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LIST OF SYMBOLS

Symbol Definition

D mean geocentric distance of the moon; D = 60. 268 R E
m m

i inclination of the effective apparent orbit of the moon about the

sun as seen by the observer; i = 90 deg for an eclipse which

becomes central

J surface brightness of the sun at any point of surface

J surface brightness of the sun at center of disk
c

k ratio of the angular radius of the smaller disk to that of the

larger disk; k = r /rsg

p geometrical depth of the eclipse at any instant (since it varies

with time) ; it is defined as the distance from the limb of the

larger disk (angular radius, r ) to the center of the smaller

disk (angular radius, rs) in terms of the angular radius of the

smaller disk, namely, p = rg

R E  radius of earth

r angular radius of moon

r angular radius of sun; r < r for the occultation solar
sn sn m

eclipse at any stage (partial or total); r > r for the transit

eclipse at any stage (partial or annular)

x coefficient of limb-darkening; J = J (1 - x + x cos 7)
c

x a oc during the eclipse for any value of x
oc



LIST OF SYMBOLS (Concluded)

Symbol Description

x tr atr during the eclipse for any value of x

a ratio of light loss at any time to light loss at internal tangency;
a = a (k, p) ; often referred to as the Russell Function or the
eclipse function

a o a during the occultation eclipse

oc oc
a 0

c  a at mideclipse; maximum a

tr
atr a during the transit eclipse

tr tr
a 0  a at mideclipse; maximum a

P instantaneous equatorial horizontal parallax of moon

1m mean equatorial horizontal parallax of moon; Am = 57 min 3 sec

y angle at the center of the sun between the radius and the line of
sight

6 angle between the centers of the moon and sun at any instant

0 longitude in orbit (from conjunction)

7ratio of the light received from the solar disk at internal tan-
gency (second or third contact) during an annular eclipse, to
total light of that disk

vi



TECHNICAL MEMORANDUM X-64842

SPECTRAL I RRAD IANCE CURVE CALCULATIONS FOR
ANY TYPE OF SOLAR ECLIPSE

I. INTRODUCTION

The spectral irradiance curve (SIC) gives the variation of the sun's

radiation of a given wavelength reaching a distant observer for various positions

of the moon across the sun. It is simply the light curve for a given wavelength

(X). The SIC is defined by the difference (1-) of the eclipse function (EF),

a , from unity. The EF gives the variation of the loss of solar radiation reach-

ing the distant observer during the various phases of the eclipse. It is also

referred to as the Russell Function in the theory of light curves for eclipsing

binaries [1-31 and is defined in the List of Symbols.

According to von Oppolzer's Canon of Eclipses [41, an average of

approximately 237 solar eclipses occur per century, of which 66 become total,

77 become annular, and 10 are annular-and-total, and about 84 are partial at

maximum.

This report contains a simple procedure for calculating the eclipse

function, and hence the SIC, for any type of solar eclipse and for radiation of

any wavelength for which the solar limb-darkening obeys the limb-darkening

cosine law:

J = J (1-x+x cosy) (1)

where the symbols are defined in the List of Symbols. The case of occultation

(partial/total) eclipses is presented in Section II and that of transit (partial

annular) eclipses is discussed in Section III.

The computation of the eclipse function or the SIC would be trivial but

for the presence of the solar limb-darkening effect. The treatment here differs

from that of Beard [51 which is based on the Method of Julius [61 and consists
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essentially of dividing the sun into 12 somewhat arbitrary concentric zones and

assigning to each an average brightness value. The treatment in this report is

based on the theory for the light curves of eclipsing binaries [1-31, where it is

assumed that the orbit is circular and that the stars are spherical and appear

darkened at the limb according to the cosine law, equation (1). In the proce-

dure here the binary system is replaced by the sun and the moon which are

assumed to be spherical. Because the speed of the earth-moon system in its

orbit around the sun is more than 30 times as great as the speed of the moon

in its orbit around the earth, the relative orbit of the moon around the sun is

always concave toward the sun and can be regarded as circular with respect

to the sun throughout the entire interval of the eclipse.

Also, the authors of this report consider only those solar radiations for

which the limb-darkening law of equation (1) holds for the sun. One can obtain

the values of the limb-darkening coefficient (x) for these wavelengths from

Reference 6. Then, the pertinent portions of Merrill's Tables [1-31 (herein-

after called "Princeton 23") can easily be applied to the case of the solar

eclipses.

As an example of the computations involved, calculations have been

made for the March 7, 1970, eclipse. One can use the procedure in a similar

manner to compute the eclipse function aid the SIC for any other occultation or

transit eclipse. The March 7, 1970, eclipse is an example of an occultation

eclipse which is total for a portion of the time, as seen from within a certain

narrow track.

Before proceeding to the description of the method, a brief explanation

of the concepts of eclipsing binaries as applicable to the case of solar eclipses

is given.

A. Concepts and Relations Relevant to Solar Eclipses

If 0 is the longitude in orbit from conjunction and i is the inclination

of the orbit, then the apparent distance 6 between the centers of the two disks

(of the sun and the moon) is given by (Fig. 1)

2 = cos2i + sin2 i sin2O (2)
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Figure 1. Apparent geometry of eclipses. [The eclipse is an

occultation if the eclipsed area (shaded) is on the smaller

disk. The eclipse is transit if the eclipsed area is

on the larger disk. I

where f is simply a factor relating the distance units involved in the two sys-

tems. The geometrical depth of the eclipse is then defined by

p= ( - r)/rs ' (3)

where r and r are the respective angular radii of the larger and the
r s

smaller disks as seen by the observer. Depending on the distance of the moon

from the observer (which varies about a mean distance, Dm), the moon's

disk may have its radius larger or smaller than that of the sun. When for any

fixed observer the moon's semidiameter (r ) is greater than that of the sun

(rsn), the eclipse is herein called occultation; if and while p s -1, the eclipse

is complete and is usually called total. When for any fixed observer the moon's

semidiameter (r m ) is less than the sun's (rsn), the eclipse is herein called

transit; if and while p - - 1, the eclipse is complete and usually called annu-

lar. When p > -1, whether during occultation or transit, the eclipse is

usually called partial.
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The definition of p applies equally, whether the larger or the smaller

disk is in front: The eclipse will be absent, partial, or complete, according

to whether p 1, 1> p -1, or p < -1. Because the amount of light obscured

during an annular phase (if there is one) is least at internal tangency (p = -1)

and increases steadily with diminishing p to a maximum (loss) at concentric

eclipse (p = -1/k), if that occurs, it is more efficient to treat occultation

eclipses as a whole and transit eclipses as a whole, by slightly different

techniques.

The other important quantity is

k = r /r , (4)
s g

which is always less than unity unless r = r . From equations (3) and (4),

one obtains [1-31

6 = r (l+kp) (5)

Only for a concentric eclipse (annular or total), pc = -1/k (where k and p

are dimensionless quantities), do whole values completely define the geometrical

circumstances of a given phase. With the aid of geometrical parameters of

the solar eclipse, the EF or the SIC is derived for the occultation eclipse in

the following sections.

B. The Eclipse Function and the Spectral Irradiance
Curve Calculations

The eclipse function, a, referred to as the Russell Function in the

nomenclature of eclipsing binaries, is defined as the ratio of the light loss at

any instant during the eclipse to the light loss at internal tangency. a is a

function of the limb-darkening coefficient, x, and the eclipse parameters k

and p defined previously, i.e.,
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0 = a (x, k, p) . (6)

One can invert relation (6) and obtain p as a function of x, k and a , i.e.,

p = p(x, k, a) (7)

during all partial and annular phases but not, of course, during actual total

phases since a is constant there.

If a 0 is the value of a at mideclipse, then one can define the light

loss at any time during the eclipses relative to that at mideclipse by

t = / (8)

Then by definition,

Po = p(x, k, a 0 ) . (9)

From equations (2) and (5)

f(cos 2 i + sin2 i sin 2 0) r 2 (1 + kp) 2  . (10)

For mideclipse, 0 = 0 so that

f cos 2 i = r 2 (1 + kp0) 2  . (11)

Furthermore, if pn = p(x, k, nao) and 0(n) refers to the value of 0 when

the radiation loss from the sun's disk is a = no 0 , one can obtain the following

important relation [1-31:
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sin (n) (1 + kp -1 + kp0 )
2

or

sin2 0 (n) = sin2 0 (1/2) X(x, k, a0o, n) . (13)

These equations apply to all eclipses. It should be noted that n becomes unity
at second contact (internal tangency) and that during totality the independent

variable in x is p rather than n.

The SIC, the light curve for a given X, is defined by the relation
between 0 and (1 - na 0o) for any eclipse. The SIC can be easily obtained by
using Princeton 23 [1-31 along with equation (13), as described in Sections II

and III.

I I. THE OCCULTATION ECLIPSE

A. The Total Eclipse

For all occultation-type eclipses, for all observers, k = r /r 1.
sn m

For an observer on the centerline of the path of totality, Po = - 1/k; for one on
either edge of that path, po = -1; for any observer elsewhere within that path,
- 1/k < p0 < -1; and for one outside the path of totality but within the (very
large) region where the eclipse is partial at maximum, -1 < po < +1. For any

OC oC OC
observer within the path of totality ao = 1 and, in fact, a = = 1 through-
out the time interval from second to third contact; for one outside that path but

oc
inside the large region mentioned, ao < 1. The parameter p takes on the
instantaneous values +1, -1, -1, +1, respectively, at first, second, third, and
fourth contacts for an observer within the path of totality; second and third
contacts are, of course, not observed outside that path, but the name "'fourth
contact" is by convention retained for the end of the phenomenon (Fig. 1).
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oc
Princeton 23 provides among other things X as a function of k

and ooc for a large number of selected values of X and n, and simple
oc

interpolating forms for finer screening in any one of the four variables k, Yo

y, n where warranted.

An example of computation of 0(n) values is given below for the March

7, 1970, centerline of totality for which po = -1/k. From the Naval Observa-

tory circular [71, one obtains for an observer at the centerline of totality the

value of Po = -1.040, so that

koc = -1/poc = 0.962 (14)

Then if the sun's semidiameter [71 with respect to the earth's surface is

r = 0. 004688 radians, that of the moon is
sn

r = r /k = 0.0048773 radians (15)
m sn

so that at first contact (p= +1, n = 0.0)

0(n= 0.0) = r + r = 0.00956451 radians . (16)

From the x= 0.6 section of Princeton 23 [1-3], one can obtain x C(n) to

use in equation (13) or, in a form more convenient for our present purpose,

such as

sin 0(n) = sin 0(0.5) [6(n)]/2 (17)

to obtain 0(n) . The value of 0(0.5) is derived by substituting in equation

(17) the value of 6x o (n= 0.0, k= 0.962, ao= 1, n= 0.0) obtained from the

next to the bottom row (Xc) on page 180 of Princeton 23, and that of 0(0.0)

from equation (16):
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sin0(0.5) = sin[0(0.0)]/[ .6x(n)] /2

= sin (0. 0095641) /2.30954

= 0.0041413 . (18)

Therefore, 0(0.5) = 0.0041413, for n= 0.5 and (1 -na) = 0. 5. Similarly,
for n= 0.1 and (1-na~) = 0.9):

sinO(0.1) = sinO(0.5) [6X(0.1)] 1/2

= 0.0041413 (1.83078) = 0.0075818

0(0.1) = 0.0075818

and so on. The results of the calculations for 0(n) and 0(1-n 0o) are given
in Table 1 and the SIC is plotted in Figure 2. The calculations have been made
for Walterboro, S. C. (32 deg 54 min north, 80 deg 40 min west), which is on
the centerline of totality for the March 7, 1970, eclipse (see map in Reference
7). The universal times [71 for the first and second contacts are 17 hr 4 min
56 sec and 18 hr 24 min 67 sec, respectively.

The time interval, At, elapsed after first contact can easily be obtained
from O's because of the uniform (circular) motion of the moon around the sun,
over that interval. If the time interval between the first and second contacts
is T 12 , and 1 = r + r [as in equation (17)],

sn m

At(n) = T12 [ -0(n) , (19)

where 02 is the value at second contact.
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TABLE 1. CALCULATIONS FOR 0(n) AND 0(1 - nce0) [For Walterboro,

South Carolina (32 deg 54 min north, 80 deg 40 min west) on the

Centerline of Totality and x = 0.6 Corresponding to
X = 550 nml

e(n) At(n)

Eclipse Phase n 1-n (radians) (min)

1st Contact 0.0 1.00 0.009561 0.0

0.1 0.90 0.007579 16.780

0.2 0.80 0.006536 25.617

0.4 0.60 0.004883 39.621

0.5 0.5 0.004144 45.880

0.6 0.4 0.003427 51.953

0.8 0.2 0.001987 64.149

0.9 0.1 0.001210 70.730

0.95 0.05 0.0007794 74.377

2nd Contact 1.00 0.0 0.0002125 79. 1784

Note that, since 0(n) is practically always so small during any solar

eclipse (seen from a single point on the earth's surface), 0(radians) is always

equal to sin 0(n) to the accuracy of the data. Its obvious implication would

be that a permanent set of tables of [] /2 for relevant values of x, k, n could

very easily be constructed from the appropriate X's of Princeton 23.

If Ho(A, 0) represents the spectral irradiance (watts/cm2 -X) of the

sun at instant t = 0 just prior to the first contact and H0(X, t) is that at time

t after contact, the relative spectral irradiance is given by the ratio

[Ho(X, t)/Ho0 (, 0)] and is equal to (1 - nc 4o). Hence the name SIC for the

relation (1 - ncr) versus 0 or t.

9
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B. Occultation Eclipses Not Central at Maximum

For an observer situated away from the centerline of totality, the

relation Po = -1/k does not hold and one has to obtain the values of k and po

either from Duncombe's circular [71 (if listed there directly) or by simple

geometry. If the values are listed, then one proceeds as before; otherwise,

one may proceed as follows.

1. To obtain k from geometry (March 7, 1970, eclipse) - For an

observer at P (Fig. 3), let the moon be at a zenith distance, Z= 36 deg. The

semidiameters of the moon and the sun given in the circular [71 are measured

geocentrically and have the following values: Rs = 16 min 6.8 sec, Rm = 16

min 32 sec, respectively. From the earth's surface, the semidiameter of the

moon is then given by the relation rm = Rm D/d where D is the instantaneous

distance between the centers of the moon and the earth and is given by the

relation D = Dm(Pm/9), and d = D sin C/sin Z:

r = R sin Z/sin (Z - M) (20)
m m

k = r /r = R sin (Z - M)/(R sin M) (21)
sm s m

where

sin M - R E sin Z/D . (22)

For the March 7, 1970, eclipse, 3 = 60 min 39.4 sec and, therefore, D =

359 464 km (224 665 mi) so that k= 0.961. Thus, knowing the zenith distance,

Z, of the moon at the time of the eclipse and knowing D, R s , Rm and RE'
one can determine k at any location.

2. To obtain the value of po (March 7, 1970, eclipse) - In the eclips-

ing binary notation, po is the mideclipse value of p at the centerline. For

observers on the northern and southern limits of the track of totality (Fig. 4),

11



dM

Z= 360

P

C

R,

Figure 3. Geometry for deriving the instantaneous apparent
diameter of the moon at a given place.

po = -1. 000. The magnitude of eclipse values (mE) given by Duncombe 171 for

points outside the path of totality, i.e., for the cases of occultation eclipse
partial at maximum, are related to the values of the eclipsing binary po by
the formula

0 = (1 - 2 mE) . (23)

12



B Po= -1.000

Figure 4. Track of totality (or annularity) for the

occultation (or transit) solar eclipse.

If, however, the magnitude mE for a place is not given, one can obtain the

value of po by interpolating linearly with a distance from -1. 040 (at center-

line) towards -1. 000 (at the edge approximately 44 km away) for a place P

inside the path, or extrapolating beyond -1. 000 for a place not too far outside.

The distances are measured perpendicular to the track. For places not too

far away from the tracks, one can measure off perpendicular distances on the

maps (in Duncombe's circular [71) themselves. For example, consider the

case of an observer at Tampa, Florida. Measuring the distances perpendicular

to the track one obtains for Tampa: centerline (C. L. ) to the edge of the track,

dt = 23 mm, and centerline to Tampa, dp = 77 mm, so that for Tampa

d[P] -[P] + ([Po] - 1.00)

Po Tampa C. L. +d C. L.

77
= -1.040 + - (0.040) = -0.906 (24)

22
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On the other hand, the magnitude of eclipse at Tampa, as given in the circular

[71, is mE = 0.953 so that

[o Tampa 1 - 2 (0.953) = -0.906 , (25)

which is in agreement with the result in equation (24).

3. To obtain the value of a oc needed - If P lies inside the path of

oc
totality, a ( = 1 whatever the particular values of x, k and po. If P lies

in the large outside region where the eclipse is partial at maximum, an

assumption must be made as to the degree of darkening X o; then the needed

x(Ya is located in the appropriate a oc(k, p) table of Princeton 23.

4. If the eclipse does not become total at any point of the earth's sur-

face, then one resorts to the American Ephemeris and the Explanatory Supple-

ment to the Ephemeris, or to local circumstances supplied directly on request

by the Naval Observatory.

5. The SIC - Given the angular radii of the sun and moon, the x, k,

xao and po0 , the determination of points (n, 0(n) or At), and therefore

points on the SIC, proceeds as before.

III. THE TRANSIT ECLIPSE

In transit eclipses, the angular radius of the moon is less than that of

the sun. Equations (1) through (13) are still valid but one uses the tr tables

of Princeton 23, instead of their occ counterparts, in the calculations, with

tr oc
k = r /r ; while for occultation eclipses, ao = 1 at deepest phase for an

m sn tr
observer anywhere within the path of totality, in the transit case ao > 1 for

an observer within the path of annularity.

14



tr tr
At centrality of the annular case k = m E and po -1/mE , where

iE is the magnitude of eclipse. In the large region of the earth for which the

transit eclipse is partial at maximum, k is obtained by the geometry for the

phase (as for occultation eclipses) but po is obtained from either

tr
PO = 1 - 2 mE/R or is read from a map as in the example of equation (25).

All the procedures are essentially formally parallel throughout. Some

relations appear different because

tr light lost at a given phase of transit eclipse

where T is the light that is or would be lost at internal tangency; T(x,k) is

the tabulated in extemo in Princeton 23.

During the annular phases of an eclipse observed from a point within

the path of annularity, the amount of light lost at a given instant is strongly

dependent on the degree of limb-darkening of the solar disk at the wavelength

of observation. For this reason the small section of the light curve (or SIC)

during annularity holds special possible interest. For more detailed study of

this small section, Princeton 23 contains, in each x section a table headed

xnann . It is used by workers in the field of eclipsing binaries, as it would be

here, in conjunction with the xtr tables for the same X, so it is placed with

those tables. Its mode of use is obvious from its structure.

IV. CONCLUSIONS

A fairly direct method for obtaining the spectral irradiance curves for

various assumed degrees of limb-darkening for any type of solar eclipse has

been indicated. As mentioned earlier, a permanent set of tables of [X]

for relevant values of x, k, n could very easily be constructed from the

appropriate x's of Princeton 23, and the values could be stored in a computer

data bank or on tapes for future use.
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