
Spectral k-Support Norm Regularization

Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos
Department of Computer Science

University College London
{a.mcdonald,m.pontil,d.stamos}@cs.ucl.ac.uk

Abstract

The k-support norm has successfully been applied to sparse vector prediction
problems. We observe that it belongs to a wider class of norms, which we call the
box-norms. Within this framework we derive an efficient algorithm to compute
the proximity operator of the squared norm, improving upon the original method
for the k-support norm. We extend the norms from the vector to the matrix setting
and we introduce the spectral k-support norm. We study its properties and show
that it is closely related to the multitask learning cluster norm. We apply the norms
to real and synthetic matrix completion datasets. Our findings indicate that spec-
tral k-support norm regularization gives state of the art performance, consistently
improving over trace norm regularization and the matrix elastic net.

1 Introduction

In recent years there has been a great deal of interest in the problem of learning a low rank matrix
from a set of linear measurements. A widely studied and successful instance of this problem arises
in the context of matrix completion or collaborative filtering, in which we want to recover a low
rank (or approximately low rank) matrix from a small sample of its entries, see e.g. [1, 2]. One
prominent method to solve this problem is trace norm regularization: we look for a matrix which
closely fits the observed entries and has a small trace norm (sum of singular values) [3, 4, 5]. Besides
collaborative filtering, this problem has important applications ranging from multitask learning, to
computer vision and natural language processing, to mention but a few.

In this paper, we propose new techniques to learn low rank matrices. These are inspired by the notion
of the k-support norm [6], which was recently studied in the context of sparse vector prediction and
shown to empirically outperform the Lasso [7] and Elastic Net [8] penalties. We note that this
norm can naturally be extended to the matrix setting and its characteristic properties relating to the
cardinality operator translate in a natural manner to matrices. Our approach is suggested by the
observation that the k-support norm belongs to a broader class of norms, which makes it apparent
that they can be extended to spectral matrix norms. Moreover, it provides a link between the spectral
k-support norm and the cluster norm, a regularizer introduced in the context of multitask learning
[9]. This result allows us to interpret the spectral k-support norm as a special case of the cluster
norm and furthermore adds a new perspective of the cluster norm as a perturbation of the former.

The main contributions of this paper are threefold. First, we show that the k-support norm can
be written as a parametrized infimum of quadratics, which we term the box-norms, and which are
symmetric gauge functions. This allows us to extend the norms to orthogonally invariant matrix
norms using a classical result by von Neumann [10]. Second, we show that the spectral box-norm
is essentially equivalent to the cluster norm, which in turn can be interpreted as a perturbation of
the spectral k-support norm, in the sense of the Moreau envelope [11]. Third, we use the infimum
framework to compute the box-norm and the proximity operator of the squared norm in O(d log d)

time. Apart from improving on the O(d(k + log d)) algorithm in [6], this method allows one to use
optimal first order optimization algorithms [12] with the cluster norm. Finally, we present numerical
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experiments which indicate that the spectral k-support norm shows a significant improvement in
performance over regularization with the trace norm and the matrix elastic net, on four popular
matrix completion benchmarks.

The paper is organized as follows. In Section 2 we recall the k-support norm, and define the box-
norm. In Section 3 we study their properties, we introduce the corresponding spectral norms, and
we observe the connection to the cluster norm. In Section 4 we compute the norm and we derive
a fast method to compute the proximity operator. Finally, in Section 5 we report on our numerical
experiments. The supplementary material contains derivations of the results in the body of the paper.

2 Preliminaries

In this section, we recall the k-support norm and we introduce the box-norm and its dual. The k-
support norm k · k

(k)

was introduced in [6] as the norm whose unit ball is the convex hull of the
set of vectors of cardinality at most k and `

2

-norm no greater than one. The authors show that the
k-support norm can be written as the infimal convolution [11]
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where G
k

is the collection of all subsets of {1, . . . , d} containing at most k elements, and for any
v 2 Rd, the set supp(v) = {i : v

i

6= 0} denotes the support of v. When used as a regularizer,
the norm encourages vectors w to be a sum of a limited number of vectors with small support. The
k-support norm is a special case of the group lasso with overlap [13], where the cardinality of the
support sets is at most k. Despite the complicated form of the primal norm, the dual norm has a
simple formulation, namely the `
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where |u|# is the vector obtained from u by reordering its components so that they are non-increasing
in absolute value [6]. The k-support norm includes the `

1

-norm and `

2

-norm as special cases. This
is clear from the dual norm since for k = 1 and k = d, it is equal to the `1-norm and `

2

-norm,
respectively. We note that while definition (1) involves a combinatorial number of variables, [6]
observed that the norm can be computed in O(d log d).

We now define the box-norm, and in the following section we will show that the k-support norm is
a special case of this family.

Definition 2.1. Let 0  a  b and c 2 [ad, bd] and let ⇥ = {✓ 2 Rd
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This formulation will be fundamental in deriving the proximity operator in Section 4.1. Note that
we may assume without loss of generality that b = 1, as by rescaling we obtain an equivalent norm,
however we do not explicitly fix b in the sequel.

Proposition 2.2. The norm (3) is well defined and the dual norm is kuk⇤,⇥ =

s

sup

✓2⇥

d

P

i=1
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i

u

2

i

.

The result holds true in the more general case that ⇥ is a bounded convex subset of the strictly
positive orthant (for related results see [14, 15, 16, 17, 18, 19] and references therein). In this
paper we limit ourselves to the box constraints above. In particular we note that the constraints are
invariant with respect to permutation of the components of ⇥, and as we shall see this property is
key to extend the norm to matrices.
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3 Properties of the Norms

In this section, we study the properties of the vector norms, and we extend the norms to the matrix
setting. We begin by deriving the dual box-norm.
Proposition 3.1. The dual box-norm is given by

kuk⇤,⇥ =

q

akuk2
2

+ (b� a)kuk2⇤,(k) + (b� a)(⇢� k)(|u|#
k+1

)

2

, (4)

where ⇢ =

c�da

b�a

and k is the largest integer not exceeding ⇢.

We see from (4) that the dual norm decomposes into two `

2

-norms plus a residual term, which
vanishes if ⇢ = k, and for the rest of this paper we assume this holds, which loses little generality.

Note that setting a = 0, b = 1, and c = k 2 {1, . . . , d}, the dual box-norm (4) is the `

2

-norm of the
largest k components of u, and we recover the dual k-support norm in equation (2). It follows that
the k-support norm is a box-norm with parameters a = 0, b = 1, c = k.

The following infimal convolution interpretation of the box-norm provides a link between the box-
norm and the k-support norm, and illustrates the effect of the parameters.
Proposition 3.2. If 0 < a  b and c = (b� a)k + da, for k 2 {1, . . . , d}, then
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Notice that if b = 1, then as a tends to zero, we obtain the expression of the k-support norm (1),
recovering in particular the support constraints. If a is small and positive, the support constraints
are not imposed, however effectively most of the weight for each v

g

tends to be concentrated on
supp(g). Hence, Proposition 3.2 suggests that the box-norm regularizer will encourage vectors w

whose dominant components are a subset of a union of a small number of groups g 2 G
k

.

The previous results have characterized the k-support norm as a special case of the box-norm. Con-
versely, the box-norm can be seen as a perturbation of the k-support norm with a quadratic term.
Proposition 3.3. Let k·k

⇥

be the box-norm on Rd with parameters 0 < a < b and c = k(b�a)+da,
for k 2 {1, . . . , d}, then
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Consider the regularization problem min
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2

+ �kwk2
⇥

, with data X and response y.
Using Proposition 3.3 and setting w = u+ z, we see that this problem is equivalent to
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Furthermore, if (û, ẑ) solves this problem then ŵ = û + ẑ solves problem (6). The solution ŵ can
therefore be interpreted as the superposition of a vector which has small `

2

norm, and a vector which
has small k-support norm, with the parameter a regulating these two components. Specifically, as
a tends to zero, in order to prevent the objective from blowing up, û must also tend to zero and we
recover k-support norm regularization. Similarly, as a tends to b, ẑ vanishes and we have a simple
ridge regression problem.

3.1 The Spectral k-Support Norm and the Spectral Box-Norm

We now turn our focus to the matrix norms. For this purpose, we recall that a norm k · k on Rd⇥m is
called orthogonally invariant if kWk = kUWV k, for any orthogonal matrices U 2 Rd⇥d and
V 2 Rm⇥m. A classical result by von Neumann [10] establishes that a norm is orthogonally
invariant if and only if it is of the form kWk = g(�(W )), where �(W ) is the vector formed by
the singular values of W in nonincreasing order, and g is a symmetric gauge function, that is a norm
which is invariant under permutations and sign changes of the vector components.
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Lemma 3.4. If ⇥ is a convex bounded subset of the strictly positive orthant in Rd which is invariant
under permutations, then k · k

⇥

is a symmetric gauge function.

In particular, this readily applies to both the k-support norm and box-norm. We can therefore extend
both norms to orthogonally invariant norms, which we term the spectral k-support norm and the
spectral box-norm respectively, and which we write (with some abuse of notation) as kWk

(k)

=

k�(W )k
(k)

and kWk
⇥

= k�(W )k
⇥

. We note that since the k-support norm subsumes the `

1

and
`

2

-norms for k = 1 and k = d respectively, the corresponding spectral k-support norms are equal
to the trace and Frobenius norms respectively. We first characterize the unit ball of the spectral
k-support norm.
Proposition 3.5. The unit ball of the spectral k-support norm is the convex hull of the set of matrices
of rank at most k and Frobenius norm no greater than one.

Referring to the unit ball characterization of the k-support norm, we note that the restriction on the
cardinality of the vectors whose convex hull defines the unit ball naturally extends to a restriction
on the rank operator in the matrix setting. Furthermore, as noted in [6], regularization using the
k-support norm encourages vectors to be sparse, but less so that the `

1

-norm. In matrix problems, as
the extreme points of the unit ball have rank k, Proposition 3.5 suggests that the spectral k-support
norm for k > 1 should encourage matrices to have low rank, but less so than the trace norm.

3.2 Cluster Norm

We end this section by briefly discussing the cluster norm, which was introduced in [9] as a convex
relaxation of a multitask clustering problem. The norm is defined, for every W 2 Rd⇥m, as
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, S ⌫ 0 : aI � S � bI, trS = c}, and 0 < a  b. In [9] the authors
state that the cluster norm of W equals the box-norm of the vector formed by the singular values of
W where c = (b�a)k+da. Here we provide a proof of this result. Denote by �
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where we have used the inequality [20, Sec. H.1.h] for S�1, W>
W ⌫ 0. Since this inequality is

attained whenever S = UDiag(✓)U , where U are the eigenvectors of W>
W , we see that kWk

cl

=

k�(W )k
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, that is, the cluster norm coincides with the spectral box-norm. In particular, we see that
the spectral k-support norm is a special case of the cluster norm, where we let a tend to zero, b = 1

and c = k. Moreover, the methods to compute the norm and its proximity operator described in the
following section can directly be applied to the cluster norm.

As in the case of the vector norm (Proposition 3.3), the spectral box-norm or cluster norm can be
written as a perturbation of spectral k-support norm with a quadratic term.
Proposition 3.6. Let k · k

⇥

be a matrix box-norm with parameters a, b, c and let k =
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b�a

. Then
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In other words, this result shows that the cluster norm can be seen as the Moreau envelope [11] of a
spectral k-support norm.

4 Computing the Norms and their Proximity Operator

In this section, we compute the norm and the proximity operator of the squared norm by explicitly
solving the optimization problem in (3). We begin with the vector norm.
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Theorem 4.1. For every w 2 Rd it holds that
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Proof. (Sketch) We need to solve the optimization problem
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We assume without loss of generality that the w
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it follows that at the optimum the ✓
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2 is a strictly positive multiplier to be chosen such that S(↵) :=
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can then solve the original problem by minimizing the Lagrangian over the constraint ✓ 2 [a, b]

d.
Due to the decoupling effect of the multiplier we can solve the simplified problem componentwise,
obtaining the solution
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where S(↵) = c. The minimizer has the form ✓ = (b, . . . , b, ✓

q+1

, . . . , ✓

d�`

, a, . . . , a), where q, `

are determined by the value of ↵. From S(↵) = c we get ↵ = p/(

P

d�`

i=q+1

|w
i

|). The value
of the norm in (8) follows by substituting ✓ into the objective. Finally, by construction we have
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Theorem 4.1 suggests two methods for computing the box-norm. First we find ↵ such that S(↵) = c;
this value uniquely determines ✓ in (11), and the norm follows by substitution into (10). Alterna-
tively, we identify q and ` that jointly satisfy (9) and we compute the norm using (8). Taking
advantage of the structure of ✓ in the former method leads to a computation time that is O(d log d).
Theorem 4.2. The computation of the box-norm can be completed in O(d log d) time.

The k-support norm is a special case of the box-norm, and as a direct corollary of Theorem 4.1 and
Theorem 4.2, we recover [6, Proposition 2.1].

4.1 Proximity Operator

Proximal gradient methods can be used to solve optimization problems of the form min

w

f(w) +

�g(w), where f is a convex loss function with Lipschitz continuous gradient, � > 0 is a regu-
larization parameter, and g is a convex function for which the proximity operator can be computed
efficiently, see [12, 21, 22] and references therein. The proximity operator of g with parameter ⇢ > 0

is defined as

prox

⇢g

(w) = argmin

⇢

1

2

kx� wk2 + ⇢g(x) : x 2 Rd

�

.

We now use the infimum formulation of the box-norm to derive the proximity operator of the squared
norm.
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Algorithm 1 Computation of x = prox�
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(↵) = c. Furthermore, the computation of the proximity
operator can be completed in O(d log d) time.

The proof follows a similar reasoning to the proof of Theorem 4.1. Algorithm 1 illustrates the
computation of the proximity operator for the squared box-norm in O(d log d) time. This includes
the k-support as a special case, where we let a tend to zero, and set b = 1 and c = k, which
improves upon the complexity of the O(d(k+log d)) computation provided in [6], and we illustrate
the improvement empirically in Table 1.

4.2 Proximity Operator for Orthogonally Invariant Norms

The computational considerations outlined above can be naturally extended to the matrix setting by
using von Neumann’s trace inequality (see, e.g. [23]). Here we comment on the computation of the
proximity operator, which is important for our numerical experiments in the following section. The
proximity operator of an orthogonally invariant norm k · k = g(�(·)) is given by

proxk·k(W ) = Udiag(prox
g

(�(W )))V

>
, W 2 Rm⇥d

,

where U and V are the matrices formed by the left and right singular vectors of W (see e.g. [24,
Prop 3.1]). Using this result we can employ proximal gradient methods to solve matrix regularization
problems using the squared spectral k-support norm and spectral box-norm.

5 Numerical Experiments

In this section, we report on the statistical performance of the spectral regularizers in matrix com-
pletion experiments. We also offer an interpretation of the role of the parameters in the box-norm
and we empirically verify the improved performance of the proximity operator computation (see
Table 1). We compare the trace norm (tr) [25], matrix elastic net (en) [26], spectral k-support (ks)
and the spectral box-norm (box). The Frobenius norm, which is equal to the spectral k-support
norm for k = d, performed considerably worse than the trace norm and we omit the results here.
We report test error and standard deviation, matrix rank (r) and optimal parameter values for k and
a, which were determined by validation, as were the regularization parameters. When comparing
performance, we used a t-test to determine statistical significance at a level of p < 0.001. For the
optimization we used an accelerated proximal gradient method (FISTA), see e.g. [12, 21, 22], with
the percentage change in objective as convergence criterion, with a tolerance of 10�5 for the simu-
lated datasets and 10

�3 for the real datasets. As is typical with spectral regularizers we found that
the spectrum of the learned matrix exhibited a rapid decay to zero. In order to explicitly impose a
low rank on the solution we included a final step where we hard-threshold the singular values of the
final matrix below a level determined by validation. We report on both sets of results below.

5.1 Simulated Data

Matrix Completion. We applied the norms to matrix completion on noisy observations of low rank
matrices. Each m⇥m matrix was generated as W = AB

>
+E, where A,B 2 Rm⇥r, r ⌧ m, and
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Table 1: Comparison of proximity operator algorithms for the k-support norm (time in s), k = 0.05d.
Algorithm 1 is the method in [6], Algorithm 2 is our method.

d 1,000 2,000 4,000 8,000 16,000 32,000

Alg. 1 0.0443 0.1567 0.5907 2.3065 9.0080 35.6199
Alg. 2 0.0011 0.0016 0.0026 0.0046 0.0101 0.0181

2 4 6 8 10
0

0.01

0.02

0.03

a
 v

a
lu

e

SNR

Figure 1: Impact of signal to noise on a.
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Figure 2: Impact of matrix rank on k.

the entries of A, B and E are i.i.d. standard Gaussian. We set m = 100, r 2 {5, 10} and we sampled
uniformly a percentage ⇢ 2 {10%, 20%, 30%} of the entries for training, and used a fixed 10% for
validation. The error was measured as ktrue�predictedk2/ktruek2 [5] and averaged over 100 trials.
The results are summarized in Table 2. In the thresholding case, all methods recovered the rank of
the true noiseless matrix. The spectral box-norm generated the lowest test errors in all regimes, with
the spectral k-support a close second, in particular in the thresholding case. This suggests that the
non zero parameter a in the spectral box-norm counteracted the noise to some extent.
Role of Parameters. In the same setting we investigated the role of the parameters in the box-
norm. As previously discussed, parameter b can be set to 1 without loss of generality. Figure 1
shows the optimal value of a chosen by validation for varying signal to noise ratios (SNR), keeping
k fixed. We see that for greater noise levels (smaller SNR), the optimal value for a increases. While
for a > 0, the recovered solutions are not sparse, as we show below this can still lead to improved
performance in experiments, in particular in the presence of noise. Figure 2 shows the optimal value
of k chosen by validation for matrices with increasing rank, keeping a fixed. We notice that as the
rank of the matrix increases, the optimal k value increases, which is expected since it is an upper
bound on the sum of the singular values.

Table 2: Matrix completion on simulated data sets, without (left) and with (right) thresholding.

dataset norm test error r k a

rank 5 tr 0.8184 (0.03) 20 - -
⇢=10% en 0.8164 (0.03) 20 - -

ks 0.8036 (0.03) 16 3.6 -
box 0.7805 (0.03) 87 2.9 1.7e-2

rank 5 tr 0.4085 (0.03) 23 - -
⇢=20% en 0.4081 (0.03) 23 - -

ks 0.4031 (0.03) 21 3.1 -
box 0.3898 (0.03) 100 1.3 9e-3

rank 10 tr 0.6356 (0.03) 27 - -
⇢=20% en 0.6359 (0.03) 27 - -

ks 0.6284 (0.03) 24 4.4 -
box 0.6243 (0.03) 89 1.8 9e-3

rank 10 tr 0.3642 (0.02) 36 - -
⇢=30% en 0.3638 (0.002 36 - -

ks 0.3579 (0.02) 33 5.0 -
box 0.3486 (0.02) 100 2.5 9e-3

dataset norm test error r k a

rank 5 tr 0.7799 (0.04) 5 - -
⇢=10% en 0.7794 (0.04) 5 - -

ks 0.7728 (0.04) 5 4.23 -
box 0.7649 (0.04) 5 3.63 8.1e-3

rank 5 tr 0.3449 (0.02) 5 - -
⇢=20% en 0.3445 (0.02) 5 - -

ks 0.3381 (0.02) 5 2.97 -
box 0.3380 (0.02) 5 3.28 1.9e-3

rank 10 tr 0.6084 (0.03) 10 - -
⇢=20% en 0.6074 (0.03) 10 - -

ks 0.6000 (0.03) 10 5.02 -
box 0.6000 (0.03) 10 5.22 1.9e-3

rank 10 tr 0.3086 (0.02) 10 - -
⇢=30% en 0.3082 (0.02) 10 - -

ks 0.3025 (0.02) 10 5.13 -
box 0.3025 (0.02) 10 5.16 3e-4

7



Table 3: Matrix completion on real data sets, without (left) and with (right) thresholding.

dataset norm test error r k a

MovieLens tr 0.2034 87 - -
100k en 0.2034 87 - -
⇢ = 50% ks 0.2031 102 1.00 -

box 0.2035 943 1.00 1e-5

MovieLens tr 0.1821 325 - -
1M en 0.1821 319 - -
⇢ = 50% ks 0.1820 317 1.00 -

box 0.1817 3576 1.09 3e-5

Jester 1 tr 0.1787 98 - -
20 per line en 0.1787 98 - -

ks 0.1764 84 5.00 -
box 0.1766 100 4.00 1e-6

Jester 3 tr 0.1988 49 - -
8 per line en 0.1988 49 - -

ks 0.1970 46 3.70 -
box 0.1973 100 5.91 1e-3

dataset norm test error r k a

MovieLens tr 0.2017 13 - -
100k en 0.2017 13 - -
⇢ = 50% ks 0.1990 9 1.87 -

box 0.1989 10 2.00 1e-5

MovieLens tr 0.1790 17 - -
1M en 0.1789 17 - -
⇢ = 50% ks 0.1782 17 1.80 -

box 0.1777 19 2.00 1e-6

Jester 1 tr 0.1752 11 - -
20 per line en 0.1752 11 - -

ks 0.1739 11 6.38 -
box 0.1726 11 6.40 2e-5

Jester 3 tr 0.1959 3 - -
8 per line en 0.1959 3 - -

ks 0.1942 3 2.13 -
box 0.1940 3 4.00 8e-4

5.2 Real Data

Matrix Completion (MovieLens and Jester). In this section we report on matrix completion on
real data sets. We observe a percentage of the (user, rating) entries of a matrix and the task is to pre-
dict the unobserved ratings, with the assumption that the true matrix has low rank. The datasets we
considered were MovieLens 100k and MovieLens 1M (http://grouplens.org/datasets/movielens/),
which consist of user ratings of movies, and Jester 1 and Jester 3 (http://goldberg.berkeley.edu/jester-
data/), which consist of users and ratings of jokes (Jester 2 showed essentially identical performance
to Jester 1). Following [4], for MovieLens we uniformly sampled ⇢ = 50% of the available entries
for each user for training, and for Jester 1 and Jester 3 we sampled 20, respectively 8, ratings per
user, and we used 10% for validation. The error was measured as normalized mean absolute error,

ktrue�predictedk2

#observations/(r
max

�r

min

)

, where r

min

and r

max

are lower and upper bounds for the ratings [4]. The
results are outlined in Table 3. In the thresholding case, the spectral box and k-support norms had
the best performance. In the absence of thresholding, the spectral k-support showed slightly better
performance. Comparing to the synthetic data sets, this suggests that in the absence of noise the
parameter a did not provide any benefit. We note that in the absence of thresholding our results for
the trace norm on MovieLens 100k agreed with those in [3].

6 Conclusion

We showed that the k-support norm belongs to the family of box-norms and noted that these can
be naturally extended from the vector to the matrix setting. We also provided a connection between
the k-support norm and the cluster norm, which essentially coincides with the spectral box-norm.
We further observed that the cluster norm is a perturbation of the spectral k-support norm, and we
were able to compute the norm and its proximity operator. Our experiments indicate that the spectral
box-norm and k-support norm consistently outperform the trace norm and the matrix elastic net on
various matrix completion problems. With a single parameter to validate, compared to two for the
spectral box-norm, our results suggest that the spectral k-support norm is a powerful alternative to
the trace norm and the elastic net, which has the same number of parameters. In future work, we
would like to study the application of the norms to clustering problems in multitask learning [9],
in particular the impact of centering. It would also be valuable to derive statistical inequalities and
Rademacher complexities for these norms.
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Supplementary Material

In this appendix, we collect some auxiliary results and we provide proofs of the results stated in the
main body of the paper.

A Auxiliary Results

Recall that a subset A of a real vector space X is called balanced if ↵A ⇢ A whenever |↵|  1.
Furthermore, A is called absorbing if for any x 2 X , x 2 �A for some �(x) > 0. For a proof of
the following lemma see e.g. [27, §1.35].
Lemma A.1. Let X be a real vector space and let A ⇢ X be a convex, balanced, and absorbing
set. The Minkowski functional µ

A

of A, given, for every x 2 X , by the formula

µ

A

(x) = inf{� > 0 : x 2 �A}
defines a seminorm on X . In addition, if µ

A

(x) > 0 for every x 6= 0, then µ

A

defines a norm on X .

The next result is due to von Neumann [10], see also [23].
Theorem A.2 (Von Neumann’s trace inequality). For any d⇥m matrices X and Y ,

tr(XY

>
)  h�(X),�(Y )i.

Equality holds if and only if X and Y admit a simultaneous singular value decomposition, that is

X = Udiag(�(X))V

>
, Y = Udiag(�(Y ))V

>
,

where U 2 Rd⇥d and V 2 Rm⇥m are orthogonal matrices.

The following result, which is presented in [6, Section 2] is key for the proof of Theorem 3.5.
Proposition A.3. The unit ball of the vector k-support norm is equal to the convex hull of the set
{w 2 Rd

: card(w)  k, kwk
2

 1}.

Theorems 4.1 and 4.3 make use of the following result, which follows from [17], Theorem 3.1.

Lemma A.4. Let w 2 R,� > 0, and define g(✓) =

w

2

✓

+ �

2

✓(✓ > 0). For 0 < a  b, the unique
solution to the problem min{g(✓) : a  ✓  b} is given by

✓ =

8

>

<

>

:

a, if |w|
�

< a,

|w|
�

, if a  |w|
�

 b,

b, if |w|
�

> b.

Proof. For fixed w, the objective function is strictly convex on Rd

++

and has a unique minimum on
(0,1) (see Figure 1.b in [17] for a one-dimensional illustration). The derivative of the objective
function is zero for ✓ = ✓

⇤
:= |w|/�, strictly positive below ✓

⇤ and strictly increasing above ✓

⇤.
Considering these three cases we recover the expression in statement of the lemma.

B Proofs

Proof of Proposition 2.2. Consider the expression for the dual norm. The function k · k
⇥

is a norm
since it is a supremum of norms. Recall that the Fenchel conjugate h

⇤ of a function h : Rd ! R is
defined for every u 2 Rd as h⇤

(u) = sup

�hu,wi � h(w) : w 2 Rd

 

. It is a standard result from
convex analysis that for any norm k · k, the Fenchel conjugate of the function h :=

1

2

k · k2 satisfies
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h

⇤
=

1

2

k · k2⇤, where k · k⇤ is the corresponding dual norm (see, e.g. [23]). By the same result, for
any norm the biconjugate is equal to the norm, that is (k · k⇤)⇤ = k · k. Applying this to the dual
norm we have, for every w 2 Rd,

h(w) = sup

u2Rd

{hw, ui � h

⇤
(u)} = sup

u2Rd

inf

✓2⇥

(

d

X

i=1

✓

w

i

u

i

� 1

2

✓

i

u

2

i

◆

)

.

This is a minimax problem in the sense of von Neumann [28], and we can exchange the order of
the inf and the sup, and solve the latter (which is in fact a maximum) componentwise. The gradient
with respect to u

i

is zero for u
i

=

wi
✓i

, and substituting this into the objective we get

h(w) =

1

2

inf

✓2⇥

d

X

i=1

w

2

i

✓

i

.

It follows that the infimum expression in (3) defines a norm, and the two norms are duals of each
other as required.

Proof of Proposition 3.1. We make the change of variable �

i

=

✓i�a

b�a

and observe that the con-
straints on ✓ induce the constraint set {� 2 (0, 1]

d

,

P

d

i=1

�

i

 ⇢}, where ⇢ =

c�da

b�a

. Furthermore

d

X

i=1

✓

i

u

2

i

= akuk2
2

+ (b� a)

d

X

i=1

�

i

u

2

i

.

The result then follows by taking the supremum over �.

Proof of Proposition 3.2. Equation 5 defines a norm and we will show that its norm coincides with
the dual of the ⇥-norm given by equation (4). To simplify the exposition we define the norm

kvk2
g

=

X

i2g

v

2

i

b

+

X

i/2g

v

2

i

a

, v 2 Rd

,

whose corresponding dual norm is

kuk2⇤,g = b

X

i2g

u

2

i

+ a

X

i/2g

u

2

i

, u 2 Rd

.

Furthermore for every u 2 Rd and g ✓ {1, . . . , d}, we define the vectors u|g = (u

i

I{i2g})
d

i=1

and
u|gc

= (u

i

I{i/2g})
d

i=1

.

We have, for every u 2 Rd, u 6= 0, that

sup

w2Rd

hw, ui
kwk = sup

{vg}

P

g2Gk
hv

g

, ui
P

g2Gk
kv

g

k
g

 sup

{vg}

P

g2Gk
kv

g

k
g

kuk⇤,g
P

g2Gk
kv

g

k
g

 max

g2Gk

kuk⇤,g, (13)

where we have used Cauchy-Schwarz and Hölder inequalities. We can make the first inequality tight
by setting v

g

= �

g

(bu|g + au|gc
) and the second inequality tight by requiring �

g

= 0 whenever
g /2 argmax

g

02Gk
kuk⇤,g0 , see e.g. [29, Sects. 5.4.14. and 5.4.15]. Note that the right hand side in

(13) is maximized when g = {i
1

, . . . , i

k

} such that |u
i

1

| � · · · |u
ik | and the expression coincides

with (4) for ⇢ = k.
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Proof of Proposition 3.3. Consider the definition of the norm kwk
⇥

in (3). We make the change of
variables �

i

=

✓i�a

b�a

, and write

kwk2
⇥

= min

✓2⇥

d

X

i=1

w

2

i

✓

i

=

�

a

min

�2�

d

X

i=1

w

2

i

�

i

+ �

, (14)

where we have defined � =

a

b�a

and � = {� 2 (0, 1]

d

:

P

d

i=1

�

i

 k}. We observe that

min

z2Rd

�kw � zk2
2

+ �kzk2
�

 

= min

z2Rd
min

�2�

(

d

X

i=1

(w

i

� z

i

)

2

+ �

z

2

i

�

i

)

= �min

�2�

d

X

i=1

w

2

i

�

i

+ �

, (15)

where we have interchanged the order of the minimization problems and solved for z
i

component-
wise. The result follows by combining equations (14) and (15).

Proof of Lemma 3.4. Let g(w) = kwk
⇥

. We need to show that g is a norm which is invariant
under permutations and sign changes. By Proposition 2.2, g is a norm, so it remains to show that
g(w

1

, ..., w

d

) = g(w

⇡(1)

, . . . , w

⇡(d)

) for every permutation ⇡, and g(Jw) = g(w) for every diago-
nal matrix J with entries ±1. The latter property is immediate. The former property follows since
the set ⇥-norm is permutation invariant.

Proof of Proposition 3.5. For any W 2 Rd⇥m, define the following sets

T

k

= {W 2 Rd⇥m

: rank(W )  k, kWk
F

 1}, A

k

= co(T
k

),

and consider the following functional

�(W ) = inf{� > 0 : W 2 �A

k

}, W 2 Rd⇥m

. (16)

By Lemma A.1, � defines a norm on Rd⇥m with unit ball equal to A

k

. Since the constraints in
T

k

involve spectral functions, the sets T

k

and A

k

are invariant to left and right multiplication by
orthogonal matrices. It follows that � is a spectral function, that is �(W ) is defined in terms of
the singular values of W , and by von Neumann’s Theorem [10] the norm it defines is orthogonally
invariant and we have

�(W ) = inf{� > 0 : W 2 �A

k

}

= inf{� > 0 : �(W ) 2 �C

k

}

= k�(W )k
(k)

,

where we have defined the set C
k

= co{w 2 Rd

: kwk
2

 1, card(w)  k} and we have used the
fact that the unit ball of the k-support norm is the convex hull of C

k

[6, Section 2] in the penultimate
step. It follows that the norm defined by (16) is the spectral k-support norm.

Proof of Proposition 3.6. By von Neumann’s trace inequality (Theorem A.2) we have

1

a

kW � Zk2
F

+

1

b� a

kZk2
(k)

=

1

a

�kWk2
F

+ kZk2
F

� 2hW,Zi�+ 1

b� a

kZk2
(k)

� 1

a

�k�(W )k2
2

+ k�(Z)k2
2

� 2h�(W ),�(Z)i�+ 1

b� a

k�(Z)k2
(k)

=

1

a

k�(W )� �(Z)k2
2

+

1

b� a

k�(Z)k2
(k)

.
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Furthermore the inequality is tight if W and Z have the same ordered set of singular vectors. Hence

min

Z2Rd⇥m

⇢

1

a

kW � Zk2
F

+

1

b� a

kZk2
(k)

�

= min

z2Rd

⇢

1

a

k�(W )� zk2
2

+

1

b� a

kzk2
(k)

�

= k�(W )k2
(k)

,

where the last equality follows by Proposition 3.3

Proof of Theorem 4.1. We solve the constrained optimization problem

inf

⇢

d

X

i=1

w

2

i

✓

i

: a  ✓

i

 b,

d

X

i=1

✓

i

 c

�

. (17)

To simplify notation we assume without loss of generality that w

i

are positive and ordered
nonincreasing, and note that the optimal ✓

i

are ordered nonincreasing. To see this, let ✓

⇤
=

argmin

✓2⇥

P

d

i=1

w

2

i
✓i

. Now suppose that ✓⇤
i

< ✓

⇤
j

for some i < j and define ˆ

✓ to be identical
to ✓

⇤, except with the i and j elements exchanged. The difference in objective values is

d

X

i=1

w

2

i

ˆ

✓

i

�
d

X

i=1

w

2

i

✓

⇤
i

= (w

2

i

� w

2

j

)

 

1

✓

⇤
j

� 1

✓

⇤
i

!

,

which is negative so ✓

⇤ cannot be a minimizer.

We further assume without loss of generality that w
i

6= 0 for all i, and c  db (see Remark B.1
below). The objective is continuous and we take the infimum over a closed bounded set, so a
solution exists, the solution is a minimum, and it is unique by strict convexity. Furthermore, since
c  db, the sum constraint will be tight at the optimum.

Consider the Lagrangian function

L(✓,↵) =

d

X

i=1

w

2

i

✓

i

+

1

↵

2

 

d

X

i=1

✓

i

� c

!

, (18)

where 1/↵

2 is a strictly positive multiplier, and ↵ is to be chosen to make the sum constraint tight,
call this value ↵

⇤. Let ✓⇤ be the minimizer of L(✓,↵⇤
) over ✓ subject to a  ✓

i

 b.

We claim that ✓⇤ solves equation (17). Indeed, for any ✓ 2 [a, b]

d, L(✓⇤,↵⇤
)  L(✓,↵

⇤
), which

implies that
d

X

i=1

w

2

i

✓

⇤
i


d

X

i=1

w

2

i

✓

i

+

1

(↵

⇤
)

2

 

d

X

i=1

✓

i

� c

!

.

If in addition we impose the constraint
P

d

i=1

✓

i

 c, the second term on the right hand side is at
most zero, so we have for all such ✓

d

X

i=1

w

2

i

✓

⇤
i


d

X

i=1

w

2

i

✓

i

,

whence it follows that ✓⇤ is the minimizer of (17).

We can therefore solve the original problem by minimizing the Lagrangian (18) over the box con-
straint. Due to the coupling effect of the multiplier, the problem is separable, and we can solve the
simplified problem componentwise using Lemma A.4. It follows that

✓

i

=

8

>

<

>

:

a, if ↵ <

a

|wi| ,

↵|w
i

|, if a

|wi|  ↵  b

|wi| ,

b, if ↵ >

b

|wi| ,
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where ↵ > 0 is such that
P

d

i=1

✓

i

(↵) = c. Note also that in the main body of the paper we use the
equivalent compact notation ✓

i

= ✓

i

(↵) = min(b,max(a,↵|w
i

|)).
The minimizer then has the form

✓ = (b, . . . , b

| {z }

q

, ✓

q+1

, . . . , ✓

d�`

, a, . . . , a

| {z }

`

),

where q, ` 2 {0, . . . , d} are determined by the value of ↵ which satisfies

S(↵) =

d

X

i=1

✓

i

(↵) = qb+

d�`

X

i=q+1

↵|w
i

|+ `a = c,

i.e. ↵ = p/

⇣

P

d�`

i=q+1

|w
i

|
⌘

, where p = c� qb� `a.

The value of the norm follows by substituting ✓ into the objective and we get

kwk2
⇥

=

q

X

i=1

|w
i

|2
b

+

1

p

⇣

d�`

X

i=q+1

|w
i

|
⌘

2

+

d

X

i=d�`+1

|w
i

|2
a

=

1

b

kw
Q

k2
2

+

1

p

kw
I

k2
1

+

1

a

kw
L

k2
2

,

as required. We can further characterize q and ` by considering the form of ✓
i

. By construction we
have ✓

q

� b > ✓

q+1

and ✓

d�`

> a � ✓

d�`+1

, or equivalently

|w
q

|
b

� 1

p

d�`

X

i=q+1

|w
i

| > |w
q+1

|
b

, and

|w
d�`

|
a

� 1

p

d�`

X

i=q+1

|w
i

| > |w
d�`+1

|
a

,

and we are done.

Remark B.1. The case where some w
i

are zero follows from the case that we have considered in the
theorem. If w

i

= 0 for n < i  d, then clearly we must have ✓
i

= a for all such i. We then consider
the n-dimensional problem of finding (✓

1

, . . . , ✓

n

) that minimizes
P

n

i=1

w

2

i
✓i

, subject to a  ✓

i

 b,
and

P

n

i=1

✓

i

 c

0, where c

0
= c � (d � n)a. As c � da by assumption, we also have c

0 � na, so
a solution exists to the n-dimensional problem. If c0 < bn, then a solution is trivially ✓

i

= b for all
i = 1 . . . n. In general, c0 � bn, and we proceed as per the proof of the theorem. Finally, a vector
that solves the original d-dimensional problem will be given by (✓

1

, . . . , ✓

n

, a, . . . , a).

Proof of Theorem 4.2. Following Theorem 4.1, we need to determine ↵

⇤ to satisfy the coupling
constraint S(↵⇤

) = c. Each component ✓
i

is a piecewise linear function in the form of a step
function with a constant positive slope between the values a/|w

i

| and b/|w
i

|. Let the set
�

↵

i

 

2d

i=1

be the set of the 2d critical points, where the ↵

i are ordered nondecreasing. The function S(↵) is
a nondecreasing piecewise linear function with at most 2d critical points. We can find ↵

⇤ by first
sorting the points {↵i}, finding ↵

i and ↵

i+1 such that

S(↵

i

)  c  S(↵

i+1

)

by binary search, and then interpolating ↵

⇤ between the two points. Sorting takes O(d log d).
Computing S(↵

i

) at each step of the binary search is O(d), so O(d log d) overall. Given ↵

i and
↵

i+1, interpolating ↵

⇤ is O(1), so the algorithm overall is O(d log d) as claimed.
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Proof of Theorem 4.3. Using the infimum formulation of the norm, we solve

min

x2Rd
inf

✓2⇥

(

1

2

d

X

i=1

(x

i

� w

i

)

2

+

�

2

d

X

i=1

x

2

i

✓

i

)

.

We can exchange the order of the optimization and solve for x first. The problem is separable and a
direct computation yields that x

i

=

✓iwi
✓i+�

. Discarding a multiplicative factor of �/2, and noting that
the infimum is a minimum, the problem in ✓ becomes

min

✓

⇢

d

X

i=1

w

2

i

✓

i

+ �

: a  ✓

i

 b,

d

X

i=1

✓

i

 c

�

.

This is exactly like problem (17) after the change of variable ✓0
i

= ✓

i

+ �. The remaining part of the
proof then follows in a similar manner to the proof of Theorem 4.1.
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