)

N/TN FN (#) CN (#) FVN (#)

0 1 1 1

1 2 39 6

2 3 703 8

3 4 7770 10

4 5 58,905 12

5 6 324,632 14

6 7 1,344,904 16

7 8 4,272,048 18

8 9 10,518,300 20

9 10 20,160,075 22

10 11 30,045,015 24

11 12 34,597,290 26

12 13 30,421,755 28
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problem in this area. The obtained results are in terms

of classification accuracy. The 10-fold stratified cross-

validation technique has been employed in the classifica-

tion, thus the dataset has been divided into 10 equally

sized datasets, with each of them having the same num-

ber of EEG recordings from each of the categories, and

then nine of them were used for training the classifier,

and the final for testing. This procedure is applied 10

times, thus resulting into 10 confusion matrices, while

the final confusion matrix (used to calculate classifica-

tion accuracy) is their summation.

In Table 4, the best obtained accuracy for the five-class

problem, for all number of thresholds (N) is presented

(max accuracy). Also, the average value of the top-10 clas-

sification accuracies for each number of thresholds (N) is

calculated (average accuracy). The results are illustrated in

Fig. 5.

The obtained accuracy results for N = 1 are presented

in Fig. 6. The value of the threshold (t1) is on the x-axis;

thus, the respective accuracy result is obtained using fea-

tures extracted from frequency sub-bands F1 = {[0, t1],

[t1, 42]} Hz, with the size of the feature vector FV1 = 6.

For example, for t1 = 4 Hz, the frequency sub-bands are

{[0, 4], [4, 42]} Hz and the accuracy result is 73.60%.

Also, the accuracy result of N = 0 (F0 = [0, 42] Hz, FV0 = 1),

being 44.80%, is depictured in Fig. 6 (black line) as a

baseline result.

The obtained accuracy results for N = 2 are presented

in Fig. 7. Since using two spectral thresholds, the ob-

tained results formulate a matrix M (with M (t1, t2) = ac-

curacy obtained using these spectral thresholds), the

results are depicted in a 3D image. The value of t1
threshold (Hz) is on the x-axis and the value of t2
threshold (Hz) is on the y-axis. Thus, the accuracy result

for frequency sub-bands F2 = {[0, t1], [t1, t2], [t2, 42]} Hz

(with size of feature vector FV2 = 8). For example, for

t1 = 4 Hz and t2 = 6 Hz, the frequency sub-bands are

{[0, 4], [4, 6], [6, 42]} Hz.

For values of N greater than 2, the obtained results

cannot be presented with respect to the ti values.

Thus, results for N > 2 are presented in Fig. 8a–j with

respect to the overall number of combinations (CN).

Vertical lines represent the changes of t1. For ex-

ample, the first part of Fig. 8a (denoted with gray

color) presents the results of all C3 combinations with

t1 = 2 Hz (which is the first valid value for t1, since

t1–t0 must be ≥ 2 Hz) and thus t2 ∈ [4, 38] Hz and t3
∈ [6, 40] Hz. The sequence of C3 combinations for t1
= 2 Hz is {{[0, 2], [2, 4], [4, 6], [6, 42]}, {[0, 2], [2, 4],

[4, 7], [7, 42]}, … {[0, 2], [2, 4], [4, 40], [40, 42]}, {[0,

2], [2, 5], [5, 7], [7, 42]}, …, {[0, 2], [2, 38], [38, 40],

[40, 42]}}.

To make clearer the plots of Fig. 8, the results of

C2 combinations are also generated in this form

(Fig. 9). The subplots (a) to (f ) in Fig. 9 correspond

to the parts of the main plot that are connected with

the red lines, for a specific value of t1. Figure 8a (the

first part of the main plot) corresponds to t1 = 2 Hz

and thus t2 ∈ [4, 40] Hz, Fig. 8b (the second part of

the main plot) corresponds to t1 = 3 Hz and thus t2 ∈

[5, 40] Hz, Fig. 8c corresponds to t1 = 4 Hz and t2 ∈

[6, 40] Hz, Fig. 8d corresponds to t1 = 6 Hz and t2 ∈

[8, 40] Hz, Fig. 8e corresponds to t1 = 7 Hz and t2 ∈

[9, 40] Hz and Fig. 8f corresponds to t1 = 8 Hz and t2
∈ [10, 40] Hz.

The top five obtained classification accuracy results for

each N value, and the respective FN are presented in

Table 5.

Table 4 Maximum obtained accuracy (max accuracy) and

average value of the top 10 obtained values for accuracy

(average accuracy) for the five-class problem, for N = 0–12

N Max accuracy (%) Average accuracy (%)

0 44.80 44.80

1 73.60 67.08

2 83.60 82.28

3 88.00 87.32

4 89.60 89.20

5 90.00 89.84

6 90.40 90.00

7 90.40 90.04

8 90.80 90.60

9 91.20 90.72

10 90.80 90.48

11 90.40 90.32

12 90.40 90.08

Fig. 5 Maximum obtained accuracy (max accuracy) and average

value of the top-10 obtained values for accuracy (average accuracy)

for the five-class problem, for N = 0–12
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Besides the five-class problem, the well-known

three-class problem (ZO-NF-S) is also addressed. In this

case, the main focus is a medically established problem,

addressed from several researchers in the literature [17,

26–31]. Again, the results are in terms of classification

accuracy, and the 10-fold stratified cross-validation tech-

nique has been employed. The obtained results are pre-

sented in Table 6.

5 Discussion

A methodology for systematic analysis of the fre-

quency sub-band definition regarding EEG analysis

for epilepsy, is presented in this work, in order to as-

sess the impact of different number and alternative

definitions of frequency sub-bands in this problem.

The methodology is based on the definition of a

number of spectral thresholds, based on which a set

of frequency sub-bands is created. Then, a set of

spectral features are extracted and used to train a

random forest classifier. For each specific number of

spectral thresholds (ranging from 0 to 12), all combi-

nations of sub-band definition are analysed, with the

limitation that each sub-band range must be at least

2 Hz, resulting to a total of ~ 1.32 × 108 frequency

sub-band combinations. The methodology has been

applied on a benchmark dataset, being the Bonn EEG

database, for the five-class (Z-O-N-F-S) and the

three-class (ZO-NF-S) problems.

For the five-class problem, the maximum accuracy

obtained for each N (presented in Table 4) ranges

from 44.80% (for N = 0) to 91.20% (obtained for two

combinations with N = 9). An important conclusion

extracted from this analysis is that increasing the

number of frequency sub-bands does not have a posi-

tive impact in the classification accuracy, since the re-

sults after peaking for N = 9 are slightly decreasing

with respect to N (Fig. 5). The same conclusion is

reached when the average accuracy of the top 10 re-

sults is taken under consideration; maximum average

accuracy is 90.72% (obtained for N = 9), decreasing to

90.08% (for N = 12). It should be noted that evidence

for this conclusion can be found in Tzallas et al. [17]

and Liang et al. [19], where 13 and 15 frequency

sub-bands were examined, respectively, however

drawn from single experiments and not a systematic

analysis. In [17], the results are decreasing for 13 fre-

quency sub-bands compared to the results obtained

for five and seven frequency sub-bands (although the

five-class problem is not included in the analysis of

Fig. 6 Obtained accuracy results for N = 1 (t1 = 2:40). Black line denotes the accuracy for N = 0 (44.80%)

Fig. 7 Obtained accuracy for N = 2 (t1 = 2:38 Hz, t2 = 4:40 Hz)
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[17]), while in [19] the obtained accuracy for the

five-class problem is 85.90% using 15 frequency

sub-bands. Furthermore, combinations with N = 5–12

achieved classification results ≥ 90%, being in accord-

ance with the majority of researchers, using four to

seven frequency sub-bands in their analysis (without

however any justification for this selection).

Considering the delta, theta, alpha, beta and gamma

frequency sub-bands (medically established rhythms)

that correspond to the {[0–4], [4–8], [8–13], [13–30],

[30–42]} Hz combination for four spectral thresholds

(N = 4), the obtained accuracy is 82.80%, being 6.8%

lower than the maximum classification accuracy ob-

tained for N = 4 (89.60%) and 8.4% lower than the

best classification accuracy obtained in this study

(being 91.20%, obtained for two frequency sub-band

combinations for N = 9). Several of the frequency

sub-band combinations that achieved high classifica-

tion accuracy (≥ 90%) include frequency sub-bands

that correlate with the medically established rhythms,

including also however sub-bands that clearly differ-

entiate from them. For N = 4 spectral thresholds, the

{[0–3], [3–8], [8–18], [18–33], [33–42]} Hz combin-

ation, which achieved the best classification accuracy

(for N = 4), includes [0–3] Hz band (resembling delta)

and [3–8] Hz (resampling theta); however, the other

bands are somewhat different. Also, the {[0–2], [2–8],

[8–16], [16–25], [25–35], [35–42]} Hz combination,

which is one of the frequency sub-band combinations

that achieved maximum classification accuracy for

N = 5, includes [8–16] Hz band (alpha rhythm) but

significant differences for all other rhythms. Further-

more, for N > 4, additional frequency sub-bands that

carry significant information regarding this problem

are revealed.

The frequency sub-band combinations that achieved

maximum classification accuracy are in the first two

lines for N = 9 in Table 5. Both include the [0–3] Hz

Fig. 8 Obtained accuracy results for N = 3 (a), N = 4 (b), N = 5 (c), N = 6 (d), N = 7 (e), N = 8 (f), N = 9 (g), N = 10 (h), N = 11 (i) and N = 12 (j)
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and [3–7] Hz bands, closely related to delta and theta

rhythms, but also an additional band [7, 8] Hz, be-

tween theta and alpha rhythms, is included. In both

cases, beta rhythm is split into four and three smaller

bands, for the first and second combination, respect-

ively. Also, gamma rhythm is split into smaller bands

(two for the first combination and three for the sec-

ond). The low-frequency bands [0–3] and [3–7] are

the most common among the ones that achieved high

classification accuracy (≥ 90%). This is in compliance

with several works presented in the literature [5, 7, 8,

11–14, 17–20]. In higher frequencies, however, there

are major differences in the frequency sub-band com-

binations that achieved maximum results in this

study. Especially with the WPD-based studies [15,

16], the frequency sub-bands used are in complete

disagreement with the results obtained in this study.

A band (0–43.4 Hz), included in [15, 16] studies, car-

ries little information for this problem, while

low-frequency sub-bands, extensively included in the

high-accuracy achieving combinations in this study,

are excluded from the WPD-based studies.

Considering the three-class problem, the maximum

accuracy obtained for each N (presented in Table 6)

ranges from 56% (for N = 0) to 98.8% (obtained for

several combinations with N = 8 and N = 9). Again, in-

creasing the number of frequency sub-bands does not

have a positive impact in the classification accuracy;

Fig. 9 Accuracy results (%) for N = 2. Results for a t1 = 2 Hz and t2 = 4:40 Hz, b t1 = 3 Hz and t2 = 5:40 Hz, c t1 = 4 Hz and t2 = 6:40 Hz, d t1 = 5 Hz

and t2 = 7:40 Hz, e t1 = 6 Hz and t2 = 8:40 Hz, f t1 = 7 Hz and t2 = 9:40 Hz
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Table 5 Top 5 accuracy results for the five-class problem and the respective frequency sub-bands (FN)

N FN Accuracy (%)

0 [0–42] 44.80

1 {[0–2], [2–42]} 73.60

{[0–4], [4–42]} 71.20

{[0–5], [5–42]} 70.40

{[0–3], [3–42]} 68.80

{[0–6], [6–42]} 65.20

2 {[0–3], [3–11], [11–42]} 83.60

{[0–4], [4–6], [6–42]} 83.60

{[0–3], [3–17], [17–42]} 82.40

{[0–3], [3–25], [25–42]} 82.40

{[0–3], [3–31], [31–42]} 82.40

3 {[0–4], [4–7], [7–27], [27–42]} 88.00

{[0–3], [3–7], [7–19], [19–42]} 87.60

{[0–3], [3–7], [7–37], [37–42]} 87.60

{[0–4], [4–6], [6–30], [30–42]} 87.60

{[0–2], [2–7], [7–18], [18–42]} 87.20

4 {[0–3], [3–8], [8–18], [18–33], [33–42]} 89.60

{[0–3], [3–9], [9–15], [15–30], [30–42]} 89.60

{[0–3], [3–12], [12–17], [17–22], [22–42]} 89.60

{[0–3], [3–9], [9–15], [15–36], [36–42]} 89.20

{[0–4], [4–7], [7–23], [23–27], [27–42]} 89.20

5 {[0–2], [2–8], [8–16], [16–25], [25–35], [35–42]} 90.00

{[0–3], [3–7], [7–18], [18–32], [32–36], [36–42]} 90.00

{[0–3], [3–7], [7–22], [22–33], [33–36], [36–42]} 90.00

{[0–4], [4–6], [6–23], [23–25], [25–34], [34–42]} 90.00

{[0–4], [4–6], [6–24], [24–26], [26–37], [37–42]} 90.00

6 {[0–3], [3–7], [7–9], [9–15], [15–17], [17–33], [33–42]} 90.40

{[0–3], [3–7], [7–17], [17–29], [29–33], [33–35], [35–42]} 90.40

{[0–3], [3–9], [9–13], [13–15], [15–29], [29–39], [39–42]} 90.40

{[0–3], [3–7], [7–9], [9–15], [15–25], [25–39], [39–42]} 90.00

{[0–3], [3–7], [7–13], [13–17], [17–31], [31–35], [35–42]} 90.00

7 {[0–3], [3–9], [9–15], [15–27], [27–29], [29–33], [33–39], [39–42]} 90.40

{[0–3], [3–7], [7–9], [9–15], [15–21], [21–25], [25–33], [33–42]} 90.00

{[0–3], [3–7], [7–9], [9–15], [15–21], [21–25], [25–37], [37–42]} 90.00

{[0–3], [3–7], [7–9], [9–15], [15–31], [31–33], [33–37], [37–42]} 90.00

{[0–3], [3–7], [7–9], [9–17], [17–27], [27–33], [33–35], [35–42]} 90.00

8 {[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–21], [21–23], [23–42]} 90.80

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–21], [21–25], [25–42]} 90.80

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–27], [27–31], [31–42]} 90.80

{[0–3], [3–7], [7–9], [9–13], [13–17], [17–21], [21–25], [25–39], [39–42]} 90.80

{[0–3], [3–9], [9–13], [13–15], [15–29], [29–31], [31–33], [33–35], [35–42]} 90.80

9 {[0–3], [3–7], [7–9], [9–13], [13–17], [17–21], [21–23], [23–31], [31–35], [35–42]} 91.20

{[0–3], [3–7], [7–9], [9–13], [13–17], [17–21], [21–31], [31–33], [33–37], [37–42]} 91.20

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–19], [19–21], [21–29], [29–37], [37–42]} 90.80
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the maximum values are obtained for N = 8 and then

the results are decreasing with respect to N. In this

case also, the combination that corresponds to the

medically established rhythms obtained much lower

classification accuracy. Among the frequency

sub-band combinations that achieved high classifica-

tion accuracy (≥ 90%), the low-frequency bands [0–3]

and [3–7] are the most common while there are sig-

nificant differences in the high-frequency bands.

In Table 7, a comparison of methodologies

presented in the literature for the five-class problem

is presented. Although the focus of this study is to

assess the impact of the number of frequency sub-

bands and the different frequency sub-band combina-

tions in the classification of EEG regarding epilepsy,

the obtained results compare well with the ones re-

ported in the literature. The works by Guler and

Ubeyli [32, 33] and Murugavel and Ramakrishnan

[10] reported high classification accuracy; however,

they are validated using a 50% holdout technique and

not a cross-validation procedure. The obtained results

using a cross-validation technique [17, 19, 34, 35]

range from 86.10 to 93.75%, with the best obtained

results in this study being 91.20%.

A comparison of methodologies presented in the

literature for the three-class problem is presented in

Table 8. The results reported in the literature range

from 95.6 to 98.8%, with the proposed method archiv-

ing 98.8%. Again, some researchers used different valid-

ation techniques; however, works employing a 10-fold

cross-validation technique [29–31] range from 98.28 to

98.8%.

6 Conclusions

The first systematic analysis in the literature, regarding

the impact of the frequency sub-band definition in the

epileptic EEG classification problem, is presented in this

study. The study revealed significand conclusions, some

Table 5 Top 5 accuracy results for the five-class problem and the respective frequency sub-bands (FN) (Continued)

N FN Accuracy (%)

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–21], [21–23], [23–25], [25–39], [39–42]} 90.80

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–25], [25–31], [31–33], [33–39], [39–42]} 90.80

10 {[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–19], [19–29], [29–31], [31–39], [39–42]} 90.80

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–25], [25–31], [31–35], [35–37], [37–42]} 90.80

{[0–3], [3–7], [7–9], [9–11], [11–13], [13–15], [15–17], [17–21], [21–23], [23–39], [39–42]} 90.40

{[0–3], [3–7], [7–9], [9–11], [11–13], [13–15], [15–17], [17–21], [21–29], [29–39], [39–42]} 90.40

{[0–3], [3–7], [7–9], [9–11], [11–13], [13–15], [15–17], [17–31], [31–35], [35–39], [39–42]} 90.40

11 {[0–3], [3–7], [7–9], [9–11], [11–13], [13–17], [17–23], [23–29], [29–31], [31–33], [33–35], [35–42]} 90.40

{[0–3], [3–7], [7–9], [9–11], [11–15], [15–17], [17–21], [21–23], [23–25], [25–37], [37–39], [39–42]} 90.40

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–19], [19–21], [21–23], [23–27], [27–37], [37–42]} 90.40

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–21], [21–23], [23–25], [25–27], [27–39], [39–42]} 90.40

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–21], [21–25], [25–31], [31–33], [33–37], [37–42]} 90.40

12 {[0–3], [3–7], [7–9], [9–11], [11–13], [13–17], [17–23], [23–27], [27–31], [31–33], [33–37], [37–39], [39–42]} 90.40

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–19], [19–21], [21–27], [27–29], [29–33], [33–35], [35–42]} 90.40

{[0–3], [3–7], [7–9], [9–15], [15–19], [19–21], [21–23], [23–27], [27–29], [29–31], [31–33], [33–35], [35–42]} 90.40

{[0–3], [3–7], [7–9], [9–11], [11–13], [13–17], [17–19], [19–21], [21–31], [31–33], [33–35], [35–37], [37–42]} 90.00

{[0–3], [3–7], [7–9], [9–13], [13–15], [15–17], [17–19], [19–21], [21–31], [31–33], [33–35], [35–39], [39–42]} 90.00

Table 6 Max and average accuracy for the three-class problem,

for N = 0–12

N Max accuracy (%) Average accuracy (%)

0 56.00 56.00

1 89.60 80.80

2 93.40 92.56

3 95.60 95.12

4 96.80 96.28

5 96.80 96.48

6 97.00 96.80

7 97.40 97.32

8 98.80 98.48

9 98.80 98.24

10 98.20 97.84

11 97.60 97.40

12 96.80 96.64
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are in accordance to the majority of works presented in

the literature, while others are contradicting with pub-

lished works. Yet, a major conclusion of this study is

that examining additional frequency sub-bands (and not

only focusing on the medically established rhythms) can

greatly benefit studies focusing on the EEG analysis for

epilepsy detection.

A limitation of this study is that the range of each

sub-band was forced to be ≥ 2 Hz, thus not examining

in greater detail the frequency sub-bands. The main

reason for this limit was the high number of spectral

threshold combinations, as the number of spectral

thresholds increase. In future, the results obtained in

this study will be validated in additional EEG record-

ings and other well-known EEG databases [36], in-

cluding different types of seizure activity; the latter is

of major importance since different types of epileptic

seizure activity may present different spectral pat-

terns. Also, the application of frequency-based EEG

analysis (as in this work) is advantageous compared

to other types of EEG processing, since it is of low

computational complexity and can be applied in real

time. Furthermore, the author will exploit the

conclusions from this study (i.e. frequency sub-band

combinations that achieve maximum classification

accuracy), in the design of an EEG epilepsy classifica-

tion procedure based on more complex signal pro-

cessing techniques (such as using this combination

for a time-frequency grid, as in [17]). Also, employ-

ment of additional classification methods, such as

neural networks and deep learning networks [37–39],

will be studied in future communications.

Table 7 Comparison of methodologies presented in the literature for the five-class (Z-O-N-F-S) problem

Authors Feature extraction Classification Validation Classification
accuracy

Guler and Ubeyli [32] (2005) DWT (db2)/mean, min, max, std Adaptive neuro-fuzzy
inference system

50% holdout 98.68%

Ubeyli and Guler [33] (2007) Eigenvector methods
(Pisarenko, MUSIC, Minimum-Norm)

Modified mixture-of-
experts

50% holdout 98.60%

Tzallas et al. [17] (2009) TFD (SPWVD)/fractional energy ANN Monte Carlo cross-validation
(50% split—10 repeats)

89%

Liang et al. [19] (2010) FFT/ApEn SVM Monte Carlo cross-validation
(60–40% split—10 repeats)

85.90%

Nicolaou et al. [34] (2012) Permutation entropy SVM Monte Carlo cross-validation
(various splits—100 repeats)

86.10%

Murugavel and Ramakrishnan [10]
(2014)

DWT (db2)/energy, entropy, mean,
min, max, std

OELM 50% holdout 94%

Tawfik et al. [35] (2016) Weighted permutation entropy SVM 10-fold cross-validation 93.75%

This study Frequency sub-bands/energy, total energy,
fractional energy, entropy

Random forests 10-fold cross-validation 91.20%

Table 8 Comparison of methodologies presented in the literature for the three-class (ZO-NF-S) problem

Authors Feature extraction Classification Validation Classification
accuracy

Tzallas et al. [17] (2009) TFD (SPWVD)/fractional energy ANN Monte Carlo cross-validation
(50% split – 10 repeats)

97.72%

Acharya et al. [26] (2009) 10 parameters from Recurrence
Quantification Analysis

SVM 3-fold cross-validation 95.60%

Orhan et al. [27] (2011) DWT and K-means clustering MLP 50% train, 50% validation
and test

95.60%

Acharya et al. [28] (2012) ApEn, SampEn, Phase Entropy 1 and 2 Fuzzy Sugeno Classifier Threefold cross-validation 98.10%

Peker et al. [29] (2016) Dual tree complex wavelet transform Complex valued neural networks 10-fold cross-validation 98.28%

Tiwari et al. [30] (2016) Key-point-based local binary patterns SVM 10-fold cross-validation 98.80%

Bhattacharyya et al.
[31] (2017)

Tunable-Q WT and K-NN entropies SVM 10-fold cross-validation 98.60%

This study Frequency sub-bands/energy, total energy,
fractional energy, entropy

Random forests 10-fold cross-validation 98.80%
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